
Parallelization of a Backpropagation Neural
Network on a Cluster Computer

Mark Pethick, Michael Liddle, Paul Werstein, and Zhiyi Huang
Department of Computer Science

University of Otago
Dunedin, New Zealand

email:
�
mpethick, mliddle, werstein, hzy � @cs.otago.ac.nz

ABSTRACT
This paper compares the performance of two paralleliza-
tion strategies for a backpropagation neural network on
a cluster computer: exemplar parallel and node parallel
strategies. Equations for calculating the theorectial costs
of these two strategies are proposed based on the imple-
mentation presented in the paper. Performance results are
collated according to different sizes of neural network, dif-
ferent dataset sizes, and number of processors. The perfor-
mance results show the advantages and disadvantages of
the two strategies. More interestingly, we discover that the
experimental results are very consistent with the theoretical
costs. Therefore our cost equations can be used to predict
which strategy is going to be better given a network size, a
dataset size, and a number of processors.

KEY WORDS
backpropagation neural network, cluster computing, paral-
lelization, performance evaluation

1 Introduction

Artificial neural networks comprise a class of artificial in-
telligence that attempts to replicate, in simplified form, the
way a biological brain works. Because neural networks
simulate the brain, they are able to solve some problems
that humans tend to do well, but which computers perform
poorly, for instance pattern recognition and motor control
[1]. For this reason they are extensively used in cognitive
research.

The high degree of complexity present in artificial
neural networks makes them computationally expensive
to simulate. In the past, there has been a large body of
work considering techniques for exploiting the natural par-
allelism inherent in neural networks to improve their per-
formance. Most of this work has been centered on special
purpose hardware implementations that provide a high de-
gree of parallelism (such as massively parallel processors),
or on mapping neural networks onto conventional shared
memory multiprocessor parallel computers (SMP) [2]. In
this work, we consider the implications of using a cluster
computer.

A popular alternative to conventional multiprocessor

parallel computers is a cluster computer constructed using
a collection of networked commodity workstations. Cluster
computers have the advantage over multiprocessor systems
in that they are relatively inexpensive to construct, and pro-
vide a highly scalable parallel platform. However a cluster
environment differs from that of a shared memory parallel
computer in a number of important respects such as com-
munication cost (as discussed in section 3).

In this paper, we study two parallelization strategies
for implementing the backpropagation algorithm in a clus-
ter computer environment. First, we determine the theoret-
ical cost for each strategy as a function of the number of
processors and neural network size. This cost is the cost
of communication between the processors. The computa-
tional cost is the same with both methods as will be ex-
plained later.

The second contribution of this paper is the perfor-
mance studies. The two parallelization strategies are im-
plemented. Tests are done across a range of different data
sets, number of processors, and neural network sizes. The
results show close correlation between the theoretical costs
and the performance test results. Therefore the cost equa-
tions can be used to predict the best strategy given a net-
work size, a dataset size, and a number of processors.

This paper is organized as follows: Section 2 provides
an overview of the backpropagation algorithm, while Sec-
tion 3 looks at the environment provided by a cluster com-
puter. Section 4 gives an overview of parallelization strate-
gies that can be used for the propagation algorithm. Sec-
tion 5 gives the details of our implementations of the two
chosen strategies. Section 7 evaluates the performance of
the strategies, and Section 8 presents our conclusions.

2 Backpropagation Neural Networks

A popular type of neural network is the multilayer percep-
tron, in which neurons are organized into at least three lay-
ers. Each layer is (usually) fully interconnected to its adja-
cent layers. Multilayer perceptrons can be viewed as per-
forming a functional mapping from an input space to an
output space.

One type of multilayer perceptron is the backpropa-
gation neural network. They are trained on a population of

input/teacher pairs using a two pass supervised algorithm
based on the error correction learning rule published by
Rumelhart, Hinton, and Williams [3].

The first—forward/activation—pass presents an input
vector to the first layer of the network, which then propa-
gates through the network one layer at a time. For a single
non-input layer, this propagation requires each neuron in
that layer to compute a weighted sum of its incoming sig-
nals to yield a net input and apply a continuous non-linear
(usually sigmoid in shape) activation function to determine
its output value. The output vector of the network is the
activation vector of the final layer of neurons.

The second—backward/weight adjusting—pass at-
tempts to correct any error made with respect to the desired
mapping. The overall network error for the given input vec-
tor is computed by comparing the output vector to a given
teacher. Each hidden layer must then compute the contri-
bution of its neurons to this error. This is achieved by each
neuron in a layer calculating its error from a weighted sum
of the error of the succeeding layer. The weights into each
neuron are adjusted in proportion to that neuron’s error.

The presentation of a training population of in-
put/teacher pairs is termed an “epoch”. Training takes place
over a number of epochs until the average error for the pop-
ulation falls below a defined value. At this point, training
is stopped, and the neural network is said to have “con-
verged”. Once convergence has been realized, the success
of training is determined by the neural network’s ability to
correctly generalize as yet unseen input vectors.

There are two common schemes for updating a neu-
rons weights: batch-update; and pattern-update. In batch-
update, each neuron’s weight change is averaged over the
entire epoch, and weight update is performed at the end of
the epoch. In pattern-update, input/teacher pairs are pre-
sented in a random order, and weight change is performed
after each presentation. Batch-update is known to closely
approximate true gradient descent of the weight-space er-
ror surface. However for this reason, there is a chance that
it will get trapped in local minima. Pattern-update intro-
duces a small random element, reducing the likelihood of
the local minima occurring (and in some cases improving
convergence time). However it has the additional overhead
of having to shuffle the training population at the begin-
ning of each epoch. Because pattern-update operates on
individual input/teacher pairs, it is also able to accommo-
date additions to the training population (something that is
important when real-time data is being used for training,
for instance in robotics [4]), whereas batch-update requires
the entire training population to be available ab initio.

The core computational requirements exhibited by the
backpropagation algorithm, can be implemented as a set of
matrix-vector, and vector-vector operations [5]. The ma-
jor computational demand is in the learning phase, where
training pairs have to be presented for a large number of
epochs, and the error signal for each input must be calcu-
lated.

3 Cluster Computers

Cluster computers exhibit a number of differences from tra-
ditional shared memory multiprocessor “supercomputers”.
The most important being that the cost of communication
is an order of magnitude higher in a cluster than on a sys-
tem where each processor has uniform access to memory.
The largest factor in the increased communications time is
the latency of initiating a message due the requirement that
networking protocols must be used.

Another difference is the communications topology
of a cluster computer. Typically all the nodes of the cluster
connected by a single network bus which creates a commu-
nications bottleneck. This means we need to consider the
time distribution of the communications load [6]. Often all
processes will need to send data at the same time—for in-
stance at a synchronization point—which will saturate the
network. This makes the communications strategy chosen
much more important than on shared memory systems [7].

4 Parallelization Strategies

Nordstrom and Svensson [2] identify four strategies that
can be used to efficiently parallelize a neural network on
massively parallel, purpose built, machines. Each of these
strategies represent a different level of granularity. In this
section, we consider each in turn as they apply to a cluster
computer.

There are two factors which influence the execu-
tion time of a parallel application: the time taken for the
computation (���������), and the communications overhead
(�������	�)[8]. �������	� consists of two components, the latency
associated with sending a message (��
�������), and the time
taken to transmit a unit (byte) of data (���������) which is in-
versely proportion to the network speed. For our purposes,
��������� is equivalent for all strategies so it can be ignored.
Therefore the general equation for the cost of each strategy
is:

� ����
��� � �����	������� �
����������� � ��� ���"! (1)

where � is the total number of messages sent per epoch, and
� is the number of units of data sent.

In the following discussion, we refer to a neural net-
work that has � layers of nodes with #%$ being the weight
matrix for layer & . ')(, *+(, and ,-(are the activation, error,
and bias vectors, respectively, for layer & . The network is
trained on a cluster of . nodes, with a training set con-
taining / training pairs. We also define the function 0 � x !
which returns the size of data structure x.

4.1 Training Session Parallelism

Like all gradient decent algorithms, training a backprop-
agation network can take a number of attempts due to a
propensity to get stuck in local minima. This requires the
network to be restarted in a new initial state and training

repeated. By deploying a copy of the serial backpropaga-
tion program on each node of the cluster and initializing
each instance in a different state, they can be simultane-
ously trained, with one of the instances finding the best
solution. This strategy can be useful if the error surface
has a lot of noise. Systems which allow process migration,
such as MOSIX [9], provide a good environment for train-
ing session parallelism.

Training session parallelism requires no communi-
cation between processes, theoretically giving a perfect
speedup. Also because a serial implementation can be
used, it does not require any special implementation. How-
ever there may be some interdependence between each
training instance. For example, we often need to inter-
actively modify the neural network’s parameters between
training sessions. This interdependence limits the utility of
this strategy [6].

4.2 Exemplar Parallelism

Exemplar parallelism, also called training example paral-
lelism, uses the training population as the source of par-
allelism [10]. Each process determines the weight change
for a disjoint subset of the training population. The changes
are combined and applied to the neural network at the end
of each epoch, thus requiring a type of batch-update.

It is required that all processes start with a neu-
ral network that is in the same initial state (i.e. has the
same weight matrices). This congruence is maintained
throughout training as the partial weight change matrices
are merged, then applied in the same way at each process.

Exemplar parallelism provides a good solution on a
cluster computer as it requires a much lower level of syn-
chronization than with either node or weight parallelism
(see Sections 4.3 and 4.4), and is identified by Rogers and
Skillicorn [10] as the “preferred technique”. The low level
of synchronization derives from the fact that communica-
tion only occurs at the end of each epoch, and generates a
comparatively small number of large messages.

This strategy requires a suitably large training popu-
lation (with respect to neural network size) to get an ad-
vantage, which is a common situation as many problems
have a more input/teacher pairs than neurons. As each pat-
tern is presented on an independent cluster node, we get no
speedup for presenting individual patterns, so the perfor-
mance increase will only be in the training phase.

The theoretical cost of exemplar parallelism for our
implementation is given in Section 5.1.

4.3 Node Parallelism

Node parallelism, also called neuron parallelism, uses the
natural parallelism implied by the distributed nature of an
artificial neural network. In the most pure case, each pro-
cessor in the cluster is responsible for calculating the acti-
vation of a single neuron, though this is usually not prac-

tical or advantageous. Instead we must determine a good
topological mapping of neurons to cluster elements.

If we require pattern-update, only neurons in a single
layer can be evaluated in parallel as the neurons in succeed-
ing layers rely on these activations for their input. Alterna-
tively if pattern-update is not required, a pipeline approach
with a subset of processes for each layer is possible [6].

If the neural network is not fully interconnected, we
may also be able to exploit the locality of connections be-
tween neurons by assigning a non-overlapping ����� con-
tiguous block of nodes to each processor. This can reduce
the communication between processes so that it occurs only
across block boundaries [10].

The node parallelism strategy generates a large num-
ber of relatively small messages since each process must
send the output of its neurons for a layer to all processes in-
volved in the computation of the next layer. Consequently,
it may often be advantageous to only allocate the nodes of
a layer to a subset of the processors. However determining
this optimal mapping is an NP-Hard problem.

The theoretical cost of node parallelism for our im-
plementation is given in Section 5.2.

4.4 Weight Parallelism

Weight parallelism is the finest grained solution considered
by Nordstrom and Svensson [2]. In this strategy, the input
from each synapse is calculated in parallel for each node,
and the net input is summed via some suitable communica-
tions scheme.

As weight parallelism provides no additional capabil-
ities over the node parallelism strategy (see Section 4.3),
and introduces significantly more short messages, we do
not consider it a suitable parallelization strategy for a clus-
ter computer.

5 Implementation

In this section, we detail the implementation of the two
strategies that we identified as being the most viable in
a cluster environment: exemplar parallelism (Section 4.2
and node parallelism (Section 4.3). Training session paral-
lelism (Section 4.1) was deemed to be unsuitable for two
reasons: it does not provide a general purpose solution for
neural network training; and it is not specifically a study of
a parallel algorithm. Weight parallelism, while an interest-
ing theoretical model, is not likely to provide any speedup
in a cluster environment where message initialization is the
greatest cost.

The two strategies were implemented in the C pro-
gramming language. We use the MPI-1.1 message pass-
ing standard to specify the communications primitives [11].
Matrix and vector operations were specified by the BLAS
Level 1 [12] and Level 2 [13] interfaces.

5.1 Exemplar Parallelism

Given a sequential implementation of a backpropagation
neural network, the exemplar parallelism strategy is com-
paratively easy to implement. It only requires the addition
of an initialization procedure and a synchronization step at
the end of each epoch. The initialization procedure con-
sists of the distribution of the training population to all pro-
cesses, and the synchronization of the initial weight matri-
ces. The synchronization at the end of each epoch involves
each process sending it’s partial weight change matrices to
a master, who the sums them and broadcasts an updated
set of weight matrices to all processes in preparation for
the next epoch. The core part of the backpropagation algo-
rithm, which computes the output of the neural network for
a given input pattern and determines the weight changes to
correct any error, is unchanged, and is executed by all pro-
cesses on an identical copy of the weight matrices. The ad-
ditional communication concepts are formalized from the
perspective of the master in Algorithms 5.1 and 5.2. Al-
gorithms 5.1 gives the initialization procedure. (In both
algorithms, weight is abbreviated wt.)

Algorithm 5.1: INITIALIZE(��� ���������+& � & �	� .�
�)

for each ����
�� � 0 0��
do

�
SENDTRAININGPOPULATION � ���������+& � & �	� .�
� !

BROADCAST � ��� ������� �����+��� &�� !
The synchronization step (Algorithm 5.2) requires the

combining of the partial weight change matrices calculated
by each process and the subsequent updating of the weight
matrices. In our implementation, this is achieved by having
all processes communicate their partial weight change ma-
trices to the master node (node 0) which sums the partial
change matrices and applies the changes to the network. It
then broadcasts the new weight matrix to the slave nodes.

Algorithm 5.2: SYNCHRONIZE(��� �)
for each ����
�� � 0 0��

do
�

RECVANDSUMWTCHANGE � � !
APPLYWTCHANGE � ��� ������� ��� �	�!��"�# # �����+��� &�� !
BROADCAST � ��� ������� �����+��� &�� !

An alternative is to have each process broadcast its
partial weight change matrices to all other processes. How-
ever broadcast on a cluster computer is commonly im-
plemented as a series of point to point operations. Thus
such an all-to-all operation with P processes will be imple-
mented as � .$�&% !�' point to point operations, while our
method will only require (� .$�&% ! point to point opera-
tions. If a broadcast is implemented using a tree algorithm,
and the network uses a switch, all-to-all will still require
.�)*
 � . point to point operations.

According to our implementation of the exemplar par-
allelization, the theoretical cost of the strategy based on
Equation 1 is calculated as described next.

To determine the theoretical cost per epoch, we first
calculate the number of messages sent (�). Each process,
except the master process, sends its copy of the weight
change matrices and bias vectors to the master node which
applies the changes to the network and returns the updated
matrices and vectors to each process. Thus there are two
messages generated for each non-master process giving:

� � (� .��+% ! (2)

The average size of each message (, 0) is the com-
bined size of the weight matrix for each layer plus the size
of the hidden and output layer biases. Thus the average size
is given by:

, 0 �
-/.102
$43 065 0 � # $.10 ! � 0 � , $!�7 (3)

Applying Equations 2 and 3 to Equation 1 gives Equa-
tion 4, the theoretical cost of exemplar parallelism.

� ����
� � (� .���% ! 5 �
�������
� ���������

-/.102
$43 0 � 0 � # $.10 ! � 0 � , $!�!87 (4)

5.2 Node Parallelism

If the serial backpropagation algorithm is implemented as a
series of matrix-vector operations, node parallelism can be
quite easily achieved by distributing these operations over
the available processes. Specifically we built a simulation
that evenly distributes contiguous rows of each weight ma-
trix, and computes the activations and weight changes by
treating them as partitioned matrices (see [14] for a refer-
ence on partitioning matrices). In general each process is
responsible for computing the activations and maintaining
the inward weights for a subset of the neurons in each layer.

For the forward pass of the backpropagation algo-
rithm, the partitioning scheme requires each process to
have a copy of the full output vector from the previous layer
to compute its subset of the current layers output. As for
the exemplar parallelism implementation, the all-to-all na-
ture of this communication is achieved in three steps for
each layer:

1. The master broadcasts the previous layer’s output vec-
tor.

2. Each process computes its subset of the current layer’s
output vector.

3. The master gathers, from all processes, the current
layer’s output vector in preparation for the computa-
tion of the next layer.

The backward pass is somewhat more complicated.
To compute the weight change for an output neuron, each
process compares the activation of its subset of the out-
put layer with the corresponding subset of the teacher. To
compute the weight change for a hidden neuron, its contri-
bution to the error of each neuron that it sends output to is
required. As each neuron in a hidden layer sends output to
every neuron in its succeeding layer, a contribution to its er-
ror is required from every process. The partitioning scheme
employed dictates that this contribution must be computed
individually by each process, that all of these contributions
be summed by the master, and finally scattered to each pro-
cess. So for a general hidden layer, weight update proceeds
as follows:

1. The master scatters the error vector for the current
layer.

2. Each process computes the weight changes for its sub-
set of the current layer.

3. Each process computes its contribution to the error
vector for the preceding layer.

4. Each process sends its contribution to the error vector
for the preceding layer to the master.

5. Master sums all the contributions to the preceding
layer’s error vector in preparation for scattering for the
next layer.

Based on our implementation of the node paralleliza-
tion, we can calculate the theoretical cost of the strategy as
described below.

The number of messages per epoch (�) for neuron
parallelism is dependent on a number of factors. As this
strategy parallelizes the computation of the presentation of
a single training pair, it must generate a set of messages
for each pair in the training population / . For each pair,
the master process must first send the entire input exemplar
and the process’s portion of the teacher exemplar to each
process, generating � .�� % ! messages. During the forward
pass, for each hidden layer, each process must send the out-
put of its neurons to all other processes, an all-to-all opera-
tion. We assume this occurs as a broadcast, where a single
broadcast to . processes requires)
 � ' � . ! messages (see
section 5.1). The backward pass generates two messages
per hidden layer for each process, except the root process.
First each process sends a message representing the error
from its subset of neurons to the root process, which then
sums the errors and sends each process its portion of this
error, generating a total of (� . ��% ! messages. Thus the
number of messages is given by:

� � / 5 � .��+% !
�

-/. '2
$43 0 � . �)
 � ' � . ! � (� .��+% !�!�7 (5)

The size of the initial messages sent for each exem-
plar is the size of the input layer (' �) plus the size of each
process’s subset of the output layer (' -/.10�� . ! . The size of
each message generated during a forward pass, for hidden
layer & , is the size of the subset of that layer that each pro-
cess computes (')$ � .). The message each process sends to
the root is the size (* $) of the hidden layer the error con-
tribution is for, while the message returned by the root is
the size of each process’s subset of the layer, (* $ � .). The
average message size (, 0) is the sum of the sizes of the ini-
tial message, and the forward and backward messages for
each hidden layer divided by the total number of messages
as shown in equation 6.

, 0 �

��� .��+% ! � 0 � ' � ! � 0 � ' -!.10�� . !�!
��� -/. '$43 0 � . �)*
 � ' � . ! 0 � � $ � . !�!
� � .���% ! 0 �*� $!
� � .���% ! 0 �*� $ � . !�!� ��� .���% ! � � -/. '$ 3 0 � . �)*
 � ' � . ! � (� .���% !�!�!

(6)

Applying Equations 5 and 6 to Equation 1 gives Equa-
tion 7 which is the theoretical cost of neuron parallelism.

� ����
� � / 5 � .��+% !
�

-/. '2
$ 3 0 � . �)*
 � ' � . ! � (� .���% !�!�7� �
�������

�

���������
	

��� . ��% !�� 0 � ' � ! � 0 � ' -/.10
� . !�!
��� -/. '$43 0 � . �)*
 � ' � . ! 0 � �+$ � . !�!
� � .��+% ! 0 � � $!
� � .��+% ! 0 � � $ � . !�!� ��� . �+% !
� � -/. '$43 0 � . �)*
 � ' � . !
� (� .��+% !�!�!

���������
�

��������� !

(7)

6 Test Strategy

The two implementations were tested to determine their
scalability as the size of the neural network, the size of the
training population, and the number of processors available
varied. The composition of the tests was chosen to reflect
these goals. The test parameters were chosen to give a good
range of data that would be expected to show both the ben-
efits and weaknesses of both parallelization strategies so as
to provide a fair comparison.

The neural networks tested comprised three layers of
neurons arranged as � ���� � � 0

' � . The network sizes
tested (value of �) were 250, 500, 1000, or 2000. This

configuration was chosen as it provided a regular pattern
for a number of different neural network sizes, thus ensur-
ing that network layout would not impact on the scalability
results.

The training populations were made up of manufac-
tured data, with the input/teacher pairs containing values
in the range [0.1,0.9]. We tested using four different sized
training populations each containing 100, 1000, 10,000, or
20,000 training pairs.

Each test was carried out on a cluster computer using
each of 1, 2, 4, 8, 16, or 32 processors.

In each test, the network was run for 50 epochs, and
the time taken recorded. The results reported are the time
taken to complete the core algorithm only. The time taken
to initialize the processes is not considered. This is done
as the tests have relatively short run times compared to the
time take to completely train the network, so the initializa-
tion time becomes negligible. Considering the initializa-
tion time may lead to an unfair distortion of the results. We
chose to train for a fixed number of epochs rather than to
convergence, as convergence speedup is not a direct con-
sequence of a parallelization strategy. However it is ex-
pected that convergence speedup (due to the difference in
weight update strategies employed in the two implementa-
tions) will be significant in some learning tasks, and the fact
that node parallelism allows pattern-update may contribute
to a decision to choose it over exemplar parallelism.

Tests were carried out on a 32 machine Red Hat
GNU-Linux cluster. Each machine was an Intel Pentium
II (Deschutes) with a clock speed of 350 MHz and 192MB
of memory. The network was a 100MB switched Ether-
net LAN. All applications were compiled with GCC-2.96
with -02 optimization. The BLAS implementation used
was ATLAS-3.5.1, and the MPI implementation used was
LAM-6.59.

7 Performance Results

For both strategies, the dominant factor in the performance
is the dimension of parallelization.

The node parallel implementation exhibits a strong
correlation between performance and the size of the neu-
ral network. As shown in Figure 1, for a given dataset size
(i.e. 10,000) the speedup grows steadily with the increased
size of the network, with the best speedup 5.99 on 16 pro-
cessors.

For the tested range of neural network sizes (e.g. up to
16,000 with the data set size 100) the speedup of the node
parallel version keeps growing steadily and has reached up
to 16.36 on 32 processors, as shown in Figure 2. For this
test only, the neural network size was increased to 4000,
8000 and 16,000.

However, the experimental results show only a very
weak correlation between performance and dataset size.
Figure 3 shows, for a given size of the network (i.e. 2,000),
the speedups are almost the same for different dataset sizes
such as 1,000 and 10,000, though there is a slight trend for

Figure 1. Speedup of Node Parallel as the neural network
size increases (Data Set Size 10,000)

Figure 2. Speedup of Node Parallel as the neural network
size increases (Data Set Size 100)

the speedup to drop on 32 processors when the dataset size
grows to 10,000.

The exemplar parallel implementation exhibits a
strong correlation between performance and the size of the
dataset. As shown in Figure 4, for a given network size
(i.e. 1,000), the speedup grows quickly with the increased
dataset size, with the best speedup of 16.66 on 32 proces-
sors. However, Figure 5 shows there is a relatively weak

Figure 3. Speedup of Node Parallel as the data set size
increases (Network Size 2,000)

Figure 4. Speedup of Exemplar Parallel as the data set size
increases (Network Size 1,000)

correlation between performance and network size for a
given dataset size (i.e. 10,000). In Figure 5, the speedup
starts to drop on 32 processors when network size grows
to 2000. The reasons are that the size of the data set de-
termines the amount of computation done by each process
for an epoch, while the size of the network determines the
amount of data that must be sent. Therefore the larger the
data set the higher the ratio between the computation and
the communication, and thus the higher the speedup. When
the network size grows to some point, say 2000, the com-
munication overhead becomes large enough to overshadow

the benefit due to the parallelization of the computation,
and thus the speedup starts to drop.

Figure 5. Speedup of Exemplar Parallel as the neural net-
work size increases (Data Set Size 10,000)

From our experimental results, we also notice that the
impact of network size is greater on the exemplar paral-
lel implementation, than the impact of the dataset size is
on the node parallel implementation. As we mentioned,
the exemplar parallel method appears to perform slightly
worse on the neural network size 2,000 than the size 1,000.
This is in general expected as the neural network size de-
termines how much communication traffic occurs between
processes. With the node parallel method, the size of the
dataset determines the amount of network traffic and its
communications load is more evenly distributed, i.e., it
deals much better with increasing dataset sizes.

The worst case performance for node parallelism is
when the network size is very small, say 250, while for
exemplar parallelism the worst case performance is when
the dataset size is very small, say 100. In those cases, both
applications exhibit a significant slowdown as the number
of processors increases.

Increasing the network size beyond the range of tested
sizes, for a given data set size, should provide increasingly
better performance for the node parallel strategy. Likewise,
increasing the dataset size beyond the range of tested sizes,
for a given network size, should provide increasingly better
performance for the exemplar parallel strategy. However,
in our experiments, we found that when the dataset size
reaches beyond 40,000, the speedup stops growing at about
24 on 32 processors.

Figures 6 shows the comparative performance of both
strategies on 16 processors. Negative values (-1) show
where the node parallel strategy provided the best perfor-
mance, while positive values (1) show where the exemplar

parallel strategy performed best. When the size of the net-
work is not very large, speedups of the exemplar paral-
lelism tend to be better. When the size of the network is
very large, the node parallelism tends to be better.

We also calculated the theoretical costs of the two
strategies based on equations 4 and 7. In our calculations,
the values of ��
�������� and ����� ��� are ��� � � %�� .�� and %�� %�	 � %�� .�

as determined by our cluster. Figure 7 shows the calcu-
lated costs. Negative values (-1) show where the node par-
allel strategy has the smaller cost, while positive values (1)
show where the exemplar parallel strategy has the smaller
cost. By comparing Figures 6 and 7, we know the theo-
retical comparison is very consistent with the experimental
comparison, which shows we can use our theoretical cost
equations to predict which strategy is going to be better
given a network size and a dataset size, and thus choose
that strategy for better performance.

Figure 6. Comparison of speedup performance on 16 pro-
cessors

8 Conclusion

In this paper, we derived theoretical equations to determine
the cost of two parallelization strategies for backpropaga-
tion neural networks. The two strategies were implemented
and performance tests done. The actual results closely
match the results predicted by the cost equations.

As expected, both implementations performed well
with the variation in the dimension of parallelization. Over-
all, for the test carried out, the exemplar parallel strategy
generally outperformed the node parallel strategy, except
for small datasets.

The node parallel strategy is less susceptible to
changes in the size of the dataset than the exemplar parallel
strategy is to increases in the size of the network. This is

Figure 7. Comparison of theoretical cost with 16 proces-
sors

due to the node parallel strategy having a regular commu-
nications load which deals better with the increase in the
size of the neural network.

The choice of which strategy to use will be driven pri-
marily by the type of learning required. If the problem re-
quires on-line learning, node parallelism is the best option
available. Otherwise for small dataset or for very large net-
works, the node parallel strategy tends to outperform exem-
plar parallelism. With large datasets, the exemplar parallel
strategy will generally outperform node parallelism, partic-
ularly with smaller network sizes.

References

[1] S. Haykin, Neural Networks: A Comprehensive Foun-
dation (New Jersey: Prentice Hall, 1994).

[2] T. Nordstrom and B. Svensson, Using and designing
massively parallel computers for artificial neural net-
works, Journal of Parallel and Distributed Comput-
ing, 14(3), 1992, 260–285.

[3] D. Rumelhart, G. Hinton, and R. Williams, Learning
internal representations by error backpropagation, in
D. Rumelhart, J. McClelland and The PDP Research
Group (Ed.) Parallel Distributed Processing: Explo-
rations into the Microstructure of Cognition, 1 (Cam-
bridge: The MIT Press, 1986) 318–362.

[4] M. Quoy, S. Moga, P. Gaussier, and A. Revel, Paral-
lelization of neural networks using PVM, in Lecture
Notes in Computer Science, 1908 (Berlin: Springer
Verlag, 2000) 289–303.

[5] M. Misra, Parallel environments for implementing
neural networks, Neural Computing Surveys, 1, 1997,
48–60.

[6] U. Seiffert, Artificial neural networks on massively
parallel computer hardware, Proceedings of the Eu-
ropean Symposium on Artificial Neural Networks
(ESANN’2002), Belgium, 2002, 319–330.

[7] N. B. Serbedzija, Simulating artifical neural networks
on parallel archectures, IEEE Computer, 29(3), 1996,
56–63.

[8] B. Wilkinson and M. Allen, Parallel Programming
(New Jersey: Prentice Hall, 1999).

[9] A. Barak, O. La’adan, and A. Shiloh, Scalable clus-
ter computing with MOSIX for Linux, Proceedings of
the Linux Expo ’99, London, 1999, 95–100.

[10] R. Rogers and D. Skillicorn, Strategies for paralleliz-
ing supervised and unsupervised learning in artificial
neural networks using the BSP cost model, (Queens
University, Kingston, Ontario, Canada, Tech. Rep.,
1997).

[11] Message Passing Interface Forum, MPI: A Message
Passing Interface Standard, (University of Tennessee,
Knoxville, Tennessee, USA, Tech. Rep., 1994).

[12] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Ba-
sic linear algebra subprograms for FORTRAN usage,
ACM Transactions on Mathematical Software, 5(3),
1979, 308–323.

[13] J. Dongarra, J. D. Croz, S. Hammarling, and R. Han-
son, An extended set of FORTRAN basic linear alge-
bra subprograms, ACM Transactions on Mathemati-
cal Software, 14(1), 1988, 1–17.

[14] D. Lay, Linear Algebra and Its Applications, 2rd ed.
(Boston: Addison-Wesley, 2000).

