
Department of Computer Science,
University of Otago

Technical Report OUCS-2001-07

Identifying the Danger Zones: Predictors of Success
and Failure in a CS1 Course

Authors:

Nathan Rountree, Janet Rountree, and Anthony Robins

Status: submitted for review to Inroads---the SIGCSE Bulletin

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/trseries/

Identifying the Danger Zones: Predictors of Success and

Failure in a CS1 Course.

Nathan Rountree, Janet Rountree, and Anthony Robins

Department of Computer Science

University of Otago

{rountree,janet,anthony}@cs.otago.ac.nz

Abstract

We present the results of a survey which focuses on the backgrounds and expectations of a group of CS1
students in the first weeks of semester. When comparing their survey answers to their final grades on the

course, we saw some surprising things: the group which indicated an intention to continue in computer science

did no better than any other, and the strongest single indicator of success seems to be “expecting to get an A
from the course.”

In order to see if there were any particular combinations of answers that indicated success or failure, we ran a
decision-tree classifier over the survey data. This resulted in the identification of differing “danger zones” for

each year of study, in which we observed about twice the expected proportion of failing students.

1. Introduction

In the past decade there has been a rapid increase in the numbers of students enrolling in introductory
programming papers. The CS1 paper at the University of Otago has expanded from just under 2% of 13000

students in 1995 to 3% of 16000 students (including summer school) in 2001. As a result, we now teach
students whose educational background, reasons for taking the course, and levels of motivation are more widely

varied.

COMP103 is the first year programming course offered by the Department of Computer Science at the
University of Otago. A pass in COMP103 is mandatory for students intending to continue studies in either the

Department of Computer Science or the Department of Information Science. COMP103 is also offered as an
optional paper to non-computing majors.

In 2000 we changed our introductory programming language from Pascal to Java. Aside from the discussion

this created about choice of language and what should be taught in the introductory curriculum, we started to
wonder if there were any factors that could predict the pass/fail success of these students. For instance, did any

previous course of study, or their level of enthusiasm for the taking the course instil a skill or attitude that could
be seen as a factor in their success?

We held some expectation that students with a strong Math background would achieve higher grades than
their peers as they would already have experience with computing concepts (such as functions and algorithms),

and would already be in the habit of participating in weekly laboratory assignments (since COMP103 is held in

the second semester, math students have already had one semester to get used to these conditions). We also
expected that students who reported a higher level of desire to take COMP103 would achieve higher grades, due

to their willingness to put in the necessary time and effort.

2

2. Background

There is a wide variety of studies concerned with the improvement of computer science education. For CS1,
there are still questions about what to teach—what paradigm [7], which language [11], and which features of

particular languages [18] are essential components of the curriculum? General issues include how to evaluate

and measure programming skills [8], how to deal with plagiarism [9], and how to teach problem-solving skills
and patterns [13]. Studies have also looked at the difficulties and consequences of the popular change in first

language choice from procedural to object-oriented [2]. Initial interests for CS1 courses that use Java have
tended to focus on the practicalities of teaching and resources available for establishing the course [1, 4, 14].

For some time, there have been studies of novice programmers which focus on the psychology of learning to
program. These attempt to identify and describe the effect of cognitive style and personality, the ways in which

expert and novice knowledge differs, and how novices construct mental models of problems and programs [3, 6,

15].

To our knowledge there are no published studies which investigate possible predictors of success and failure

for novice students undertaking an introductory programming course. The study most closely related to our
work was undertaken at IBM in New York [12], and looks at what factors may contribute to successful object-

oriented learning. The authors studied a one week long Smalltalk course, followed by a smaller class using C++.

An important difference between the IBM study and our work is that our participants are absolute novices to

programming (with only a few exceptions), whereas most of the IBM subjects were involved in software

development as a profession. In addition to background questionnaires, the IBM instructors provided a
subjective rating of the ability of their students at the end of the course, whereas the success of our participants

is rated against their final course mark. Factors positively affecting the success of students in the IBM course
include: greater experience of programming, recent participation in writing code, knowing more languages, and

prior knowledge of an object-oriented, procedural, or functional language. Students who seemed to find object-

oriented learning difficult included those who were viewed as dogmatic in their approach, or who spent
excessive hours completing assigned exercises.

3. The Study

Data was collected during the second semester of 2000 and again in 2001. In the first week of laboratory
sessions, Students were asked to complete an optional online survey which mainly consisted of multi-choice

questions. Replies were collected via email. For detailed information about the content of COMP103, see [16].

Information was requested regarding:

• status: gender, age, enrolment status (part or full-time), year of study at university, intended major, how

keen they were to take COMP103;

• background: what recent mathematics courses they had taken, whether they felt their strongest

background was in humanities, science, or commerce subjects, whether they knew any programming

language(s) already;

• expectations: how difficult they anticipated the course would be, what they expected of the workload,

what grade they expected to achieve, whether they intended to enrol in second-year computer science
courses.

Any replies which were duplicates or did not have a valid student ID number were excluded. In addition,
replies have only been included from students who submitted their second assessed exercise and/or who

attended the final examination for the course. This decision was made in order to exclude any early withdrawals

from COMP103, but to include those students who made an early commitment to the course and withdrew later.
The total number of valid replies for 2000/2001 totalled 472, out of a possible 748.

3

At the end of the semester, each student’s reply was matched with their final mark out of 100. This mark
reflects 30% worth of bi-weekly programming assignments, a single 20% mid-semester examination, and a 50%

final examination. Students who answered the survey and completed the second laboratory exercise but were
absent from the final exam have been counted as fails.

4. Results

In COMP103 a student who receives a mark of 50% or greater achieves a pass. However, we generally find that

students who achieve a mark of 70% or greater are likely to be more successful in subsequent computing papers,
so we also report results in this range. From the 472 valid survey answers, 73% of the students received a

passing grade, while 45% of the total managed to score over 70%.

Table 1 compares the passing and over 70 proportions of students who chose to answer the survey with those

who did not:

Table 1: χ2-test result for “answered survey” vs. “did not answer”

Answered Did not Answer χ2 df p

Pass 73% 55% 26.02 1 <0.001
Over 70 45% 29% 19.45 1 <0.001

We conclude that the group of students willing to participate in the survey is more likely to do well in

COMP103.

Since all questions on the survey were multi-choice, each of them was subjected to chi-square analysis to

determine if deviations from the expected pass rate or 70+ rate were statistically significant. With an increase in

χ2-value, the probability of the observed classes being independent of the explanatory variables diminishes.

Table 2 summarises a comparison of the χ2 values for each question in the survey, with respect to their pass rate

and over 70 rate. Starred p-values are significant at 95% confidence and double starred values at 99%

confidence.

4

Table 2: Summary of χ2-test results on each survey question

Question Categories χ2
pass ppass χ2

70+ p70+

gender male, female 0.04 0.85 0.03 0.87
age 16–18, 19–21, 22-24, 25+ 14.74 0.002** 6.6 0.086

full-time status part-time, full-time 0.01 0.93 0.56 0.46
year 1st, 2nd, 3rd, 4th+ 14.22 0.003** 8.36 0.039*

major comp sci, info sci, comp & info sci, other 7.06 0.070 14.50 0.002**

keeness extremely, fairly, neutral, not 13.26 0.004** 19.15 0.001**
recent math school, uni, other, none 15.21 0.002** 11.54 0.009**

background humanities, science, commerce 11.68 0.003** 35.77 0.001**
know other language(s) no, yes 8.04 0.005** 13.65 0.001**

expected difficulty easier (than my other papers), the same,
harder, unsure

9.51 0.023* 25.14 0.001**

expected workload less (than my other papers), the same,

more, unsure

7.87 0.049* 7.69 0.053*

expected success A grade, B grade, C grade, unsure/prefer

not to say

24.27 0.001** 44.51 0.001**

continuing in comp sci yes, no, unsure 2.53 0.29 5.23 0.073

There are some interesting results here:

• Pass rate and 70+ rate seem independent of gender, of whether a student is full-time or part-time, and of
whether a student is intending to continue in computer science. The last was quite surprising, since we

expected that the intention to continue would correlate strongly with success.

• The 70+ rate seems to be independent of age range, but the pass rate is not.

• The pass rate seems to be independent of intended major, but the 70+ rate is not.

Table 3 summarises those questions where certain responses deviated from the expected pass rate or 70+ rate.
For each possible answer in each multi-choice question, we report the percentage of students who chose that

answer and passed, and the proportion that got over 70%. To give a sense of the prevalence of particular

answers, the percentage of the class who chose each answer is reported in the final column. Results of a
question are only included if the corresponding p-value from Table 2 is below 5%.

5

Table 3: Pass-rate and 70+ rate for each survey question (p < 0.05 only)

Passed (%) Over 70 (%) Group Size (%)
Entire sample: 73 45 100

Age: 16–18 80 36

19–21 72 40
22–24 54 11

25+ 74 12

Year of study: first year 79 48 63

second year 62 33 19

third year 61 39 9
fourth year plus 72 53 9

Intended major: computer science 55 39
information science 35 31

comp & info sci 39 8

other 42 22

Keenness: extremely keen 85 62 23

fairly keen 69 42 54
neutral 78 38 16

not keen 60 27 6

Recent mathematics: school 68 36 16
university 78 50 61

other 81 52 6
none 58 32 17

Background: humanities 61 28 18

science 79 57 56
commerce 70 31 25

Know a language: no 71 41 82
yes 86 63 18

Difficulty: easier than my other papers 80 69 10

about the same 81 54 32
harder than my other papers 68 35 49

undecided 69 42 10

Workload: less than my other papers 64 46 6

about the same 79 52 42

more than my other papers 71 39 47
undecided 58 42 5

Expected grade: A grade 90 70 26
B grade 69 37 47

C grade 63 24 8

not sure/prefer not to say 64 38 18

6

5. Discussion

Age:

Two things are surprising here: the unusually low pass rate of the 22–24 group, and the unusually high pass
rate for 16–18. This overturned an expectation that more mature students tend to do better at computer science

papers. It is possible that the 22–24 group is just old enough with respect to the New Zealand school system not
to have had sufficient prior computing experience; however we consider this unlikely since a basic computing

paper (COMP101) is a prerequisite to COMP103.

Year of study:

The results associated with this question were also interesting; clearly students in their second or third year of

study at university do less well in COMP103 than students in their first or fourth year. Since COMP103 is a
prerequisite for continuing in computer science or information science, we can reasonably expect that second-

year or third-year COMP103 students who list computer or information science as their only major are either

“re-starting” their degree or switching majors. Of the 64 students in this situation, 38% failed. Non-computing
majors in their second or third year are presumably taking COMP103 to enhance their computing skills or to

“fill-in” their points in order to complete a degree; there were 37 students in this situation and 47% of them
failed. Although we would need to look at individual student records to confirm this trend, we feel that this

indicates that treating an introductory programming paper as a “filler” may not be a good idea.

Intended major:

Note that the pass rate has too high a p-value to be statistically significant. There is however a 20 percentage

point difference between the proportion of information science students achieving over 70% and the proportion
of computer science students. We should point out that although COMP103 is a prerequisite for continuing in

both departments, there is very little material in the course that is specific to information science.

Keenness:

As we expected, that group of people who considered themselves to be extremely keen to participate in
COMP103 had a much higher pass rate than those who were not. Less expected was the difference in pass rate

between those who were “fairly keen” (69%) as opposed to those who were “neutral” (78%). It would seem as

though being willing to “go all out” leads to success, but being just slightly reserved in your enthusiasm (enough
to tick “fairly keen” rather than “extremely keen”) is worse than reporting no feeling at all.

Recent mathematics:

Although COMP103 has no specifically mathematical content found above year 10 in high-school, it does

seem as though ability in programming is suggested by ability in math. However, the disparity between school
math and university math is interesting. Perhaps university students have simply had more practice at working

mathematically, or perhaps the type of student who is inclined to take a math course at university is more

inclined to do well in COMP103. We suspect that it is the work habits instilled by university math courses
(small weekly assignments and laboratory sessions) that provide the advantage rather than simply the

mathematical skills learned in the course.

Background:

Both pass rate and number of students achieving over 70% are lower for students who consider themselves to

have a humanities background. This was of some concern, considering our effort to run a course that did not rely
on students’ level of mathematical skill. We suspect that there is a large difference in the style of COMP103

from what humanities students are used to: 24 programming assignments over 13 weeks rather than (for
example) 3 essays, and a strong sense of “right answer” and “wrong answer” (a program either produces the

correct output or it doesn’t) rather than “better answer” and “less good answer”. As anyone who has

7

programmed is aware, the rewards of the task and the frustrations inherent in it are strongly polarised; thus there
is a very different sense of what you have achieved and when you have achieved it. This may lead some

students to an incorrect assessment of what they need to do to be successful in the course.

Knowing a programming language already:

Unsurprisingly, the 18% of students who claimed to already know a programming language had a much
higher success rate. However it is interesting to note that 12 of those 84 students still failed the course: we

conclude that knowing a programming language is no guarantee of success in an introductory programming

course. We also note that where students listed the programming languages they knew, we saw everything from
“C, C++, Forth, M68k assembler” to “macros in MS Office.”

Expected difficulty, Expected workload:

The last three questions all indicate that students are remarkably good at making their own assessment of the

challenges facing them and how well they are likely to react to them. In general, students who thought the
course would be more difficult for them did less well than those who thought it would be about the same as their

other courses. This leads us to believe that it is a mistake for students to overestimate or underestimate the

course; it is probably of similar difficulty to other first-year courses but has a differing mode of execution.

Expected grade:

This is clearly the strongest single indicator of success: students who expect to get an A and are willing to say
so are far more likely to be successful. This suggests to us that a positive attitude is more important than having

the right background, and that students are fairly good at estimating their own ability.

6. Danger Zones and Success Zones

We thought it would be interesting to determine if there was any combination of answers which would suggest
that a student was more likely to fail COMP103, or more likely to get over 70%. To this end, we ran a decision

tree inducer over the survey data, first with pass/fail and then with over 70/under 70 as class labels. The

classification software was based on IBM’s SPRINT algorithm [17], with the Minimum Cost Complexity
pruning method from CART [5]. Paths from the root of the tree to “fail” leaves can be seen as answers which

put a student into a “danger zone” where the likelihood of failing the course is about twice as high as usual.

Figure 1 shows an example tree induced on the group of students in fourth year or above. The left path of

each decision node is followed if the student checked that answer, the right path if not. The values at leaf nodes
indicate the predominant class at that leaf, the percentage of examples at the node that are in fact that class, and

the number of examples at the leaf.

8

knowlang=yes

PASS 1.00 11 diff=same

FAIL 0.66 9 diff=easier

FAIL 0.66 3 PASS 0.80 20

T F

T F

T F

Figure 1: A decision-tree showing clusters of high fail-rate above fourth-year.

The danger zones identified by the decision tree are clearer if taken by year of enrolment:

First year:

Not looking for an A and

Not majoring in cosc or info and

Not “extremely keen” or “neutral”
Group size: 38, Pass: 53%, Fail: 47%, Over 70: 26%, Under 70: 74%

Second year:

Not looking for an A and
No recent university or “other” math

Group size: 29, Pass: 38%, Fail: 62%, Over 70: 17%, Under 70: 83%

Third year:

Background not science

Group size: 20, Pass: 40%, Fail: 60%, Over 70: 15%, Under 70: 85%

Fourth year:

Don’t know a programming language and

Think difficulty will be same or easier

Group size: 12, Pass: 33%, Fail: 67%, Over 70: 17%, Under 70: 83%

Taken together, the “danger zone” has 99 student examples, of whom 56 failed the course (56.5% instead of

the expected 27%).

The first-year danger-zone students are characterised by a much higher uncertainty about whether they ever
wish to do more computer science (50% instead of 35%, suggesting that the intention to proceed in computer

9

science may be significant for this group, if not for second-years and above). While some students change their
minds about half way through the course as they discover they really enjoy programming, those who still don’t

intend to continue are unlikely to put in the time and effort required to pass the course.

The second-year danger zone suggests that a transition into COMP103 from another program is more difficult

if the student has not experienced a course in the manner of university mathematics. Further, if the student is not
committed to getting an A in the course, the chances of failing seem to be higher than the chances of passing.

Third-year students may be changing major or program, or taking COMP103 to fill in points towards their

current program. Without a background in science (by third-year, we can assume this means university science
papers) more students in this category will fail rather than pass.

Finally, fourth-year students who do not already know how to program and assume they will find this course
no harder than anything else they have done are making a tactical error. Previously we argued that COMP103

shouldn’t be seen as more difficult than other courses, but this may be a dangerous point of view for fourth-year
students.

The one clear success zone uncovered by the decision-tree software agrees with the contingency tables,

taking the two most significant attributes and combining them:

Success zone:

Expect an A and
Background is science

Group size: 84, Pass: 88%, Fail: 12%, Over 70: 76%, Under 70: 24%

An even better success zone is seen if we restrict the zone above to students between the age of 16 and 18:

Success zone:

Expect an A and

Background is science and
Age is 16 to 18

Group size: 31, Pass: 100%, Fail: 0%, Over 70: 90%, Under 70: 10%

7. Limitations

Our decisions about what constitutes a “pass” or a “good” student are tied to a specific course at a specific
university with students primarily educated in New Zealand schools. However the COMP103 course is based

on a popular, standard textbook [10] and our graduates have had notable success in the international job market,
in postgraduate work, and in the ACM Programming Competition. Hence we believe that the trends we see here

regarding attitude, self-assessment, and educational culture are generalisable to a wider community than our
own.

Our course has evolved in response to student reaction over the last two years, so some patterns seen in the

2000 intake may not be present in the 2001 course and vice versa. Similarly, the population has changed
somewhat: the first time COMP103 was taught with Java generated more interest from senior undergraduate and

postgraduate students than we would normally expect. However we note that the patterns presented in this
paper are only those which can be validated against both semesters surveys, so we have some confidence that

we may see them again in coming years.

Making the survey voluntary resulted in a self-selected sample that consisted of more than half the class, but
also a clearly more successful group. However, we felt it was more important to have students answering the

questions honestly rather than feeling coerced into providing information that they may not wish to share. We
are making an assumption that the majority of students who answered the survey did so honestly, since there

seemed to be genuine interest in providing the department with helpful information.

10

8. Conclusion and Future Work

We have presented the results of a survey taken over two semesters of an introductory programming course.
The purpose was to see if there were factors independent of students’ previous academic performance that

influenced their success in the paper. We found that the strongest single indicator of success was the grade the

student expected to achieve at the beginning of the course. The questions on expected grade, anticipated
difficulty, and anticipated workload indicate that students have a strong sense of how well they are likely to do

within the first two weeks of the semester. Other factors that are related to success include whether the student
thinks his/her background is science, commerce, or humanities; whether they have recent university math

experience; and what year of study he/she is in—but not always displaying the relationships we might expect.

To identify clusters of failing students and students who achieve over 70%, we ran a decision-tree classifier

over the survey data, resulting in simple rules to describe “danger-zones” for each year of study and a single

obvious success zone. Although the danger zone exemplars include 21% of the survey answers, they account
for nearly half of all the failing students. Danger zone students have about twice the failure rate of the whole

sample. The single strongest combination of answers for predicting a grade over 70% was expecting an A and
having a “science” background; when combined with the raw survey results, we conclude that attitude and type

of work habits are the strongest predictors of success that we can see without accessing a student’s academic
record.

Our results suggest several ways in which we might improve COMP103 before we even begin to consider

curriculum or teaching methodology. Students should be told at the beginning of the course that they are
remarkably good at assessing their own ability—that what they suppose they will get in this course will

correlate strongly with what they will actually get. Coming in with the right attitude seems to be very important
not only for doing well, but even for simply passing the course.

Students should be given a clear message that taking introductory programming as a “filler” course is

potentially a tactical error. We believe that the only good reason to take this course is because you want to learn
how to program, and that the chances of failing the course increase dramatically when this is not true.

We need to be very precise at the beginning of the course about why COMP103 is likely to be different to
other courses the participants may have done. It seems that the time commitment to laboratory sessions and

programming assignments, the grappling with programming concepts, and the sharp distinction between an
assignment that works and one that doesn’t can come as an unpleasant surprise to some students.

We have begun work on a formal prediction model based on the survey data that uses the “danger zone”

decision trees to aid in model selection, and logistic regression to estimate the importance of each independent
variable. Initial results suggest that we should be able to achieve a prediction accuracy of at least 83% (a 10

percentage point improvement on a naive classifier).

We are working concurrently on the issue of distinguishing problems associated with program

comprehension as opposed to program creation. We intend to process the “danger zone” students’ examination
results to try to see if there are specific “sticking points” in the curriculum, and to try to see if these are related

more strongly to program comprehension or creation.

Finally, we need to make it clear to our students that to succeed in learning to program, you need to be
striving to get an A. Author Terry Pratchett has commented several times that really successful writers “...have

to want to write. Too many people want to have written.” We believe that there is a similar problem in learning
to program: many people would like to have the skill, but find the mental attitude required to gain it is hard to

sustain. Our results suggest that a positive attitude is the most important factor.

11

Acknowledgments

This work has been supported by internal University of Otago Research into Teaching grants. We are also
grateful for the support of the other members of the COMP103 teaching team, especially Sandy Garner and

Mike Atkinson.

References

[1] Andreae, P., Biddle, R., Dobbie, G., Gale, A., Miller, L., and Tempero, E. Experience Teaching CS1

with Java, Journal of Computer Science Education, 14, 1&2, 2000, 19–28.

[2] Biddle, R. and Tempero, E. Java Pitfalls for Beginners, SIGCSE Bulletin, 30 (2), 1998, 48–52.

[3] Bishop-Clark, C. Cognitive Style, Personality, and Computer Programming, Computers in Human

Behaviour, 11 (2), 1995, 241–260.

[4] Boszormenyi, L. Why Java is Not My Favorite First-Course Language, Software – Concepts and Tools,

19 (3), 1998, 141–145.

[5] Brieman, L., Friedman, J., Olshen, R., and Stone, C. Classification and Regression Trees. Wadsworth,

1984.

[6] Burkhardt, J., Detienne, F., and Wiedenbeck, S. Mental Representations Constructed by Experts and

Novices in Object-Oriented Program Comprehension, INTERACT’ 97, 1997, 339–346.

[7] Deek, F., Kimmel, H., and McHugh, J. Pedagogical Changes in the Delivery of the First-Course in

Computer Science: Problem Solving, then Programming, Journal of Engineering Education , 87 (3),

1998, 313–320.

[8] Dunsmore, A., and Roper, M. A Comparative Evaluation of Program Comprehension Measures,

Technical Report EFoCS-35-2000, 2000, University of Strathclyde.

[9] Joy, M., and Luck, M. Plagiarism in Programming Assignments, IEEE Transactions on Education, 42

(2), 1999, 129–133.

[10] Koffman, E., and Wolz, U. Problem Solving with Java, 1999, Addison-Wesley.

[11] Kolling, M. The Problem of Teaching Object-Oriented Programming, Part 1: Language, Journal of

Object-Oriented Programming, 11 (8), 1999, 8–15.

[12] Liu, C., Goetze, S., and Glynn, B. What Contributes to Successful Object-Oriented Learning, OOPSLA

’92, 1992, 77–86.

[13] Reed, D. Incorporating Problem-Solving Patterns in CS1, SIGCSE Bulletin, 30 (1), 1998, 6–9.

[14] Reges, S. Conservatatively Radical Java in CS1, Proceedings of the Thirty-First SIGCSE Technical

Symposium on Computer Science Education, 2000, 85–89.

[15] Rist, R. Program Structure and Design. Cognitive Science, 19, 1995, 507–562.

12

[16] Robins, A., Rountree, J., and Rountree, N. My Program is Correct but it Doesn't Run: a Review of

Novice Programming and a Study of an Introductory Programming Paper. Technical Report OUCS-

2001-06, 2001, University of Otago.

[17] Shafer, J., Agrawal, R., and Mehta, M. SPRINT: A Scalable Parallel Classifier for Data Mining,

Proceedings of the 22nd VLDB Conference, 1996, 544–555

[18] Stephenson, C., and West, T. Language Choice and Key Concepts in Introductory Computer Science

Courses, Journal of Research on Computing in Education, 31 (1), 1998, 80–95.

