
Faults & Failures in
Novice GOAL Programs

!

Michael Winikoff
University of Otago, New Zealand

"Novice Programmers' Faults & Failures in GOAL Programs:
Empirical Observations and Lessons"

1

“In contrast to remote control, this
sophisticated set of computer programs acts
as an agent of the operations team on board
the remote spacecraft. Rather than have
humans do the detailed planning necessary
to carry out desired tasks, remote agent will
formulate its own plans, using high level
goals provided by the operations team.
Remote agent devises its plan by combining
those goals with its detailed knowledge of
both the condition of the spacecraft and how
to control it.” http://nmp.nasa.gov/ds1/tech/autora.html

Deep Space 1 is an agent
• Situated (“placed on board”)
• Autonomous (“In contrast to remote control”)
• Proactive (“… formulate its own plans, using high

level goals”)
• Reactive (“If problems develop, remote agent in

many cases will be able to fix them or work around
them. …”)

• Social (“… If it cannot, it can request help from its
sentient terrestrial collaborators”)

!

Also Multi-agent systems (MAS) and agent societies.

"Human-inspired computing"

Some Applications of Agent Technology

Applicable where there is natural distribution, and
where resilience and flexibility are required

Human-inspired PLs
• Based on models of human decision making and

planning
• Belief Desire Intention (BDI) model influential
• Plans and Goals
• Need to provide means for persistently achieving

goals while responding to changes
• Examples: JACK, Jadex, Jason, 3APL, 2APL,

Brahms, GOAL ...

Research Question
What are the types of faults that novice
programmers create when using Agent-
Oriented Programming Languages
(AOPLs) and how do they manifest as
failures?

• Fault: mistake in the program

• Failure: run-time manifestation of an error
7

Motivation
• Potential implications to language design, tool

design, teaching programming

• Novices? If agent programming is to take off,
need to teach AOPL to lots of agent-
novices ...

8

Contributions
• Taxonomies for faults and for failures

• Empirical data on fault and failure occurrences

• Implications for debugging tools, language
design, and teaching

9

Taxonomies
• Bottom-up vs. Top-down?
• Principles for systematic derivation:

Fault: (syntactic) language features
Failure: language semantics

10

Taxonomies
• Bottom-up vs. Top-down?
• Principles for systematic derivation:

Fault: (syntactic) language features
Failure: language semantics

• Fault and Failure locations expected to correlate, but
... e.g. incorrect action selected due to error in
domain knowledge

if C then insert(φ)+adopt(ψ)

Fault in condition exhibits multiple failure types
11

Fault Taxonomy
• Consider rules: whole rule,

condition, action, order

• Consider other parts of
program: domain
knowledge, initial beliefs/
goals, action definition

• Typos and other error

• Augment with
observations ...

• .goal = domain knowledge
(Prolog rules) + initial
beliefs + initial goals +
action definitions (pre/post
conditions) + rules ...!

• Rules: percept and main
module!

• Rule: if condition then
action(s) [also forall-do]

12

Example GOAL Rule
if bel(in(Room), color(Block,Color)),
not(goal(deliver(ABlock))) then
adopt(deliver(Block))

13

Failure Taxonomy
• Percepts, Actions, Goals

Can ...

• Fail to do what should be done

• Do what shouldn't be done

1. Clear percepts!

2. Update percepts
(execute event module)!

3. Select rule in main
module and execute it!

4. Drop believed goals

14

Taxonomies

15

Taxonomies

16

Taxonomies

17

Contributions
• Taxonomies for faults and for failures

• Empirical data on fault and failure occurrences

• Implications for debugging tools, language
design, and teaching

18

Methodology
• Obtained 55 student-written assignments (single

agent BW4T), but 4 didn't run so excluded

• Students were provided with skeletal program (one
action definition, 2 rules to explore, some percept
processing rules)

• Programs ranged from 172 to 378 lines (mean 225.5,
median 220)

1. Test
Program

2. Debug!
Program

3. Re-test!
Program

4. Sum.!
Changes

5. Classify !
faults & failures

Exclude!
Program

Bugs
found? More

bugs?

Yes Yes

No

No

6. Aggregate
counts

19

BW4T
• Blocks World for Teams

• Aim: deliver coloured blocks
in desired order

• Actions: goTo(Locn),
goToBlock(BlockID), pickUp,
putDown

• Percepts: in(Room),
color(BlockID, Color),
holding(BlockID), ...

20

1. Test
Program

2. Debug!
Program

3. Re-test!
Program

4. Sum.!
Changes

5. Classify !
faults & failure

Exclude!
Program

Bugs
found? More

bugs?

Yes Yes

No

No

6. Aggregate
counts

1: tested with >7300 tests; 41 buggy, 10 bug-free

2: In debugging, considered alternatives ...

5: "What failure ... if this was the only fault?"

Excluded 5 very buggy programs (>10 changes)

6: Counted how many programs had >0 occurrences
21

Example
• Behaviour: goTo(RoomA1), goToBlock(44), pickUp,

goTo(DropZone), putDown, goTo(RoomA1),
goToBlock(44), goToBlock(44), ...

• Culprit: if bel(in(Room), nextColorInSeq(Color),
color(Block,Color), not(holding(_)),
pos(Block,Room)) then adopt(atBlock(Block))

• Fix: add not(gone(Block))

• Classification: Error: too weak condition (cw), Fault:
adding goal incorrectly (G3)

22

Fault Count Fault Count

rule order (f) 19 other (o) 4

weak cond (cw) 15 extra rule (b) 3

2 user actions (e) 9 wrong action (d) 2

miss act (j) 8 ifthen/forall (i) 2

strong cond (cs) 7 typo (t) 2

actiondef (g) 6 domain (k) (1)

missrule (a) 5 initial bel/goal (n) 0

othercond (c) 5

Results: Faults

23

Fault Count Fault Count

rule order (f) 19 other (o) 3

weak cond (cw) 15 extra rule (b) 3

2 user actions (e) 9 wrong action (d) 2

miss act (j) 8 ifthen/forall (i) 2

strong cond (cs) 7 typo (t) 2

actiondef (g) 6 domain (k) 0(*)

missrule (a) 5 initial bel/goal (n) 0

othercond (c) 5

Results: Faults

24

Almost all fault types seen ... but only 8 in >10% and
only 4 in >20% of programs

Fault Count Fault Count

rule order (f) 19 other (o) 3

weak cond (cw) 15 extra rule (b) 3

2 user actions (e) 9 wrong action (d) 2

miss act (j) 8 ifthen/forall (i) 2

strong cond (cs) 7 typo (t) 2

actiondef (g) 6 domain (k) 0(*)

missrule (a) 5 initial bel/goal (n) 0

othercond (c) 5

Results: Faults

Most common issue: rule order
25

Fault Count Fault Count

rule order (f) 19 other (o) 3

weak cond (cw) 15 extra rule (b) 3

2 user actions (e) 9 wrong action (d) 2

miss act (j) 8 ifthen/forall (i) 2

strong cond (cs) 7 typo (t) 2

actiondef (g) 6 domain (k) 0(*)

missrule (a) 5 initial bel/goal (n) 0

othercond (c) 5

Results: Faults

Condition faults common - if merge cw and cs, then 20 programs
26

Fault Count Fault Count

rule order (f) 19 other (o) 3

weak cond (cw) 15 extra rule (b) 3

2 user actions (e) 9 wrong action (d) 2

miss act (j) 8 ifthen/forall (i) 2

strong cond (cs) 7 typo (t) 2

actiondef (g) 6 domain (k) 0(*)

missrule (a) 5 initial bel/goal (n) 0

othercond (c) 5

Results: Faults

27

(*) This is no longer illegal: the user is
responsible for ensuring that two
actions can be done simultaneously

Illegal(*) GOAL usage (two user
defined actions) quite common! (e)

Fault Count Fault Count

rule order (f) 19 other (o) 3

weak cond (cw) 15 extra rule (b) 3

2 user actions (e) 9 wrong action (d) 2

miss act (j) 8 ifthen/forall (i) 2

strong cond (cs) 7 typo (t) 2

actiondef (g) 6 domain (k) 0(*)

missrule (a) 5 initial bel/goal (n) 0

othercond (c) 5

Results: Faults

28

Most faults observed relate to rules (g, n, k exceptions)
action def issues relate to async environment ...

Fault Count Fault Count

rule order (f) 19 other (o) 3

weak cond (cw) 15 extra rule (b) 3

2 user actions (e) 9 wrong action (d) 2

miss act (j) 8 ifthen/forall (i) 2

strong cond (cs) 7 typo (t) 2

actiondef (g) 6 domain (k) 0(*)

missrule (a) 5 initial bel/goal (n) 0

othercond (c) 5

Results: Faults

Typos (t) rare, only a few "other" (o)
29

Results: Failures
• 17 of 36

programs had a
Percept
processing error
(47%)

• 17 had Goal error

• 31 (86%) had
Action error

Failure Count

P1: fail to deal with percept 12

P2: other percept 10

G1: fail to add goal 5

G2: fail to drop goal 4

G3: adding a goal wrongly 7

G4: add duplicate goal 7

G5: dropping goal wrongly 1

A1: wrong action 29

A2: incorrect belief update 10

A3: should've done nothing 2

A4: action-interface mismatch 1

O: Other 0
30

Implications
• Language design: (1) Percept processing is a

source of faults - find simpler way to specify
percept processing? (2) Extending GOAL to allow
multiple sequential user-defined actions ...

• Teaching: Don't use explicit drop(goal); use
conditions so single rule applicable

• Tool design: condition checking, debugging
percept processing

31

Validity
• Internal: only one problem (BW4T), only single

agent, looked at final submission (easier bugs
already removed - but this is good)

• External: GOAL only ...

32

Future Work
• More programs, and not just BW4T

• Different AOPLs

• Applying lessons learned

33

Conclusions
• Derived taxonomies for faults and failures

• Empirical investigation of occurrences

• Implications to language design, tool design,
teaching

• Thanks to Sharmila, and Delft colleagues
(Koen and Maaike)!

34

