LATENT METHODS

Richard O'Keefe @ CS

Outline

Background

The problem

Some non-solutions

My solution

Does it apply elsewhere

Background

* Alan Kay invented tablet computers (the
Dynabook)

* His research group at Xerox produced
Smalltalk-80, the second famous OO language
after Simula-67.

e Simula-67 strongly influenced early C++.

« Smalltalk-80 influenced Java, but not its syntax.

Background 2

Smalltalk was originally implemented by
compilation to byte codes, executed by
microcode.

Later systems used a Just-In-Time compiller.

| told you Java was influenced by Smalltalk!

Smalltalk Virtual machines are portable
between different architectures.

| told you (oh, | told you)

Background 3

* Squeak Is an open source descendant of
Smalltalk-80. It used not to have a JIT.

* Bryce Kampjes wanted to do a research degree
nere with me developing a new JIT for Squeak.

* He later built Exupery, but not here.

* While | thought this would happen, | thought,
“we need a baseline”.

e How hard can it be to write a Smalltalk
compiler?

Smalltalk

Everything Is an object, including 137.
Every object has a class, including classes.

ne language Is single-inheritance.

nere IS no type system (except in Animorphic
Smalltalk, which Sun bought and killed).

It's dynamic: everything can be changed at run
time.

X become: y swaps x's and y's identities

Salvation!

There i1s an ANSI standard for Smalltalk.
None of the dynamic stuff is there.

nere IS no #become: .

ne GUI isn't there either (because different
Smalltalk vendors had pushed it in incompatible
ways).

If only they had proof-read It, it would have
been so easy...

PROJECT

* Implement ANSI Smalltalk as a batch compiler
generating 1ISO C.

 Make the translation straightforward, but not
totally dumb. Do not do type reconstruction.

* Use the Boehm garbage collector.

* AIM: to provide a reasonable baseline for
evaluating other compilers.

* Once Bryce had left,
* AIM': hey, this thing looks useful,

POLICY

 Smalltalk has good support for reflection.
* Including anObject respondsTo: aSelector.

* In both free (GNU ST, Squeak, Pharo) and
commercial (ST/X, Dolphin, VisualWorks,
VisualAge) Smalltalks, #respondsTo: Is
unreliable. Example on next slide.

* Policy: an object should never claim to
Implement a method unless it will work
sometimes.

Example

o String>>at: index put: aCharacter
treats a string as a mutable array.

 Symbol is a subclass of String for unigue
strings (Lisp atoms).
Symbol>>at: index put: aCharacter
self shouldNotimplement.

» SO0 #at:put: never makes sense for symbols,
but It's In their interface.

e | refuse to do that.

Java does It too

* The default implementation of
java.lang.lterator.remove() throws
UnsupportedOperationException.

* That's a precise equivalent of Smalltalk's
#shouldNotimplement.

e S0 In Java as Iin Smalltalk, reflection is
unreliable. A method can be in an object's
Interface even If it can never be used on that
object.

e | don't want to do this.

The problem: duplicate code

» Part of the Collection hierarchy:
Collection
AbstractKeyedCollection
AbstractSequence
ReadOnlyArray
Array
ReadOnlyString
String
ReadOnlyByteArray
ByteArray

Mutation Methods

#at:put: has to be different for each kind of mutable array
because the generated C code has to be different.

atAll: indices put: anElement
Indices do: [:each |
self at: each put: anElement]
doesn't have to be different.

But it cannot be inherited; the common ancestor of Array,
String, ByteArray, BooleanArray,
BitArray, ShortArray, Float{E,D,Q}Array is not mutable

So | need 9 copies of this method... and others!

Stream Classes

e Stream
InputStream
ReadStream "based on seguences”
OutputStream
WriteStream "based on seguences”
ReadWriteStream

* You can tell what's coming, can't you?

Stream Methods

* upTo: endObject
lresult item|
result ;= OrderedCollection new.
[self atEnd or: [(item := self next) = endObject]]
whileFalse: [result addLast: item].
result

* has 9 versions. Some are genuinely different.
ReadStream can return a slice of its container
without an OrderedCollection. Some are not.

The Problem

* (1) Reduce code duplication

* (2) keeping reflection honest

 (3) with no difficulty about what is inherited

Non-Solution: historic Smalltalk

* The traditional Smalltalk approach is that if a
method should appear in class X and class Y
you put it in A, their nearest common ancestor.

* For example, Smalltalk has mutable arrays (X)
and immutable strings (Y). Their common
ancestor Is ArrayedCollection. The #at:put:
method goes there. But Interval (Ib to: ub by:
step) then inherits it and has to block it.

* Code duplication is avoided (1).

* Reflection is not reliable (2).

Non-solution: Java interfaces

Classic Java interfaces do not solve the code duplication
problem but create 1It.

Declaring that a class implements an interface creates an
obligation to implement its methods. It does not provide
code you can inherit.

Java 8 default methods | count as multiple inheritance.
They answer the question “how to add new features to an
Interface with existing implementors that lack them”.

Two parent interfaces with default definitions for the same
method = multiple inheritance. Oops.

Non-solutions: macros

» ArrayedCollection subclass: #Array
$include 'array-mutation-methods.ist'

ArrayedCollection subclass: #String
$include 'array-mutation-methods.ist'

 Means | only have to write a definition once,
and reflection works.

* But the compiler has to compile multiple copies
of such definitions. Object code bloat.
We also get obscure source code.

Non-solution: multiple inheritance

If P has parents Q and R, and both define m,
which m does p inherit?

Common Lisp: each class has a class
precedence list. Two classes with the same set
of ancestors may inherit different things.

Dylan: like Common Lisp, but computes class
precedence list differently.

Eiffel. elaborate language for connection

Multiple Inheritance 2

 C++: dislike of its complexity is why Java and
C# became popular.

* Multiple inheritance solves (1) code duplication
and (2) honest reflection (if you have Iit) but (3)
it's hard to tell where things will come from.

* Multiple inheritance is too powerful.

Key Insight

 Smalltalk is nearly right. We do want to define
a "common" method once, and the common
ancestor Ais a good place to do 1it.

* The problem is that placing a definition in A

makes It available iIn B C and Z as well as X
and Y.

« But definition and availability don't have to be
the same thing!

Latent Methods

» Alatent method is defined in a class together
with a condition.

* |t becomes available in a (sub)class when the
condition is satisfied in that class.

 But what kind of condition?

Latent method = template method

* In Design Patterns, a template method is an
algorithm, typically in an abstract class, that
calls methods that are overridden in subclasses
so that the subclasses can customise Its
behaviour.

 atAll: indices put: anElement
Indices do: [:each |
self at: each put: anElement]

Avalilable when?

e [t makes sense for a latent method to become
available in precisely those (sub)classes where
It I1s first true that all the self methods exist.

» Actually, template methods are always
avallable. They should be latent ones.

* People make mistakes. So we should say
which self methods we intend to be filled in by

subclasses

Example

e Stream
latent #(atEnd next) methods:
do: aBlock
[self atEnd] whileFalse: |
aBlock value: self next].

latent #(nextPut:) methods:
nextPutAll: aCollection
aCollection do: [:each | self nextPut: each].

Implementation

* In a typed single-inheritance language, latent
methods go in the virtual function table just like
any other methods. Availability is mainly
enforced at compile time. There Is no run-time
overhead for ordinary dynamic dispatch.

» Reflection is trickier, but can use the same
technique that my Smalltalk uses. Calls
through reflection pay a small price.

Implementation 2

« SmartEiffel introduced the idea of not using a
virtual function table. Instead an object begins
with a class number, and dynamic dispatch
uses a sort of optimised switch().

My Smalltalk copied this. Baseline, remember?

This obviously wasn't going to be fast enough.
Except it was.

Dynamic dispatch

* object.selector(args...) =>
selector'(object, args) where
Word selector'(Word self, Word ...) {
Tag const ¢ = CLASSNO(self);
[* tree of If () statements */
return does not_understand(
"selector”, self, ...);
}

* branches of the tree can share (thanks, goto!)

Duplication?

* No. If multiple class number ranges correspond
to a single definition, they can all be-or-jump-to
a single translation. This is needed anyway to
handle overriding.

* Subproblem (1) is solved.

Reflection?

* object respondsTo: #selector ==>
responds(CLASSNO(object), selector")
where selector" is an array of half-open
Intervals of class numbers where some
definition of the selector is available and
responds() does a binary search.

* The test is logarithmic in the number of
Intervals, which is usually much less than the
number of classes.

Reflection? 2

e The where-avalilable tables can be shared
between selectors.

e Currently, 874 classes (*2 for metaclasses),
/697 selectors, 1724 unigue range lists, longest
has 47 ranges, average 2.75, memory to hold
range lists = 56612 bytes. 860258 lines of
generated C for everything else.

 The scheme Is practical.

Really dynamic languages

* The dynamic dispatch technique I'm using relies

on whole-program compilation to number the
classes.

« Smalltalk is really dynamic.

* Implementations use inline caches, possibly
polymorphic inline caches, which still work.
Fallback searches the object's class and
ancestors checking each's method dictionary.
This Is easy to adapit.

