

LATENT METHODS

Richard O'Keefe @ CS

Outline

● Background
● The problem
● Some non-solutions
● My solution
● Does it apply elsewhere

Background

● Alan Kay invented tablet computers (the
Dynabook)

● His research group at Xerox produced
Smalltalk-80, the second famous OO language
after Simula-67.

● Simula-67 strongly influenced early C++.
● Smalltalk-80 influenced Java, but not its syntax.

Background 2

● Smalltalk was originally implemented by
compilation to byte codes, executed by
microcode.

● Later systems used a Just-In-Time compiler.
● I told you Java was influenced by Smalltalk!
● Smalltalk Virtual machines are portable

between different architectures.
● I told you (oh, I told you)

Background 3

● Squeak is an open source descendant of
Smalltalk-80. It used not to have a JIT.

● Bryce Kampjes wanted to do a research degree
here with me developing a new JIT for Squeak.

● He later built Exupery, but not here.
● While I thought this would happen, I thought,

“we need a baseline”.
● How hard can it be to write a Smalltalk

compiler?

Smalltalk

● Everything is an object, including 137.
● Every object has a class, including classes.
● The language is single-inheritance.
● There is no type system (except in Animorphic

Smalltalk, which Sun bought and killed).
● It's dynamic: everything can be changed at run

time.
● x become: y swaps x's and y's identities

Salvation!

● There is an ANSI standard for Smalltalk.
● None of the dynamic stuff is there.
● There is no #become: .
● The GUI isn't there either (because different

Smalltalk vendors had pushed it in incompatible
ways).

● If only they had proof-read it, it would have
been so easy...

PROJECT

● Implement ANSI Smalltalk as a batch compiler
generating ISO C.

● Make the translation straightforward, but not
totally dumb. Do not do type reconstruction.

● Use the Boehm garbage collector.
● AIM: to provide a reasonable baseline for

evaluating other compilers.
● Once Bryce had left,
● AIM': hey, this thing looks useful,

POLICY

● Smalltalk has good support for reflection.
● Including anObject respondsTo: aSelector.
● In both free (GNU ST, Squeak, Pharo) and

commercial (ST/X, Dolphin, VisualWorks,
VisualAge) Smalltalks, #respondsTo: is
unreliable. Example on next slide.

● Policy: an object should never claim to
implement a method unless it will work
sometimes.

Example

● String>>at: index put: aCharacter
treats a string as a mutable array.

● Symbol is a subclass of String for unique
strings (Lisp atoms).
Symbol>>at: index put: aCharacter
 self shouldNotImplement.

● So #at:put: never makes sense for symbols,
but it's in their interface.

● I refuse to do that.

Java does it too

● The default implementation of
java.lang.Iterator.remove() throws
UnsupportedOperationException.

● That's a precise equivalent of Smalltalk's
#shouldNotImplement.

● So in Java as in Smalltalk, reflection is
unreliable. A method can be in an object's
interface even if it can never be used on that
object.

● I don't want to do this.

The problem: duplicate code

● Part of the Collection hierarchy:
Collection
 AbstractKeyedCollection
 AbstractSequence
 ReadOnlyArray
 Array
 ReadOnlyString
 String
 ReadOnlyByteArray
 ByteArray

●

Mutation Methods
● #at:put: has to be different for each kind of mutable array

because the generated C code has to be different.

● atAll: indices put: anElement
 indices do: [:each |
 self at: each put: anElement]
doesn't have to be different.

● But it cannot be inherited; the common ancestor of Array,
String, ByteArray, BooleanArray,
BitArray, ShortArray, Float{E,D,Q}Array is not mutable

● So I need 9 copies of this method... and others!

Stream Classes

● Stream
 InputStream
 ReadStream "based on sequences"
 OutputStream
 WriteStream "based on sequences"
 ReadWriteStream

● You can tell what's coming, can't you?

Stream Methods

● upTo: endObject
 |result item|
 result := OrderedCollection new.
 [self atEnd or: [(item := self next) = endObject]]
 whileFalse: [result addLast: item].
 ^result

● has 9 versions. Some are genuinely different.
ReadStream can return a slice of its container
without an OrderedCollection. Some are not.

The Problem

● (1) Reduce code duplication

● (2) keeping reflection honest

● (3) with no difficulty about what is inherited

A

B C

X (*) Y (*) Z

Non-Solution: historic Smalltalk

● The traditional Smalltalk approach is that if a
method should appear in class X and class Y
you put it in A, their nearest common ancestor.

● For example, Smalltalk has mutable arrays (X)
and immutable strings (Y). Their common
ancestor is ArrayedCollection. The #at:put:
method goes there. But Interval (lb to: ub by:
step) then inherits it and has to block it.

● Code duplication is avoided (1).
● Reflection is not reliable (2).

Non-solution: Java interfaces

● Classic Java interfaces do not solve the code duplication
problem but create it.

● Declaring that a class implements an interface creates an
obligation to implement its methods. It does not provide
code you can inherit.

● Java 8 default methods I count as multiple inheritance.
They answer the question “how to add new features to an
interface with existing implementors that lack them”.

● Two parent interfaces with default definitions for the same
method = multiple inheritance. Oops.

Non-solutions: macros

● ArrayedCollection subclass: #Array
$include 'array-mutation-methods.ist'

ArrayedCollection subclass: #String
$include 'array-mutation-methods.ist'

● Means I only have to write a definition once,
and reflection works.

● But the compiler has to compile multiple copies
of such definitions. Object code bloat.
We also get obscure source code.

Non-solution: multiple inheritance

● If P has parents Q and R, and both define m,
which m does p inherit?

● Common Lisp: each class has a class
precedence list. Two classes with the same set
of ancestors may inherit different things.

● Dylan: like Common Lisp, but computes class
precedence list differently.

● Eiffel: elaborate language for connection

Multiple Inheritance 2

● C++: dislike of its complexity is why Java and
C# became popular.

● Multiple inheritance solves (1) code duplication
and (2) honest reflection (if you have it) but (3)
it's hard to tell where things will come from.

● Multiple inheritance is too powerful.

Key insight

● Smalltalk is nearly right. We do want to define
a "common" method once, and the common
ancestor A is a good place to do it.

● The problem is that placing a definition in A
makes it available in B C and Z as well as X
and Y.

● But definition and availability don't have to be
the same thing!

Latent Methods

● A latent method is defined in a class together
with a condition.

● It becomes available in a (sub)class when the
condition is satisfied in that class.

● But what kind of condition?

Latent method = template method

● In Design Patterns, a template method is an
algorithm, typically in an abstract class, that
calls methods that are overridden in subclasses
so that the subclasses can customise its
behaviour.

● atAll: indices put: anElement
 indices do: [:each |
 self at: each put: anElement]

Available when?

● It makes sense for a latent method to become
available in precisely those (sub)classes where
it is first true that all the self methods exist.

● Actually, template methods are always
available. They should be latent ones.

● People make mistakes. So we should say
which self methods we intend to be filled in by
subclasses

Example

● Stream
 latent #(atEnd next) methods:
 do: aBlock
 [self atEnd] whileFalse: [
 aBlock value: self next].
 ...
 latent #(nextPut:) methods:
 nextPutAll: aCollection
 aCollection do: [:each | self nextPut: each].

Implementation

● In a typed single-inheritance language, latent
methods go in the virtual function table just like
any other methods. Availability is mainly
enforced at compile time. There is no run-time
overhead for ordinary dynamic dispatch.

● Reflection is trickier, but can use the same
technique that my Smalltalk uses. Calls
through reflection pay a small price.

Implementation 2

● SmartEiffel introduced the idea of not using a
virtual function table. Instead an object begins
with a class number, and dynamic dispatch
uses a sort of optimised switch().

● My Smalltalk copied this. Baseline, remember?
This obviously wasn't going to be fast enough.
Except it was.

Dynamic dispatch

● object.selector(args...) =>
selector'(object, args) where
Word selector'(Word self, Word ...) {
 Tag const c = CLASSNO(self);
 /* tree of if () statements */
 return does_not_understand(
 "selector", self, ...);
}

● branches of the tree can share (thanks, goto!)

Duplication?

● No. If multiple class number ranges correspond
to a single definition, they can all be-or-jump-to
a single translation. This is needed anyway to
handle overriding.

● Subproblem (1) is solved.

Reflection?

● object respondsTo: #selector ==>
responds(CLASSNO(object), selector")
where selector" is an array of half-open
intervals of class numbers where some
definition of the selector is available and
responds() does a binary search.

● The test is logarithmic in the number of
intervals, which is usually much less than the
number of classes.

Reflection? 2

● The where-available tables can be shared
between selectors.

● Currently, 874 classes (*2 for metaclasses),
7697 selectors, 1724 unique range lists, longest
has 47 ranges, average 2.75, memory to hold
range lists = 56612 bytes. 860258 lines of
generated C for everything else.

● The scheme is practical.

Really dynamic languages

● The dynamic dispatch technique I'm using relies
on whole-program compilation to number the
classes.

● Smalltalk is really dynamic.
● Implementations use inline caches, possibly

polymorphic inline caches, which still work.
Fallback searches the object's class and
ancestors checking each's method dictionary.
This is easy to adapt.

