
Department of Computer Science,  
University of Otago 

 

 
 

 
Technical Report OUCS-2011-01 

 
 

Mapping sensorimotor sequences to word 
sequences: A connectionist model of 

language acquisition and sentence generation 
 

Authors:  
 

Martin Takac, Lubica Benuskova, Alistair Knott 
Department of Computer Science, University of Otago, New Zealand  

 
 

Status: 
 

Currently under review in Cognition journal. 

 

 

 
 

Department of Computer Science,  
University of Otago, PO Box 56, Dunedin, Otago, New Zealand 

 
http://www.cs.otago.ac.nz/research/techreports.php 



Mapping sensorimotor sequences to word sequences: A
connectionist model of language acquisition and

sentence generation

Martin Takac∗, Lubica Benuskova, Alistair Knott

Dept. of Computer Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand

Abstract

In this article we present a neural network model of sentence generation. The
main technical novelty in the model is in its semantic representations: the ‘mes-
sages’ which form the input to the network are structured as sequences, which
are delivered to the network one at a time. Rather than learning to linearise a
static semantic representation as a sequence of words, our network rehearses a
sequence of semantic signals, and learns to generate words from selected signals.
Our use of sequences to encode semantic representations has several benefits,
both conceptual and technical. Conceptually, the use of rehearsed sequences
of semantic signals connects to work in embodied cognition, which posits that
the structure of semantic representations has its origin in the serial structure
of sensorimotor processing. It also connects to nativist models of language de-
velopment: we argue that some of the linguistic universals proposed within
Chomskyan models of syntax can be interpreted as reflections of sensorimotor
processing. Technically, the use of sequentially structured semantic representa-
tions permits a novel answer to the question of how a neural network can learn
genuinely abstract syntactic rules (a vexed question in connectionist models of
language). Equally importantly, it supports a way of using abstract syntactic
rules in combination with rules about surface patterns in language. In sum-
mary, sequentially structured semantic representations allow a neural network
model which combines elements from nativist, empiricist and embodied theories
of language in a novel way.
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1. Introduction

Connectionist models of language simulate infants acquiring language: they
are exposed to utterances from a particular language, and they learn the pat-
terns in this language. In a connectionist model, mature language is seen as the
product of a learning algorithm, with all the messiness and complexity which
this entails, rather than as a tidy set of high-level rules. While the learning
algorithm itself must be presumed to be innate, connectionist models tend to
be empiricist in spirit, assuming that most linguistic knowledge is knowledge
gained by learning the rich patterns in the exposure language.

There are several controversial questions which must be answered when
building a connectionist model of language. Firstly, what are the patterns in
language which the system must learn? There are many kinds of pattern in lan-
guage. Some patterns are defined in the surface form of utterances. The surface
patterns we will focus on in this paper are patterns of whole words. At their
most concrete, surface word patterns consist of idioms or fixed expressions (e.g.
let the cat out of the bag, Winnie the Pooh), but they can also take the form of
statistical tendencies, of the kind which can be captured by n-gram probabilistic
language models (see e.g. Jelinek & Mercer, 1980; Chen & Goodman, 1998).
In connectionist linguistics, there are well-known architectures which can learn
such probability models. The most familiar of these is the simple recurrent
network (SRN; Elman, 1990): a network which is presented with word se-
quences as training data, and learns to predict the next word in a sequence
using a hidden layer of units containing recurrent connections. Unsurprisingly,
SRNs can learn idioms and fixed expressions as well as probability distributions
conditioned by grammatical rules (see Takac et al., 2010).

Other patterns in language are more abstract. These are the patterns which
have traditionally been modelled as grammatical rules or principles. There is
considerable debate amongst connectionists about how these patterns should be
modelled. An early connectionist claim was that simple recurrent networks de-
signed to learn common surface patterns develop internal representations which
capture abstract patterns in language quite well, at least over short distances
(see e.g. Elman, 1990; Christiansen & Chater, 1999; Cernansky et al., 2007).
This idea has considerable power, but there is now a consensus that some ex-
tension to a simple word-sequencing device is needed to model the discreteness
and productivity of syntactic patterns (see e.g. Marcus, Marcus, 2001; Pul-
vermüller & Asollahi, 2007). The basic problem with simple recurrent networks
by themselves is that they are bad at predicting word sequences which they
have rarely or never seen, even if these conform well to abstract grammatical
rules. In response, many recent connectionist models maintain the idea that
grammatical patterns can be modelled as sequences, but further stipulate that
these sequences can be of abstract units rather than just of words. There are
connectionist models which can learn sequences of semantic roles (Chang, 2002),
of abstract word classes (Pulvermüller, F & Knoblauch, 2009). or multi-word
phrasal units (Dominey et al., 2003, 2006). All of these more elaborate mod-
els require some specialised machinery to supplement simple word-sequencing

2



machinery. To distinguish between these models, several criteria can be used.
The most obvious of these are the criteria linguists use to evaluate declarative
grammars: a model should have good coverage (it should be able to accurately
reproduce some fragment of a natural language) and it should be parsimonious
(minimise the amount of machinery which is stipulated). But there is another
important criterion: ideally the network model of grammar should make con-
tact with a body of grammatical theory. Linguists have sophisticated models of
grammar, many of which have been in development for decades; these should
provide a rich source of information for connectionist implementations. If a net-
work’s representations can be interpreted using terminology from an existing
grammatical paradigm, then the insights gained by linguists working in that
paradigm should help guide further development of the network.

A second controversial question for connectionist modellers concerns how
much information about the patterns in language is present innately. Since
surface patterns involving specific words must unquestionably be learned, this
question only relates to the higher-level ‘grammatical’ patterns in language.
As just mentioned, different connectionist models of grammatical paterns use
different machinery, and so embody different assumptions about innate knowl-
edge. However, the main debate here pits connectionist linguists against nativist
theoretical linguists, mainly those working within the Chomskyan tradition.
Connectionist linguists rely on powerful learning architectures to acquire many
of the patterns in language. By contrast, the Chomskyan model of learning
is rather simple: there is less to learn. Chomskyan models like Government-
and-Binding (Chomsky, 1981) and Minimalism (Chomsky, 1995) propose that a
child’s innately specified ‘language acquisition device’ imposes fairly strict con-
straints on the space of learnable languages, so that learning the syntax of a
particular language amounts to fixing the values of a relatively small number of
parameters. These parameter-based models are attractive, in that they provide
elegant accounts of some of the basic syntactic differences between languages.
However, they give no account at all of the actual mechanism which learns how
to set the values of parameters. Chomskyan theories aim to model knowledge
of syntax at a level which abstracts away from processing issues, but it is hard
to see how a computational model of parameter-setting can be defined except
as part of a model of language processing. In addition, Chomskyan theories
have great difficulty representing surface patterns in language—in particular
the complex ways in which these patterns interact with productive grammatical
patterns. For instance, a complete account of idioms must represent them as
structures containing grammatical elements as well as surface-based patterns
(see Jackendoff, 2002 for some convincing arguments). Recent ‘empiricist’ mod-
els of language (Pollard & Sag, 1994; Goldberg, 1995; Jackendoff, 2002) see this
model of idioms as characteristic of language in general. They assume that the
central unit of structure in language is the construction: a structure combining
grammatical and surface-based elements in almost arbitrary ways. Even if some
of our knowledge of grammatical structure must be assumed to be innate, the
way that grammatical patterns combine with surface language patterns must of
course be learned by exposure to language data. The challenge for connectionist
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linguists is to model how the brain can represent, and learn, such structures.
In summary, language contains surface patterns and also higher-level gram-

matical patterns. While there is a consensus that simple recurrent networks
are good at learning surface patterns, there is debate among connectionist lin-
guists about how to encode higher-level grammatical generalisations in neural
networks. There is also debate between connectionist linguists and nativist lin-
guists about how much linguistic knowledge (of the high-level kind) is learned
from exposure to language data. Nativist models assume that grammatical
learning is quite heavily constrained by innate knowledge, and consequently
these models give parsimonious accounts of the grammatical differences between
languages. But they have no account of surface patterns, and the intricate ways
these interact with grammatical structures. Connectionist models can give a
good account of surface patterns, and offer good scope for an account of their
interactions with grammatical patterns. But this account is dependent on find-
ing a workable representation of grammatical patterns.

In this article, we will describe a neural network model which can learn
both surface-based (‘idiomatic’) and abstract (‘grammatical’) patterns in the
exposure language, and which makes a proposal about how these two types of
pattern interact. The model is trained on pairs of sentences and their associ-
ated meanings, and learns a function which maps meanings onto sentences—in
other words it is a model of sentence generation. The network’s representation
of grammatical patterns is somewhat unusual for a connectionist model, be-
cause it draws on some Chomskyan ideas about innate linguistic knowledge and
parameter setting. But while it makes contact with a Chomskyan account of
syntactic competence, it is still squarely a model of language processing, most
of which should be familiar to connectionist linguists. In particular, it makes
use of a SRN to learn a probabilistic model of surface language structures, and
for various other purposes.

The key innovation in the network is in its representation of sentence mean-
ing. The meaning of a sentence is modelled as a sequence of semantic repre-
sentations, rather than as a static assembly of active units. The structure of a
semantic message is expressed by having representations occupying particular
semantic roles (e.g. ‘agent’, ‘patient’, ‘action’) appear at specified serial posi-
tions in the sequence. We will begin in Section 2 by introducing this idea in
some detail, and providing motivation for it. In Sections 3–5 we present a neural
network model of sentence generation, which learns to map semantic represen-
tations in the above format onto utterances. The network’s use of sequences
to represent sentence meanings has two benefits. Firstly, it allows syntactic
patterns to be represented and learned using a rather simple mechanism. We
describe this mechanism in Section 3. Secondly, it supports an account of the
relationship between abstract syntactic patterns and surface patterns in lan-
guage: the notion of sequences provides a common currency for modelling these
two kinds of pattern. In Section 4 we describe some extensions to the model
introducing a SRN-like mechanism which can learn surface linguistic patterns.
In Section 5 we describe the complete model, which learns a mixture of surface
and abstract linguistic patterns. In Section 6 we describe some experiments
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with the complete model, and discuss their results. The model is able to learn
a training language containing both abstract rules and idiomatic surface forms;
moreover, its learning progresses through developmental stages which bear some
resemblance to stages identified in models of language development in infants. In
Sections 7 and 8 we give a general discussion of the model and some conclusions.

2. Semantic representations as sequences

2.1. Connectionist representations of episodes: some existing proposals

A connectionist model of language must employ a scheme for representing
sentence meanings. Sentences report events or states—we will use the term
episodes to cover both cases. So what is needed is a connectionist represen-
tation of episodes. Schematically, we can represent an episode as a number of
semantic objects, each of which is associated with a particular semantic role.
For instance, an episode involving an action can be defined as having an ac-

tion role, which is occupied by an action type (e.g. chase, run), together with
a number of other roles required by this action type (e.g. chase requires an
agent and a patient while run only requires an agent).1 There are many
alternative accounts of roles, but as far as connectionist implementations are
concerned, the main problem is the same for all of them: a way must be found
to associate particular semantic objects with particular roles. For instance, the
episode in which John chases Mary must be represented by associating the se-
mantic object john with the agent role and the semantic object mary with
the patient role. Simply activating the objects john, mary and chase will not
do, because it does not specify who is doing what. To compound the problem,
the binding scheme must support the creation of hierarchical representations,
because semantic objects can have their own internal structure. For instance,
participants in an action may have particular specified properties, so there must
be bindings between participants and properties.

Many connectionist schemes have been proposed for binding semantic ob-
jects to roles. There are schemes which allow for synchronised activation of
assemblies at different phases in a clock cycle, in which role assemblies and filler
assemblies are bound together by being activated in the same phase (Shastri
& Ajjanagadde, 1993). There are schemes which link all possible roles to all
possible fillers, and model particular bindings by enabling particular links; see
e.g. Chang (2002), and more elaborate schemes which employ a finite set of
specialised binding assemblies to implement these links, which can feature as
fillers in their own right, permitting hierarchical structures (van der Velde &
de Kamps, 2006). There are schemes using distributed encodings that exploit
the sparsity of high-dimensional vector spaces, which also allow a limited de-
gree of hierarchy (see e.g. Plate, 2003). All of these schemes have merits and
drawbacks, relating to their expressiveness and neural plausibility. We will not
discuss these in any detail. Our main concern is to introduce another scheme,

1Elements of semantic representations are given in small caps.
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which is motivated from a new perspective, and has some novel merits, both
technically (as a platform for connectionist sentence processing architectures)
and theoretically (as a point of contact with existing models of syntax).

2.2. A new proposal: sensorimotor sequences

Our scheme is motivated from the perspective of ‘embodied cognition’. Em-
bodied models of cognition start from the observation that high-level cognitive
processes take place in agents situated in a physical world, whose experiences
are heavily shaped by their sensory and motor interactions with this world,
and draw the conclusion that high-level cognitive representations are likely to
reflect properties of the sensorimotor system. This idea has been pursued in
several directions; see e.g. Harnad (1990); Brooks (1991); Ballard et al. (1997);
Glenberg & Kaschak (2002); Feldman & Narayanan (2004); Barsalou (2008). In
each case, the idea is to look to the sensorimotor system for ideas about how to
model high-level semantic representations. There are many arguments for this
basic idea. One concerns evolutionary processes. High-level ‘specifically human’
cognitive capacities such as the capacity for language developed relatively late in
human evolution, at a time when our sensorimotor system had already reached
something like its modern form (as evidenced by the strong similarities between
our sensorimotor systems and those of our nearest evolutionary neighbours; see
e.g. Tootell et al. (1996); Iacoboni (2006). Evolution works by making small
changes to an existing design; see Anderson (2010) for a recent exposition of this
principle focussing on brain evolution. Therefore it is possible that elements of
the sensorimotor system were reused or adapted in the evolution of language.
A related argument is from theoretical parsimony. Sensorimotor routines must
somehow deliver high-level semantic representations, because we can talk about
what we see and do. The more strongly semantic representations supervene
on sensorimotor representations, the easier it is to give an account of how this
happens.

2.2.1. Ballard et al.’s concept of deictic routines

The particular semantic representation scheme we propose picks up on the
observation that at a timescale of around one-third of a second, interactions with
the world often take the form of short sequences of sensorimotor operations, with
well-defined internal structure. These sequences were first noticed by Ballard
et al. (1997), who coined the term deictic routines to describe them. The key
structuring elements in a deictic routine are ‘deployments of attention’—most
concretely, saccades (i.e. discrete eye movements). Vision is an active process;
we make around three saccades per second. Each saccade evokes transitory
representations in the sensorimotor areas of the brain, which can be used to plan
the next saccade, or to plan some other motor action, which will have attentional
consequences of its own. Hence a deictic routine involves a chain of attentional or
motor operations, interleaved with transitory sensory consequences. Ballard et
al. suggest that deictic routines may feature in higher-level cognitive processing
as well as in direct interaction with the world—and may even be an organising
principle for such processing.
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2.2.2. Knott’s model of sensorimotor sequences

The sensorimotor process we have focussed on is that involved in experienc-
ing an elementary transitive action: reaching to grasp a target object. This
process has been studied in detail by Knott (in press), who argues that it is
structured as a deictic routine. Knott reviews a wide range of experiments inves-
tigating the execution and perception of reach-to-grasp actions, and concludes
that both these processes involve the same canonical sequence of sensorimotor
operations. In the canonical sequence, the first two operations are actions of
attention: first, an action of attention to the agent of the action, and then an
action of attention to the intended target. Each action of attention delivers a
transitory sensory representation which enables the next action to be executed.
When the observer attends to the agent, he evokes a sensory representation
of the agent, which provides information about the location of the intended
target. (If the observer is watching someone else performing the reach action,
the observed agent’s gaze and posture provide information about the intended
target. If the observer is the agent himself, this information is provided by
the mechanism which actually selects the target, namely his own motor system
which activates the target location in a motor coordinate system centred on
his own hand; see e.g. Tipper et al. (1992). In either event, the observer can
then execute a saccade to the intended target object, and to evoke a detailed
representation of this object. At this point—but not before—the observer can
activate a motor programme. (If the observer is watching someone else, this
activation is due to a specialised system in the superior temporal sulcus which
categorises observed biological motions; see e.g. Jellema et al. (2000); Pelphrey
et al. (2005). If the observer himself is the agent, it is again his own motor sys-
tem which activates the motor programme, by computing the grasp affordances
of the observed target; see e.g. Fagg & Arbib (1998); Murata et al. (2000). In
either event, the observer is able to activate a motor programme. Once this
happens, the mode of sensorimotor processing changes. While the two initial
attentional operations are discrete, action monitoring is a temporally extended
process, which has the character of a dynamical system (see Jordan & Wolpert,
2000 for action execution and Oztop & Arbib, 2002 for action observation). Fi-
nally, at the endpoint of action monitoring, a discrete attentional state is again
reached, when the agent has a stable grasp on the target object. The basic
sequence of operations, therefore, is: attention to agent, attention to intended
target, action monitoring.

In addition to this basic sequence, Knott’s model of reach-to-grasp actions
has two more components. Firstly, Knott proposes that the agent and the target
are each attended to more than once in the deictic routine involved in experi-
encing the action. The agent is initially attended to as a salient object in the
world, and classified as an object. Knott argues that in the action-monitoring
phase, the agent is reattended to as an agent; i.e. as a animate entity with char-
acteristic patterns of motion. Our concepts of objects and agents are intimately
connected; we classify or recognise animate objects by their shape, but also
by their movement. Knott argues that it is because these two conceptions are
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axiomatically brought together in sensorimotor action-monitoring routines that
we are able to form these cross-modal representations of agents. Knott makes a
similar proposal about targets. The target of a reach-to-grasp action is initially
attended to as an object in the world, and visually classified as an object. But
at the endpoint of the action, when the agent has achieved a stable grasp, the
target object is reattended to as a motor state—the current state of the agent’s
hand/arm. A reach-to-grasp action is not only a substantive motor operation,
but also an action of attention, which delivers information about the target in
the haptic modality. This information arrives towards the end of the action,
when the hand is close enough to touch the object, and is most accurate when
the agent has achieved a stable grasp on the target. As well as representing (an-
imate) objects as agents, we must be able to represent (manipulable) objects as
motor routines, and learn functions which map visually perceived shapes onto
the motor programmes needed to interact with them. Again, reach-to-grasp
routines are axiomatically involved in learning these functions, and forming the
necessary cross-modal representations of target objects. In summary, the fact
that the agent and patient each feature twice in a reach-to-grasp deictic rou-
tine is an important component of an account of the development of mature
cross-modal object concepts.

Secondly, Knott supplements his model of sensorimotor routines with a
model of working memory. ‘Episode representations’ must be more than tran-
sient sensorimotor sequences; they must be things that can be stored. Knott
proposes that an observer can store recently experienced sensorimotor sequences
in working memory, in a format which allows them to be internally rehearsed—
a proposal which echoes many similar ideas in embodied cognition (see e.g.
Gallese & Goldman, 1998; Jeannerod, 2001; Grèzes & J, 2001; Barsalou et al.,
2003; Feldman & Narayanan, 2004). There has been much recent research into
the neural basis of prepared sensorimotor sequences. A consensus is that stored
sequences are maintained in prefrontal cortex (see e.g. Averbeck et al., 2002;
Rhodes et al., 2004; Tanji et al., 2007). An interesting discovery is that the
neural assemblies which store a planned sequence of sensorimotor operations
include representations of the individual operations involved. These individual
representations of the planned actions are active in parallel in prefrontal cortex,
both in advance of the sequence being executed, and during its execution, and
after it is complete (Averbeck et al., 2002; Averbeck & Lee, 2007). What this
means is that during the simulated replay of a sequence of sensorimotor oper-
ations stored in working memory, there are tonically active representations of
all the operations in the sequence in prefrontal cortex, which supplement the
sequence of transiently active representations in the sensorimotor system.

The complete sequence of signals in Knott’s account of a rehearsed reach-
to-grasp deictic routine is shown in Table 1. Note firstly that there is a mixture
of transient and sustained signals. Note also that each step in the routine has
the same basic structure. There is an initial context, in which a sensory or
motor operation takes place, which generates a reafferent signal (a sensory
representation), and establishes a new context. The routine is naturally re-
cursive (‘tail-recursive’, to be precise), because the new context of one operation
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Table 1: The time course of signals occurring during the replay of the cup-grabbing deictic
routine from working memory

Sustained Transient
signals signals

Initial Operation Reafferent New
context signal context

planattend agent,attend cup,grasp C1 attend agent agent rep C2

planattend agent,attend cup,grasp C2 attend cup cup rep C3

planattend agent,attend cup,grasp C3 grasp agent rep C4

planattend agent,attend cup,grasp C4 cup rep

constitutes the initial context of the next one. (The recursion ‘bottoms out’ in
Context C4, which is the stable grasp state.) Note finally that there are two
types of repeated signal in the sequence. Planning representations are repeated
at every iteration, because they are tonically active. But agent and patient
representations are repeated at particular iterations. For detailed motivation of
all aspects of this model of reaching-to-grasp, see Knott (in press).

To return to the language-processing network: the ‘semantic representations’
which we will present to our network will take the form of sequences with the
kind of structure shown in Table 1. Our suggestion is that a speaker needs to
internally ‘replay’ a stored episode representation in order to express it verbally:
planned sensorimotor sequences by themselves cannot generate the right kind
of verbal side-effects. In the rest of this section, we will discuss some of the
interesting consequences of thinking of semantic representations in this way.

2.3. Some benefits of using sensorimotor sequences as semantic representations

Modelling semantic representations as sensorimotor sequences has several
advantages in a connectionist language-processing architecture. We will sum-
marise the main advantages here.

Firstly, having a connection to a sensorimotor model provides an indepen-
dent justification for the form of semantic representations. They are not just
plucked out of the air: an account can be given of how the representations are
delivered by experience. This recalls one of the advantages of embodied models
of cognition mentioned earlier: if semantic representations supervene directly on
the sensorimotor system, it is relatively easy to describe the interface between
the two of them. Semantic representation schemes involving synchrony, binding
assemblies, distributed encodings etc must envisage a more complex interface
with the sensorimotor system, whose nature is (often tacitly) understood as a
separate problem. Our representation scheme emerges naturally out of a model
of the sensorimotor system.

Secondly, there are several technical advantages to thinking about semantic
representations as sequences. One of these has to do with types of abstrac-
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tion which the semantic scheme has to support. Any connectionist sentence-
processing architecture has to find a representation scheme which allows a lex-
icon of word meanings to be learned independently of the semantic role which
words play, so that words encountered in one role can be understood (and used)
in other roles. We would not want a scheme where the word expressing the
concept dog has to be learned separately when it appears as an agent and as a
patient. In our sequence-based representation scheme, we only need one medium
for representing objects: information about the role an object plays is conveyed
by its position in the sensorimotor sequence.2 Mappings between words and
meanings are therefore completely decoupled from information about semantic
roles. (In fact, all the representation schemes mentioned earlier achieve this
decoupling in one way or another.) Another potential technical advantage of
sequentially structured semantic representations is that surface language itself is
sequentially structured. Architectures which envisage static semantic represen-
tations must solve a linearisation problem: a static message must be mapped
to a sequence of words. In fact, there are several reasons to think that sen-
tence generation really does require parallel representations to be linearised:
for instance, speech errors which swap or blend words which should appear
at different positions in a sentence (see Fromkin, 1973 and much subsequent
work). Connectionist models can trade on parallel representations to simulate
such errors (well-known models include Dell, 1986; Burgess & Hitch, 1999). We
certainly want to make use of parallel representations in our model of sentence
generation—indeed, in our model an episode representation in working memory
is a set of semantic items active in parallel. However, because these episode
representations take the form of planned sequences, there is also a ‘natural’
way of linearising them which a sentence generation architecture may be able
to exploit. One simple idea is that sentence generation just involves playing
a sequence of semantic items to an interface which maps semantic items onto
words. In fact this simple idea is one of the core mechanisms in our network.

Finally, pursuing the point just made: if we think about semantic represen-
tations as planned sensorimotor sequences, and if sentence generation involves
generating linguistic side-effects of sensorimotor sequences, then we may be able
to attribute some of the syntactic properties of the generated sentences to the
structure of rehearsed sensorimotor sequences. We will discuss this idea by itself
in the following section.

2.4. A syntactic interpretation of sensorimotor sequences

The simple idea just mooted is that if semantic representations are replayable
sequences, a sentence generation architecture could take a replayed sensorimo-
tor sequence as input—i.e. receive items from the sequence one by one—and

2We assume there are only two basic semantic roles—roughly speaking, the ‘proto-agent’
and ‘proto-patient’ roles proposed by Dowty (1991). The proto-agent is the participant at-
tended to first, and the proto-patient is the participant attended to second. However, we will
continue to use the terms ‘agent’ and ‘patient’.
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generate appropriate linguistic reflexes of these items as they arrive. Of course
this idea needs to be refined in several ways. But many of these refinements
can be interpreted in relation to models of theoretical syntax. In this section
we will consider some of them.

2.4.1. The position of noun phrases

Perhaps most obviously, the agent and patient of our example reach-to-grasp
action are each transiently active at two different positions in the sequence. Of
course, a transitive sentence only features the agent and patient once each (at
least as full noun phrases). So the system which reads out semantic items onto
words must learn to suppress one occurrence of each word. The possibility then
arises that different languages have different conventions about which occurrence
is pronounced. The structure of the sensorimotor sequence involved in grasping
a cup must be assumed to be the same for speakers of all languages. But as
is well known, different languages have different canonical word orders: SVO,
VSO and so on. We can imagine a linguistic interface with some plasticity,
which can learn a pattern of suppression able to reproduce the surface form of
sentences in the exposure language. Note that learning in this type of system
is quite constrained. The structure of the sensorimotor sequence is the same
for every language, and does not need to be learned. Acquiring an ordering
convention for a particular language is a matter of choosing between a small
number of possible alternatives made available by this sequence, rather than
of constructing a pattern from scratch. Note also that in this scheme there
is some notion of an ‘underlying’ sentence structure, which is the same for all
languages, in which both agent and patient feature in two positions. These ideas
are all reminiscent of a Chomskyan model of syntax. To make this point, we
will briefly sketch a recent Chomskyan account of transitive sentences, within
the Minimalist framework of Chomsky (1995).

In Minimalism, a sentence must be represented at two levels of syntactic
structure: a level of surface form called ‘phonetic form’ (PF), and an underly-
ing form called ‘logical form’ (LF). PF encodes the surface word order of the
sentence, and thus varies considerably from language to language. LF is rela-
tively invariant over translations (at least for simple concrete sentences). It is
understood as the level of syntactic representation which ‘interfaces with the
semantic system’, and this fact explains its invariance (or at least part of it).
LF is also the level of representation at which supposedly ‘universal’ syntac-
tic properties of language are manifested. Minimalism describes LF structures
by defining an algorithm which generates, or ‘derives’ these structures. This
algorithm is largely the same for each language. The process of deriving an
LF structure involves joining together elementary phrase structures associated
with lexical items, and also movement of words and phrases within the structure
thus created. For instance, the subject and object noun phrases of a transitive
sentence (denoting the agent and patient respectively) originate at positions in
the VP (the phrase associated with the verb) but they each move to higher po-
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sitions above the VP during derivation, in an operation called ‘DP-movement’.3

The subject moves to a position in the ‘inflection phrase’ (IP), and the object
to a similar position in the ‘object agreement phrase’ (AgrP) as illustrated in
Figure 1.4 At some point during these movement operations, the surface form of
the sentence (PF) is ‘read off’ the LF structure. One of the learnable parameters
in the language faculty relates to whether subject and object are pronounced
‘before’ they move or after. This accounts for the different positions that subject
and object can take in different languages.

obj

IP

I’

I AgrP

Agr’

Agr VP

V’

V

subj

Figure 1: ‘DP-movement’ during the derivation of a transitive sentence. Subject and object
noun phrases (DPs) originate within the verb phrase, and move to higher positions associated
with subject (IP) and object (AgrP).

Note that the notion of ‘movement’ of constituents during derivation of LF
structures is emphatically not intended as part of a model of sentence processing:
in the Chomskyan account, the algorithm which derives sentences is just part
of a declarative specification of the set of syntactically well-formed sentences
in a given language. On the other hand, our neural network model is squarely
a model of sentence processing. What we want to point out is that there are
natural correlates of some of the operations in the LF derivation algorithm in
the structure of the sensorimotor account of reaching-to-grasp sketched above.
As regards DP-movement, our scheme provides two possible positions for both
subject and object in a transitive sentence, and envisages a mechanism which
learns which position to use in each case from the exposure language.

2.4.2. Syntactic agreement

DP-movement expresses the idea that there are two natural positions in a
sentence for noun phrases realising the arguments of a transitive verb. How-
ever, there are other elements of the sentence which can also convey information
about these noun phrases. In many languages, information about subject and/or

3Noun phrases are often re-analysed as ‘determiner phrases’ (DPs) in theoretical syntax.
4Our label ‘IP’ is fact a conflation of a subject agreement projection and a ‘tense’ projection

(TP), which we will not distinguish between in this paper.
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object noun phrases can also appear in the verb, in the form of morphological in-
flections. A verb’s ‘agreement inflections’ basically repeat information signalled
by its argument NPs. For instance, in English, the inflection -s conveys that the
verb’s subject is singular, and is referred to in the third person. Agreement in-
flections only convey limited information: most commonly, grammatical person,
number and gender. Most of the detailed information about the participants in
a reported episode is conveyed by open-class lexical items inside noun phrases
(common nouns, adjectives, proper nouns). But a model of syntax still has
to explain the existence of agreement inflections. The thing to explain is how
the verb can mirror information provided by the subject and object—especially
when these can appear quite far away from the verb in a sentence’s structure.
Whatever syntactic paradigm we adopt, we must explain how the verb has a
‘domain of locality’ large enough to encompass the NPs which realise its argu-
ments, allowing it to display agreement with these NPs. In some formalisms, the
pervasive syntactic influence of the main verb of a sentence is expressed using a
mechanism of ‘agreement features’ which can be transmitted between the nodes
of a syntactic tree (see e.g. Pollard & Sag, 1994). In others, it is expressed by
having verbs introduce arbitrarily large pieces of syntactic structure (see e.g.
Joshi & Schabes, 1997). In Chomskyan paradigms, it is expressed using the
notion of verb movement. The basic idea here is that during derivation of an
LF structure, the verb moves into syntactic positions where it is close to the
subject and object, where it is natural to assume that semantic information can
be shared. In Minimalism, for instance, a verb originally appears within its own
VP, complete with agreement inflections. But it must move to higher positions
in order to ‘check’ semantic features associated with these inflections. It first
moves to AgrP, where it has a local syntactic relationship with the position the
object moves to. Then it moves to IP, where it has a similar structural relation-
ship with the position the subject moves to. This type of movement is quite
distinct from DP-movement: rather than jumping directly to a higher position,
the verb moves iteratively from one head position to the next one up, as shown
in Figure 2. The fact that the verb moves into local configurations with subject

verb

IP

I’

I AgrP

Agr’

Agr VP

V’

’inflection phrase’

’object agreement phrase’

’verb phrase’

V

Figure 2: ‘Verb movement’ during the derivation of a transitive sentence

and object positions provides an explanation of how its inflections can echo in-
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formation conveyed by the subject or object noun phrase. In addition, it also
provides a range of possible locations for the verb, which neatly contribute to
an account of the differences between languages. As with subject and object
NPs, the verb can be read out at a ‘low’ position (before movement) or a ‘high’
position (after movement); this constitutes another parameter for children to
set when they are learning their native language.

Our notion of rehearsed sensorimotor sequences allows an interesting ac-
count of agreement inflections which in some way chimes with the Minimalist
notion of verb movement. Again, since we are implementing a model of sentence
processing, we are not modelling any explicit ‘movement’ of the verb. Our aim
is to give a model of sentence processing which has some recognisable analogue
of the notion of verb movement.

To begin with, note that in the sensorimotor sequence shown in Table 1
there are several opportunities to pronounce the verb. Recall that experiencing
a reach-to-grasp episode involves executing a sequence of three sensorimotor
operations, and that we assume a speaker must replay this sequence in order
to express it verbally. Recall also that the working memory mechanisms which
store sequences of sensorimotor operations feature representations of these op-
erations which remain tonically active when a sequence is replayed. The verb in
our example transitive sentence reports a sensorimotor operation. Referring to
Table 1, note that there are two possible ways we might read out a verb from a
replayed sensorimotor sequence. We could read it out from the transient grasp
motor signal which occurs uniquely in context C3. Or we could read it out
from the planning representation which enables replay of the sequence, which
is active at each iteration of the replay process. On this alternative, an action
verb is read out from a representation of a planned action, rather than from
a representation of an action itself. If we assume this alternative, we have a
natural account of why the verb has a syntactic domain which encompasses a
whole sentence.

Now consider the agreement inflections on a verb. These report a small
amount of the information about the agent (or patient) which is conveyed in
detail by the subject (or object) noun phrases. Again it is useful to note that
there are several sources of information about the agent and the patient in a
replayed sensorimotor sequence. Assume a language where the verb inflection
agrees with the subject—so for our cup-grasping example, provides information
about the agent. Referring once more to Table 1, we can read out informa-
tion about the agent from the (replayed) operation of attending to the agent
(attend agent), the reafferent sensory representation which results from this op-
eration (attending agent), or the planning representation which supports replay
of this attentional operation (planattend agent). We have already proposed that
full noun phrases are read out from transitory reafferent signals. But we can also
envisage that attentional operations have linguistic side-effects. Specifically, we
propose that agreement inflections are read out from planned attentional oper-
ations.

This proposal achieves several things. Firstly, it explains why agreement
inflections have the same range of potential syntactic positions as verb stems.
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Planned attentional operations are tonically active throughout replay of a sen-
sorimotor sequence, just like planned motor operations, and so can be read out
at any position, including at positions which are distant from the positions at
which noun phrases are read out. Secondly, it explains why agreement inflec-
tions appear with verb stems. Sequence plans have separable components, but
they are still neural assemblies in their own right; it is natural to assume that
they are made available as wholes to a linguistic interface. Finally, it goes some
way towards explaining the kind of semantic information which is conveyed in
agreement inflections. Attending to oneself is very different from attending to
another person, and arguably attending to one’s interlocutor is different from
attending to a third party. Similarly, attending to a single object is significantly
different from attending to a group of objects (see Walles et al., under review for
some references and a computational model). Arguably, therefore, agreement
inflections pick up on the ‘attentional’ components of sensorimotor sequences.

It is useful to consider the model just outlined in an evolutionary perspec-
tive. Assume that our prelinguistic ancestors experienced the world through
deictic routines similar to ours, and used similar mechanisms to store these rou-
tines in working memory. (The models of prepared sequences we introduced
in Section 2.2.2 come from macaque.) The adaptations needed for language
are circuits allow sensorimotor signals to generate overt linguistic side-effects.
Our proposal is that evolution happened to find a way of expressing motor
programmes using a circuit connecting to the action preparation system in pre-
frontal cortex, while the method it found for expressing objects involved a circuit
connecting to areas of the brain evoking transient object representations, with
only coarse-grained inputs coming from planning areas. This proposal in turn
links quite well to current research in neurolinguistics and brain imaging. For
instance, in a well-known study by Pulvermüller, F et al. (1999) presentation
of concrete nouns and verbs was found to preferentially activate different ar-
eas: concrete nouns with strong visual associations activated visual cortices,
and action verbs activated motor, premotor cortices but also prefrontal cor-
tices. Generating verbs also appears to involve a large region of left anterior
prefrontal cortex (see e.g. Perani et al., 1999; Tranel et al., 2001). Interest-
ingly, one area of prefrontal cortex (left Brodmann’s area 9) appears selectively
involved in producing verb inflections (see Shapiro & Caramazza, 2001).

2.4.3. Hierarchical constituent structure

Another interesting way our model of sensorimotor sequences connects with
syntactic theory concerns how syntactic units are defined. Most syntactic paradigms
include the proposal that lexical items ‘project’ their own local syntactic structure—
i.e. specify the kinds of syntactic environment they can appear in. On these
models, a verb phrase is the structure projected by a verb, a noun phrase is
the structure projected by a noun, and so on. Many accounts include a sug-
gestion that the shape of this projected structure is the same for different word
types: i.e. that verb phrases, noun phrases etc. are all instances of a more basic
structural template, often termed the ‘X phrase’, or ‘XP’. On this view, an XP
is the fundamental building block of syntactic structures. Minimalism makes
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heavy use of this idea; XPs are identified by the grey boxes in Figures 1 and 2.
In the Minimalist account, inflections can contribute projections to a sentence
as well as open-class lexical items.5 Even ‘syntactic objects with no phonolog-
ical content’ can contribute projections to a sentence—a point which is very
controversial for linguists from other backgrounds. In a Minimalist model, the
backbone of a clause (at LF) is a right-branching structure of XPs, the first two
of which are introduced by inflectional elements, and the third of which is the
VP. This analysis appears profligate, postulating a fairly extended hierarchical
structure for a relatively simple sentence. In one sense this is true; however,
in another sense it is very economical, in that it only posits a single syntactic
schema, the XP schema, which is recursively applied.

In our model of sensorimotor sequences there is a very natural interpretation
of the X-bar schema. Replayed sensorimotor sequences have several iterations,
each of which has the same basic structure: there is an initial context, a (re-
played) sensorimotor operation, which triggers a reafferent sensory side-effect,
and brings about a new context. There is also a tonically active planning rep-
resentation which supports the replayed operation. The structure of the X-bar
schema is shown in Figure 3(a). In Figure 3(b) we show that there is a natu-
ral sensorimotor interpretation of the X-bar schema as a description of a single
iteration within a replayed sensorimotor sequence. (Note also that as a corol-

(b)]

XP

X’

X

YP

ZP

XP

X’

X

YP

ZP

initial context

reafferent signal

planned SM operation new context

(a)

Figure 3: (a) The X-bar schema. (b) A sensorimotor interpretation of the X-bar schema

lary of this interpretation, a right-branching chain of X-bar schemas describes
a sequence of iterations, because the next context of one schema is the initial
context of the next one: just the result we want.)

To summarise: there are several ways in which our notion of sensorimotor
sequences makes interesting contact with syntactic theory. It allows an interest-
ing account of the alternative syntactic positions of noun phrases and verbs, and
an interesting account of the syntactic properties of verbs which allow them to
carry agreement inflections. It also makes an interesting proposal about the ba-
sic recursive building blocks of syntactic structures. We have expressed all these
ideas with reference to Minimalism, because they correspond particularly well
to devices within this paradigm. However, we again emphasise that what we are
proposing is a model of sentence processing which reinterprets these devices.

5This is another simplification, which is in fact a description of Government-Binding theory
(see e.g. Chomsky, 1981) rather than Minimalism. But there is a similar idea in Minimalism.
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Figure 4: The mature episode rehearsal system

We turn now to the model itself. We will introduce it in several steps.
Section 3 describes the core of the model, which captures the syntactic phe-
nomena just discussed. Section 4 describes some additional components of the
model which allow it to learn to generate surface patterns in language. Sec-
tion 5 describes the complete model, which can learn a mixture of syntactic and
surface-based linguistic patterns.

3. A core network for learning abstract syntactic rules

The complete model of language production consists of several functional
modules that work together: an episode rehearsal network, which replays a
working memory episode representation to generate a sequence of sensorimotor
signals; a word production network, which maps individual sensorimotor
signals onto word forms; a control network, which determines the points
during episode rehearsal when these word forms should be pronounced; and a
word sequencing network which learns surface regularities in word sequences.
In this section, we describe how the first three of these modules work together.
For technical details of all networks see Appendix A.

3.1. The episode rehearsal network

First we present the network which replays sensorimotor sequences, which
embodies the key novel idea of this article. This system is responsible for gener-
ating sequences of the kind shown in Table 1 and provides the (semantic) input
for other modules of the language production system.

The developmentally mature version of the episode rehearsal network is
shown in Figure 4. The WM episode area models a working memory episode
representation that takes the form of a prepared sensorimotor sequence tonically
active in PFC. Besides a planned motor action, it comprises planned actions of
attention to an agent and a patient. The diagram only shows information which
can be linguistically expressed.

Planned attentional actions interface rather weakly with the linguistic sys-
tem: they convey basic information about whether the attended object is the
agent himself or his interlocutor or something else, and about whether the at-
tended object is a single entity or a group. (This information ends up being
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expressed in grammatical person and number inflections on verbs.6) For each
component of a planned attentional action, we use 1-hot localist coding, i.e.
there is exactly one active unit at a time, out of three units specifying (first,
second and third) person, and one out of two units for (singular or plural) num-
ber of the agent. The same holds for the patient person and number units. The
planned motor action interfaces more strongly with language: there is one unit
for each open-class motor action.

The current object area holds a transient representation of the currently
attended object. During the course of episode rehearsal, this area alternately
holds representations of the agent and the patient. This area conveys person
and number information in the same format as the WM episode (i.e. coarse
information about an action of attention), but unlike the WM episode it also
conveys fine-grained information about the type of the attended object. Again
we use a 1-hot coding scheme to represent type information; i.e. there is a
dedicated unit for each possible object concept (regardless of the role it appears
in). Together these sources of information will eventually enable the generation
of inflected open-class nouns, and of pronouns.

The context area holds a representation of the current stage during episode
rehearsal. This representation helps to drive the episode rehearsal process. In
our simulation there are four possible contexts (see Table 1), each represented
by a single localist unit. The thick arrows in the diagram reflect the fact that
the sequence of transient representations in the current object and context areas
are generated by a WM episode representation.

The episode rehearsal system provides input to the word production and
control networks, which we will describe next.

3.2. The word production network

The word production network is shown in Figure 5. It serves as the system’s
lexicon, in that it learns to generate a (possibly inflected) word in response to
an input signal from the episode rehearsal system. The inputs to the network
are the WM episode and current object areas of the episode rehearsal network.
The output layer holds a set of units that represent all possible words—or more
precisely, all possible word stems and all possible inflections, including the null
inflection. Word stems and inflections are represented in a localist fashion: i.e.
there is one unit for each stem and each inflection. Total activation of all units
in the word stem area can be scaled to sum to 1 and treated as a probability
distribution; likewise for the inflection area. We envisage that individual word
stems and inflections represent premotor articulatory plans, rather than actual
utterances.

The input and output layers are fully connected. These connections are
gated by inhibitory links from a cyclic pattern generator (depicted as ‘Phase’
in Fig. 5) so that at any time input comes either wholly from the WM episode

6We discuss gender agreement in Section 7.3.
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Figure 5: The word production network receives inputs from the episode rehearsal system and
training signals from the phonological input buffer. (Note that the episode rehearsal system
is augmented with a pattern generator that delivers inputs from the episode rehearsal system
in two alternating phases.)

or wholly from the current object. During episode rehearsal, the pattern gener-
ator cycles through two phases in each context, providing first an opportunity
to read out the tonically active WM episode, and then an opportunity to read
out the current object representation, as shown in Table 2. Pattern genera-
tors are commonly postulated in models of the prosodic aspects of language
production; see for instance Hartley & Houghton (1996) neural network model
of syllabic structure. We propose that a pattern generator is also involved
in syntactic processing, to produce the regular alternation between heads and
specifiers characteristic of X-bar structure.

The word production network is trained on the utterances of mature speak-
ers, paired with episode representations. We are simulating an infant who expe-
riences episodes in the world and who also hears mature speakers talking. We
assume the infant is well enough attuned to the pragmatics of communicative
actions to pair the utterances of mature speakers somewhat reliably with se-
mantic representations of the episodes they report, using devices such as joint
attention and intention recognition (see e.g. Tomasello, 2003), though of course
there is a great deal of noise in the mapping between semantic signals and words,
especially to begin with.

The mature utterances the system hears are stored in a phonological in-
put buffer, from where they can be replayed word-by-word. The episodes
the system experiences are stored in the episode rehearsal network. Note that
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Table 2: The sequence of inputs to the word production network after modulation by the
pattern generator. Object representations and WM episodes alternate.

Context Phase WM episode rep Object rep
C1 a man

b planattend agent/attend cup/grasp

C2 a cup

b planattend agent/attend cup/grasp

C3 a man

b planattend agent/attend cup/grasp

C4 a cup

episodes and utterances are stored in quite separate media in working memory.
We assume, following Baddeley (2000), a distinction between a phonological
input buffer, holding a recently presented sequence of words, and an ‘episodic
buffer’, holding semantic material. Words replayed from the phonological input
buffer function as training signals for the word production network. They are
represented in exactly the same way as words generated by the word production
network.7 An error term is calculated based on the difference between the ‘next
word’ predicted by the production network and the ‘actual next word’ of the
training utterance, and this term is used to train the production network.

Note that the word production network is trained on a replayed sequence of
words, rather than words arriving in real time. Initially, the effect of this ‘offline’
form of training is to allow several training words to be presented for each
sensorimotor signal, which helps to combat the noisiness of the training data.
(There is a well-attested relationship between phonological working memory
capacity and early vocabulary size; see e.g. Gathercole & Baddeley, 1990.)
However, we argue later in the paper that offline training also has a role in
syntactic development.

3.3. The control network

Assume that some learning has taken place in the word production network,
and that it can reliably map some sensorimotor signals onto words. Now con-
sider what happens when an episode is rehearsed. The word production network
receives a sequence of sensorimotor signals—two in each context—and for each
signal it will generate a word form. As is clear from Table 2, each sensorimotor
signal occurs more than once in this sequence: the planning representations oc-
cur once per context, and the transient representations of agent and patient each
occur exactly twice. Of course, sentences do not contain wholesale repetition of

7We assume that phonological word representations in the input buffer are stored as artic-
ulatory plans (see e.g. Browman & Goldstein, 1995) and are therefore directly comparable to
words generated by the word-production network.
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Table 3: A control policy which produces VSO (verb subject object) word order (‘—’ and ‘↓’
denote ‘withold’ and ‘pronounce’ respectively).

Context/phase C1a C1b C2a C2b C3a C3b C4a
SM sequence man grab-plan cup grab-plan man grab-plan cup

control policy — ↓ — — ↓ — ↓
output words grabs man cup

words—at least, not to this degree. We therefore envisage a device which learns
when to pronounce the word forms evoked by the word production network, and
when to withold them. Our suggestion is that different languages have different
conventions about which versions of the agent, patient and action signals to
pronounce, and that these conventions determine the basic word order of the
language. In our model, the device which learns a policy about when to pro-
nounce these repeated sensorimotor signals is called the control network. For
instance, in a VSO (verb, subject, object) language, the control network must
learn to pronounce the action signal at the first opportunity, and the agent and
patient signals each at the second opportunity, as shown in Table 3. In Mini-
malist terms, the episode rehearsal network implements the logical form (LF)
of a sentence, and the control network learns to map this logical form onto a
surface sequence of words, or phonetic form (PF).

The control network, with its connections to the networks described earlier,
is shown in Figure 6. It takes its input from the context and phase areas of
the episode rehearsal network. These areas are fully connected to a hidden
layer, which is in turn fully connected to one output unit that serves as a gating
signal between the output layer of the word production network and the actual
phonological output.8

In neural terms, we think of the word forms generated by the word produc-
tion network as premotor articulatory plans, rather than overt motor outputs.
This allows for a separate system to decide whether to overtly pronounce any
given word form. The idea that one can prepare an action without executing it
is well established in models of the motor system; see for instance Fadiga et al.
(2002) for evidence specific to articulatory actions. The control network’s role is
to decide which premotor word forms evoked during a rehearsed episode should
be overtly pronounced: in other words, its role is to selectively enable and dis-
able a connection from premotor to motor articulatory cortex. We assume the
control network is part of Broca’s area, because Broca’s area is known to have
a general nonlinguistic role in suppressing habitual responses (see Novick et al.,
2005 for a review of evidence to this effect).

8As indicated in Figure 6, we assume the phonological output system has internal structure
of its own. Items to be pronounced sit in a phonological output buffer where phonological
planning effects at the level of prosody can be modelled. For a review of evidence for a separate
phonological output buffer, see e.g. Shallice et al. (2000). In fact our current implementation
does not model such effects.
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Figure 6: The control network gates the output of the word production network. It is trained
on a Boolean match between the word generation network’s predicted next word and the
actual next word in the phonological input buffer.

Like the word production network, the control network is trained on ut-
terances paired with episode representations. As already noted, the episode is
stored as a replayable sensorimotor sequence, and the utterance is stored as
a separately replayable sequence of words. The words replayed from the input
buffer again function as training signals for the control network, but in a slightly
different way. For the control network we use a ‘match’ operation, which com-
pares the word predicted by the word production network with the ‘next word’
replayed from the phonological input buffer and returns a Boolean value: either
the word matches or it does not. This Boolean value functions as a training
signal for the control network, but it also has a procedural role in synchronising
the training utterance being replayed with the episode being rehearsed. This
is important, because there are many more iterations in episode rehearsal than
there are words in the training utterance: we cannot advance to a new word in
the training utterance at each iteration.

The ‘match’ circuit works as follows. If the output of the word production
network matches the ‘next word’ replayed from the phonological input buffer,
the control network will be trained to generate a ‘pronounce’ signal, which allows
this word into the phonological output buffer. At the same time, it generates
a signal to advance to the next item in the training utterance. If there is no
match, on the other hand, the control network is trained to generate a ‘withold’
signal, which prevents the output of the word production network from being
pronounced—and there is no signal to advance to a new word in the training
utterance.
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Table 4: A typical training item in a VSO exposure language, with the ‘match’ signal generated
in each context/phase. The ‘actual next word’ field steps through the words of the target
utterance one at a time, advancing to a new word when it matches the predicted next word.

Context/phase C1a C1b C2a C2b C3a C3b C4a
Target utterance grabs man cup
SM signal man grab-plan cup grab-plan man grab-plan cup

predicted next wd man grabs cup grabs man grabs cup
actual next wd grabs grabs man man man cup cup
‘match’ signal no yes no no yes no yes
training signal
for ctrl network — ↓ — — ↓ — ↓

To illustrate the training mechanism, assume the system is exposed to train-
ing items from a VSO language. A training item representing the episode ‘a man
grabs a cup’ is shown in Table 4.9 The training item consists of a sensorimo-
tor sequence representing this episode, paired with an utterance which reports
the episode in a VSO language. During training, the sensorimotor sequence is
rehearsed one step at a time. At each step, the figure shows the sensorimotor
signal providing input to the word production network, along with the word
this network predicts from this signal. It also shows the ‘actual next word’
in the training utterance, as replayed from the phonological input buffer. At
each stage, the ‘match’ signal reflects whether these two words are the same. If
they are not, the control network is trained to give the ‘withold’ signal, and the
word is retained at the next step. If they are, the control network is trained to
givee the ‘pronounce’ signal, and we advance to the next word in the training
utterance. With enough training examples of this kind, the control network will
learn a policy of generating ‘pronounce’ at context/phases C1b, C3a and C4a,
and ‘withold’ at all other contexts/phases.

There are two interesting things to note about the control network’s training
regime. Firstly, note that the control network is content blind. It does not receive
any information about individual words or word meanings—only about contexts
and phases. It learns that in some contexts/phases the output of the word pro-
duction network should be pronounced, while in others it should be witheld,
but it does not know anything about the content of the words it is controlling.
In other words, it learns ‘structural’, content-independent word-ordering rules.
We will demonstrate some of these rules in Section 6.2.2. Secondly, note that
the control network learns its rules ‘offline’: it learns to map a replayed sensori-
motor sequence onto a replayed sequence of words, by selectively advancing the
sequence of words so it is synchronised with the sensorimotor sequence. The
system has precise control over the way the training utterance is presented, ad-

9We distinguish words and concepts by font: words are in italics and concepts are again
given in small caps.
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vancing to a new word in some context/phases, but not in others. This is only
possible because training happens offline.

4. Extensions allowing the learning of surface patterns in language

The model described so far can learn a lexicon and a set of abstract word
ordering conventions for a given a target language. In this section, we will de-
scribe two additional networks which allow the model to learn surface structures
in language. One is a word sequencing network—a familiar SRN-style net-
work. The other is a more novel entropy network, which controls how the
sequencing network operates. These networks are shown in Figure 7, which also
shows some of the components of the earlier network which they interact with.

4.1. The word sequencing network

The word sequencing network is a variant of a Simple Recurrent Network
(Elman, 1990). In a way it mimics the word production network: as shown in
Figure 7, its input layer consists of the WM episode and current object areas
of the episode rehearsal system (gated by the phase generator), and its output
layer has an identical structure to the output layer of the word production net-
work. Both networks are trained from the ‘actual’ next word replayed from the
phonological input buffer. However, the word sequencing network has one hid-
den layer with recurrent connections, which enables it to take into account the
history of previous inputs. In each step, activities of the hidden layer from the
previous step are copied to a context layer, which provides an additional input
to the hidden layer at the next time step. We will refer to the context layer
as the surface context, to distinguish it from the context representation used
in the episode rehearsal network. Using this surface context representation, the
network can learn to produce different words for a given semantic input depend-
ing on the history of preceding inputs (while the word production network would
produce the same output word regardless of the context). Moreover, the word
sequencing network can produce a sequence of different output words for one
(unchanging) semantic input, because of its recurrently defined surface context
layer.

The output of the aggregated network depicted in Figure 7 (the top ‘next
word stem/inflection’ box) is a simple average of the activities in the output
layers of the word production and word sequencing networks. Because each of
the output layers represents two probability distributions (see Section 3.2), the
aggregated result also represents probability distributions of a predicted word
stem and an inflection.10

We will refer to the word production and word sequencing networks together
as the word production/sequencing network or WPSN. In a mature sys-
tem, we argue that the production/sequencing network interacts with the con-

10Computing simple linear combinations of probabilistic population codes is biologically
plausible (Ma et al., 2006).
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Figure 7: The word sequencing network and its interaction with the word production network.
The aggregated output of the two networks is gated by a confidence signal provided by the
entropy network.

trol network to support the generation of ‘idiomatic’ language. However, we
also argue that it has an important developmental role, in generating early pre-
syntactic multi-word utterances before the control network comes online. These
roles of the production/sequencing network will be discussed in Section 5.2.

Note that the word-sequencing network is not a standard SRN. A standard
Elman network takes a ‘current word’ as input (as well as the current surface
context) and predicts the next word. Our network takes a word meaning as input
(as well as the current surface context) and predicts a word as output. In fact,
this meaning is the meaning of the next word—so the network basically learns to
map meanings onto word forms as well as learning about sequential structures of
words. In fact, the network learns about sequential structures of word meanings
rather than of actual words. But because it receives structured sequences of
word meanings, and because word meanings map closely onto words, it is still
able to use this learning to predict the next word on the basis of the recently
produced words, like any Elman network.

4.2. The entropy network

The word-production/sequencing network operates in conjunction with an-
other network: the entropy network at the top left of Figure 7. This net-
work generates the same kind of output as the control network: a gating sig-
nal determining whether the word form chosen by the combined word produc-
tion and word sequencing networks is pronounced or witheld. But its decision
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has an altogether separate motivation, to do with the confidence of the pro-
duction/sequencing network in its choice of word. The basic function of the
entropy network is to make sure a word is not pronounced unless the produc-
tion/sequencing network is reasonably confident it is the right one. Early during
development, the network has the function of preventing the generation of ‘non-
sense’, i.e. random outputs. Later in development, the network has a role in
identifying surface linguistic patterns and treating these in a special way, as we
will describe in Section 5.

The entropy network receives inputs from both the word production and
word sequencing networks. Each of these networks computes a measure of con-
fidence in its own prediction about the next word stem. We use the statistical
measure of entropy. (As already noted, the output of each network can be
understood as a probability distribution over possible word stems. The entropy
of a probability distribution is a measure of how evenly probabilities are dis-
tributed; entropy is low when just one word is strongly predicted, and high
when there are many competing alternatives.) The entropy network’s function
is basically to decide how confident the word production/sequencing networks
need to be in order to warrant their predicted word being produced. The en-
tropy network learns a simple threshold function, which takes the entropies of
the word production and sequencing networks and returns a binary decision:
‘pronounce’ or ‘withold’.11

The entropy network is a feed-forward network (multi-layer perceptron) with
one hidden layer. It has two input units, holding the entropy values computed
from the word production and word sequencing networks, and one output unit,
encoding a ‘pronounce’ or ‘withold’ signal. The network learns its threshold
function from the same signal as the control network: a binary ‘match’ between
the predicted next word and the actual next word. For details, see Appendix
A.

4.3. Interactions between the sequencing and entropy networks: a model of id-
ioms

As discussed in Section 4.1, the main function of the word sequencing net-
work is to learn ‘idiomatic’ constructions in language: that is, constructions
expressing a single semantic signal as an extended pattern of several words.
Note that when the sequencing network is producing an idiomatic pattern of
words, it can often make confident predictions about several words in a row
from just one semantic input. For instance, consider the continuous idiom Win-
nie the Pooh, a sequence of words which collectively express the object concept
WinnieThePooh, or wtp for short. Imagine the network has encountered this
construction many times during training. It will learn that when it first sees
the concept wtp it can confidently predict the word Winnie—but after having
produced this word and updated its own surface context representation, it can

11The entropy network takes two separate entropies rather than a single ‘aggregate’ entropy
in order to allow a special treatment of newly-learned words; for details see Section 6.2.8.
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confidently predict the next word (the), without any additional semantic inputs.
And after another update of its surface context, it can confidently predict the
last word of the idiom, Pooh.12 At this point, of course, it can no longer be con-
fident about the next word without receiving an additional semantic input. Like
any Elman network predicting the next word on the basis of recently produced
words, it will know what class of word to expect, but outside idiomatic con-
structions it cannot select a particular word from this class without knowing its
semantics. In our system, idioms are modelled using the concept of entropy—or
more specifically, of an entropy threshold on pronunciation. As a first approxi-
mation, we define an idiom as a sequence of words which can each be predicted
(with enough confidence to be pronounced) by the production/sequencing net-
works, from a single semantic input, and the recurrent representations produced
in the sequencing network’s surface context layer. In the next section we will
refer to this definition of idioms in our account of how the word sequencing
network interacts with the control network.

5. A combined model of word-learning and syntactic development

So far we have conceptually introduced the submodules of our model and
outlined their developmental role. In this section we describe the complete
model in the form we implemented it. First we describe how the model works
after all its components have been fully trained, then we focus on training.

5.1. Language generation in the combined model

The complete model is shown in Figure 8. It combines the word production
and sequencing networks described in Section 4 with the episode rehearsal and
control networks described in Section 3.

In the complete model, generating a sentence involves replaying an episode in
the episode-rehearsal system, and at various points during replay, pronouncing
one or more words (i.e. dispatching words to the phonological output buffer).
A key issue in the combined model is the synchronisation between the episode
rehearsal and word sequencing networks. Both these networks are iterative in
nature: the episode rehearsal network iterates through a sequence of sensori-
motor signals, and the word sequencing network iterates over a sequence of
words. Sometimes these iterations should be synchronised, so that each new
sensorimotor signal results in a pronounced word. But sometimes they are out
of synch. There are occasions when a sensorimotor signal should occur with-
out any words being pronounced: these are the contexts in which the control
network has learned to ‘withold’ a word, to conform to the word-ordering con-
straints of the exposure language. There are also occasions when multiple words

12Note that the sequencing network is not predicting the words which follow Winnie from
the word ‘Winnie’, but from the word representation ‘wtp’. Our sequencing network can
basically learn a lexicon of idiomatic expressions, as well as the meanings of individual words.
An ordinary Elman network making predictions about the next word would have difficulty
deciding between Winnie the Pooh and Winnie Mandela.
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Figure 8: The complete model of language production. Besides gating overt pronunciation,
the control network and the entropy network coordinate mode switching between episode
rehearsal and surface word sequencing.

should be produced for a single sensorimotor signal: this is the case for idiomatic
constructions, as just discussed in Section 4.2. In our combined network, the
control and entropy networks jointly manage the synchronisation of the episode
rehearsal and word sequencing networks.

The combined network alternates between two modes of iteration. In one
mode, the episode rehearsal system iterates through a sequence of sensorimotor
signals until it reaches an episode context and a phase at which the control
network allows a word to be overtly pronounced. Then it switches to the other
mode, in which the word production/sequencing networks generate predictions
about the next word. If they can confidently predict the next word (a deci-
sion based on the output of the entropy network), the word is pronounced,
the sequencing network updates its surface context layer and the networks at-
tempt to predict another word (from the same sensorimotor signal). Iteration
continues in this mode, with a static sensorimotor signal, until the word pro-
duction/sequencing networks can no longer confidently predict the next word.
Then the model switches back into the episode rehearsal mode. The algorithm
is described in detail in Appendix A.

To illustrate, say that the system is given as input an episode in which Win-
nie the Pooh grabs a cup. Assume this time that the system has been trained
to produce an SVO language (like English). The generation process involves
replaying the sensorimotor sequence encoding this episode, and generating a
sequence of words. The representations computed during the first seven iter-
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Table 5: Processing involved in generating Winnie the Pooh grabs (the) cup. (We assume the
system trained on an SVO language, including the idiom ‘Winnie the Pooh’.) Only the first
three context/phases are shown.

Context/phase C1a C1b C2a
Surface context c1 c2 c3 c4 c5
SM signal wtp wtp wtp wtp grab-plan grab-plan cup

predicted next wd winnie the pooh ? grabs ? cup
confident? yes yes yes no yes no yes
control network ↓ ↓ ↓ ↓ ↓
output word winnie the pooh grabs cup

ations of this process are shown in Table 5. Notice that iterations can now
be over surface contexts (denoted c1, c2 etc) as well as over episode-rehearsal
context/phases (C1a, C1b etc). The first sensorimotor signal is wtp (short for
WinnieThePooh). From this signal, and the ‘start-of-sentence’ surface con-
text (c1), the word production and sequencing networks can confidently predict
the word winnie. Since the control network has learned to pronounce words
in context/phase C1a, this word is produced. Before we iterate to a new con-
text/phase, we now update to a new surface context (c2) to reflect the newly
produced word, and the word production/sequencing networks predict another
word from the same sensorimotor signal wtp. In the updated context, they
now predict the, again with high confidence, so this word is also produced,
and we update the surface context to c3. In this context, the word produc-
tion/sequencing networks predict pooh with high confidence, and we update
to surface context c4. In c4, the word production/sequencing networks can
no longer confidently predict the next word. At this point, control reverts to
the episode-rehearsal network, which updates to context/phase C1b, in which
the sensorimotor signal grab-plan is activated. The control network for an
SVO language allows words to be pronounced in this phase, and the produc-
tion/sequencing networks confidently predict the word grabs. (This word is con-
sistent with the semantic signal, and is also commonly attested following the
phrase Winnie the Pooh.) Now we update to a new surface context and attempt
to predict another word, but we cannot: grabs is not part of an idiom. So we
advance to the context/phase C1b, activating the sensorimotor signal cup. The
SVO control network has learned to pronounce words in this context/phase, and
the production/sequencing networks confidently predict cup, so the last word in
the sentence is pronounced. As this example demonstrates, during sentence gen-
eration the network alternates between updates in the episode rehearsal system
and updates to the surface context. Portions of the sentence generated when the
surface context is updating by itself reflect idiomatic surface structures in the
exposure language. Portions generated after an update in the episode rehearsal
system reflect content-independent word-order rules.
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5.2. Development and bootstrapping of the model
The combined model consists of several networks that need to be trained.

Training happens in parallel, in a coordinated way that ensures learning can
bootstrap. There are two basic systems which must bootstrap one another:
one is the control network and one is the word-production/sequencing network
(WPSN).

On one hand, there must be some learning in the WPSN before the control
network can start to learn. Learning in the control network is governed by
whether the next word predicted by the WPSN ‘matches’ the actual next word in
the training utterance. Until the WPSN is reliably mapping some sensorimotor
signals to words, the ‘match’ signal provides no information about when to
pronounce and when to withold words.

On the other hand, it also makes sense for learning in the WPSN to be depen-
dent on learning in the control network. The word production and sequencing
networks are trained to reproduce the ‘actual next word’ in the phonological
input buffer. But this training should only happen in a context/phase where
the control network is going to pronounce a word. Training the WPSN in other
contexts simply adds noise to the training data, mapping semantic signals onto
the wrong words in the training utterance. We therefore specify that the word
production and word sequencing networks are only trained to reproduce the
next word in the training utterance in contexts/phases for which the control
network generates the ‘pronounce’ signal. Similar reasoning applies to the en-
tropy network. The ‘match’ signal used to train the entropy network is only
meaningful in contexts/phases where the control network thinks a word should
be pronounced. In other contexts, we expect a mismatch, regardless of how much
learning has taken place in the production/sequencing networks. In summary,
the control network is trained in all contexts/phases, while the word production,
word sequencing and entropy networks are only trained in phases permitted by
the control network.

During training, the model alternates between the same two modes as dur-
ing generation. In the first mode, episode rehearsal advances (and the control
network is trained) until a context/phase is reached in which the control net-
work gives the ‘pronounce’ signal. Then the network switches into the word
sequencing mode. As long as the WPSN predicts the next word with sufficient
confidence and it matches the actual word in the phonological input buffer, the
WPSN keeps predicting (based on a changing surface context), being trained,
and advancing the phonological input buffer. If the prediction does not match
or has a low confidence, the actual word stays in the phonological input buffer,
the surface context is not copied and the model switches back to the episode
rehearsal mode. Details of the training algorithm are given in Appendix A.

This way of training creates a circular dependence: each network’s training
relies on the others already giving meaningful output. Our ambition is to model
the development of language production from scratch. So at least one of the
systems involved must have some ability to do some learning on its own.

Our crucial assumption is that learning in the WPSN (and the entropy
network) starts earlier than in the control network. To be concrete: we assume

30



that the ability to store and rehearse episode-denoting sensorimotor sequences
takes some time to mature. Since learning in the control network relies on
controlled replay of working memory episodes, it can only begin when episodes
can be properly replayed. On the other hand, learning in the WPSN and entropy
networks does not require controlled replay of working memory episodes. Even
if utterances and episodes are replayed without any synchronisation, we expect
higher-than-chance correlations between concepts and the words which denote
them: the kind of correlations which are exploited in ‘cross-situational’ word
learning mechanisms (see e.g. Siskind, 1996; Yu & Ballard, 2007). In fact,
we even expect above-chance correlations between concepts and words as they
arrive online, in real time. So there is a good deal of scope for learning in the
WPSN before a controllable episode-rehearsal ability matures.

To model the onset of a mature episode-rehearsal ability, we divide the sys-
tem’s training into two discrete stages: one with no episode rehearsal mechanism
and one with a fully developed one. In the first stage, the regular episode-
rehearsal system is replaced by a system which selects signals from the given
sensorimotor sequence essentially at random.13 During this first stage we also
model development of the phonological input buffer. This is a separate develop-
mental process: we assume that an infant begins in a ‘cross-situational learning
mode’, in which all the words in the input buffer are active in parallel, but
gradually transitions to a mature mode in which words are replayed from the
buffer one by one.14 In this scheme, the initial role of the phonological buffer is
simply to increase the amount of data available to a cross-situational learning
algorithm, as mentioned in Section 3.2. But when it has matured it has a more
precise role in delivering words from the training utterance one by one. This
maturation basically models a transition from a stage where the system learns
(and generates) single words, to a stage where it learns (and generates) word
sequences. Details are again given in Appendix A.

During the first developmental stage, training data for the WPSN are ex-
tremely noisy. If the control network incorrectly witholds a word in the con-
text/phase when it should be pronounced, this word will probably remain in
the phonological buffer and be associated with all subsequent sensorimotor sig-
nals randomly chosen from the episode (including those irrelevant to the word).
Nevertheless, through cross-situational learning, correct concept-word mappings
will start to be learned and the WPSN’s error will decrease.

13In practice, we implement this by disabling the control network rather than the episode-
rehearsal system. We advance through the stages of episode rehearsal as normal, but we
substitute the output of the control network with a random signal (and also disable training
in the control network). Since the WPSN is only trained on a word when the control network
allows it to be pronounced, the basic effect is to create training items from signals from the
sensorimotor sequence selected at random.

14There are many models of the phonological buffer in which words are represented in
parallel; see e.g. Burgess & Hitch (1999). In these models, inhibitory connections between
words result in the most active word temporarily suppressing the others, and then habituating
or inhibiting itself to make way for the next most active word. We assume that it takes time
for these inhibitory connections to develop.
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In our model, the ability to replay utterances in the phonological input buffer
matures some time before the ability to replay sensorimotor sequences in the
episodic buffer. This creates a sequence of three developmental stages. In the
first stage, before the phonological input buffer has matured, the system can
generate individual words, but cannot learn word sequences, because it receives
no sequential training signals. In the next stage, it can learn something about
word sequences, but since it cannot accurately replay episodes, it cannot use
the control network, and therefore cannot learn content-independent syntactic
rules. In the final stage, once the control network has come online, it can
learn both word sequences and abstract syntactic rules. Of course, vocabulary
learning takes place during all three stages. Very roughly, we see the first stage
as modelling infants between 10 and 18 months, the second stage as modelling
infants from 16 to 30 months, and the third stage as modelling infants after 24
months.15

While we simulate gradual maturation process for the phonological input
buffer, we decided to model maturation of the episode-rehearsal system at a
single point during training, so that its effects could be clearly identified. Of
course in a more realistic simulation it would mature more gradually. But we
nonetheless want to suggest that the emergence of mature syntax involves a
qualitatively new mechanism.

6. Simulations

The model we have just described has been implemented and tested on
several artificial languages. The main hypothesis we wanted to test by simula-
tion was that the model can learn to produce syntactically and morphologically
correct and semantically adequate sentences of the target language for given
meanings (episodes). We specially focused on the interplay between abstract
syntactic knowledge (namely word ordering conventions) and surface regular-
ities in the form of idiomatic expressions. But in addition, we wanted the
developmental profile of learning in our model to correspond to some broadly
defined stages of syntactic development in infants. We wanted the system to
begin in a ‘single word’ stage, then move through a stage of producing short
proto-syntactic utterances (corresponding e.g. to the ‘pivot schemas’ of Braine
(1976) or the ‘item-based constructions’ of Tomasello (2003), before finally pro-
ducing full-fledged sentences.

6.1. Training data

The model was trained on episodic representations paired with sentences
from an artificial target language containing a mixture of idioms and syntac-
tically regular sentences. Although the sentences varied in their degree of id-
iomaticity, they were syntactically homogeneous in that they all were transitive

15These age spans overlap to take into account individual differences between children, as
well as the continuous character of language development.
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(i.e. containing three semantic roles agent, patient, action—“who did what
to whom”). The reason for this is that we have a detailed sensorimotor model
of simple transitive actions (that of Knott, in press). We will introduce other
syntactic constructions in due course.

A basic language we used for most of our experiments was an invented lan-
guage with the SVO word order, English vocabulary, English-like inflections on
nouns signalling number, and ‘rich’ inflections on verbs signalling the person
and number of their subjects. The inflections were represented schematically as
a suffix on word stems, e.g. mummy-sg (a singular noun inflection), see-3sg (a
third-person singular verb inflection). Some words had irregular morphology;
we modelled these as words with null inflections (e.g. mice). We also included
an English-like system of pronouns, distinguishing person, number and nomina-
tive/accusative case.

The core of our 105-word vocabulary consisted of words commonly used by
16-30 month-old toddlers according to the Child Development Inventory (CDI,
Fenson et al., 1994). The grammar of our language allowed for regular transitive
sentences and also for two types of idiom (possible inflections not shown):

• continuous NP idioms (teddy bear, Winnie the Pooh, play dough, ice cream,
french fries),

• discontinuous VP idioms (kiss NP good bye, give NP a hug, give NP five).

Note that these idioms do not all have the same degree of idiomaticity. For
instance give NP a hug is not fully idiomatic; it contains a noun phrase (NP)
‘slot’ whose filler can have arbitrary (accusative) NP structure. Rather they
exemplify the spectrum of possible idioms. However, there is some evidence
that even phrases not considered idiomatic in adult language could be learned by
children first as surface patterns or item-based constructions (Tomasello, 2003).
Similarly, Pine & Lieven (1997) claim that although children use determiners
with different noun types, there is no evidence for them possessing an adult-like
syntactic category of determiners, which rather evolves gradually by broadening
the range of lexically specific frames in which different determiners appear.
Therefore, we omitted determiners (a and the) from our language, except for
cases where they were part of an idiom, as in give NP a hug or Winnie the Pooh.

The language also featured semantic dependencies, in that all subjects were
animate,16 some verbs could only be followed by animate objects, others only
by inanimate objects. It also contained synonyms and lexical ambiguities (the
word give could be a part of either give NP a hug or give NP five, the word hug
could be a regular verb as in I hug-1sg you or a part of the idiom give NP a
hug and the word kiss could be either a regular verb as in grandpa-sg kiss-3sg
grandma-sg or a part of an idiom with a different meaning as in grandpa-sg
kiss-3sg grandma-sg good bye).

To allow for all mentioned phenomena, we made some extensions to the core
CDI-based vocabulary. Out of the idioms used in our language, CDI explicitly

16We conceived teddy bears as animate too.
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contains teddy bear, play dough, ice cream, french fries and give me five. It also
contains single words give, hug, kiss, good, bye that we used in discontinuous
idioms. We also added the word rabbit to feature as a synonym of bunny, and
the idiom Winnie the Pooh.

Utterances of the target language were generated from a context-free gram-
mar specifying syntactic constructions and words that could appear in specific
positions (see Appendix B for details). The rules for inflections were as follows:

• All proper names were singular.17

• Person and number of the verb agreed with those of the subject. (We did
not include tense inflections.)

• Nouns with irregular plural forms (e.g. mice), personal pronouns (I, you,
he, she, it, we, they, me, him, her, us, them) and words appearing as fixed
parts of idioms (e.g. winnie) all had null inflections.

Each target utterance was paired with an episode representation: a role
frame associating agent, patient and action roles with sensorimotor signals.
During training/generation, the role frame description was used to generate
a sequence of sensorimotor signals in the episode rehearsal system (Table 2),
while the target utterance was replayed from the phonological input buffer. For
example, the sentence We like-1pl mummy-sg was paired with the role frame
description

AG:pron/1/pl, ACT:like, PAT:mummy/3/sg

while the sentence Winnie the Pooh-sg kiss-3sg Helen-sg good bye was paired
with

AG:WinnieThePooh/3/sg, ACT:farewell, PAT:Helen/3/sg

Note that while in non-idiomatic sentences there is a one-to-one correspondence
between words and concepts, multi-word idiomatic phrases are still represented
by single concepts.

All personal pronouns were represented by a single concept pron combined
with an appropriate person and number.

The grammar could generate 127088 possible sentences, out of which ap-
proximately 20% contained idioms (13% continuous NP idioms and 6.4% dis-
continuous VP idioms).18 To test the generalisation ability of the model, we
only trained it on a small subset of all possible sentences (approx. 3%).

The basic language we have just described has SVO word order. To test the
hypothesis that our model can acquire any possible word order, we created five

17We treated mummy, daddy, grandpa and grandma as proper names too, assuming they
denote a particular person for an infant (i.e. his/her mummy, daddy, etc).

18A description of how the ‘degree of idiomaticity’ of utterances is determined is given in
Section 6.2.5.
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variant languages with SOV, VSO, VOS, OSV and OVS order. These languages
were created by changing the word-ordering rules in the SVO grammar, but
retaining the same English vocabulary and morphological rules.

In all our experiments we used 10 simulated ‘model subjects’. Each subject
was an instance of our model with network connections initialised to different
random initial weights, and exposed to a its own training set containing 4000
stochastically generated sentences of the target language, and a test set contain-
ing another 4000 sentences of the target language (not present in the training
set). In this way we modelled 10 individuals each with their own personal history
of exposure to the same target language. All the model subjects were trained
on their training sets for 30 epochs. The phonological input buffer was set to
mature at around epoch 5, and learning in the control network learning was
turned on at epoch 15. After each epoch, the weights were temporarily frozen
and the models were tested for their ability to correctly generate sentences for
meanings paired with the sentences in their test sets. The results were averaged
over the 10 model subjects.

6.2. Results and discussion

When charting the linguistic development of a child, several separate met-
rics must be used, relating to vocabulary size, acquisition of surface language
patterns, and acquisition of fully mature syntactic and morphological rules. In
this section we evaluate the learning of our system using an array of metrics of
these kinds.

6.2.1. Acquisition of open-class vocabulary

We begin by presenting some basic results about the model’s learning of
individual words. There are different ways this can be assessed. Most obviously
we could simply inspect the word-production network in isolation, and measure
the number of word meanings which are correctly mapped onto word forms.
But it is more realistic to measure vocabulary by inspecting the model’s output
utterances. (This corresponds to the measure of ‘active vocabulary’ used in
studies of child language.) We defined the active vocabulary size of the model
in a given epoch as the number of word types which were produced correctly at
least once during that epoch. A word was deemed ‘correct’ if it matched at least
one of the semantic signals in the input episode (ignoring inflections). Active
vocabulary development for the 10 SVO model subjects is charted in Figure 9.19

As the figure shows, after an initial peak, active vocabulary size rises steadily
until there is a sudden jump at epoch 15, the epoch when the control network
comes online. By the end of this epoch, the model is correctly producing all the

19We could also define vocabulary size as the number of word types which were always
correct when produced, or at least correct most of the time. In fact, because our model only
produces a word when it is confident about its correctness, it hardly ever produced incorrect
words, so this definition produces a graph very similar to that in Figure 9.
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Figure 9: Active vocabulary size after each training epoch. The results are averaged over the
10 SVO model subjects.

words it can represent. The initial peak is an interesting effect, which has its
origins in the way the phonological input buffer matures between epochs 0 and
5. As this happens, the entropy network temporarily becomes more conservative
about producing words: the drop in vocabulary size between epochs 2 and 4
is actually due to a drop in the number of produced words rather than to
any regression in the word-production/sequencing networks. We will discuss
this effect in more detail in Section 7.4. The jump in vocabulary at epoch
15 is mainly due to the influence of the word sequencing network on word
production. Recall that before epoch 15, the control network activates random
contexts/phases. This means that the network is often called upon to generate
words in syntactically inappropriate contexts, which results in low confidence in
the sequencing network.

6.2.2. Acquisition of word-ordering conventions

A key novel element of our model is the control network, which learns the
word-ordering conventions of the training language. We predict that this net-
work will be able to learn any of the possible word orders. To test this prediction,
we trained the model on the five variant languages featuring SOV, VSO, VOS,
OSV, OVS word orders as well as on the original SVO language.

Acquisition of word-ordering conventions requires the control network to
learn what contexts/phases should be inhibited. To verify that the models
have really learned the conventions for all the word-orders, we inspected output
values of the control network for all contexts/phases during sentence generation
on the test set. Learning is very fast: 1-2 epochs after the control network
begins training its output values for contexts stabilise, and do not change much
thereafter. Figure 10 shows an example of learning for the VSO language. For
each training language, the same inhibition pattern was learned by each model
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Figure 10: Control network output values for the model trained on the VSO language (aver-
aged over 10 model subjects). After epoch 15, the network returns above-threshold activities
(thr=0.3) for contexts C1b, C3a, C4a. For other word-order types, trends are similar, just
with different above-threshold contexts (see Table 6).

subject: the learned inhibition patterns for the different languages are shown
in Table 6. In each case, the inhibition pattern led to the right word-ordering
convention; in other words, the control network learns a correct policy in 100%
of cases for each possible language.

Note that for some word orders there are multiple possible inhibition patterns
which give a correct result; for instance for SVO word order we could inhibit
C2b–C4a, or C1a–C2b. Our match-based training algorithm results in a ‘greedy’
strategy, where words are pronounced on the first permissible occasion; see
Section 7.2 for further discussion.

Since the control network only takes input from the context and phase rep-
resentations of the episode rehearsal system, we also predict that the word-
ordering conventions it learns will generalise well to episodes not encountered
during training. We will test this prediction in Section 6.2.4, when we evaluate
the system’s ability to generate full sentences.

6.2.3. Acquisition of morphological agreement rules

Our model was also designed to learn morphological agreement rules. As
discussed in Section 3.1, these rules exploit structure in the ‘WM episode’ and
‘current object’ areas of the episode-rehearsal system. The WM episode area,
which delivers the semantics of inflected verbs, conveys fine-grained information
about a planned motor action to the linguistic system, but also coarser-grained
information about planned attentional actions to the agent and patient. The
current object area, which delivers the semantics of inflected nouns, conveys
information about an object, but also about the attentional action which deliv-
ered this information. In our account, grammatical person and number features
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Table 6: Inhibition patterns learned by the control network for each word-order language type.
‘↓’ means an above-threshold activity for a given context (the ‘pronounce’ signal), ‘—’ means
an under-threshold activity (the ‘withold’ signal).

SM signals in contexts
C1a C1b C2a C2b C3a C3b C4a

Lang. type AG ACT PAT ACT AG ACT PAT
SVO ↓ ↓ ↓ — — — —
SOV ↓ — ↓ ↓ — — —
VSO — ↓ — — ↓ — ↓
VOS — ↓ ↓ — ↓ — —
OSV — — ↓ — ↓ ↓ —
OVS — — ↓ ↓ ↓ — —

express coarse-grained information about attentional actions. The fact that this
information is present in WM episodes as well as in the current object area is
what allows agreement between verbs and argument nouns. In our model, an
‘agreement rule’ in a given language is really just a policy about how much of
this multiply presented information should be explicitly conveyed by nouns and
verbs. This is what the word production/sequencing network must learn from
the training language.

We define a word generated during by the system to be morphologically
incorrect if it incorrectly expresses person/number information. For a word
with regular inflections, this will mean an incorrect inflection; for an irregular
word it will mean an incorrect word stem.20 The graph in Figure 11 shows the
proportion of the words generated in each epoch which were morphologically
incorrect, averaged over 10 SVO model subjects.

The basic finding is that the model is successfully able to learn the mor-
phology of the training language. This involves learning about subject-verb
agreement rules, irregular plural nouns (e.g. leaves as the plural of leaf), and
about the semantics of pronouns. However, it is also interesting to look at per-
formance in relation to when the control network comes online, at epoch 15.
The network clearly learns a good deal about morphology without help from
the control network. But its performance is given a distinct boost by the control
network, which essentially eliminates all of the remaining errors within a single
epoch.

Note that while the model architecture has a potential for representing over-
regularisations, e.g. leaf-pl (leafs) or tooth-pl (tooths), we hardly observed any
of these.

20Using an incorrect pronoun (e.g. you instead of they) also counts as morphologically
incorrect on this metric, because the mistake relates solely to person/number information.
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Figure 11: Proportion of words pronounced with morphological errors in sentences generated
for meanings from training and test sets after each training epoch. Results are averaged over
10 SVO model subjects.

6.2.4. Overall accuracy of generation

Can our model achieve mature linguistic performance, i.e. can it be trained
to generate fully correct sentences in the training language? We consider an
utterance generated for a given meaning to be correct if all the roles (agent,
patient, action) are expressed with semantically appropriate words, the sentence
is syntactically correct (i.e. it complies with the transcription rules) and all the
words have correct morphology (inflections). And we define the generation
accuracy of a model being trained as the proportion of correct utterances it
produces, evaluated either in relation to its training set of meaning-utterance
pairs, or to an independent test set.

Figure 12 shows the generation accuracy of 10 model subjects trained on
the SVO language. As is very obvious, the control network, which comes online
in epoch 15, has a dramatic impact on generation accuracy: before it comes
online, the model produces almost no correct sentences, but afterwards its ac-
curacy improves to close to 100% within a few epochs. Before epoch 15, even
though the model is learning vocabulary, morphology and surface regularities,
it is not able to produce fully correct sentences. We should stress that during
this time the model is not ‘silent’: it is producing a range of single-word and
multi-word utterances, which often convey a good deal of the message to be
expressed, as should be clear from Sections 6.2.1 and 6.2.3. (We will analyse
these pre-syntactic utterances in more detail in Section 6.2.6.) So development
is not as discontinuous as the generation accuracy measure seems to indicate.
Nonetheless, prior to epoch 15, utterances are hardly ever fully correct.

After the jump at epoch 15, the learning curves tend to saturate, but they
do not increase strictly monotonically; instead they show small fluctuations.
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Figure 12: The generation accuracy—relative number of correct sentences generated after
each training epoch for meanings from the training set and an independent test set, averaged
over 10 model subjects trained on samples of the SVO language.

This is due to the complex interactions between multiple subnetworks, mainly
caused by ongoing adaptations in the entropy network. To prevent overtraining,
we considered each model subject as fully trained in the epoch in which it
achieved the best generation accuracy on the independent test set.

On average, a model subject became fully trained after 24.2 training epochs
(SD=3.12), and at this point achieved 99.4% (SD=0.1%) generation accuracy
on the training set and 98.3% (SD=0.5%) on the test set. Given that each
model subject was only trained on 3% of the training language, this suggests
the network has very good generalisation abilities. This is largely due to the
control network, whose word-ordering rules make no reference to the semantics
of particular words.

6.2.5. Acquisition of surface regularities (idioms)

The target language contained a mixture of syntactic patterns (produced
by abstract constituent-ordering rules) and surface linguistic patterns (express-
ing idiomatic constructions). We were interested whether the model learned
both types of pattern equally well. We divided generated sentences into several
groups: regular sentences—those that do not contain any idioms; contin-
uous NP idioms—sentences with an idiomatic noun phrase in at least one
of the agent/patient roles, and not containing a discontinuous verb idiom; and
discontinuous VP idioms—sentences containing an idiomatic verb phrase
(regardless of the presence or absence of continuous idioms in the sentence).

We measured the generation accuracy of fully trained model subjects for
each group separately; the results are shown in Figure 13. The model per-
forms well for all sentence types. Its good performance on discontinuous idioms
is especially significant, given that these constructions only feature in about
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Figure 13: Generation accuracy of fully trained model subjects by idiomaticity type of gen-
erated sentences. Reg—regular (non-idiomatic) sentences, Cont—sentences with continuous
NP idioms, Disc—sentences with discontinuous VP idioms.

6.4% of the training sentences.21 The average generation accuracy on previ-
ously unseen episodes (test set) was 98.6% (SD=0.5%) for regular sentences,
98.5% (SD=0.5%) for continuous idiomatic sentences and 93.5% (SD=2.8%) for
discontinuous idiomatic sentences.

It is interesting to examine how the model is able to generate discontin-
uous idioms. For instance, consider Daddy-sg kiss-3sg me good bye. ‘Kiss
X good bye’ is a pattern of words collectively expressing the semantic signal
farewell/3/sg, but production of this pattern must be interrupted by produc-
tion of the word me—which realises its own semantic signal, pron/1/sg. Say
the model has already produced the word Daddy-sg, and the episode-rehearsal
network has just presented farewell/3/sg for the first time. The WPSN will
confidently predict the first word of the idiom, kiss-3sg. But when the surface
context is updated, it is unable to make a confident prediction, since it needs
information about the patient at this point. So we update the episode-rehearsal
network until the context/phase which presents the patient signal, pron/1/sg.
At this point the WPSN can confidently predict me. The important thing is
that we now update the surface context, to give the WPSN an opportunity
to generate an idiomatic continuation. And in fact the WPSN can confidently
predict good and then bye, the remainder of the discontinuous idiom. This is
mainly due to learning in the sequencing network. Recall that this network

21In a training epoch the model is exposed to around 250 (SD=15.9) discontinuous id-
iomatic sentences, compared to 3235 (SD=28.1) non-idiomatic and 515 (SD=17.9) continuous
idiomatic sentences (averaged over 10 SVO model subjects). The figures for the test sets are
similar.
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Figure 14: Proportion of sentences of the length n among sentences generated for an indepen-
dent test set after each training epoch. Results are averaged over 10 SVO model subjects.

receives a sequence of word meanings as inputs, and learns to represent the rel-
evant recently-presented word meanings in its context layer. So even though its
current semantic input is some arbitrary object representation, its context layer
still holds a record of the semantics of the partially produced idiom. Moreover,
it knows that . . .me good bye is a common word sequence. This knowledge is
sufficient for it to be confident about predicting good and then bye.

6.2.6. Early syntactic development

Before the model learns to correctly generate sentences with full-fledged syn-
tax, it produces a range of single-word and fragmentary multi-word utterances.
In this section we will look at these. The discussion will focus on development
of word-ordering rules. For some comments about morphological development,
see Section 7.3.

Figure 14 shows the proportions of utterances of length 1, 2, 3 and over
3 words generated for meanings in the test set after each training epoch. We
can see that before the control network is turned on at epoch 15, one-word
and two-word utterances predominate. Single-word utterances can reflect any
aspect of the meaning to be expressed: agent, patient or action. Two-word
utterances often reflect two components of meaning; in these cases they mostly
have the form S V or O V (where S, V and O realise the agent, action and
patient respectively). Sometimes they are idiomatic expressions reflecting the
agent or patient (e.g. teddy bear). Sometimes they reflect an agent or patient
and an action, but contain a fragment of an idiom (e.g. teddy tickle or mummy
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give22. And sometimes they result from the (incorrect) repetition of a word.23

The system’s earliest semantically productive multi-word utterances appear
to reflect ‘item-specific’ rules for word combination—i.e. rules which are tied
to particular individual words. Children’s early uses of grammatical construc-
tions are typically item-based (see e.g. Tomasello, 2003). For instance, when
a child first uses a particular transitive verb in combination with an object
noun, the range of nouns which appear with it is often very restricted: we may
see kiss mummy and cuddle teddy but not kiss teddy, even if there are ‘kiss
teddy’ episodes to report. Empiricist linguists argue that mature grammatical
rules are learned through a gradual process of generalisation away from con-
crete utterances, and see item-based constructions as reflecting early steps in
this abstraction process. Our model’s first multi-word utterances are distinctly
item-based. For instance, after epoch 7, one of our SVO model subjects regu-
larly produced I draw and we help, but not we draw or I help, even though the
test set provided opportunities to express both these phrases. (A description of
all the utterances produced by this subject at this epoch is given in Appendix
C.) The model’s item-based constructions reflect a mixture of learning in the
word-production and word-sequencing networks. The words in an utterance
must individually reflect semantic signals, but collectively they must conform
to known sequential patterns in the training utterances.

Once the control network comes online, the model can learn rules about the
structure of utterances which do not make reference to individual words. Note
that the system’s utterances must still conform to word-sequencing constraints;
the control network’s main role is to select sequences of semantic signals which
align with surface word sequences. As shown in Figure 14, after epoch 15 the
network rapidly learns to generate utterances of three or more words, to the
virtual exclusion of shorter utterances. These longer utterances are by and
large correct, both syntactically and semantically. Utterances with more than
three words are those which contain idioms; e.g. Winnie the Pooh-sg like-3sg
ice cream-sg. Note that the network learns to produce idiomatic sentences just
as fast as non-idiomatic ones, even though there are fewer of them.

One final interesting feature of the ‘mature’ stage of language production
after epoch 15 is that our model sometimes uses idiomatic forms to express
productive combinations of concepts. For instance, the SVO model subjects
sometimes generated a verb in context/phase C1b, as normal, but then con-
tinued to generate the object in this same context/phase, before the semantic
signal for the object had actually been delivered. This happened in around 4%

22The verb give only appears in our language as a part of discontinuous idioms give NP five
and give NP a hug

23Repeated words often occur because learning of word meanings in the word production
network outpaces learning of surface patterns in the word sequencing network. For instance,
the peak in the number of two-word utterances before epoch 4 is due to repetitions such
as you you, which occur because the sequencing network does not generate a low enough
confidence for the sequence you you to override the word production network’s continued
confident prediction of you.
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of utterances. We surmise that the behaviour is due to sampling biases in the
training set, which caused certain concepts to be combined in predictable ways.
For instance, it may be that in a certain training set, if the agent was mummy
and the action was eat, the patient was always pizza. In such a case, our system
could generate pizza as an idiomatic continuation of Mummy eats.24 Something
similar may happen in humans when expressing messages whose components
combine with particularly high frequency (e.g. How are you doing?, Get out of
here! etc). In fact, it has often been suggested that idioms have their origin in
this kind of over-representation of particular concept combinations. It is inter-
esting to see our network learning to express such combinations using surface
word patterns.

6.2.7. Syntactic bootstrapping

A common proposal in models of language development is that once chil-
dren start to learn the syntax of their exposure language, they become more
efficient at learning individual words. The idea is commonly termed syntactic
bootstrapping (see e.g. Landau & Gleitman, 1985). To illustrate, say a child
growing up in an English environment hears the utterance Gick glebs snuck.
Knowledge of basic English morphosyntax places strong constraints on the pos-
sible referents of each word: for instance, gleb probably denotes an action.

Our model demonstrates simple syntactic bootstrapping of this kind. Imag-
ine the model is given a training utterance featuring a novel word. If this
happens before the control network comes online, it associates the word with
one particular sensorimotor signal from the associated episode (or perhaps with
multiple signals, if the phonological input buffer is still immature). In either
event the meaning of the new word can be learned over multiple exposures,
because of weak cross-situational associations between signals and words, but
this form of learning is very slow. However, if the model has already learned to
appropriately synchronise replaying of a word sequence with episode rehearsal,
the new word will only be a training target for the semantic signal which it
actually denotes. This should make learning much faster.

To verify that our model can learn a novel word faster after having acquired
syntactic knowledge, we designed a modification of our basic training regime.
In the modified regime, we train the model initialised with random weights for
a certain number of epochs on a sample of 3980 SVO sentences (paired with
meanings) that do not contain a particular word (dog), then we add to the
training set another 20 sentences—10 with dog in the subject position and 10
with dog in the object position, and continue training. After each epoch of
training, the model is tested for sentence generation on 100 different sentence
meanings—50 with dog in the subject position and 50 with dog in the object
position.

The variable parameter was the epoch in which sentences with dog were

24Note that in context/phase C2a, when the semantic signal pizza is actually delivered, the
network is silent, because the sequencing network is reluctant to produce two pizzas in a row.
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introduced into the training set. In an ‘early word learning’ condition, we in-
troduced the dog sentences at epoch 5, well before the control network comes
online, and in a ‘late word learning’ condition, we introduced them at epoch
20, after it has fully learned the SVO word ordering convention. We were inter-
ested in how many training epochs are necessary to learn to use the new word.
To separate word production performance from ability to correctly generate
whole sentences, we recorded the relative number of times the model correctly
predicted the word dog for the semantic input dog in each epoch after dog-
sentences were introduced, and also the relative number of times it was actually
overtly pronounced for this signal. We considered the novel word successfully
acquired when it was correctly predicted/produced in at least 75% of cases.

We created 10 model subjects with different initial weights and different
training samples in the ‘early learning’ condition and 10 model subjects in the
‘late word learning’ condition, paired by training samples. The average number
of training epochs necessary for correct prediction of the novel word was 8.7
(SD=2.06) for the early learning group and 2.6 (SD=0.52) for the late learn-
ing group. For correct pronunciation the figures for early and late learning
groups were 16.7 (SD=1.70) and 9 (SD=1.76) respectively. Both these differ-
ences are statistically significant (t18 = 9.931; p < 0.0001 for pronunciation,
t′10.13 = 9.093; p < 0.0001 for prediction).

Note that while our model shows some analogue of syntactic bootstrapping,
we are not trying to model ‘fast mapping’, the learning of a new word in a single
exposure (Carey & Bartlett, 1978). In our simulation it takes at least 2-3 epochs
(40-60 exposures) to learn to predict a new word reliably. This is basically a
result of our use of a back-propagation training regime.

6.2.8. Systematicity in generalisation

As already noted, even though the control network learns word-order rules
which are independent of surface words, the word-sequencing network learns
rules which retain reference to surface words. It is interesting to ask what
happens when the conventions learned by these two systems conflict. The rules
learned by our control network generalise easily to unseen utterances, but an
Elman-style network has difficulty producing words in utterances which differ
from those encountered during training. How does our combined model deal
with such utterances?

Of course, a ‘new utterance’ can differ from training utterances to differing
degrees. A useful distinction was proposed by Hadley (1994), between a new
utterance which contains a word sequence not encountered during training, and
a new utterance which uses a word in a syntactic position in which it was never
encountered during training. Assume a toy training set containing the utter-
ances Dog bites man and Dog eats food. The test utterance Dog eats man is new
in the first sense, because the sequence eats man is novel. A network which can
generalise to this type of novel utterance is said to show weak systematicity.
The test utterance Dog bites dog is new in the second sense, because the word
dog only ever appeared as a subject in the training utterances. A network which
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can generalise to this type of novel utterance is said to show strong system-
aticity: it can be said to have learned an abstract rule, defined with reference
to syntactic categories rather than words. Of course, our control network by
itself passes the strong systematicity test with flying colours: the rules it learns
are abstract in just this way. But if we want our model to handle idiomatic
constructions in mature language, we need to learn surface patterns as well.
What we need is a model which shows systematicity even though it also has a
capacity to learn surface patterns.

We will begin by discussing weak systematicity. To examine our complete
model’s ability to produce unseen word sequences, we created 10 new test sets
called WS sets (1 for each model subject trained on the SVO language), each
comprising 100 items featuring unseen action-patient combinations, and corre-
spondingly, unseen word sequences. We generated these by altering one of the
selectional restrictions in the standard grammar, so that actions which normally
require animate patients were given inanimate ones. This resulted in sentences
like Helen-sg tickle-3sg banana-sg and We hug-1pl pizza-sg. Not only have these
sentences never been seen during training (which also holds for our standard
test sets), but each of them contains a transition that has never been in any
training sentence. We let the 10 fully trained SVO model subjects described in
Section 6.2.4 generate sentences for meanings in these new WS test sets. For
fully trained models, the average generation accuracy was 90.0% (SD=3.2%),
compared with 98.3% on standard test sets (see Section 6.2.4). Our network
clearly achieves weak systematicity.

We now consider strong systematicity. In this case, there is a much stronger
conflict between the predictions of the content-independent control network and
the word-sequencing network. To illustrate, consider the above scenario, where
we give our model a training set in which a given noun (e.g. dog) only ever
appears in subject position, and then ask it to generate a sentence where this
word appears in object position. In the phase of episode rehearsal when the
object noun should be produced, there will be a strong conflict between the
predictions of the word-production network and those of the word-sequencing
network. The former network will predict the word dog from the sensorimotor
signal dog which appears at this phase. The latter will predict a distribution
of words which it has seen in object position, but this will not include dog.
What we want is a way of giving precedence to the word-production network’s
predictions in a case like this.

In fact, our model does show some strong systematicity: its design allows
it to override the sequencing network’s inability to produce words in novel con-
texts, in some special circumstances. Our design makes the assumption that the
network will only be called upon to generate a word in an unseen syntactic posi-
tion if the word is newly learned. We assume that words are evenly distributed
over the syntactic positions in which they can appear. (At least for subjects and
objects, this is not implausible.) If this is the case, the only time when it will
be necessary to produce a word in a new syntactic position is when the word
is new. Now note that our network has a way of measuring how new a word
is: this can be read directly from the entropy of the word-production network
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Figure 15: The input space of the entropy network in one of the model subjects after 15
epochs of training, with an indication of the learned confidence threshold.

when it is given the semantic signal associated with the new word as an input.25

If a word has only been encountered a few times, the word-production network
will be relatively unconfident in its prediction of this word from the associated
semantic signal. (It will probably still make the right prediction, because this
signal will not have been paired with any other words—but its confidence will
nonetheless be lower than normal.) Recall from Section 4.2 that the entropy net-
work takes the entropies of the word-production and word-sequencing networks
separately as inputs, and learns a function mapping these entropies onto a pro-
nounce/withold decision. There is scope for it to learn to ignore low confidence
in the sequencing network if the confidence of the word-prediction network is
also low. And in fact it does often learn exactly this. To illustrate, consider
Figure 15, which approximates the function learned by the entropy network for
one of our model subjects after 15 epochs of training. The two axes define the
range of possible inputs it can receive: the confidence of the word-sequencing
network is on the x axis, and that of the word-production network is on the
y axis. The thick line separates inputs which lead to a ‘withold’ decision from
those which lead to a ‘pronounce’ decision. As can be seen, a predicted word
can be pronounced even if the word-sequencing network is relatively unconfident
about it (i.e. in an unusual surface context)—but only if the word-production
network is also relatively unconfident (i.e. if the word is newly learned). Hence
we conjecture that at least in some phases of development, the model is able to
produce words in genuinely new syntactic positions, but only if the words are
newly learned.26

25In fact, this is the only reason we have to include the word-production network. If we do
not need to identify new words, the word-sequencing network can learn mappings from word
meanings to word forms as well as sequential patterns of words, and we can do without a
specialised word-production network.

26We observed the characteristic slope shown in Figure 15 in all our model subjects, but
just in some stages of development (usually between 10-15th epoch).
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Of course our model implements a rather simple idea about how to reconcile
the need to model surface language forms with the need to produce novel sen-
tence structures. But we believe it is helpful to isolate the network component
which learns word meanings from the component which learns word sequences,
and to compute the entropies of these components separately.

7. General discussion

7.1. Related connectionist models

Our model of sentence processing combines a basic Elman network with a
model of sequential attentional phenomena. There are several other connection-
ist models of sentence processing which augment a SRN to handle attentional
sequences; in this section we will discuss two of these, and make some compar-
isons.

Mayberry et al. (2009) present an Elman-style recurrent network which per-
forms sentence interpretation. It is designed to model the role of visual attention
in online sentence interpretation—a topic which has been explored in several ex-
periments (see Tanenhaus et al., 1995 and subsequent work). The network maps
an input utterance presented one word at a time onto a static episode repre-
sentation. As in our experiments, episodes are all transitive actions featuring
an agent, action and patient. The innovation in the network is that it receives
inputs from a simulated visual system as well as from a word sequence, and it
generates an attentional signal at each iteration, which selectively gates these
visually derived inputs. The visual input provides two episodes, only one of
which is described by the input utterance, and the attentional signal can gen-
erate a bias towards one or other episode. After training, the network is able
to accurately map word sequences onto interpretations, but more importantly
its simulated attentional signals reproduce the anticipatory saccades made by
human subjects during online processing of sentences (see Knoeferle & Crocker,
2006 for the human data). Beyond the fact that our model is of sentence gener-
ation rather than interpretation, the main difference between Mayberry et al.’s
model and ours concerns the role of attentional operations. Mayberry et al. are
concerned to model the attentional operations which happen during online lan-
guage processing. Our attentional sequences model the attentional operations
involved in the process of perceiving episodes—in its own right, a purely ‘per-
ceptual’ rather than linguistic task. In the experimental task Mayberry et al.’s
model simulates, episode apprehension and utterance interpretation happen in
parallel, and interact in rich ways. The experimental task we are simulating is
more like that studied by Griffin & Bock (2000)), where subjects first observe an
event with no linguistic task, and then afterwards describe it. Griffin and Bock’s
study showed that the patterns of eye movements during these two tasks are
quite different. Our episode-denoting sensorimotor sequences primarily model
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the former task, rather than the latter.27 We view sensorimotor sequences pri-
marily as language-independent semantic representations of episodes. Of course,
we are also assuming that rehearsed sensorimotor sequences have a role in online
sentence generation. We know from Griffin and Bock’s study that during utter-
ance generation, overt eye movements are closely tied to the surface structure of
utterances: speakers tend to saccade to an object just before generating a noun
phrase referring to it. Modelling these overt eye movements would require an
extension to our network. In fact there is a fairly simple extension which would
generate suitable overt eye movements: we could just specify that whenever the
control network allows a word to be pronounced, it also executes an overt eye
movement (if one is possible), to help amplify the semantic signal from which
the word is produced. This would result in eye movements which anticipate the
surface noun phrases in an utterance, whatever language it is in. So there is
some scope for extending our system to model how the eye movements involved
in event apprehension interact with those involved in online sentence processing,
at least for sentence generation.

A more directly relevant connectionist model is that of Chang (2002). This
model is a model of sentence generation, like ours. It uses a recurrent Elman-
type network, augmented with an additional episode-denoting semantic input,
to produce an utterance one word at a time. Like our network, it decouples
the task of vocabulary learning from that of learning syntax, so that it can
generate words in new syntactic positions. As in our network, this effect is
achieved by presenting items from the semantic episode representation one at
a time. At each iteration, the word production network maps the currently
activated semantic item to a word, and this word is pronounced. There are two
key differences between our network and Chang’s. One concerns the mechanism
which generates a sequence of semantic items for the word-production network,
in accordance with syntactic word-ordering rules. In our system, semantic rep-
resentations are inherently sequential, reflecting the sequential structure of the
sensorimotor system, and moreover each component of an episode-denoting se-
quence is repeated; the language network simply has to learn which version of
each component it should pronounce. In Chang’s system, episode representa-
tions are static, and the syntax network has to learn to deliver the components
of an episode sequentially to the word-production network. It does this by
learning word-independent rules about the ordering of semantic roles in the ex-
posure language. In Chang’s network, an episode representation explicitly binds
semantic role symbols such as agent and patient to semantic objects such as
dog and cat, so that activating a semantic role selectively activates the asso-
ciated semantic object. The recurrent network in Chang’s system operates on
semantic role tokens, rather than on words, and learns to activate semantic roles

27In fact, Griffin and Bock found no systematic sequential structure of saccades in the
former task. However, we argue that their use of static pictures as stimuli makes their results
hard to interpret: it is hard to distinguish saccades executed as part of ‘scene interpretation’
from those involved in ‘episode perception’. In an experiment using video stimuli, we found
clear sequential structure in the perception of reach-to-grasp episodes; see Webb et al. (2010).
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in the right order. The mechanisms which translate between words and seman-
tic roles are quite complex, but they do result in content-independent ordering
principles; Chang’s network, like ours, achieves some degree of strong system-
aticity. In our network, semantic representations do not have to include explicit
semantic role tokens; semantic roles are implicitly associated with positions in
sensorimotor sequences. This allows a somewhat simpler mechanism for learn-
ing abstract word-ordering rules. But as regards abstract word-ordering rules,
the main difference between our model and Chang’s is that in ours, these rules
concern how to ‘read out’ language-independent sequential semantic structures,
while in Chang’s they are abstract constructions learned from exposure data.
The other difference between our model and Chang’s is that our model is able
to learn surface language structures as well as abstract syntactic rules. Our
Elman-style network does the usual job of learning word sequences; in Chang’s
case it learns abstract sequences, and there is no mechanism for learning sur-
face structures. But since Chang’s model uses the medium of sequences for
expressing abstract syntactic rules, it could be extended to deal with surface
forms using the same sequence-synchronisation mechanisms as ours. Finally, we
should note that Chang’s model has much wider syntactic coverage than ours.
See Section 7.5 for more discussion about coverage.

7.2. The control network and the LF-PF interface

In a Minimalist interpretation of our model, the job of the control network
is to learn a mapping from LF to PF. However, it is worth noting that for some
languages, the mapping which the control network learns is not the one stan-
dardly proposed in Minimalist accounts. SVO languages are a case in point. In
these languages, the subject is standardly pronounced ‘high’, in IP, while the
object is pronounced ‘low’, in the complement of VP; the verb is high in Ro-
mance languages and low in English. In our model, the control network learns to
pronounce words at the first available opportunity; for a SVO training language
it pronounces the subject and verb high, in IP, and the object high, in AgrP.
This is simply an artefact of the narrow range of sentence types in our training
language, together with the control network’s ‘greedy’ training algorithm. If we
included additional syntactic phenomena in the language, the control network
would have to learn policies more in line with standard syntactic analyses in
order to minimise its overall error. For instance, if we included adverbs and
negation, appearing at positions in between AgrP and VP, as assumed in Pol-
lock (1989) and subsequent work, then the control network would have to learn
to pronounce verbs ‘low’ in English, where they occur after these elements. We
plan to expand the system’s coverage, but this is quite an incremental task,
because each new ‘sensorimotor sequence’ must be justified in its own right.
Again, see Section 7.5 for more discussion.

7.3. Morphology

Even though our model learns ‘mature’ morphological agreement rules, we
have not made an effort to model the developmental stages through which these
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rules are acquired. However, there are a number of extensions to the system
which can be envisaged. Many accounts of morphological development adopt
a broadly empiricist perspective, assuming that morphological paradigms are
acquired by progressive generalisation away from surface forms found in the
exposure language (see e.g. Bittner et al., 2003). Our network, which allows
for both surface-based and abstract morphological patterns to be learned, could
provide a good framework for modelling this transition. One useful extension
would be to introduce an entropy system for inflections. At present, entropy is
only calculated for predicted word stems; if a word is pronounced, we simply
pick the inflection which is most strongly predicted, regardless of how many
competing alternatives there are. A separate entropy system for inflections
would allow the model to generate bare a word stem when it cannot confidently
predict an inflection, reproducing the fact that children’s earliest words are
frequently uninflected. Our network may also provide an interesting platform for
modelling the relationship between morphological and syntactic development.
It is often noted that mature syntactic forms begin to appear at around the same
time as productive morphology (see e.g. Tomasello, 2003; Bittner et al., 2003).
In our model, abstract morphological and syntactic rules both have their origins
in the structure of rehearsed episodes, so the maturing of the episode-rehearsal
system can potentially account for the emergence of productive morphological
rules as well as abstract syntactic structures.

On a separate note, recall that in our network we model person and num-
ber agreement, but not gender. In our model, as discussed in Section 3.1, verb
inflections reflect planned attentional actions in prefrontal cortex: we assume
that these planned attentional actions only interface weakly with the linguistic
system, so that only some of their attributes can be conveyed. We argued that
person and number inflections signal salient attributes of attentional actions.
But how does this suggestion extend to gender? Gender inflections signal quite
arbitrary attributes of objects, which are harder to think of as attentional in ori-
gin. However, it should be borne in mind that attentional operations can involve
the top-down activation of semantic representations as well as actual percep-
tual processes. For instance, when we search for an object, we must activate
a representation of the searched-for object, to be matched against representa-
tions of the objects we perceive. Several studies have located these top-down
semantic representations in prefrontal cortex (see e.g. Hasegawa et al., 2000).
If we assume that top-down prefrontal semantic representations form part of
attentional actions, but maintain the idea that the linguistic system can only
read coarse semantic features from these representations, we should be able to
extend our current model of the agreement system to cover gender features.
Designing these extensions is a topic for further work.

7.4. The role of entropy in a model of language acquisition

One of the distinctive components of our model is the use of entropy. Our
system learns to measure its own confidence in its ability to predict words,
and if it is not confident enough, no words are produced. We introduced the
entropy network for a specific purpose, to manage transfers of control between
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the word-sequencing and episode-rehearsal networks. But the notion of entropy
may also have some interesting contributions to make to an account of language
development, or development more generally.

Two points have already been noted in passing. Firstly, note that learning
in the word-sequencing and production networks does not immediately produce
overt behavioural changes. A word can be reliably predicted by these networks
some time before it is predicted with enough confidence to be pronounced. It
is interesting to ask whether something similar happens during actual language
development. There are several developmental models which characterise chil-
dren as ‘conservative’ word users; see in particular MacWhinney (1984) and
subsequent work. The entropy network causes our model to generate utterances
conservatively. In fact, the notion of conservativeness goes hand-in-hand with
the notion of item-based constructions: as discussed by MacWhinney (2005),
the production of item-based constructions is a natural result of a conservative
learning strategy, which generalises only so far as the data permits. In our net-
work, the generation of item-based constructions is in large measure a result
of the entropy network. The constructions which are produced are those that
slip over the confidence threshold, while those more productive combinations
which are not produced are those that fall below this threshold. The system’s
gradual increase in confidence in particular combinations leads to the gradual
broadening of item-based constructions.

A more novel effect of the entropy network is in producing ‘nonmonotonic’
effects in the learning of our model. For instance, as discussed in Section 6.2.1,
the size of the model’s active vocabulary sometimes decreases from one epoch
to another. This happens because of the way in which the entropy network
learns its confidence threshold. If an incorrectly predicted word is pronounced,
the threshold is incrementally raised. When it is being raised, we can see a
drop in the number of words being produced. This reflects adjustments in
the entropy threshold, rather than any drop in the performance of the word-
production/sequencing network. There are similar fluctuations in the system’s
overall accuracy in utterance generation, as mentioned in Section 6.2.4. We are
not aware of any experimental evidence of nonmonotonic effects in language
development, but such effects are certainly predicted by our model.

In fact, there is another factor which contributes to the large drop in vo-
cabulary size discussed in Section 6.2.1. The drop coincides with a period of
development in the phonological input buffer. Recall from Section 5.2 that the
input buffer begins by presenting words from an incoming utterance in parallel
to the production/sequencing network as training signals, but gradually shifts
to a mode where these words are presented one at a time, and updated with an
explicit ‘advance’ signal. This shift models a change in the task performed by
the system: in the parallel mode it just needs to produce contextually relevant
words, but in the serial mode it must produce words in an appropriate order.
Since the system evaluates its own predictions by matching them against the
phonological input buffer, its evaluation necessarily drops when the buffer starts
to deliver words individually; this in turn causes the entropy network to learn
a more stringent confidence threshold, which results in a drop in the number
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of words produced. It would be interesting to investigate whether something
similar happens in children as they transition from producing single words to
producing words in utterances. We suggest that if children’s utterance genera-
tion algorithm uses a confidence metric, they might be expected to show these
nonmonotonic effects.

7.5. Further work

There are still many questions raised by the current model. For one thing,
we have not discussed any neural correlates of the different components of our
network. Are there any neural regions with a role in language processing which
might correspond to the episode-rehearsal, control and entropy networks? For
another thing, since our model deals with syntactic knowledge deployed in the
task of utterance generation, we should also say something about utterance
interpretation; does it rely on the same mechanisms, and if so, how? We will
not consider these questions here, but they are both discussed in Knott (in
press).

Another pressing question concerns whether the network can be extended to
deal with other syntactic constructions. We have only shown it works for transi-
tive clauses. We plan to extend it to cover a range of other clause types. We also
plan to cover nested syntactic structures—most obviously, full noun phrases, but
also embedded clauses (in relative clauses and clausal complements). When we
designed the network, we of course gave some thought to how it can be ex-
tended in these directions. To cover different clause constructions, the control
network must be able to deliver a gating pattern specific to a particular clause
type (transitive, intransitive, ditransitive and so on). We propose that clause
type can be read off a WM episode, and that if the control network receives
input from WM episodes as well as from context/phase, it will be able to learn
policies specific to different clause types. (And these policies should still be
content-independent, making no reference to individual words.)

As for embedded clauses—of course this is a thorny issue for any neural net-
work. In fact we believe our use of sequences to encode semantic representations
may allow an interesting new treatment of embedded constructions. One of the
difficulties in modelling embedded clauses using a neural network is in represent-
ing their semantics. Many neural network models use a semantic representation
which is designed to hold single propositions. (For instance, both Mayberry
et al. (2009) and Chang (2002) model propositions as tuples mapping semantic
roles like agent and action onto values like dog and chase.) An embed-
ded clause contains more than one proposition, and therefore more than one
set of role-value pairs: clearly these cannot be activated simultaneously in the
‘proposition’ medium without losing information about which roles belong to-
gether. But if they were activated in sequence within this medium, there would
be no loss of information. In our model, semantic representations are inherently
sequential: even a single proposition is encoded as a structured sequence of se-
mantic signals. A natural way to extend this scheme to cover embedded clauses
is to allow that semantic representations can involve sequences of whole proposi-
tions as well as of semantic signals denoting the components of propositions. To
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be concrete, we might envisage extending the network described in the current
paper to allow that the semantic representation of a sentence can comprise a
sequence of whole WM episodes, which is each individually rehearsed while it is
active. This idea has been worked out to some extent for clausal complements
in a paper by Caza & Knott (in preparation). We are currently exploring how
the idea might work for relative clauses. The basic suggestion is that we may
not need to represent all the component propositions in a nested message simul-
taneously; the appropriate relationships between the different propositions can
perhaps be well modelled through the side-effects that individual propositions
have while they are active. For example, Knott and Caza propose that ‘Mother
says that Mary runs’ is represented by a sequence of two propositions, ‘Mother
says’ and ‘Mary runs’, with the proviso that activating any proposition about
‘saying’ triggers a special cognitive mode where semantic signals are activated
by words rather than by the world.

In general, given our basic hypothesis that LF structures reflect sequences
of sensorimotor operations (or perhaps of cognitive operations more generally),
any extension of coverage to a new construction has to be justified from two
perspectives: on the syntactic side we must justify a particular LF analysis of
this construction, but in addition to this we must also evidence for a correspond-
ing sequence of sensorimotor/cognitive processes, drawing on separate evidence
from psychology and neuroscience. Of course there is no guarantee that a corre-
sponding sequence will be found—in which case our hypothesis will be falsified.
But we believe the hypothesis defines an interesting research programme.

8. Summary and Conclusions

In this paper we have presented a neural network model of sentence genera-
tion which incorporates ideas from both nativist and empiricist models of lan-
guage development. From the nativist tradition we take the idea that learning
syntax involves learning to map a rich language-independent logical form onto
a surface sequence of words, by setting discretely valued parameters. Our net-
work’s semantic representations of episodes correspond closely to logical form
structures in Chomsky’s Minimalist model: they contain analogues of right-
branching X-bar structures, which make available multiple positions for the
subject and object, as well as for the inflected verb. The control network learns
whether to pronounce the subject, object and verb at their ‘high’ or ‘low’ LF
positions: effectively, it learns discrete parameter values mapping logical forms
onto word sequences. From the empiricist tradition we take the idea that learn-
ing syntax involves learning surface patterns in an exposure language: that early
in development syntactic generalisations retain reference to individual words,
and that a model of mature language must make reference to idiomatic surface
forms as well as abstract syntactic generalisations. From empiricist linguists we
also take the idea that studying language development should involve building
computational simulations of language learners, which are exposed to complex
and noisy training utterances. ‘Chomskyan’ and ‘empiricist’ models of language
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development are often seen as alternatives to one another, but we suggest that
the above ideas can be quite successfully combined in a connectionist model.

The main innovation allowing an integration of nativist and empiricist ideas
about language modelling is the use of sequences to encode semantic represen-
tations. This is a novel idea from both perspectives. From the perspective of
Minimalism, it is innovative to interpret LF structures as (rehearsed) sequences
of semantic signals. (In fact, Kayne (1994) suggests that the right-branching
form of LF structures seen in Minimalism may have a temporal origin. Our
interpretation can be seen as picking up on this suggestion.) From the perspec-
tive of connectionist models of language, it is innovative to represent episodes as
canonically structured sequences of semantic signals. Representing episodes in
this format provides a simple way of linking object representations to particular
semantic roles. It also helps to express complex interactions between surface
and abstract patterns in language in a format which is tractable for a language
processing network. If both surface and abstract patterns are patterns in tem-
poral sequences, then the interactions between them can be captured by devices
which synchronise sequences. This is what happens in our combined network.
Note that sequentially structured episode representations can be justified both
in terms of their computational role in a neural network model of language,
and as representations which allow the network’s operations to be interpreted
in Minimalist terms. This may not be a coincidence.

Note that our network architecture can also be understood as a model of the
interface between language and the sensorimotor system. Again, sequentially
structured episode representations are at the heart of this account. Our pro-
posal is that experiencing an episode in the world requires a canonical sequence
of sensorimotor operations—and that we represent episodes in working memory
by storing these sequences. In our model, the ‘episode rehearsal’ system pre-
dates language, and works in the same way for speakers of any language: we
assume that those aspects of language which are universal, and which are cap-
tured in the Minimalist account of LF, are in fact reflections of the sensorimotor
system. From a Minimalist perspective, this means we can offer an interesting
new account of the neural underpinnings of linguistic universals. Our suggestion
in this paper is that the language-independent structure of LF does not reflect
the operation of a modular language acquisition device, but rather various prop-
erties of the sensorimotor system and of sensorimotor working memory. From a
connectionist perspective, our sensorimotor model of sentence semantics means
we can give an unusually detailed account of ‘where the semantic representations
in our model come from’. The structure of episode representations—at least,
concrete transitive ones—is motivated in detail in the model of sensorimotor
processing and working memory given in Knott (in press).

In summary, the hypothesis that episodes are represented by rehearsed senso-
rimotor sequences may have the potential to draw together a number of different
theoretical perspectives on language and its neural implementation. We hope
that readers of this journal find this an appealing prospect.
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Appendix A. Technical description of the composite network

In this section we will describe the modules of the complete network shown
in Figure 8 in more detail, as well as the training and sentence generation
algorithms.

The episode rehearsal system is a layer of input neurons with 1-hot
localist coding in each of the four parts: the episode context (4 neurons
coding contexts C1, . . . , C4), the phase (2 neurons coding phases a, b), the
WM episode (3+2 neurons for person (1,2,3) and number (Sg,Pl) of the agent,
3+2 for person and number of the patient, 34 neurons coding possible motor
actions), and the current object (3+2 neurons for person and number, 46
neurons coding possible objects).

The word production network consists of one layer of linear perceptrons
taking input from all the units in the WM episode and the current object parts
of the episode rehearsal system (95 neurons). The connections are gated by the
phase generator in the way that input from the WM episode part is blocked and
that from the current object is let through in the phase a (and vice versa in the
phase b). The output neurons are grouped in two blocks: one representing the
next word stem (localist coding—106 units for all possible word stems, including
one unit representing a conventional ‘utterance-boundary’28 signal), the other
possible word inflections29 (9 units, one of them representing null inflection).
Activities of linear neurons in each of the blocks are combined using the softmax
function

pi =
exp(oi)∑
j exp(oj)

,

where oi, oj are activities of the linear output neurons, j ranges over all neurons
in the block, and pi is the resulting activity of the i-th neuron. Hence, combined
activities in each block sum to 1 and so can be treated as probability distribu-
tions. The word production network is trained using the delta rule (Widrow &
Hoff, 1960) for error minimisation.

The word sequencing network is a recurrent neural network with one
hidden layer of 100 units with a sigmoidal activation function. It is connected
to the same input as the word production network (including the gating). The
recurrent connections are mediated through a surface context layer (100 units),

28The ‘utterance-boundary’ or ‘period’ signal is the last element of the sequence of word
in each training utterance. It allows the trained network to explicitly predict the end of the
sentence, which is utilised for early stopping in sentence generation (after having generated
the ‘utterance boundary’, the network proceeds to the next episode).

29The possible inflections were -sg, -pl (for nouns), -1sg, -2sg, -3sg, -1pl, -2pl, -3pl (for
verbs), and null.
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which carries a copy of activities of the hidden layer from the previous time
step. The output layer of 106+9 linear neurons has exactly the same structure
as that of the word production network. The network is trained using the
back propagation through time (BPTT) algorithm (Werbos, 2002) with a time
window of size 3.

The layer aggregating outputs from the word production and word sequenc-
ing networks also has 106+9 neurons, and the activity of each aggregated unit
is computed as a simple average of the activities of corresponding units in the
two output layers.

The phonological input buffer holds a sequence of words (an utterance
that the infant heard), which are activated one by one and serve as a source
of training signal for other subnetworks. The currently active (actual) word is
accessible in a layer of units of the same structure as the output layers of the
word production/sequencing networks (and their aggregated output), i.e. 106
units representing a word stem and 9 units representing an inflection.

We assume that the sequencing ability of the phonological input buffer is
not mature from the very beginning, but matures gradually. In early stages,
the activity in the actual next word layer is a noisy blend of all words in the
sequence:

�vi =

|U |∑

j=1

gp(i, j)�uj ,

where �uj is the j-th word in the sequence (represented as a vector of 1-hot localist
code of the word stem concatenated with the code of the word inflection), |U |
is the length of the word sequence, and �vi is the i-th representation activated in
the actual next word layer.

gp(i, j) = exp(−p(i− j)2)

is a Gaussian neighbourhood function with parameter p regulating the width of
the Gaussian. The most strongly present representation in �vi is �ui, then �ui−1

and �ui+1 etc, decreasing with the distance between time points i and j. The
parameter p is initially zero (a Gaussian with infinite width) and all words are
represented in the actual word layer with the same strength, which models a
cross-situational concept of associating a current sensorimotor signal with all
words heard within some time span. The p increases with time and provides
a smooth transition from ‘associate with all words’ training mode to ‘associate
with the current item in the sequence’.

The entropy network is a feed-forward network with two input units, one
hidden layer of three neurons with hyperbolic tangent activation function and
one sigmoidal output neuron. The input units represent the entropy in word
stem parts of the word production and word sequencing networks computed as

H = −
b∑

i=1

pi logb pi ,
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where the logarithm base b = 106 is the size of the word-stem part, pi are
output activities of units in the word stem block after application of the softmax
combination function.

The network is trained on a match between the aggregated next word stem
and an actual next word stem representation in the phonological input buffer,
using simple back propagation (Rumelhart et al., 1986). The training signal
is 1, if the phonological output buffer is not empty and the cosine between
vectors representing the two word stems is bigger than 0.5, otherwise it is 0.
The output of the entropy network has a gating and mode-switching function
(see Section 5.1) and is interpreted as a ‘let through’ signal if greater than 0.5.

The control network is a feed-forward network with one hidden layer of
three neurons with hyperbolic tangent activation function and one sigmoidal
output neuron. The network takes its input from episode context (4 units)
and phase (2 units) parts of the episode rehearsal system. It is trained on the
same match signal as the entropy network, using back propagation. Like in the
entropy network, the output neuron activity has a gating and mode-switching
function (see Section 5.1) and is interpreted as ‘let through’ signal if greater
than 0.3.30

All training algorithms use the same learning rate (0.1) and zero momen-
tum.31 Connection weights in all networks are initialised with random values
between (−0.5, 0.5), the surface context layer of the word sequencing network is
initialised with random values from (0, 1). In addition to that, before each new
episode rehearsal, the word sequencing network makes five ‘dummy’ passes on
inactive episodic input (all zeros) to reset the hidden layer history (i.e. set the
‘start-of-sentence’ surface context) and eliminate the influence of the previous
episode. The model is trained for 30 epochs, the control network comes on-
line since epoch 15. The annealing/maturation parameter p of the phonological
input buffer rises linearly from 0 in the first epoch to 8 in the final epoch of
training.

Recall that the complete network alternates between two different modes
when processing training sentences and when generating test sentences (see
Sections 5.1 and 5.2). In one mode, there are iterations in the episode rehearsal
system, and in the other mode, there are iterations in the word-sequencing
network. Flow charts for the training and generation algorithms showing the
two modes are given in Figures A.16 and A.17. Note that in the training
algorithm, there is a forward pass through the WPSN in each phase of episode
rehearsal, generating a ‘predicted word’ to compare with the current word in
the training utterance and create the Boolean match signal which trains the
control network. In the generation algorithm, the control network is already
trained, so there is only a forward pass through the WPSN in contexts/phases

30The threshold is lower than 0.5 to boost learning in early phases, when the WPSN does
not yield good predictions yet.

31The parameter values have been determined experimentally. Generally, the model is not
very sensitive to learning rates. We have experimented with several sizes of hidden layers and
have chosen such that yield the best performance at the lowest possible computational cost.
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Figure A.16: Training algorithm for the complete model. Abbreviations: PhInBuf—the
phonological input buffer (other abbreviations are explained in a legend to Fig. A.17). The
first call of ‘advance ERS’ (*) puts the network into the C1a context/phase. Control net-
work training (**) is skipped in the first developmental stage (before the control network goes
online). Also, the output of the CtrlN (***) is substituted with a random signal in that stage.
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Figure A.17: The utterance generation algorithm in the complete model. Abbreviations:
ERS—episode rehearsal system, CtrlN—the control network, fforw—feed forward pass,
WPSN—the aggregated word production/sequencing network, EntN—the entropy network,
SB—sentence boundary signal. The first call of ‘advance ERS’ (*) puts the network into the
C1a context/phase, subsequent calls iterate through C1b, C2a, C2b, C3a, C3b, C4a. The
output of the CtrlN (**) is substituted with a random signal in the first developmental stage
(before the control network goes online).
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Table B.7: Transcription rules for the syntax of the language used in our simulations. All
non-terminals are written in all capital letters (TRANSITIVE is the initial non-terminal), all
terminals contain small letters. Period (.) is a terminal and stands for the sentence boundary
(SB).

TRANSITIVE → SUBJ VERB GEN OBJ GEN .
| SUBJ VERB INANIM OBJ INANIM .
| SUBJ VERB ANIM OBJ ANIM .
| SUBJ kiss OBJ ANIM good bye .
| SUBJ give OBJ ANIM five .
| SUBJ give OBJ ANIM a hug .

SUBJ → ANIM NP | S PRONOUN
OBJ GEN → OBJ ANIM | INANIM NP

OBJ ANIM → ANIM NP | O PRONOUN
ANIM NP → mummy | daddy | Samko | Mia | Helen | grandma

| grandpa | nanny | Winnie the Pooh | man | men
| woman | women | mouse | mice | fish | goose | geese
| dog | kitty | duck | bunny | rabbit | cow | pig | bug
| puppy | bee | monkey | teddy bear

INANIM NP → ball | book | balloon | toy | doll | block | crayon | pen
| play dough | ice cream | cookie | banana | apple
| cheese | cracker | bread | pizza | leaf | leaves | tooth
| teeth | french fries

S PRONOUN → I | you | he | she | it | we | they
O PRONOUN → me | you | him | her | it | us | them
VERB GEN → see | love | hold | bite | wash | hit | push | like | draw

| hide | kick | carry | watch | find | wipe | touch
| share | pull | lick | pick

VERB ANIM → kiss | tickle | hug | help | feed | chase
VERB INANIM → break | throw | buy | drop

where a word is to be overtly pronounced.

Appendix B. The target SVO language

Utterances in training and test sets for our SVO model subjects were stochas-
tically generated by the rules of a context-free grammar shown in Table B.7.
The rules were assigned different probabilities (not shown in the table) to ensure
balanced generation and a sufficient number of idiomatic sentences. Morphologi-
cal inflections were than added, respecting subject-verb agreement and irregular
plurals.

Examples of sentences composed of single words, continuous idioms, and
discontinuous idioms (with morphological inflections added) are given below.
Note that a discontinuous VP idiom can be interleaved with a continuous NP
one. Mummy-sg love-3sg me. I like-1sg ice cream-sg. Helen-sg tickle-3sg Winnie
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the Pooh-sg. Grandpa-sg give-3sg grandma-sg a hug. Daddy-sg kiss-3sg teddy
bear-sg good bye.

Appendix C. Generated multi-word expressions

Here we list 240 utterances generated after 7 epochs of training in one of
the model subjects trained on the SVO language. We use the following concise
notation: words in curly brackets {} mean that any of them can be substituted
into an utterance, e.g. “X {Y, Z}” is a shortcut for “X Y”, “X Z” (potentially
appearing multiple times). A morphological inflection in parentheses means
that in some cases the model failed to generate it (i.e. generated null inflection
instead).

1-word utterances (197) “{I, we, you, women}”
2-word utterances (41) “I {bite-v1sg, draw-v1sg, hit(-v1sg), kick-v1sg, kiss-

v1sg, pick-n3sg, push, see, wash-v1sg}”,
“we {bite, help, hold-v1pl, like, pull-v1pl, wash-v1pl}”,
“you {bite, buy-v2sg, give, hit(-v2sg), hold(-v2sg), like, pick-n3sg, push(-
v2sg), watch, you}”,
“women {kick-v3pl, push-v3pl, wash}

3-word utterances (2) “women watch-v3pl women”,
“you you you”
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