
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 9, SEPTEMBER 1988 1271

Program Readability: Procedures Versus Comments
TED TENNY

Abs&act-A 3 x 2 factorial experiment was performed to compare
the effects of procedure format (none, internal, or external) with those
of comments (absent or present) on the readability of a PL/I program.
The readability of six editions of the program, each having a different
combination of these factors, was inferred from the accuracy with
which students could answer questions about the program after read-
ing it. Both extremes in readability occurred in the program editions
having no procedures: without comments the procedureless program
was the least readable and with comments it was the most readable.

Index Terms-Comments, experimental testing of readability, ex-
periment design, procedure format, procedures: internal versus exter-
nal, program readability.

INTRODUCTION

C ODING is a small part of software engineering but
an important part where program maintenance is con-

cerned. The more readable the coding is, the more quickly
and accurately a programmer can obtain critical infor-
mation about a program by reading the program text. Thus
readability is defined within the context of maintenance:
a program is readable if information needed to maintain
it is easily found by reading the code. Elshoff and Mar-
catty [2] proposed adding another step to the program
modification cycle, in which the program is modified to
make it more readable. Their proposal was motivated by
the high cost of program maintenance, which depends on
the ability of maintenance programmers to read and un-
derstand the code.

Results of the author’s previous experiment [9] suggest
that comments and inline code (as opposed to internal
procedures) improve the readability of the Banker’s Al-
gorithm. This experiment featured the Banker’s Algo-
rithm coded in Pascal with the code for subtasks either
inline or as internal procedures, and with or without com-
ments. The procedureless edition with comments was the
most readable, while the edition with internal procedures
and no comments was the least readable. This unexpected
loss of readability with internal procedures prompted the
investigation of both internal and external procedures in
the present experiment.

BACKGROUND

Advocates of separate compilation claim that external
procedures improve readability because the text of each
procedure appears as a unit, uninterrupted by internal pro-
cedures. Yet languages such as Pascal, which have inter-

Manuscript received January 23, 1986; revised June 17, 1986.
The author is with the Department of Computer Science, Texas Chris-

tian University, Fort Worth, TX 76129.
IEEE Log Number 8822450.

nal procedures, are cited for their high readability. If a
computer program has a modular organization with pro-
cedures, can comments improve its readability or are they
superfluous? Can comments rescue a program which is
not modular, and make it as readable as a modular pro-
gram? Is a program more readable with internal proce-
dures or with external procedures? This experiment was
designed to test the hypothesis that two factors-proce-
dure format (none, internal, or external), and comments-
have no effect on program readability.

There is a qualitative difference between reading a pro-
gram with internal procedures, reading a program with
external procedures, and reading a program with all of the
code for logical functions inline. If each procedure is in-
voked from only one place then a program with proce-
dures is necessarily longer than the same program with all
of the code inline, because the declarations of procedures
and their formal parameters are absent in the procedure-
less program. Although it is longer the program with pro-
cedures ought to be a more readable, because the proce-
dure boundaries isolate the code for each logical function.
But the effect of procedures may be important only when
programs exceed a certain minimal size, as suggested by
the Banker’s Algorithm experiment and this experiment.

Yourdon and Constantine [13] described lexical inclu-
sion of one module inside another a mild form of content
coupling. Such content coupling does not occur with ex-
ternal procedures. On this basis one would expect a pro-
gram with external procedures to be more readable than
the corresponding program with internal procedures.

While comments have been a factor in some program
readability studies, only a few experiments have sug-
gested which kind of comments are most effective at pro-
moting program readability. The effect of procedure for-
mat has only been debated, without experimentally testing
the readability of internal versus external procedures.
Dijkstra [l] reasoned that the ease of understanding a pro-
gram depends critically upon the simplicity of its se-
quencing control, and proposed a strict sequencing dis-
cipline to keep programs from becoming too complex to
be understood. Kemighan and Plauger [4] presented rules
of programming style as a guideline for producing under-
standable code. The rules are illustrated by programming
examples, many of which feature comments or subrou-
tines. Of Ledgard’s 26 Programming Proverbs [5], 5 are
clearly directed toward making programs more readable.

Weissman [lo], [1 l] compared the effects of program
indentation and comments in PL/I experimentally and
found a significant interaction between them: in the pres-

0098-5589/88/0900-127lSOl.00 0 1988 IEEE

1272 1EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 9. SEPTEMBER 1988

ence of comments, two-column indentation made the pro-
grams less readable. These programs contained GOTO’s.
Norcio’s experiments [6] used the Cloze technique, re-
quiring subjects to reconstruct source statements that were
replaced by blank lines in a Fortran program, to test the
effects of documentation and identation. The interaction
between documentation and indentation was significant in
both experiments, with the best comprehension resulting
from indented programs having one line of documentation
interspersed with the code. Shneiderman [8] performed
two experiments to assess the utility of external documen-
tation, such as macro flowcharts, pseudocode, and illus-
trations of data structures. The latter were found to be
more helpful to students in understanding a program, al-
though this information might have been equally helpful
if it had appeared as comments within the code. The pre-
sent experiment tests the effect of providing this infor-
mation as comments rather than as external documenta-
tion.

EXPERIMENT DESIGN

The more readable a program is, the more quickly and
accurately a programmer can obtain information about it
by reading the program text. Thus readability is inferred
from the speed and accuracy with which experimental
subjects can answer questions about a program after read-
ing it. Readability is expressed as the average number of
right answers to a series of questions about the program
in a given length of time. This score certainly depends on
the questions as well as on the program, so the same ques-
tions are asked about different editions of the same pro-
gram to obtain comparative scores.

The program chosen for this experiment is an athletic
record-keeping program which reads a series of team per-
formance records, sorts them on the basis of the team’s
total points, and prints the current standings. It is coded
in PL/I, because PL/I provides both internal procedures
and external procedures. The standings program is suffi-
ciently complex that it cannot be understood in just a few
moments, but short enough that most students can answer
the questions in an hour.

Factors
The experiment has a 3 x 2 factorial design [7] as

shown in Table I. Procedure format is the first factor: edi-
tions 2, 3,4, 5 of the program have procedures to perform
its major subtasks, while editions 0 and 1 have no pro-
cedures: all of their code for subtasks has been merged
into the main program. The procedures in editions 4 and
5 are external, each compiled independently by the PL/I
compiler, while the procedures in editions 2 and 3 are
internal, i.e., each procedure is lexically enclosed within
the main program or within another procedure.

Comments are the second factor. The comments in edi-
tions 1, 3, 5 were designed to briefly describe the purpose
of each procedure (editions 3, 5) or each block of code
(edition 1, which has all of the code inline), and to graph-
ically illustrate the principal data structures. The same

TABLE 1
SIX EDITIONS OF THF. STANDINGS PROGRAM

Editions Attribute

0, 1 The standings program is expressed as a single procedure: all of
the code for subtasks has been merged into the text of the main
program STAND.

2, 3 The standings program is expressed as the main program
STAND, containing internal procedures FETCHD, PRINTl,
SORT, LISTOUT. FETCHD contains the internal procedure
DECODE.

4, 5 The standings program is expressed as the main program
STAND, accompanied by the external procedures FETCHD,
DECODE, PRINTl, SORT, and LISTOUT, each of which is
compiled independently.

0, 2, 4 There are no comments.
1, 3, 5 Comments have been added to describe the algorithms and

explain the purpose of each section of code, and to graphically
illustrate the principal data structures.

or

Edition Attributes

0 inline code, no comments
I inline code, comments
2 internal procedures, no comments
3 internal procedures, comments
4 external procedures, no comments
5 external procedures, comments

comments are used in each of these editions. The data
structure comments were inspired by Shneiderman’s il-
lustrations of data structures [8] which improved program
comprehension when presented as external documents.
The other descriptive comments are in a style suggested
by Norcio’s experimental results [6] and by Kemighan
and Plauger [4]. The comments do not explain PLII, nor
do they directly address any of the questions which ac-
company the program. Instead they seek to clarify the al-
gorithms and data structures. Editions 0, 2, and 4 have no
comments at all.

Each of these editions was tested on the computer. They
compile and execute with no error messages, and produce
the expected results. Each edition has the same variable
names and the same three-column indentation. The text
of editions 0 and 5 is shown in the Appendix, along with
the questions.

The questions which accompany these program editions
are the same, except that references to line numbers were
adjusted to match the line numbers of each edition. All of
the questions are in short-answer format. They are con-
cerned with the control and data structures of the program
and certain details of its execution with given inputs. The
questions are language-independent: they would be essen-
tially the same if the standings program were coded in any
other high-level language.

Subjects
The subjects for this experiment were students enrolled

in software engineering at the University of Oklahoma in
the Spring 1985, and in the Fall 1985. These students were
mostly seniors. All of them had at least six programming
courses involving Pascal, Fortran, Cobol, and assembly
languge, and some of them, with programming experi-

TENNY. PROGRAM READABILIT-Y 1273

ence in business and industry, had become very skillful
programmers. Thus the subjects were a fairly homogen-
ious group in terms of their academic preparation but they
varied somewhat, as expected, in terms of programming
experience and skill.

Most of the students had no experience in PL/I, be-
cause it was not used in their earlier computer science
courses. The standings program, however, is coded in
easy PL/I. SUBSTR, the only built-in function appearing
in the program, is used in a straightforward way. The more
esoteric features of PL/I do not appear, so that the PL/I
edition of the standings program looks like a Pascal or
Modula 2 edition.

None of the students had any prior knowledge of the
standings program.

Since programmer’s skill was not intended to be a fac-
tor in the experiment, the cells were constructed to avoid
any concentration of the best or worst students in a single
cell. First the students were ranked by the sum of their
overall grade point average (GPA) plus their grade in data
structures and their previous experience (if any) in PL/I.
Then each group of 6 students was distributed among the
6 cells, making each cell a cross section of the class in
terms of the students’ abilities. Each cell contained one
of the top 6 students, one of the next 6 students, . . . ,
and one of the bottom 6 students. Also the cells were ap-
proximately balanced between spring students and fall
students. This method of cell construction (rather than
random selection) was deemed necessary to confound the
effect of differences in the students’ abilities. If random
selection put the best or worst students in the same cell
then the results would be statistically significant but would
measure the wrong thing-differences in students’ abili-
ties instead of differences in the readability of various pro-
gram editions.

While these experimental subjects are students rather
than professional programmers, they are college seniors
majoring in Computer Science, so most of them are pro-
fessionals-to-be. This level of programmer’s skill is ap-
propriate for a readability experiment because program
maintenance tasks in business and industry are often as-
signed to new employees who are recent college gradu-
ates.

Administration
The experiment was conducted during four 50-minute

class periods, two in January 1985, and two in September
1985. There were no repeat students in the Fall semester.
The program was handed out on standard computer forms,
with line numbers but no other compiler-added informa-
tion. Questions appeared on separate mimeographed
pages. To perform the experiment each student was asked
to read one edition of the program and answer the ques-
tions provided with it. Students were told that this was an
experiment, not an exam, and assured that it would have
no effect on their grades. They were asked to read the
program carefully, answer the questions, and hand their
answers and program listings back at the end of the class

period. The experimenter explained that the program
compiles and executes with no error messages. Students
were permitted to mark on the program printouts and sep-
arate the pages. They were told to hand in their answers
anonymously (although it was possible to identify indi-
vidual students later to compute the correlation between
scores and students’ abilities). Students were advised to
work independently. They were reminded that the pro-
grams are not identical, so their answers may be different
from those of other students. The experimenter’s actual
words were recorded on tape during the experiment.

All answer sheets and program printouts were collected
at the end of the 50-minute class period. Each student’s
paper was scored by adding the number of right answers
to questions 1-12. The scores were tabulated and an anal-
ysis of variance (ANOVA) performed using F-tests (121
to determine the statistical significance of the differences
between mean scores.

RESULTS

Out of 189 students enrolled in software engineering,
157 took part in the experiment. Unfortunately 9 of these
157 did not notice that there were questions on both sides
of the page, so they never attempted to answer questions
8 through 12. Their scores were discarded, leaving 148
experimental observations.

Both extremes in readability occurred in the program
editions which have no procedures: the procedureless pro-
gram with comments (edition 1) is the most readable,
while the procedureless program without comments (edi-
tion 0) is the least readable. Table II shows the results for
each cell, with the simple effects of procedures and com-
ments illustrated in Fig. 1. The main effect of comments
is significant at the 0.05 level [F(1, 142) = 4.34, p <
0.051 as is the simple effect of comments in the proce-
dureless program [F(1, 142) = 4.52, p < 0.051.’ The
effect of procedure format is not statistically significant,
nor is the interaction between procedures and comments.
In each case, however, the edition with comments re-
ceived a higher mean score than the corresponding edition
without comments. This is the expected pattern, since the
comments provide information that is not immediately ap-
parent from the program text.

The results were further checked by computing the cor-
relations between students’ experimental scores and 1)
GPA, 2) previous knowledge of PL/I (obtained from a
class survey), and 3) grade in Data Structures. Of these
the student GPA’s were most highly correlated with ex-
perimental scores (r = 0.39; 95 percent confidence inter-
val = [0.25, 0.521; p < O.OOOOl)* while PL/I knowl-
edge and grades in Data Structures were less correlated (r

‘The F ratio is a measure of (variation between cells)/(variation within
cells). If the F ratio of the experimental data, F(m, n). with m degrees of
freedom in the numerator and n degrees of freedom in the denominator, is
greater than the F distribution of rrr, n, (Y, then the probability p of exceed-
ing this F distribution by chance is less than 0~.

‘r is the product-moment coefficient of correlation, and p is the proba-
bility of obtaining a correlation of this magnitude by chance.

1274 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 9. SEPTEMBER 1988

TABLE I1
CELL ELJITIONS, SIZES (N) MFANS (VI), STANDARD DEVIATIONS (s)

no
procedures

internal
procedures

external
procedures

edition 0 edition 1
N = 23 N = 24
m = 4.52 m = 5.96
s = 1.81 s = 2.78

edition 2 edition 3
N = 25 N = 26
m = 4.76 M = 5.12
s = 2.20 s = 2.22

edition 4 edition 5
N= 27 N = 23
M = 4.96 m = 5.61
s = 2.71 s = 1.95

no comments comments

2 I

2 0.0
2 ncne internal external

PROCEDURES
z

no procedures

external
internal

id
%

0.0 i
no ye=

COMMENTS
Fig. 1. Simple effects of procedures and comments

= 0.14 and r = 0.20, respectively). Most of the students
had no prior knowledge of PL/I.

Next, the experiment was repeated with raw scores re-
placed by scores adjusted for differences in GPA:

adjusted score = raw score - GPA * 2.5.
This adjustment preserved all of the inequalities between
cell means (Table II) but it improved most of the F ratios,
so that the simple effect of comments in the absence of
procedures was significant at the 0.025 level. These re-
sults indicate that the method of cell construction was suc-
cessful in confounding the effect of differences in stu-
dents’ abilities, even though it systematically added a
certain amount of scatter to the data in each cell. This
“systematic scatter” made the experimental results with
raw data less statistically significant than they otherwise
might have been.

Comparison to the Banker’s Algorithm Results
These results are qualitatively different from the results

of the Banker’s Algorithm experiment [9] in which the

Fig. 2. Referential structure of the Banker’s Algorithm and the standings

Safe STAND

FETCHD

I PRINT1

1 SORT

1 LISTOUT

Banker's Algorithm
with internal procedures

standings program
with internal procedures

Fig. 3. Lexical structure of the Banker’s Algorithm and the standings pro-
gram, with internal procedures.

procedureless program got higher scores than the program
with internal procedures, with or without comments. Both
the control structures and data structures of the Banker’s
Algorithm are more complex than those of the standings
program, although the Banker’s Algorithm is shorter
overall. While the referential and lexical structures of the
Banker’s Algorithm are no more complex than those of
the standings program (Figs. 2, 3), the Banker’s Algo-
rithm is purely computational, with no I/O statements and
fewer procedure call Comparison of the results suggests
that these comment. re less effective at improving the
readability of very 3’ rt and simple modules. The com-
ments are more help,ul when the modules are longer (as
in the procedureless editions of both programs) and have
more computational complexity (as in the Banker’s Al-
gorithm).

Language may have affected the difference between the
results of these experiments. The Banker’s Algorithm is
coded in Pascal using WITH statements, whereas the
standings program is coded in PL/I without them. WITH
statements avoid the repetition of record names, but the
name of the record is lexically separated from the name
of its component. Further investigation of such language
design decisions (as in Gannon and Homing’s experiment
[3]) is needed to determine the many effects of language
on program readability. The students in both experiments
had at least two semesters if Pascal programming expe-
rience, but most of them h:td never used PL/I. It is cer-

TENNY: PROGRAM READABILITY 1275

tainly easier to understand a program in a familiar lan-
guage, so one might have expected comments to have been
more helpful in the PL/I program (an unfamiliar lan-
guage) than in the Pascal program. They were not. Clearly
the effect of language familiarity (as opposed to the in-
herent readability of the language itself) bears further in-
vestigation.

CONCLUSIONS

For this particular program, procedures have little ef-
fect on readability. There are compelling reasons to be-
lieve that a large program is more readable with the mod-
ules expressed as separate procedures [11, [3], but the
standings program is apparently not large enough to show
this effect.

The author’s comments improve the readability of the
standings program, supporting Shneiderman’s results with
graphic data structure descriptions [8] and Norcio’s re-
sults with one-line comments [6]. But the effect of com-
ments is significant only in the absence of procedures,
i.e., when the code for the subtasks has been merged into
the main program. This may be a result of module size,
inasmuch as the “module” formed by merging the sub-
tasks into the main program in editions 0 and 1 is larger

than any of the modules expressed as procedures in edi-
tions 2, 3,4, 5. While this would explain edition 0 getting
the lowest readability score, it does not explain why the
same comments failed to make a similar improvement in
the program editions which have procedures. The modu-
lar organization of these editions may have led readers to
view the comments in isolation, as part of a procedure
detached from the rest of the program instead of an inte-
gral part of the whole program. Thus partitioning in edi-
tions 3 and 5 and rearrangement in edition 3 may have
made the same comments less effective. This explanation
suggests an interaction between comments and proce-
dures, although none was observed statistically in the ex-
periment. In any event it would seem that comments have
rescued a small program which is not modular (edition 1)
and made it as readable as the modular editions.

While it would be unwise to extrapolate these results to
all programs, they do indicate that procedures can have
little effect on the readability of programs below a certain
size. The effect of procedures on readability should be
tested on a variety of programs, and much experimenta-
tion with larger programs is ncc:ded to determine the size
at which procedures become at; important factor in read-
ability.

APPENDIX

Edition 0: inline code, no comments

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.

STAND: PROCEDURE OPTIONS(MAIN);
DECLARE 1 TEAMRECORD(l4),

2 NAME CHARACTER(16),
2 SCORE(Q) FIXED BINARY(31),
2 TOTAL FIXED BINARY(31):

DECLARE (STANDING(14),PIACE(14)) FIXED BINARY(31),
(LASTTEAM,NEXT,K,L,TOFTEAM,TOPSCORE,POS,IVALUE) FIXED BINARY(31);

DECLARE INPUTBUF CHARACTER(BO),
CVALUE CHARACTER(l);

DECLARE MOREDATA BIT(l),
TRUE BIT(l) INITIAL('l'B),
FALSE BIT(l) INITIAL('O'B):

ON ENDFILE(SYSIN) MOREDATA ='FALSE;
14.
15. MOREDATA = TRUE;
16. NEXT = 0;
17. GET EDIT(INPUTBUF) (A(80));
18. DO WHILE (MOREDATA);
19. NEXT = NEXT + 1:
20.
21.

TEAMRECORD(NEXT).NAME = SUBSTR(INPKJTBUF,l,l6);
POS = 17;

22. TEAMRECORD(NEXT).TOTAL = 0;
23. DO K = 1 TO 4;
24.
25.

CVALUE = SUBSTR(INPUTBUF,POS,l):
DO WHILE (CVALUE = ' ');

26. POS = POS + 1:
27.
28.

CVALUE = SUBSTR(INPUTBUF,POS,l);
END;

29. IVALUE = 0;
30.
31.

DO WHILE ((CVALUE >= '0') & (CVALUE <= '9')):
IVALUE = lO*IVALUE + fCVALUE - '0'1:

32. POS = POS + 1;
-I.

33. CVALUE = SUBSTR(INPUTBUF,POS,l):
34. END:
35. TEAMRECORD(NEXT).SCORE(K) = IVALUE:
36.
37.

TEAMRECORD(NEXT).TOTAL = TEAMRECORD(NEXT).TOTAL + IVALUE;
END:

38. PUT SKIP LISTI"):
39.
40.

PUT EDIT(NEXT;':
DO L = 1 TO 4:

',TEAMRECORD(NEXT).NAME) (F(4),A(4),A(16));

41.
42.

;;; EDIT(TEAMRECORD(NEXT).SCORE(L)) (F(4));

43. PUT EDIT('
44.

TOTAL',TEAHRECORD(NEXT).TOTAL)
GET EDIT(INPUTBUF) (A(80));

(A(E),F(5));

45. END:
46. IASTTEAM = NEXT;
47. DO L = 1 TO 14:
48. PLACE(L) : LASTTEAM;

1276 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 9. SEPTEMBER 1988

49.
50. DO
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.

END;
NEXT = 1 TO LASTTEAM;
TOPSCORE = 0; TOPTEAM = 0:
DO K = 1 TO LASTTEAM;

IF (PLACE(K) = LASTTEAM) THEN
IF (TEAMRECORD(K).TOTAL > TOPSCORE) THEN

DO:
TOPSCORE = TEAMRECORD(K).TOTAL:
TOPTEAM = K:
END:

END;
STANDING(NEXT) = TOPTEAM;
PLACE(TOPTEAM) = NEXT;
END:

63. PUT SKIP LIST(") ;
64. DO NEXT = 1 TO LASTTEAM;
65. K = STANDING(NEXT);
66. PUT SKIP LIST(")'
67. PUT EDIT(NEXT,'. ' ',TEAMRECORD(K).NAME) (F(4),A(4),A(16));
68. DO L = 1 TO 4:
69. PUT EDIT(TEAMRECORD(K).SCORE(L)) (F(4));
70. END:
71. PUT EDIT(' TOTAL',TEAMRECORD(K).TOTAL) (A(8),F(5)):
72. END:
73. END STAND:

1. -

2. -

3.

4. -

5. -

6.

7. -

8.

9. -

10.

11.

How many DO WHILE statements are there?

If each character requires one byte of memory and each
FIXED BINARY(31) value requires 4 bytes, how many bytes of
memory are required for the data structure array TEAMRECORD?

What is the final value of POS (line 32) when processing the
following line of input data?

KNICKERBOCKERS 16 4 9 11

How many times will IVALUE be multiplied by 10 (line 31) when
processing the following line of input data?

EL CAPITAN 23 10 01 0

What TOTAL will be computed (line 36) when processing the
following line of input data?

BLUE DEMONS 1 01 +1 1

The

What would happen if the name of a team (line 20) were longer
than 16 characters?

all of the name would be printed, with the proper SCORES
the first 16 characters would be printed and the first
SCORE would be 0
the first 16 characters would be printed and all of the
SCORES would be 0
the first 16 characters would be printed and the first
SCORE would be undefined (i.e. sarbase)
the first 16 characters would be printed and all of the
SCORES would all be undefined (i.e. garbage)

sorting algorithm (lines 46-62) can best be described as
bubble sort (B) selection sort
string sort

(C) heap sort
(E) partition exchange sort

What is the maximum number of comparisons that can be made in
sorting (line 54) when LASTTEAM is equal to lo?

What happens in the sorting algorithm if two or more teams have
the same TOTAL? (i.e. TEAMRECORD(K).TOTAL is the same for two or
more values of K).
(A) the teams with identical TOTALS stay in their original order
(B) the teams with identical TOTALS are put in reverse order
(C) the teams with identical TOTALS are put in a different

order, not necessarily (A) or (B)
(D) PLACE(K) will be the same for all teams having identical

TOTALS (line 61)
(E) the sorting algorithm will get caught in an infinite loop

What happens in the sorting algorithm if TOTAL is equal to 0
for one of the teams?
(A) nothing unusual happens! the team with 0 will be last place
(B) the sorting algorithm will get caught in an infinite loop
(C) TOPSCORE will be reset to 0 (line 56)
(D) STANDING(NEXT) will be set equal to 0 (line 60)
(E) the team with 0 will never be chosen as TOPTEAM (line 57)

Which best explains the distinction between PLACE (line 611
and STANDING *(line 60)?
(A) STANDING(NEXT) = 1 when NEXT represents the team with the

highest TOTAL
(B) the highest total is TEAMRECORD(PLACE(l)).TOTAL
fC) PLACE and STANDING are equivalent: when the sortinc is done
' ' both arrays contain the same sequence of values -
(D) after the sorting is complete,

STANDING(PLACE(K)) = K for all 1 <= K <= LASTTEAM
(E) PLACE(TOPTEAM) = 1 when TOPTEAM represets the team with the

highest TOTAL

-

1277 TENNY: PROGRAM READABILITY

12. __

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
I&.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.

In what order are the TEAMRECORDs printed at the end of the
program?
(A) TEAMRECORD(1) . . . TEAMRECORD(LASTTEAM)
(B) TEAMRECORD(STANDING(1)) . . . TEAMRECORD(STANDING(LASTTEAM))
(C) TEAMRECORD(PLACE(1)) . . . TEAMRECORD(PLACE(LASTTEAM))
(D) in order of increasing TOTALS
(E) none of these

Edition 5: external procedures, comments

THIS PROGRAM READS A FILE CONTAINING ONE RECORD FOR */
EACH TEAM, WITH THE TEAM'S NAME IN THE FIRST 16 *i
COLUMNS, FOLLOWED BY THE TEAM'S SCORES IN 1 OR MORE */
EVENTS. EACH SCORE MUST BE REPRESENTED AS AN UNSIGNED */
INTEGER, AND THE SCORES MUST BE SEPARATED BY ONE l /
OR MORE BLANKS. THE TEAM RECORDS ARE ECHOED AS */
THEY ARE READ IN, AND THEN THEY ARE SORTED AND PRINTED */
IN ORDER OF DECREASING TOTALS. */

STAND: PROCEDURE OPTIONS(MAIN);
DECLARE 1 TEAMRECORD(14),

2 NAME CHARACTER(16),
2 SCORE(I) FIXED BINARY(31),
2 TOTAL FIXED BINARY(31);

TEAMRECORD: */ +--------------+-------------------+-------+ */
NAME I SCORE

+--------------+-------------------+---------~
CHARACTER(16) INTEGER ARRAY INTEGER */

DECLARE STANDING(14) FIXED BINARY(31):
DECLARE LASTTEAM FIXED BINARY(31);
DECLARE MOREDATA BIT(l),

TRUE BIT(l) INITIAL('l'B),
FALSE BIT(l) INITIAL('O'B);

ON ENDFILE(SYSIN) MOREDATA = FALSE;
DECLARE (FETCHD,SORT,LISTOUT) ENTRY:

MOREDATA = TRUE;
CALL FETCHD(TEAMRECORD,LASTTEAM,MOREDATA):
CALL SORT(TEAMRECORD,STANDING,LASTTEAM);
;;FS;LOUT(TEAMRECORD,STANDING,LASTTEAM);

i

* PROCESS;
/* READ THE NAME AND SCORES FOR EACH TEAM: */
kETCHD: PROCEDURE(TEAMRECORD,LASTTEAM,MOREDATAj;
DECLARE 1 TEAMRECORD(

2 NAME CHARACTER(16),
2 SCORE(4) FIXED BINARYOl),
2 TOTAL FIXED BINARY(31);

DECLARE LASTTEAM FIXED BINARY(31):
DECLARE MOREDATA BIT(l);

DECLARE NEXT FIXED BINARY(31);
DECLARE INPUTBUF CHARACTER(80);
DECLARE (DECODE,PRINTl) ENTRY;

NEXT = 0;
GET EDIT(INPUTBUF) (A(80)):
DO WHILE (MOREDATA);

NEXT = NEXT +- 1;
CALL DECODE(INPUTBUF,TEAMRECORD,NEXT):
CALL PRINTl(TEAMRECORD,NEXT,NEXT);
GET EDITjIN&PU~F),(A(80));
END: * l

LASTTEAM = NEXT;
END FETCHD;

* PROCESS:
/* DECODE THE NAME, SCORES, TOTAL FOR ONE TEAM: */
DECODE: PROCEDURE(INPUTBUF,TEAMRECORD,WHICH):
DECLARE INPUTBUF CHAP.ACTER(EO):
DECLARE 1 TEAMRECORD(

2 NAME CHAP.ACTER(16),
2 SCORE(4) FIXED BINARY(31),
2 TOTAL FIXED BINARYf31):

DECLARE WHICH FIXED BINARY(31);

/*
/*

DECLARE (POS,IVALUE,K) FIXED BINARY(31);
DECLARE CVALUE CHARACTER(l);

COPY THE NAME INTO TEAMRECORD: */
TEAMRECORD(WHICH).NAME = SUBSTR(INPUTBUF,l,l6);
DECODE EACH SCORE FOR THE TEAM AND COMPUTE THE TOTAL: */
POS = 17;
TEAMRECORD(WHICH).TOTAL = 0:
DO K = 1 TO 4;
/* SKIP OVER BLANKS: */

CVALUE = SUBSTR(INPbTBUF,POS,l):
DO WHILE (CVALUE = ' ');

POS = POS + 1;
CVALUE = SUBSTR(INPUTBUF,POS,l);
END; /* WHILE */

1278 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 9, SEPTEMBER 1988

86.
87.

/* CONVERT THE DECIMAL DIGITS TO AN INTEGER VALUE: */
IVALUE = 0:

86.
89.

DO WHILE ((CVALUE >= '0') & (CVALUE <= *gf));
IVALUE = lO*IVALUE + (CVALUE - '0');

90. POS = POS + 1;
91. CVALUE = SUBSTR(INPUTBUF,POS,~);
92. END: /* WHILE */
93. TEAMRECORD'(WHICH).SCbRE(K) = IVALUE;
94.
95.

TEAHRECORD(WHICH).TOTAL = TEAMRECORD(WHICH).TOTAL + IVALUE;

96.
ENDE;;;ODE /* DO K */

; 97
5%: * PROCESS;
99. /* PRINT THE SCORES AND TOTAL FOR ONE TEAM: */

100. PRINTl: PROCEDURE(TEAMRECORD,WHICHTEAH,PIACE);
101. DECLARE 1 TEAHRECORD(*),
102. 2 NAME CHARACTER(16),
103. 2 SCORE(4) FIXED BINARY(31),
104. 2 TOTAL FIXED BINARY(31);
105. DECLARE WHICHTEAH FIXED BINARY(31);
106. DECLARE PLACE FIXED BINARYf311: . ,
107.
108. DECLARE L FIXED BINARY(31);
109.
110. PUT SKIP LISTf"):
111. PUT EDIT(PLACE,':.
112. DO L = 1 TO 4;

',TEAMRECORD(WHICHTEAM).NAME) (F(4),A(4),A(16));
113.
114.

E';; EDI/T~T;$M~$iRD(WHICHTEAH).SCORE(L)) (F(4));
115. PUT ED;T('
116. END PRINTl;

TOTAL',TEAMRECORD(WHICHTEAM).TOTAL) (A(E),F(5));
117.
118. l PROCESS:
119. /* SORT THE TEAM TOTALS: */
120.
121.

SORT: PROCEDURE(TEAHRECORD,STANDING,LASTTEAH);
DECLARE 1 TEAHRECORD(*),

122. 2 NAME CHARACTER(16),
123. 2 SCORE(4) FIXED BINARY(31),
124. 2 TOTAL FIXED BINARY(31):
125. DECLARE STANDING(*) FIXED BINARY(31);
126. DECLARE LASTTEAM FIXED BINARY(31);
12'7. --.
128.
129.

DECLARE (NEXT,K,L,TOPTEAM,TOPSCORE) FIXED BINARY(31);
DECLARE PLACE(14) FIXED BINARY(31);

130.
131.
132.

/* INITIALIZE THE "PLACE" OF EACH TEAM TO "LAST": */
DO L = 1 TO 14;

133. PLACE(L) = LASTTEAM;
134. END; /* DO L */
135. DO NEXT = 1 TO LASTTEAM;
136. TOPSCORE = 0; TOPTEAM = 0;
137.
138.

/* FIND OUT WHICH REMAINING TEAM HAS THE HIGHEST TOTAL SCORE: */
DO K = 1 TO LASTTEAM;

139. IF (PLACE(K) = LASTTEAM) THEN
140. IF (TEAMRECORD(K).TOTAL > TOPSCORE) THEN
141. DO;
142. TOPSCORE = TEAHRECORD(K).TOTAL:
143. TOPTEAH = K;
144. END; */
145. END; /* DO': *;F
146.
147.

/* HIGHEST TOTAL SCORE => NEXT PLACE IN THE STANDINGS. */
STANDING(NEXT) = TOPTEAH;

148. PLACE(TOPTEAM) = NEXT;
149. END; /* DO NEXT */
150. END SORT;
151.
152. * PROCESS:
153. /* PRINT THE TEAM STANDINGS, SCORES, AND TOTALS: */
154. LISTOUT: PROCEDURE(TEAMRECORD,STANDING,LASTTEAN);
155. DECLARE 1 TEAHRECORD(*),
156. 2 NAME CHARACTER(16),
157. 2 SCORE(I) FIXED
158.

BINARY(31),
2 TOTAL FIXED

159.
BINARY(31);

160.
DECLARE STANDING(*) FIXED BINARY(31);
DECLARE LASTTEAN FIXED BINARY(31);

161.
162. DECLARE K FIXED BINARY(31);
163. DECLARE PRINT1 ENTRY;
164.
165. PUT SKIP LIST(")'
166. DO K = 1 TO LASTTEAM:
167.
168.

CALL PRINTl(TEAHRECORD,STANDING(K),K);
END: /* DO K l /

169. END LISTOUT:

[Questions are the same as edition 0, except for the line numbers.]

REFERENCES [3] J. D. Gannon and J. J. Homing, “Language design forprogramming
reliability," IEEE Trans. Software Eng., vol. SE-l, no. 2, pp. 179-
191, June 1975.

[l] 0. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Srrucrured Pro-
gramming. London: Academic, 1972.

[2] J. L. Elshoff, and M. Marcotty, “Improving computer program read-
ability to aid modification," Commun. ACM, vol. 26, no. 8, pp. 512-
521. Aug. 1982.

[4] B. W. Kemighan and P. J. Pauger, The Elemenrs of Programming
Sfyle. New York: McGraw-Hill, 1974.

[5] H. F. Ledgard, Programming Proverbs. Rochelle Park, NJ: Hay-
den, 1975.

[6] A. F. Norcio, “Indentation documentation and programmer compre-

TENNY: PROGRAM READABILITY 1279

hension,” in Proc. Human Factors in Computer Systems, ACM, [13] E. Yourdon and L. L. Constantine, Structured Design. Englewood
Washington, DC, 1981, pp. 118-120. Cliffs, NJ: Prentice-Hall, 1979.

[71

181
191

[lOI

IllI

[W

B. Shneiderman, Software Psychology: Human Factors in Computer
and Information Systems. Boston, MA: Little, Brown, 1980.
-, “Control flow and data structure documentation: Two experi-
ments,” Commun. ACM, vol. 25, no. 1, pp. 55-63. Jan. 1982.
T. C. Tenny, “Procedures and comments vs. the Banker’s Algo-
rithm,” SIGCSE Bull., vol. 17, no. 3, pp. 44-53, Sept. 1985.
L. M. Weissman, “A methodology for studying the psychological
complexity of computer programs,” Ph.D. dissertation, Univ. To-
ronto, Tech. Rep. CSRG-37, Aug. 1974.
-, “Psychological complexity of computer programs: An experi-
mental methodology,” SIGPLAN Notices, vol. 15, no. 6, pp. 25-36,
June 1974.
B. J. Winer, Statistical Principles in Experimental Design, 2nd. ed.
New York: McGraw-Hill, 197 1,

Ted Tenny received the Ph.D. degree in mathe-
matics and computer science from Clarkson Col-
lege of Technology (now Clarkson University),
Potsdam, NY, in 1982.

Since then he has taught at the University of
Oklahoma and is now an Assistant Professor of
Computer Science at Texas Christian University,
Fort Worth. His current research interests include
program comprehension, team programming, and
software methodology.

