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Generation of idioms in a simple recurrent network
architecture

Martin Takac, Alistair Knott, and Lubica Benuskova
Dept. of Computer Science, University of Otago, Dunedin, New Zealand

Abstract

Idioms are an ideal testbed for studying the interplay of lexical (content
preparing) and syntactic (structure building) mechanisms in language pro-
duction. This article contributes to the debate about the nature of these
mechanisms and their relationship from the viewpoint of computational mod-
eling. We present a neural network model of sentence generation, which is
able to produce continuous and discontinuous idioms within regular com-
positional sentences. The model is a simple recurrent network extended to
include a semantic episode representation as an extra input. Our main con-
tribution consists in a detailed analysis of the representational space of the
network’s hidden layer, which shows that (1) an implicit structure-content
division can arise as a result of internal space reorganization within a single
SRN during learning, (2) idioms can be produced by the same general se-
quencing mechanism that works for regular sentences, (3) the production of
idioms is modulated by content-specific mechanisms.

Introduction

While language allows words to be productively combined to convey new meanings,
everyday language also contains many fixed expressions: sequences or patterns of words
which occur together with particularly high frequency. Fixed expressions occupy a contin-
uum, from songs and proverbs at the ‘fixed’ end of the spectrum, through idioms (e.g. kick
the bucket, take X to task) and phrasal verbs (e.g. come across, pull up) to statistically-
defined collocations at the other end (e.g. good as gold, as soon as possible); for a taxonomy,
see Cowie (1998). What they have in common is that they are in some sense ‘regularly occur-
ring’ structures of words: phrases whose component words occur together more frequently
than one would expect by chance.

Fixed expressions can have various origins. Some fixed expressions have their origin
in the fact that certain situations which need linguistic expression occur with particularly
high frequency. For instance, the origin of the frequently-occurring expression How are
you? is likely to be the fact that people frequently ask after one another’s health. Other
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fixed expressions are patterns of words whose meanings have become conventionalised over
time, so that they contribute their meaning collectively rather than through their individual
component words. Of course, these two origins are not exclusive; high-frequency messages
are good candidates for expression through conventionalised fixed expressions. (E.g. Howya
doin? conventionally realises the message ‘How are you?’.)

In the present paper, we will be focusing on fixed expressions which convey con-
ventionalised meanings, which we will term idioms. We will define an idiom as a fixed
expression which displays restricted syntax and whose meaning cannot be derived compo-
sitionally from its constituents. Idioms vary in degree of syntactic and lexical frozenness;
some of them permit several transformations, e.g. she kicked the bucket or she will kick the
bucket, but not the bucket was kicked by her, others are completely fixed. They also vary
in the way their meaning is related to meanings of their components. In some cases, the
original meaning of an idiom is quite easily recoverable; for instance if it has a metaphorical
meaning which is still apparent (e.g. ‘meet your maker ’). In other cases, the meaning is
not easy to recover (e.g. above-mentioned kick the bucket).1

Estimates of the proportion of fixed expressions in the vocabulary of language users
vary from a conservative 7% (Sprenger, 2003, results for Dutch) to almost half of the lexicon
(Jackendoff, 1995). In either case, these estimates suggest that fixed expressions are nothing
exceptional, but rather form a significant part of language. In terms of frequency of usage,
fixed expressions which convey their meanings compositionally (e.g. looking forward to or as
soon as possible) in fact outnumber idioms (Sprenger, 2003). However, in the current article,
our interest is in fixed expressions which convey a particular semantic concept collectively,
rather than compositionally.

Studying idioms is important for several reasons. First, idioms are surface patterns
and have to be acquired and represented as wholes. The need to account for idioms places
important constraints on the architecture of a syntactic theory. For instance, Jackendoff
(2002) argues against generative theories in the Chomskyan tradition on the grounds that
they cannot represent idioms. On the other hand, constructivist models of syntax (e.g.
Goldberg, 1995; Tomasello, 2003) are expressly designed to deal with idioms as well as
with productive grammatical rules. For constructivists, fixed expressions are qualitatively
similar to regular grammatical rules: they are both learned associations between surface
linguistic patterns and semantic patterns, which differ only in the complexity of the associ-
ated patterns. Constructivist accounts of language postulate a single unified mechanism for
learning both types of structure. This learning mechanism is often modelled using connec-
tionist architectures, which are especially suitable for extracting patterns from data (e.g.
Elman et al., 1996; Christiansen & Chater, 2001). A first hypothesis we want to test is the
constructivist hypothesis that idioms do not require a special treatment or postulation of
a dedicated mechanism, but can be treated within a general framework of acquisition and
production.

Second, idioms are an ideal testbed for studying the interplay of lexical and syntactic
mechanisms in language production. Some leave these mechanisms undistinguished or in-
tertwined; for instance Elman (1991) argues for a distributed representation of words that
inherently also carries contextual/syntactic information. Others have postulated special

1Both of these phrases mean to die.
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representational units carrying syntactic information specific for particular lexical concepts:
lemmas for words (Levelt, Roelofs, & Meyer, 1999) and superlemmas for idioms (Levelt
& Meyer, 2000; Sprenger, Levelt, & Kempen, 2006). Others (Chang, 2002; Chang, Dell, &
Bock, 2006; Konopka & Bock, 2009) accept the need for lexically specific syntactical infor-
mation, but argue for more general abstract syntactic mechanisms that map event structure
to syntactic frames without being necessarily triggered by/dependent on lexical retrieval.
For instance, in the connectionist models of Chang, there is a separate subnetwork that
controls sequencing (of thematic roles in structural frames) and another one that supplies
representational content. Chang argues that distributed architectures which lack this dis-
tinction would not be capable of structural generalizations that people apparently master
without any problems. Again, a connectionist model of idiom production can help decide
between these alternatives.

While we ultimately agree with Chang that there must be a structural division be-
tween sequencing and representational components of the network, we nonetheless want to
explore to what extent this division can implicitly develop in the representational space
of a single connectionist network as a result of learning from a language sample that con-
tains a mixture of idiomatic and regular transitive sentences. For this purpose, we have
devised a simple recurrent network (SRN) model of language production of both idioms
and non-idioms and tested it on an artificial language. In Study 1, we explore the ability of
our model to acquire both idioms and non-idioms as surface patterns and learn to produce
them. In Study 2, we enhance the model with semantics and explore the model’s ability
to learn to produce syntactically well-formed and semantically correct sentences for given
meanings. Then we compare both architectures and based on analysis of their state space
draw conclusions about representation of different parts of language in their state space. To
explore differences of language representation in the state space of SRN with and without
semantics we make lesions to different parts of SRN and observe which part of language
processing and production has been impaired.

The rest of the article is organized as follows. First we summarise the relevant aspects
of existing theories of language and idiom production. Then, after presenting the results of
Study 1 and Study 2, we give an analysis of the internal organization that developed within
the neural network. To further analyse the interplay of syntactic and lexical mechanisms in
the network, we report results of experiments with lesioning different parts of the model.
We end with general discussion and directions for future research.

Theories of language production

In this section we briefly recapitulate the approach of V. S. Ferreira & Slevc (2009),
who at first attempt to present a consensus model of what theories of language production
have in common, then pinpoint aspects of the model that are still the matter of ongoing
debates.

Language production is a process of transforming non-linguistic meanings (concepts)
into a set of linguistic forms that can be phonologically encoded and ultimately spoken or
written out. At a first approximation, it consists of two subprocesses: one which prepares the
content of the utterance, and one which determines the structure of the target utterance.
Each process has in turn two stages: a stage of selection of linguistic features from a
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Figure 1. The consensus model of language production. Adapted from V. S. Ferreira & Slevc
(2009).

candidate set, and a later stage of retrieval of the properties of the selected features, with
possible overlap or feedback interactions between the stages (Figure 1).2

Preverbal meanings to be expressed (messages) enter the process of grammatical
encoding as descriptions of events with thematic roles (‘who did what to whom’). They
have a semantic aspect (semantic features of the involved entities and actions or states),
a relational aspect (mutual relations among the semantic constituents) and a perspective
aspect (specifying the relative importance of components of the event description).

The first step of the content preparation process is lexical selection – choosing a set
of lexical entries that appropriately express the semantic meaning. These entries, called
lemmas (Levelt et al., 1999) are not yet fully specified words, but more like pointers to
lexically-specific syntactic information (e.g. a form class, like noun or verb) of the word to
be expressed.3 The word itself in full detail of its morphophonological features is retrieved
in the second step – word form retrieval.

Structure-building subprocess deals with syntactic information necessary for express-
ing relational and perspective aspects of the message. The first step, functional assignment
(Bock, 1995), selects the appropriate grammatical functions, e.g. subject, direct object,
modifiers, etc. The second step, constituent assembly, retrieves the constituent structures
for the selected grammatical functions and orders them in an appropriate affixed sequence.4

If structure and content are processed separately, they must be reunited at some
stage appropriately. How exactly this binding problem is solved is still an open problem
(V. S. Ferreira & Slevc, 2009). In fact, there is considerable disagreement as to whether
structure and content are indeed processed separately. Advocates of integrated processing
(e.g. Levelt et al., 1999; Sprenger et al., 2006) can more easily explain lexically-specific
syntactic phenomena (e.g. different structural privileges of different content words) and
also do not have to deal with the above-mentioned binding problem. On the other hand,

2Levelt et al. (1999) maintain that these stages are discrete, i.e. lemmas have to be fully selected before
the next stage can commence, others (e.g. Dell, 1986; Cutting & Ferreira, 1999) advocate more interactions,
possibly allowing the latter stage to influence the former.

3Lexical selection only concerns with content words; function words (e.g. determiners) are produced by
the structure-building subprocess.

4Affixes and function words are more important for languages with free word order.



GENERATION OF IDIOMS IN A SRN 5

proponents of content-independent abstract structures and mechanisms (e.g. Chang et al.,
2006; Konopka & Bock, 2009) can more easily account for lexically-independent syntactic
effects, especially structural priming (Bock, 1986).5

Production of idioms

Two major accounts of idiom production are Cutting & Bock (1997) and Sprenger
(2003), Sprenger et al. (2006). Based on experiments with elicited speech errors (idiom
blends), Cutting and Bock propose a hybrid model, where idioms have their own lexical-
conceptual entry (among entries for non-idiomatic concepts) directly linked to the simple
lemmas that constitute the idiom. Once the idiom entry activates its lemmas, further
processing proceeds in a standard way and there is no difference between idioms and non-
idioms thereafter. The syntax of an idiom is specified by the idiom entry activating an
abstract phrasal frame independent of any lemmas. The frame has slots that can be filled
by lemmas activated by the idiomatic concept. However, this mechanism leads to a binding
problem for some idioms, e.g. be a wolf in sheep’s clothing (Sprenger, 2003): the phrasal
VP frame contains two slots that can be filled with nouns and the information specifying
which slot should be filled with wolf and which with sheep is neither stored in the abstract
frame nor with the nouns’ lemmas.

This problem is amended in the Superlemma theory (Levelt & Meyer, 2000; Sprenger,
2003; Sprenger et al., 2006) that is the extension of Levelt’s language production model
(Levelt et al., 1999). In this theory, idioms have special holistic entries called superlemmas
stored and competing with other (non-idiomatic) lemmas. A superlemma does not point to
an abstract syntactic frame, but instead represents a syntactic structure of the idiom itself,
together with pointers to particular lemmas. Thus selection of a superlemma predetermines
which simple lemmas will fill each slot in its syntactic frame. Also, the syntactic properties
stored with the superlemma modify or restrict those stored with simple lemmas.

Despite their differences, both theories stress the hybrid nature of idiom represen-
tation: holistic lexically-specific representation on a certain level,6 but standard syntactic
processing thereafter. Also, they both refuse to countenance a special mechanism of idiom
production, instead incorporating idiom production within a standard model of ‘regular’
language production.

Language production and the brain

There are many accounts of the brain areas which are involved in the production
of sentences. In this section we will briefly introduce the accounts we will refer to when
considering how components of our network map onto to brain regions.

The research on what brain areas are involved in language production has been in-
formed by two main sources: lesion data and, more recently, brain-imaging studies. Here we
briefly review Indefrey (2009), who summarizes the results of a comprehensive meta-analysis

5Structural priming, also called syntactic persistence, is the tendency of speakers to reuse the same
syntactic structures they used before, regardless of the content.

6Konopka & Bock (2009) provide experimental support for the claim that even if idiomatic expressions are
stored in unitary form, their internal structure is accessible to and undergoes standard syntactic processing.
Insignificant difference in structural generalizations from idiomatic and non-idiomatic phrasal verbs lead the
authors to emphasize abstract structural processes in language production.



GENERATION OF IDIOMS IN A SRN 6

Table 1: Neural correlates of selected language production subprocesses according to Indefrey (2009).

Process Brain locations

lemma selection mid left medial temporal gyrus (MTG), left posterior supe-
rior temporal gyrus (STG)

word form retrieval left posterior superior temporal lobe
sentence structure building posterior part of Broca’s area (left BA 44)

of many brain imaging studies. His conclusions about involvement of particular brain areas
in various phases of language production are mostly based on the presence or absence of
hypothesized processes in certain experimental tasks, for which brain-imaging data are avail-
able. For single-word production, he adopts the theoretical model of Levelt et al. (1999) con-
sisting of stages of conceptual preparation, lexical (lemma) selection, morpho-phonological
code (word form) retrieval, phonetic encoding, articulation and self-monitoring. On the
sentence-level, he distinguishes between syntactic encoding of a sentence (that we named
structure building above) and broader conceptual planning of a discourse. For the purposes
of this article, we will only focus on his findings about neural correlates of lemma selec-
tion, word form retrieval and sentence structure building, which are summarized in Table 1
and Figure 2a. For comparison, Broca’s and Wernicke’s areas traditionally associated with
language are shown in Figure 2b.

Study 1: Production of syntactically well-formed sentences
containing idioms

Methods

In our first study, we focused on modeling production of grammatically correct sen-
tences containing idioms, without any semantic input. We created a neural network model,
trained it for next-word prediction on a sample of an artificial language containing various
types of idioms, and then tested its (spontaneous) sentence generation ability. The gram-
matical correctness of the produced sentences was judged against the artificial language (i.e.
a generated sentence was correct, if it belonged to the language).

This task was repeated 5 times with different random initializations of connection
weights in the network and also with different training sets, as if having 5 persons exposed
to different samples of the same language during their lifetime. Hence we will refer to these
5 instances of the model trained on different sets as the model subjects from now on. All
results were averaged over the 5 model subjects.

Neural model. We used a Simple Recurrent Network (SRN, Elman, 1990) with lo-
calist coding of words on the input and output layers (see Figure 3). Thanks to recurrent
connections to the hidden layer, the SRN is provided with a sort of a memory and its
output does not depend on a current input only, but also on the previous context (via
the context layer). SRNs have proven to be especially suitable for tasks involving learning
of temporal dependencies and sequences (Elman, 1990) and language syntax in particular
(Elman, 1991; Christiansen & Chater, 1999; Tino, Cernansky, & Benuskova, 2004). The
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Figure 2. (a) Neural correlates of selected language production subprocesses according to Indefrey
(2009). (b) Broca’s and Wernicke’s areas traditionally associated with language.

SRN can be understood as modelling circuits in posterior Broca’s area—specifically, the
posterior part of left Brodmann’s Area (BA) 44—and adjacent premotor cortex. Several
studies have suggested that posterior part of BA44 specialises in recognising patterns in se-
quential stimuli, including syntactic patterns in language (see e.g. Dominey, Hoen, & Inui,
2006). This same area, together with an adjacent area of premotor cortex, also appears to
be involved in the generation of syntactic structures (see e.g. Indefrey et al., 2001). There
are other studies which propose posterior Broca’s area and adjacent articulatory premotor
cortex as the locus of phonological representations—specifically of the phonological output
buffer (see e.g. Paulesu, Frith, & Frackowiak, 1993; Henson, Burgess, & Frith, 2000). Since
the SRN contains layers holding purely phonological representations (the current word and
next word layers), it makes sense for these areas to hold a mixture of phonological and
syntactic representations. However, we must also include left posterior STG as one of the
areas holding phonological information, even during sentence generation; see e.g. Hickok et
al. (2000).

Our SRN had 58 input units for 57 possible words plus 1 unit coding a sentence
boundary (SB). In each time step, the unit corresponding to the current word had activity
1 and all other units had 0 (so-called 1-hot coding). The network had 30 hidden units with
sigmoidal activation functions, activities of which were copied back to the context layer in
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Figure 3. The SRN architecture for the task without semantics. The thick arrows mean fully
connected layers. In language production mode, the output (predicted next word) is fed back to the
input in the next time step.

the next time step. Sentences (separated by SB) were presented word by word on the input
layer and the task of the network in each time step was to yield probability distribution of
possible next words on the output layer. The output layer consisted of 58 linear units (one
for each word) with softmax combination function (for technical details of computation, see
e.g. Cernansky, 2007).

After training for next-word prediction, the network could run in a sentence generation
mode. In this mode, we begin by setting SB as the current word and a conventional ‘initial
context’ signal as the current context. Then at each iteration we feed activity forward to
the output layer, stochastically choose an output word, and use the selected word as the
current word for the next iteration, and the context layer activity as the current context
layer input for the next iteration.7 To prevent generation of unreasonably long sentences,
we force SB on the input if it has not been selected as the next word within 20 words from
the last SB.

For stochastic selection of the next word, we made use of the fact that the output units
of a SRN trained for the next-word prediction task can be read as holding an estimate of
the probability distribution of likely next words, provided they use localist coding (Elman,

7Note that we do not reset the context layer after each generated sentence; neither during sentence
generation mode nor during training.
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1990). We used a modified softmax selection policy called Boltzmann selection (Chambers,
1995):

Pi =
exp (ai/T )∑n
j=1 exp (aj/T )

,

where Pi is a probability of selection of the i-th word, ai is the activity of the i-th linear
output neuron and T is a temperature. The probability of the selection of a neuron is
proportional to its activity; the temperature T controls the stochasticity of the selection,
from a deterministic choice of the most active neuron (T = 0) to a completely random
selection (T → ∞). We used T = 1

3
in our experiments.

Artificial language. In both our studies, we investigated the performance of a SRN
trained on an artificial language containing a mixture of idioms and syntactically regular
constructions. Sentences in the language are syntactically homogeneous, in that they are all
transitive; they differ only in their degree of idiomaticity. Our interest is in modelling how
a child can learn to generate a mixture of productive and idiomatic sentences. In this first
study, we only model syntax; in study 2, we will extend our model to consider semantics as
well.

The core of our 57-word vocabulary consisted of words commonly used by 16-30
month-old toddlers according to the Child Development Inventory (CDI, Fenson et al.,
1994). The grammar of our language allowed for regular transitive sentences and also for
two types of idiom:

• continuous NP idioms (teddy bear, Winnie the Pooh, ice cream, french fries),
• discontinuous VP idioms (kisses NP good bye, gives NP a hug, gives NP five).

Note that these idioms do not all have the same degree of idiomaticity. For instance gives
NP a hug is not fully idiomatic; it contains an NP ‘slot’ whose filler can have arbitrary
(accusative) NP structure. Rather they exemplify the spectrum of possible idioms. However,
there is some evidence that even phrases not considered idiomatic in adult language could be
learned by children first as surface patterns or item-based constructions (Tomasello, 2003).
Similarly, Pine & Lieven (1997) claim that although children use determiners with different
noun types, there is no evidence for them possessing an adult-like syntactic category of
determiners, which rather evolves gradually by broadening the range of lexically specific
frames in which different determiners appear. Therefore, we omitted determiners (a and
the) from our language, except for cases where they were part of an idiom, as in give NP a
hug or Winnie the Pooh.

The language also featured semantic dependencies, in that some verbs could only be
followed by animate objects and the verb eats could only be followed by a noun phrase
denoting food. It also contained synonyms and lexical ambiguities (in that words for people
could appear in both subject and object positions, the word gives could be a part of either
gives NP a hug or gives NP five and the word kisses could be either a regular verb as in
grandpa kisses grandma or a part of an idiom with a different meaning as in grandpa kisses
grandma good bye). The complete language consisted of 2200 transitive sentences generated
from a context-free grammar (see Table 2).

To allow for all mentioned phenomena, we made some extensions to the core CDI-
based vocabulary. Out of the idioms used in our language, CDI explicitly contains teddy



GENERATION OF IDIOMS IN A SRN 10

Table 2: Top: Transcription rules for the language used in our simulations. All non-terminals
are written in all capital letters (TRANSITIVE is the initial non-terminal), all terminals contain
small letters. Period (.) is a terminal and stands for the sentence boundary (SB). Sentence type
alternatives (right-hand side of the first rule) were assigned different probabilities of selection (not
shown here). Bottom: Examples of sentences composed of single words, continuous idioms, and
discontinuous idioms (note that a discontinuous VP idiom can be interleaved with a continuous NP
one).

TRANSITIVE → SUBJ VERB GEN OBJ GEN . | SUBJ VERB ANIM OBJ ANIM . |
SUBJ eats FOOD . | SUBJ kisses OBJ ANIM good bye . |
SUBJ gives OBJ ANIM five . | SUBJ gives OBJ ANIM a hug .

SUBJ → HUMAN
VERB GEN → sees | loves | holds | bites | washes

VERB ANIM → kisses | tickles | hugs
OBJ GEN → HUMAN | THING | ANIMAL | FOOD

OBJ ANIM → HUMAN | ANIMAL
HUMAN → mummy | daddy | Samko | Helen | Mia | grandma | grandpa
THING → ball | book | balloon | toy | doll | block | crayon | pen

ANIMAL → dog | kitty | duck | bunny | rabbit | cow | pig | bug | puppy |
bee | monkey | teddy bear | Winnie the Pooh

FOOD → cookie | banana | apple | cheese | cracker | ice cream | bread |
pizza | french fries

Mummy eats carrot. Mia loves ice cream. Helen tickles Winnie the Pooh. Grandpa gives
grandma a hug. Daddy kisses teddy bear good bye.

bear, ice cream, french fries and give me five. It also contains single words give, hug, kiss,
good, bye that we used in discontinuous idioms. We also added the word rabbit and the
idiom Winnie the Pooh, which will feature as synonyms of bunny and teddy bear in Study
2, when we introduce semantics to the model.

Training. As a training set for the next-word prediction task, we used a symbolic se-
quence consisting of 500 randomly selected sentences presented word by word and separated
by SB. The target vector at each time step was the next symbol in the sequence. We used
a simple back-propagation training algorithm (Rumelhart, Hinton, & Williams, 1986) with
entropy cost function, learning rate 0.1 and no momentum (for technical details see e.g.
Cernansky, 2007). After each training epoch (i.e., one sweep through the training set), we
evaluated the predictive performance of the network on a test set of 1,000 previously unseen
sentences from the language using a normalized negative log-likelihood (NNL) function (see
Appendix). The NNL is a measure of average surprise in prediction: 0 means no surprise i.e.
100% correct prediction, 1 corresponds to random guessing. We also separately evaluated
the SRN’s ability to spontaneously generate syntactically correct sentences (1,000 sentences
were generated after each training epoch).
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Results

Results of training for next-word prediction can be seen in Figure 4a. As the task
is non-deterministic (multiple grammatically correct continuations of a sentence fragment
are possible), a certain degree of error is inevitable (Elman, 1990). That is why the NNL
for the test set does not tend to converge to zero. Even if the network successfully learns
transition probabilities from the training set, the best it can do without semantics is to
predict categories, not particular words (Cernansky, Makula, & Benuskova, 2007). Figure 5
shows this behaviour during sentence generation.

Without semantic input, the sentence generation is a product of the network’s ‘au-
tonomous’ regime, when a 1-hot coded word selected from the output is fed back to the
input at the next time step. The variability in produced sentences is due to stochastic
selection of the winning output word – if the selection was deterministic (i.e. winner-takes-
all), the network would soon end up repeating the same subsequence. Figure 4b charts the
syntactic performance of the network in sentence generation mode. We can see that the
network was able to achieve almost perfect performance within just a few training epochs,
not just for syntactically regular sentences, but for sentences containing idioms too. We
took a closer look at sentence generation after 30 training epochs. Out of 1000 generated
sentences, 99.9% were syntactically correct, with Standard Deviation 0.1%. The sentences
contained on average 57 idioms8 (SD=18.7), out of which 99.5% were syntactically correct
(SD=1%). Here are examples of the generated sentences (asterisks denote syntactically
incorrect sentences):

‘. . .Samko gives rabbit a hug. Grandpa gives daddy five. Mia kisses mummy
good bye. Daddy sees Winnie the Pooh. Helen bites french fries. *Mummy
loves Winnie the Pooh five. *Grandma gives Winnie the Pooh . . . . ’

Some of the mistakes were due to stochastic selection, when the most active neuron
encoded a grammatically correct sentence continuation, but a different word was actually
selected, others were genuine results of the network’s internal organization. Nevertheless,
we can conclude that a SRN can be trained to produce a mixture of syntactically well-
formed regular and idiomatic transitive sentences, including variable-length phrases and
discontinuous idioms, without any dedicated mechanism specially designed for idioms. As
far as we are aware, this is a novel result.

Study 2: Production of syntactically well-formed and semantically
correct sentences containing idioms

Although novel, the results about idioms from the previous section follow fairly
straightforwardly from Elman’s results (e.g. Elman, 1990, 1991). Syntactically, idioms
are surface patterns, and it is well known that SRNs can learn such patterns. In this sec-
tion, we consider the more contentious issue of how to add semantics to a SRN, to model
the process of sentence generation rather than just knowledge of syntax.

8The sentences in training set contained on average 85.6 idioms (SD = 3.1), which is about 3 times more
(when normalized by a sample size). However, without semantics, we had no means to influence the number
of generated idioms during spontaneous production.
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Figure 4. (a) Normalized negative log-likelihood for the next-word prediction task for SRN with
syntactic input only. (b) Production performance of the network without semantics. Results are
averaged over 5 model subjects (note that both graphs also show standard deviations, which are
very small).
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Figure 5. Activities on the output layer during a spontaneous sentence generation after 30 training
epochs. Graphs show distribution of probabilities at the SRN output layer for each word from the
dictionary with which is to follow the unfinished sentences in the graph title. We can see that the
SRN is able to correctly predict the category.

Methods

A model of language production would be utterly implausible if it could only generate
random sentences in autonomous regime. That is why we need to enhance our model in a
way that it will produce a sentence which expresses a given meaning.

There are several ways in which semantics can be delivered to the input of language
production device. Although we believe that it is ultimately necessary to deliver concepts
that constitute the meaning of a sentence as a sequence (Knott, 2010), for methodological
reasons we start with a much simpler representation, where ‘static’ semantic representations
are presented to the production network.

Language and meanings. We used an artificial language with the same syntax as in
Study 1. However, in the second study we added meanings to sentences of the artificial
language. For simplicity, we represented the semantics of each transitive sentence by a
theta-role frame with three roles AGENT, ACTION, PATIENT (abbreviated as AG, ACT,
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Table 3: Synonyms present in our language.

Meaning Expression 1 Expression 2

PAT: BUNNY rabbit bunny
PAT: TEDDYBEAR teddy bear Winnie the Pooh
ACT: HUG gives NP a hug hugs NP

PAT in the following examples). Each role was bound to a symbolic token representing a
particular meaning, for example the token DADDY represented the meaning of the word
daddy as in daddy bites bread represented by AG: DADDY, ACT: BITE, PAT: BREAD.9

The tokens were meant as crude abstractions of the large neural assemblies active
when we entertain a particular meaning, which for concrete objects and actions are dis-
tributed over inferotemporal, motor and prefrontal cortices. While it is clear that these
representations are distributed in nature, there is nonetheless some element of locality to
them. For instance, animate objects and tools appear to be represented more strongly in
different areas of inferotemporal cortex (Damasio, Grabowski, Tranel, Hichwa, & Damasio,
1996; Lu et al., 2002), while actions involving different body parts are preferentially repre-
sented in differerent areas of motor and premotor cortex (Hauk, Johnsrude, & Pulvermüller,
2004). Our localist scheme, while obviously just an approximation, can be seen as modelling
the coarse-grained localism identified by experiments like these.

Single concepts were always represented by single tokens even if they were expressed
by multi-word phrases, for example ICECREAM for ice cream (this follows from our initial
working characterization of idioms that that they can be substituted by a single word).
Meaning of a discontinuous idiom was represented by a single token bound to the ACTION
role, for example ACT: FAREWELL for kisses NP good bye or ACT: HUG for gives NP a
hug (meaning of the NP was represented by another token bound to the PATIENT role).

The language also contained several synonyms, i.e. multiple ways to express the same
meaning (see Table 3).

Neural model. In our second study, we extended the network from Study 1 so that
it receives inputs from semantic representations, as well as just producing syntactic struc-
tures. In sentence generation mode, a meaning to be expressed was presented in a new
‘semantic input’ layer, which was connected to the SRN’s hidden layer (see Figure 6). This
layer delivered the same tonically active input at each time step of the SRN’s subsequent
operation, until the network predicted another SB or an arbitrarily defined sentence-length
limit was reached. At this point, a new semantic input was specified, and a new cycle
started. The architecture of the network is basically the same as that of Chang’s (2002)
‘prod-SRN’ network. Our interest is in whether this network can learn to produce idioms.

In relation to brain areas, the semantic layer with its connections to the hidden
layer embodies the idea of a content preparing pathway (Figure 1, top pathway). We
envisage that semantic representations of objects and actions are evoked in a range of
neural areas. Objects are represented in working memory in anterior Broca’s area (left
BA45) and adjacent prefrontal areas BA46-47 (see Ungerleider, Courtney, & Haxby, 1998;

9We will distinguish concepts and words by capitalization and font: concepts
will always be written in all CAPITAL letters, words in (usually) small letters and italic.
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Table 4: Part of the training sequence for the next word prediction with semantics.

Time step Semantic input Current word Target

1 AG: DADDY, ACT: SEE, PAT: TEDDYBEAR SB daddy
2 AG: DADDY, ACT: SEE, PAT: TEDDYBEAR daddy sees
3 AG: DADDY, ACT: SEE, PAT: TEDDYBEAR sees teddy
4 AG: DADDY, ACT: SEE, PAT: TEDDYBEAR teddy bear
5 AG: DADDY, ACT: SEE, PAT: TEDDYBEAR bear SB
6 AG: GRANDMA, ACT: HUG, PAT: MIA SB grandma
etc. . .

Wagner, Maril, Bjork, & Schachter, 2001), as well as in inferotemporal cortex (Damasio
et al., 1996), while actions are represented in left dorsolateral prefrontal cortex (Perani et
al., 1999; Tranel, Adolphs, Damasio, & Damasio, 2001) as well as in motor and premotor
cortex (Pulvermüller, Shtyrov, & Ilmoniemi, 2005). We assume that the circuits which map
these representations onto phonological words involve parts of Wernicke’s area, but other
areas of temporal cortex (see e.g. Damasio et al., 1996; Lu et al., 2002), and connect to
the syntactic network via links from Wernicke’s area back to Broca’s area (perhaps through
the direct phonological route through Geschwind’s territory proposed by Hickok & Poeppel,
2007).10

Recall that we represented concepts by symbolic tokens, and a sentence-sized proposi-
tion as a theta role frame with concepts bound to the roles AGENT, ACTION, PATIENT.
These roles were coded using binding-by-space (McClelland & Kawamoto, 1986; Chang,
2002), where each role had its own field of units with a dedicated unit for each concept
admissible in that particular role (as shown in Figure 6). Hence for example, there was
a unit for a concept DADDY in the agent role, and a separate unit for DADDY in the
patient role. This method of specifying propositions was criticized by Chang (2002) for its
poor generalization ability: identical concepts in different roles are completely unrelated
and cross-role generalization is impossible. We are aware of this issue and we return to
it in the final discussion. There were 53 semantics units altogether (7 for AGENT, 11 for
ACTION, and 35 for PATIENT role) and we increased the size of the hidden layer to 100
units.

Training. Training was similar to that in the previous study. Again, we had 5 different
‘model subjects’ with 500 sentences from the artificial language in their training sets and
1000 (different) sentences in the test sets. However, encoding of the sentences into a training
sequence was now different because the sentences were accompanied by their meanings (see
Table 4). The network input was encoded by a concatenated vector of 1-hot encodings of
agent, action, patient, and current word (together 111 binary digits, out of which exactly
four were equal to 1). A 1-hot-coded next-word binary target vector had 53 binary digits.
We used the back-propagation training algorithm with the same parameters as in Study 1.

In order to evaluate production performance, meanings of the 1,000 test sentences

10In our SRN model, semantic representations connect with the hidden layer of the SRN rather than with
phonological representations directly. But it is quite consistent with the above localisations to think of the
hidden layer as carrying a mixture of phonological and syntactic information.
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Figure 6. The SRN architecture enhanced with a semantic input. In language production mode,
the meaning (e.g. AG:HELEN, PAT:TEDDYBEAR, ACT:KISS) is delivered to the semantic input
and each predicted next word (e.g. Helen, kisses, teddy, bear, SB) is fed back to the input until the
sentence boundary (SB) is predicted. Then a new sentence meaning is delivered in semantic input.

(together with SB) were presented to the network with frozen weights one by one after each
training epoch. In each time step, the word to produce was again chosen stochastically
and then fed back to the current word input. Sentence meaning stays unchanged until the
network predicts SB, when the next sentence meaning is delivered to the semantic input
(SB is forced if not predicted within 20 steps).

Results

Results of training for next-word prediction can be seen in Figure 7a. With the help
of semantic information, the network learned to predict a specific word, not just a category.
However, the task was not completely deterministic even now, due to possible synonyms
(e.g. a concept PAT: BUNNY could be expressed as rabbit or bunny). Nevertheless, the
NNL tended to get reasonably close to zero even on the test set.

In this network, sentence generation was no longer ‘autonomous’, but driven by the
message on semantic input. A generated sentence was considered correct, if it was correct
syntactically (i.e., it belonged to the language) and semantically (i.e., concepts in all three
roles of the given message were expressed by appropriate words/phrases in appropriate
syntactic positions). For some meanings, multiple correct sentences were possible due to
synonymy. As we can see in Figure 7b, the network quite quickly achieved a high level
of production performance. The stochasticity did not create so much variation as in the
no-semantics case, as there is usually a clear winner on the output layer (see Figure 8) now.

Out of 1,000 sentences generated after 50 training epochs, 96.7% were correct



GENERATION OF IDIOMS IN A SRN 17

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50

N
N

L

training epoch

(a)

train set
test set

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

%
 c

or
re

ct
ly

 g
en

. s
en

te
nc

es

training epoch

(b)

Figure 7. (a) Normalized negative log-likelihood for the next-word prediction task in the network
with semantics. (b) Semantics-driven production performance. Results are averaged over 5 model
subjects (note that both graphs also show standard deviations, which are very small).
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Figure 8. Activities on the output layer during a sentence generation for a sentence meaning
AG:GRANDMA, ACT:KISS, PAT:PUPPY after 50 training epochs. Graphs show distribution of
probabilities at the SRN output layer for each word from the dictionary with which is to follow the
unfinished sentences in the graph title. The semantic input helps the SRN predict a specific word,
not just a category (compare Figure 5).

(SD=0.4). The generated sentences contained on average 206.4 idioms11 (SD=11.6), out
of which 93.7% were correct (SD=1.7). Here are examples of sentences produced for given
messages:

AG: GRANDPA, ACT: BITE, PAT: CRAYON → Grandpa bites crayon.
AG: HELEN, ACT: HUG, PAT: BEAR → Helen gives Winnie the Pooh a hug.
AG: GRANDMA, ACT: FAREWELL, PAT: RABBIT → Grandma kisses rabbit
good bye.
AG: GRANDMA, ACT: HUG, PAT: BEAR→ *Grandma hugs Winnie the Pooh
a hug.

Discussion

The SRN has mastered its task of learning to produce semantically correct and syn-
tactically well-formed regular and idiomatic sentences to express given meanings. This task

11For comparison, the test set based on the same meanings that were used for generation contained on
average 205.6 idioms (SD=8.7).



GENERATION OF IDIOMS IN A SRN 19

can be analysed as having several different components. The task of ‘completing a con-
tinuous idiom’ can be seen as a purely syntactic one. Once we have started generating an
idiom for a given meaning, subsequent words neither add any new semantic content to the
idiom’s whole meaning, nor require additional semantic information, so a regular Elman
network with no semantic input should be able to accomplish this task comfortably. The
task of predicting words in a regular transitive sentence requires a semantic input in each
step to disambiguate next-word prediction. At each time step, the updating context units
select words which are syntactically appropriate in the current context, while the semantic
input units provide a tonic bias towards words which are semantically appropriate. The
task of generating a discontinuous VP idiom appears the most difficult: the network must
start generating a VP idiom, then put this process ‘on hold’ while generating an intervening
NP, before finally resuming the ‘syntactic’ task of idiom completion. (Note that generating
the intervening NP itself requires a mixture of semantic and context information—and may
even contain a nested idiomatic structure of its own.) However, these apparently hetero-
geneous tasks are all accomplished within a single SRN architecture, by a single sentence
production mechanism.

Our architecture seems suitable for capturing the constructivist idea that there is
no clear boundary between syntactically productive constructions and idiomatic ones, but
rather a continuum of gradations between these two extremes. However, in order to assess
this hypothesis in more detail, it is important to gain deeper understanding of what is
happening ‘inside’ the network: how exactly the internal organization of distributed repre-
sentations on the hidden layer contributes to the overt behaviour. We deal with this issue
in the next section.

Hidden space organization

Methods

The hidden space of an Elman network is a N -dimensional space, where N is the
number of neurons in the hidden layer. Each state – a particular configuration of activities
of the hidden-layer neurons is a point in this space and a temporal sequence of states can
be thought of as a trajectory in the hidden space (Elman, 1991). Because of its recurrent
connections, the hidden layer has a special function of encoding previous history in the
dynamic of the network. The actual configuration of the activities reflects not only the
current and immediately previous state, but the whole of its history. Even an untrained
SRN has a property called architectural bias in that points representing temporal sequences
with a common history are close to each other in the hidden space (Cernansky et al., 2007).
However, while the representation of history is theoretically unlimited, in practice it is
limited by the numerical precision with which neuron activities are represented, and thus
fades away with time.

If the activation functions of the output layer are linear (as is the case of our model),
each output neuron computes a scalar product of its weight vector with the hidden layer ac-
tivity configuration, hence effectively responds to those configurations that are most similar
(have the least angle) with its weight vector. If each output neuron represents one of the
possible next words in the dictionary, it is desirable that the sequences (partial sentences)
that can be completed with a particular word be represented by similar hidden layer config-
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urations. The difference between an untrained and a trained SRN is that, during training,
the hidden space reorganizes so that categories of sequences that should yield a similar
outputs are clustered together (Cernansky et al., 2007).

For this reason, it is very instructive to study what internal representations the SRN
has developed to solve a particular problem. Elman (1991) even argues that hidden layer
activities in a trained SRN can serve as distributed representations of words that reflect
all their characteristic syntactic and semantic properties without the necessity of encoding
these properties manually and explicitly. In this section, we describe our findings about the
hidden space organization in the models without (Study 1) and with (Study 2) semantic
input.

A useful way of studying the nature of internal representation consists in hierarchical
clustering of hidden layer activities, which can be visualised by dendrograms that organize
the closest clusters in a tree-like structure (e.g. Elman, 1990). After training, the SRN’s
weights are frozen, the complete training set is swept through the network word by word
again, and the hidden layer activity patterns are recorded. As each word appears many
times in the training sequence (in different contexts), the patterns are grouped by words
and all activity patterns for a particular word are averaged to obtain 57 centroids of regions
of activities elicited by the 57 words in the dictionary. Dendrograms show the hierarchical
clustering of these 57 vectors.

Results

Figure 9 shows the dendrogram for the network without a semantic input (Study 1).
We can see that all objects group together, as well as all people,12 verbs, and idioms without
their first words. The first words of idioms are not clustered with other parts of idioms;
the effect of previous context keeps them close to their respective categories of verbs and
objects, nevertheless they are separate, because they set off a special idiomatic trajectory.
Interestingly, within the cluster for idioms, we can observe subclusters corresponding to
words occurring in particular ordinal positions, regardless of the idiom type. For instance,
there is a cluster of words which occur as the second word of a two-word idiom – the second
words of the NP idioms teddy bear, ice cream, french fries cluster together with the second
word of the discontinuous VP idiom give five. Also, there is a cluster of words which occur as
the third words of a three-word idiom – the word Pooh, which is part of the continuous NP
idiom Winnie the Pooh, groups with words hug and bye, which are parts of discontinuous
VP idioms give a hug and kiss good bye. The second words of the three-word idioms (the,
a, and good) belong to the large cluster of idioms too, but their representations are rather
distant from each other, because they set off separate idiomatic trajectories. This suggests
that the SRN has internally developed something like a counter that keeps track of the
position within an idiomatic phrase.

Traces of a counter-like structure can also be seen in the dendrogram for the model
with semantics (Study 2, Figure 10), but some clusters are now different because of a strong
influence of semantic information. While the basic categories of people, objects, verbs, and
idioms are retained, idioms group internally more by meaning now, i.e. the, Pooh and bear

12We use the term ‘people’ rather than ‘subjects’, because people can appear also in the object role (while
no member of the category named ‘objects’ cannot appear in the subject role).



GENERATION OF IDIOMS IN A SRN 21

Figure 9. Dendrogram of average activity patterns for each input word in the network without
a semantic input (Study 1). Clusters corresponding to categories of people, verbs, objects and
idiomatic phrases are visible. Category of idioms further subclusters according to position of a word
within an idiom (regardless of the idiom type).

form a cluster, as well as good and bye, or teddy and Winnie. Note also that synonyms
rabbit and bunny are together, as well as verbs hugs and give (being part of give a hug).

While dendrograms schematically depict clustering relations between centroids of
actual activation patterns for words in their contexts, it would be useful to analyse the
actual activation patterns themselves. For this purpose, we use 2-dimensional projections
of the hidden space based on Principal Component Analysis (PCA). PCA is a method for
finding directions of maximal variance in the data (principal components) and projecting the
original data vectors to the space defined by these components (Haykin, 2008). Components
are usually ordered by their magnitude (importance), the first component being the most
important. As data vectors for obtaining principal components, we use the same hidden
layer activation patterns that we used for the dendrograms just discussed (but now without
averaging by words). After acquiring principal components, we can visualize patterns for
particular sentences, categories or other items of interest in 2D spaces (planes) defined by
selected principal components. As the same set of patterns can appear differently in different
planes, we can even speculate about the interpretation of particular principal components.
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Figure 10. Dendrogram of average activity patterns for each input word in the network with a
semantic input (Study 2). Clustering by syntactic role is now influenced by meaning (synonyms are
clustered together).

We focus on the results obtained for activation patterns in Study 2, i.e. the model
with semantic input. Figure 11 shows all activation patterns in the plane of the first two
principal components, color/texture coded by categories defined by structural position of
words that elicited them in the sentence (i.e., all SBs have the same color/texture, as
well as all subjects, verbs, 1st, 2nd and 3rd words of object, and 2nd and 3rd words of
discontinuous idioms). We can see that they cluster nicely, which implies that the first
two principal components reflect structural information. If we viewed the same structural
categories in e.g. planes of 5-8 principal components (not displayed here), we could not
observe any clusters and all color codes would be intermingled. This is because these com-
ponents mostly reflect semantic information as can be seen on Figure 12. Now the same
color/texture code is used for all the words of sentences with the same meaning, e.g. activity
patterns elicited by words SB, grandpa, eats, apple while expressing the sentence meaning
AG:GRANDPA, ACT:EAT, PAT:APPLE share the same code. Note that the sentence
meaning AG:MUMMY, ACT:HUG, PAT:RABBIT can be expressed by synonymous sen-
tences Mummy hugs rabbit, Mummy hugs bunny, Mummy gives rabbit a hug and Mummy
gives bunny a hug, so the patterns elicited by all these words while expressing this particular
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meaning13 share the same code too. Although the words appear in different structural po-
sitions within their sentences and some of them are parts of idioms while others are not, we
can see that their activities cluster quite nicely in the plane of 5-6th principal components.

Discussion

The dendrograms and principal component analyses just discussed lead us to the hy-
pothesis that different subspaces of the hidden space encode different types of information
during sentence generation. Sentences with similar structures will follow similar trajecto-
ries when projected to a subspace of components that encode mostly structural information;
sentences with similar semantics (i.e. sharing some semantic roles) will have similar trajec-
tories when projected to components that encode semantic information. Remember that a
role of each output neuron that represents a particular next word is to compare the angle
of its weight vector with the hidden-layer activity pattern vector. The activity pattern

13The same words can also participate in expressing different meanings; the activation patterns of these
were excluded from consideration.
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vector is equal to a linear combination of its principal components (with earlier principal
components having the most influence); which means that syntactic and semantic aspects
jointly contribute to the decision. As we will show in the next section, representation of
semantic and structural aspects can be selectively damaged by lesioning different parts of
the network.

Lesioning the network

Impairing neural networks, whether by adding excessive noise, zeroing or decreasing
connection weights, has been widely used in many connectionist models in order to show
graceful degradation of performance, to fit empirical data or to show double dissociations.
In this section, we consider the effects of separately lesioning the ‘semantic’ and ‘recurrent’
inputs of our network. The basic idea of reproducing symptoms of Broca’s and Wernicke’s
aphasia by selective lesions of this sort is common currency in neural network models.
However, to our knowledge, no-one has examined in detail the effects of such lesions in a
simple network like ours.14 We first demonstrate that we can indeed produce Broca- and

14Chang (2002) discusses the effect of selective lesions in a more complex network, but not in the simple
‘prod-SRN’ model.
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Wernicke-like symptoms by selective lesions in our simple network. However, our main focus
is on seeking to explain how these symptoms result from changes in the organisation of the
network’s hidden space, drawing on the hidden space analysis given earlier in the paper. In
addition, we want to investigate the network’s ability to generate idioms in the presence of
selective lesions. It turns out that different lesions have different effects on the network’s
performance on idioms, creating some testable predictions for our account of idioms.

Methods

We only performed lesion studies with the SRN with semantic input (Study 2). As
motivated in the section describing the architecture of this model, we will denote the con-
nections from the semantic input to the hidden layer as semantic connections and those
from current word and context units to the hidden layer as syntactic connections. As de-
tailed in the next sections, our basic result is that lesioning syntactic connections leads to
selective syntactic deficits, while lesioning semantic connections leads to selective semantic
deficits.

We took the network connections after 50 epochs of training and selectively lesioned
(zeroed) a certain ratio of (randomly chosen) semantic or syntactic connections. Then we
froze the weights and measured the sentence generation performance on the same set of
meanings that were used for the unlesioned network. For each ratio of lesions, we repeated
lesioning 5 times, one for each model subject, each time doing an independent random
selection. All the results were averaged over all 5 model subjects thereafter.

To be able to better assess the degree of performance deterioration, we needed to
evaluate semantic and syntactic correctness separately and adopt finer measures. A sen-
tence produced for some meaning (delivered on semantic input) was considered syntactically
correct, if it belonged to the language defined by the rules in Figure 2 (regardless of the
relevance to the meaning that had to be expressed). As a degree of semantic relevance,
we used the relative proportion of input semantic roles that could be traced among words
in the sentence (regardless of their order, completeness or grammatical correctness). For
example, in the phrase ‘ice ice daddy ice eats ice’ produced for the meaning AG: DADDY,
ACT: EAT, PAT: ICECREAM we could trace attempts to express concepts in all the three
roles (sem. relevance 1), while in ‘Daddy eats pizza.’ produced for the same meaning just
two roles were expressed correctly (sem. relevance 0.66).

Results of lesioning syntactic connections

Quantitative results of lesioning different proportions of syntactic connections can be
seen in Figure 13. We can see that the total performance deteriorates with increasing num-
ber of lesioned connections. Syntactic competence follows the total performance – indeed, if
we damage 60% of the connections, the network hardly ever produces a syntactically correct
sentence. However, the semantic relevance is almost 0.6, which means the network is still
able to express on average 2 out of 3 semantic roles. If we completely cut off the current
word and context connections (and the network stops being recurrent at all), the network
still produces a correct word for one of the roles on the semantic input (sem. relevance
around 0.3). As the network is no longer recurrent, it cannot get past the first generated
word (except for quite rare variations caused by stochastic selection) until the sentence
length limit (20 words) is reached and a new meaning is delivered on the semantic input.
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Figure 13. Sentence production in a network with lesioned syntactic connections. Total means the
relative number of syntactically and semantically correct sentences. Semantic relevance means the
average number of relevantly expressed semantic roles per a sentence. All results are also averaged
over the 5 model subjects.

Here are some examples of sentences generated for given meanings by a network with
90% of syntactic connections lost:

AG: SAMKO, ACT: WASH, PAT: BOOK → * Samko.
AG: DADDY, ACT: LOVE, PAT: COW → * Loves cow cow loves loves loves
loves loves cow cow loves loves cow cow loves cow loves loves cow cow (sentence
length limit reached)
AG: SAMKO, ACT: WASH, PAT: FRENCHFRIES → * Samko fries french
french Samko french fries fries french fries french fries fries washes fries french
french fries (sentence length limit reached)

We can see that a SRN with seriously lesioned syntactic connections is unable to
produce syntactically correct sentences. It often repeats just one or two words. The pro-
duced words are semantically appropriate. This roughly corresponds to the clinical picture
of Broca’s aphasia. Broca’s aphasics have difficulties with grammar and syntax; the rules
of grammar and word order are impaired, especially in longer utterances (Tanner, 2008).
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The speech is non-fluent, agrammatic and often telegraphic (Alexander, 2005).15 According
to Kolk (2006), these symptoms are partly the result of corrective adaptation to problems
with temporal coordination of syntactic elements, e.g. nonfluency and repetitions could
correspond to a covert restart of the sentence production process.

Results of lesioning semantic connections

Figure 14 shows the results of lesioning semantic connections, i.e. those from the
semantic input to the hidden layer. Again, the total performance deteriorates with in-
creasing number of lesioned connections, but now the picture is different from the previous
case. The network maintains high degree of syntactic correctness,16 while at the same time
the sentences become less and less semantically relevant to the meanings that should be
expressed. We can see it clearly from the following examples of generated sentences (the
network had 90% of semantic connections lost). A hash (#) denotes semantically incorrect
sentences (i.e, with semantic relevance less than 1).

AG: SAMKO, ACT: LOVE, PAT: BEAR → # Mia loves cow.
AG: MUMMY, ACT: EAT, PAT: APPLE → # Mummy kisses puppy.
AG: MIA, ACT: LOVE, PAT: PEN → #* Mummy bites Winnie.
AG: MUMMY, ACT: HUG, PAT: DUCK → #* Samko gives Helen.

We can conclude that a SRN with seriously lesioned semantic connections produces
mostly syntactically correct, but semantically inadequate sentences. This roughly corre-
sponds to the clinical picture of Wernicke’s aphasia. The speech of Wernicke’s aphasics is
usually fluent and to a large extend grammatical; but content may be extremely parapha-
sic17 or even empty (Alexander, 2005).

The performance results of simulations with lesioned networks confirmed that syn-
tactic and semantic competences are related to connections in parts of the network that we
denoted as syntactic and semantic, and can to a large extent be selectively damaged. In the
following section, we will try to look for the evidence of decomposition of representation in
the hidden layer.

Hidden space organization in lesioned networks

In the section on hidden space organization in the unlesioned network, we showed that
syntactic and semantic information is visible in different principal components of the space
of hidden layer neuron activations. Recall that Figure 11 shows clustering of syntactic
categories in PCA1-2 and Figure 12 shows clustering of semantic categories in PCA5-6
subspace. By way of comparison, Figures 15 and 16 show activation patterns for exactly
the same stimuli and with the same color/texture coding, but for the network obtained
from the original one by lesioning 100% of syntactic/semantic connections respectively.

As we can see, clustering of syntactic categories is well preserved if we lesion semantic
connections (Fig. 15a). The loss of semantic information causes that the clusters for SB and

15Our model is not detailed enough to account for other symptoms of Broca’s aphasia such as omission of
function words, morphological and phonological errors, differences in noun/verb production etc.

16But see also section on idioms in lesioned network below.
17Again, our model is not detailed enough to reproduce particular symptoms, such as semantic paraphasias

(substitutions of semantically related words).
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Figure 14. Sentence production in a network with lesioned semantic connections.

SUBJ are now divided into smaller subclusters that represent the influence of the previous
sentence (this influence would be eliminated in unlesioned network by arrival of a new
meaning on the semantic input). The clusters are now smaller in size, but they generally
remain in areas within the original clusters of the unlesioned network (compare Figure 11)18

(when projected to principal components that encode mostly syntactic information). If, on
the other hand, we lesion syntactic connections, clusters of syntactic categories collapse and
are intermingled (Fig. 15b).

Now we consider the effects of lesions to hidden space organization along principal
components that mostly encode semantic information. If we lesion semantic connections,
clustering of semantic categories is destroyed (Fig. 16). If we lesion 100% syntactic connec-
tions, original clusters reduce to points for the first produced word (as without a context
signal, the SRN cannot get past producing the first word of a sentence). However, these
1-point activation patterns across synonymous sentences that express the same meaning
(e.g. Mummy hugs rabbit, mummy hugs bunny) are highly consistent.

Taken together, these results suggest that the SRN has developed largely independent
representations of syntactic and semantic knowledge in its hidden space, which can be
selectively damaged by lesioning connections in the respective parts of the network.

18However, the shift to subareas of original clusters affects production of idioms; we will discuss this
problem later.
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Figure 15. Activity patterns of words in the training sequence color/texture-coded by syntactic
roles in the network with 100% semantic (a) and syntactic (b) connections lost shown in the PCA1-2
plane. Clusters are preserved in the former case and destroyed in the latter (compare Figure 11).
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Idioms in lesioned networks

As the syntax and structural flexibility of idioms is to a large degree arbitrary, it is
often conjectured that syntactic constraints of particular idioms are stored as a dictionary-
like entries, i.e. in a lexically specific way (Jackendoff, 1997; Sprenger et al., 2006). On the
other hand, based mostly on experiments with structural priming, others (Konopka & Bock,
2009) maintain that even in the case of idioms more general abstract syntactic mechanisms
guide their production. Brain-imaging studies that we reviewed above suggest that areas
related to conceptually driven lexical (lemma) selection are left mid MTG and left posterior
STG. These areas are often damaged in Wernicke’s aphasics, who make semantic errors
(Alexander, 2005). More general sentence-level syntactic encoding is related to the posterior
part of Broca’s area (BA 44), which is often damaged in Broca’s aphasics (Alexander,
2005). We are unaware of quantitative data on the production of idioms in aphasics;19

19
Some Broca’s aphasics are good at producing overlearned phrases and automatisms (Tanner, 2008).

However, the data are not detailed enough to tell whether these phrases contained idioms too. A patient
with damaged Broca’s area and preserved ability to produce idioms would present a challenge to our claim
that, besides lexically-specific information, general sentence structure building (sequencing) mechanisms are
necessary for idiom production.
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Figure 17. Percentage of syntactically well-formed sentences with and without idioms generated
by the network with lesioned syntactic connections.

however, our model of idiom production can make some predictions. If the production
of idioms depends on general as well as lexically-specific mechanisms (the claim which is
embodied in our model, and which follows from Sprenger et al., 2006), we would predict
that production of both idioms and non-idioms would be impaired in Broca’s aphasics,
while in Wernicke’s aphasics, production of non-idiomatic sentences would be better than
that of idioms (i.e., if a lexically-specific mechanism is involved in constructing the syntax
of idioms, then Wernicke’s patients should have more problems with producing idiomatic
than non-idiomatic sentences).

To test this prediction ‘in silico’, we reviewed our lesioning experiments, now evaluat-
ing the syntactic performance of lesioned networks separately for sentences that contained
idioms and for completely productive sentences.

First, we focused on the model with lesioned syntactic connections, which showed
performance symptomatic of Broca’s aphasia. Figure 17 shows the percentage of syntac-
tically well-formed idiomatic and non-idiomatic sentences for different lesion ratios. We
can see that both idiomatic and non-idiomatic sentences show similar trends of decrease
in performance with the degree of impairment, and that, for sufficiently large damage of
syntactic connections, production of both idiomatic and non-idiomatic sentences is severely
impaired. This is in line with our prediction.
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Figure 18. Percentage of syntactically well-formed sentences with and without idioms generated
by the network with lesioned semantic connections.

Figure 18 shows the percentage of syntactically well-formed idiomatic and non-
idiomatic sentences for different proportion of damaged semantic connections (as in the
previous case, we only evaluated syntactic well-formedness, and ignored semantic relevance
of produced sentences to the meaning to be expressed). Now the picture is very different:
while syntax of non-idiomatic sentences is maintained almost perfect regardless of the lesion
degree, syntax of idioms deteriorates proportionally to the ratio of damaged connections.
Again, this is in line with our prediction that if we damage semantic connections, syntax of
non-idiomatic sentences will be preserved, while production of idioms will be impaired.

To see in detail why idioms are impaired, we analyze what kind of errors were in
idiomatic sentences. Almost all of them were ‘regularization’ errors, in which the sentence
followed SUBJ VERB OBJ pattern with 1-word only in each syntactic role, i.e. idioms were
reduced to their first word. For instance, Mummy sees Winnie was generated instead of
Mummy sees Winnie the Pooh, and Daddy gives Helen was generated instead of Daddy gives
Helen five. To find the cause of these errors, we compared hidden space activation patterns
for the representation of 1-word objects and the first word of multi-word NP phrases in the
object role, as well as representation of regular verbs and first words of discontinuous VP
idioms, in the normal and lesioned networks. Apart from semantic differences, these acti-
vation patterns differed along principal components encoding syntactic properties (roughly
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PCA 1-4) in the unlesioned network (Figures 19a and 20a). In the lesioned network, the
idiomatic and non-idiomatic cluster shrank, collapsed together and occupied a location that
corresponded to non-idioms in the unlesioned network (Figures 19b and 20b). As the se-
mantic differences are missing too, the information about idiomaticity gets lost and the
network makes regularization errors.

Discussion. The fact that we lose idioms if we destroy conceptually specific informa-
tion (mediated through semantic connections in our model) supports the claim that syntax
of idioms is bound to their concepts and stored in the lexicon as a whole in the form of
superlemmas (Sprenger et al., 2006). However, this does not rule out general sequencing
mechanisms; indeed, our SRN uses a single sequencing mechanism based on recurrent con-
nections to the context layer for constructing both idiomatic and non-idiomatic sentences.
Levelt & Meyer (2000), as well as Sprenger et al. (2006) claim that after superlemmas and
lemmas are selected, they undergo standard grammatical and phonological encoding.

On the other hand, our result that syntax of non-idiomatic sentences was preserved
in spite of severity of damage to semantic connections seems contrary to Levelt’s claim that
syntactic privileges for even single words are stored in a lexically specific way as lemmas
(Levelt et al., 1999), and in accord with theories emphasizing more general abstract syntactic
mechanisms (Chang et al., 2006; Konopka & Bock, 2009). However, this result could be
a too-good artifact, because all our regular sentences were transitive sentences of identical
SUBJ VERB OBJ structure, hence semantics of the sentences made no difference.

General discussion

In this article, we tested the constructivist conjecture that language can be acquired
as surface patterns. We specially focused on production of idioms, namely the hypothesis
that idioms form a continuum with other linguistic forms and can be treated within a
general framework of acquisition and production.

Idioms are an ideal testbed for studying the interplay of lexical and syntactic mecha-
nisms in language production. Among students of language production, there has been a lot
of disputes about roles of content preparing and structure building mechanisms, some argu-
ing for separate pathways (Chang, 2002), others for integrated processing (e.g. F. Ferreira,
2000; Sprenger et al., 2006). We explored to what extent the content-structure division
can implicitly develop within a single connectionist network as a result of learning. Our
approach was to gain a deep understanding of the mechanisms and internal organization of
a very simple network (before proceeding to a more elaborate model).

Our main findings follow. In Study 1, we validated for idioms a general result from
Elman (1990)—namely that a simple recurrent network can acquire language as surface
patterns. Our SRN was successfully trained to produce a mixture of syntactically well-
formed regular and idiomatic transitive sentences, including variable-length phrases and
discontinuous idioms, without any dedicated mechanism specially designed for idioms.

In Study 2, we proved the ability of the SRN enhanced with a semantic input layer
to produce syntactically well-formed and semantically correct sentences for given meanings.
The network was able to learn to produce both idioms and regular sentences. Detailed
analysis of the representational space of the network’s hidden layer showed that different
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Figure 19. Activity patterns of non-idiomatic and idiomatic verbs in the unlesioned network (a)
and the network with 100% of semantic connections lost (b). Clusters shrank in the latter case
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subspaces encoded different aspects of the sentence generation process: some encoded struc-
tural information (regardless of content), others encoded content (regardless of structure).
Because a hidden layer activity pattern can be expressed as a linear combination of its
components, syntactic and semantic aspects encoded in different subspaces jointly influence
the generation process.

Our lesion study showed that by lesioning different part of the network, we could
reproduce some symptoms of patients with Broca’s aphasia (grammatical errors, when le-
sioning connections of the basic sequencing SRN) and Wernicke’s aphasia (semantic errors,
when lesioning connections from the semantic input layer to the hidden layer of the sequenc-
ing SRN). Analysis of the hidden layer showed that these lesions indeed had effects in the
corresponding subspaces representing content and structure. Hence, an implicit structure-
content division can arise as a result of internal space reorganization within a single SRN
during learning and the two aspects can be to a large extent damaged selectively without
the necessity of having explicit structural (architectural) division in the model.

This situation is not new in connectionist modeling; for example in the domain of word
reading, dual-route architectures were proposed to account for reading of regular words and
pseudowords20 as well as irregular words. Interestingly enough, there is analogy between this
problem and ours: pronunciation of regular words and of pseudowords must rely on general
phonological rules of a language; pronunciation of irregular words (exceptions) needs to be
learned and remembered as dictionary-like entries (similar to idioms in our model). Dual-
route models (e.g Coltheart & Rastle, 1994; Coltheart, Rastle, Perry, Langdon, & Ziegler,
2001) solved this problem by suggesting a separate sublexical or phonological (grapheme-to-
phoneme) pathway for reading regular words and a lexical pathway (sometimes divided to
semantic and non-semantic) for reading irregular words. These models were also successful
in simulating different kinds of dyslexias by lesioning respective pathways. On the other
hand, models declaring themselves to be instances of Parallel Distributed Processing (PDP)
approach challenged the established dual-route models by showing how different patterns of
reading and different dyslexias could be accounted for within a single connectionist network
with no explicit structural division between lexical and sublexical routes (Seidenberg &
McClelland, 1989; Plaut, McClelland, Seidenberg, & Patterson, 1996). Similarly, Gordon
& Dell (2002) published a simple feedforward connectionist model accounting for deficits in
light and heavy verb production. Although the model was structurally uniform, it could be
selectively lesioned in a way that produced syntactic and semantic aphasic symptoms. All
these models demonstrate that a ‘division of labour’ can develop implicitly in a distributed
representational space as a result of learning.

Our lesion study also contributes to the discussion between those who emphasize
lexically-specific processes in generation of idiom syntax (e.g. Sprenger et al., 2006) and
those who argue for abstract structure generating mechanisms (Konopka & Bock, 2009).
When we lesioned connections related to general structure building (as shown by analysis of
the unlesioned network), the syntax in produced idioms and regular phrases was impaired to
the same degree. When we lesioned connections related to providing content, the syntax of
regular sentences was almost intact, while idioms were erroneously regularized. This result
is in line with the Superlemma approach of Sprenger et al. (2006) in that, in our model:

20Pseudowords are strings of characters that obey phonological rules of a language, but are not words of
that language.
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(1) idioms are produced by the same general sequencing mechanism that works for regular
sentences; (2) the production of idioms is modulated by content-specific mechanisms. This
generates interesting predictions that could be tested empirically: finding a Broca’s aphasics
with agrammatic symptoms who could produce idioms correctly would be a challenge to
our claim 1; finding a Wernicke’s aphasics with lexical/anomic deficits who could produce
idioms correctly would be a challenge to our claim 2.

Limitations

Our model was not intended as either a complete or a detailed account of language
production and is oversimplistic in many ways. First of all, use of localistic representation
on semantic input layer implies that all concepts are equally distant/similar to each other;
therefore it prevents from accounting for semantic effects, such as semantic paraphasias21.
Also, since we abstracted away from a model of phonological encoding and articulation,
we cannot account for phonological errors typical in some aphasics. We also deliberately
abstracted from morphology issue: our language only contained verbs in one morphological
form (3rd person, singular, present tense) that could easily be acquired as a surface pattern.
Also, because our language almost exclusively contained content words (e.g. determiners
only occurred as part of idiomatic phrases), we could not replicate differences in production
of function versus content words typical in many Broca’s aphasics. We also did not intend to
account for any kind of priming (structural or semantic) typically tested in psycholinguistic
experiments with idiom production. Needless to say, we abstracted from related issues of
language comprehension, reading and writing.

However the most serious critique applicable to our model is that of Chang (2002),
whose Prod-SRN architecture is very similar to ours – it is a SRN enhanced with a se-
mantic input that uses binding-by-space for 4 roles AGENT, PATIENT, ACTION, GOAL,
with localist coding of concepts in the roles. Chang criticizes the model for poor general-
ization ability and reports that his Prod-SRN achieved just slightly above 10% of correct
sentences on the test set even after 4000 epochs of training. Our prod-SRN-type network
apparently has better generalization performance; it achieves very high accuracy in the
sentence production task, despite the fact that the set of meanings used for testing and
sentence generation had zero overlap with those in the training set. In fact, our network’s
apparently higher performance was probably due in part to the more complex grammatical
constructions used in Chang’s training/testing sentences, and in part due to different ratio
between train set size and the total size of the language (500 : 2200 in our case, vs. 501 :
75330 in his case).

However, Chang’s argument is not just about the empirical performance of a prod-
SRN-type architecture. His most important argument is from an analysis of the ‘binding-
by-space’ scheme which the network uses to represent propositions. If different semantic
roles are represented using separate banks of semantic units, each role is connected to the
hidden layer with its own independent set of connections; hence, training experience with
e.g. DOG in AGENT semantic role has no influence at all on DOG in PATIENT semantic
role. Therefore, the Prod-SRN is not able to generalize a word to a role where it has never
been observed before. We accept this objection. Our network was able to generate new

21Semantic paraphasias are substitutions of words by semantically related words.
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combinations, e.g. generate a correct sentence for AG:MUMMY, ACT:EAT, PAT:BREAD
after being taught to express AG:MUMMY, ACT:EAT, PAT:APPLE and AG:DADDY,
ACT:SEE, PAT:BREAD; however, it could not generate TEDDYBEAR as agent, because
it has never appeared in that role. Currently, we are preparing a new model, where semantics
is not coded by space, but in a temporally structured sequence of activations of a single
bank of units. This way, the same connections are trained during the experiences with same
concept in AGENT and PATIENT roles. In fact, the network presented in the current paper
is a component of this new model, so the analysis in the current paper is an analysis of
some components of the more complex system we envisage.

In the end, we want to put our model in a developmental perspective. According to
constructivist linguists (e.g. Goldberg, 1995; Tomasello, 2003) syntax is learned from sur-
face patterns in the form of ‘item-based’ constructions and later becomes abstract through
accumulated experience. We ultimately intend the model presented in the current paper
to be a model of the item-based stage in language development. The additional mecha-
nisms which are required to model mature sentence generation are the focus for our current
research.
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Appendix

Normalized negative log-likelihood

Normalized negative log-likelihood (NNL) is calculated over the sequence of
symbols (words) from time step t = 1 to T as

NNL = −
1

T

T∑

t=1

logN pi(t), (1)

where the base of the logarithm N is the number of possible symbols (size of the dictionary),
and the pi(t) is the probability of predicting the i-th symbol in the time step t. Value pi(t)
was calculated using soft-max combining function of output neurons activations oj as:

pi(t) =
exp(oi(t))∑N
j=1 exp(oj(t))

. (2)


