
Department of Computer Science,
University of Otago

Technical Report OUCS-2011-04

Specifying Exact Scaled Decimal Arithmetic

Author:

Richard A. O'Keefe

Department of Computer Science, University of Otago, New Zealand

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.php

Specifying Exact Scaled Decimal Arithmetic

Richard A. O’Keefe
Department of Computer Science

The University of Otago

28 November 2011

Abstract

The ANSI Smalltalk standard includes a ScaledDecimal class for dec-
imal fixed point arithmetic, but the specification is so vague that imple-
mentations vary greatly. The Language Independent Arithmetic standard
has nothing to say about this data type. This article presents one reason-
able specification, treating these numbers as exact.

1 Introduction

The ANSI Smalltalk standard [ANSI INCITS 319-1998] requires Smalltalk sys-
tems to offer several kinds of numbers: exact unbounded integers, exact un-
bounded fractions (rational numbers other than integers), up to three different
sizes of floating point numbers, and also scaled decimal numbers.

Unfortunately, it fails to specify the semantics of scaled decimal arithmetic
precisely. Existing Smalltalk implementations

• omit this type entirely, or

• treat it as 31 digit IBM/360-style packed decimal, rescaling to avoid over-
flow (so the decimal point is not as fixed as you might expect), or

• treat it as exact rational numbers with any denominator whatever, with
the scale factor controlling only how a number is printed, not how it
behaves in arithmetic, or

• treat it as exact rational numbers with a power of ten denominator.

Some programming languages, notably Ada, have fixed point numeric types
thought of as approximations with a stated absolute error bound. That is
a perfectly reasonable form of arithmetic, and it is not clear that the ANSI
Smalltalk standard was intended to rule it out.

The ANSI Smalltalk standard repeatedly defers to the Language Indepen-
dent Arithmetic standard with the phrase “as specified by . . . ISO/IEC 10967”.

1

Unfortunately, LIA still has nothing whatever to say about fixed point arith-
metic of any kind.

A specification could be

• natural language text, as in the ANSI Smalltalk standard;

• formal mathematics with English text, as in ISO/IEC 10967;

• a reference implementation in a conventional programming language; or

• an executable specification.

We need a high degree of confidence in at least the completeness and con-
sistency of the specification. It should not use any undefined operations. It
should at least type check. It should be comparatively easy to test, to make
sure that at least the most obvious errors are not present. Above all, once we
have our specification, we would like to be able to use it to generate test cases
for a system that is meant to conform to the specification.

All of these desiderata point to an executable specification in some high
level or specification language. The existence of the QuickCheck library for
automatically testing properties of Haskell functions makes Haskell an excellent
choice.

This article was written as a Literate Haskell source file which can be pro-
cessed by LaTeX for printing, or loaded directly by a Haskell system. The code
that you see is the code that was checked.

2 The code

We want an abstract data type, so we use a module. Almost all the operations
we need are defined in Haskell type-classes, so do not need to be exported
explicitly. Smalltalk has an operation to read the scale of a number, so we have
to export the type class defining that. A function for converting real numbers
to scaled decimal with a given scale does not fit into any existing Haskell class,
so is exported by itself, as are some generalisations of rounding.

module ScaledDecimal (

ScaledDecimal,

Scaled,

ceilingTo,

floorTo,

roundTo,

truncateTo,

toScaledDecimal

) where

We can construct a scaled decimal number in two different ways other than
arithmetic operations. Given a String at run time, we can read a number from

2

it. We need two functions from the Char module for that. The Haskell language
says that a numeric literal with a decimal point in the source code is processed
as if first read as an arbitrarily precise rational number and then converted
using the fromRational function, so we need the numerator and denominator
functions to unpack that rational number and the division operator that makes
ratios from integers.

import Char (isSpace, isDigit)

import Ratio (numerator, denominator, (%))

We represent a scaled decimal number as a pair (SD n s) standing for the
exact rational number n × 10−s. Haskell is a non-strict functional language,
meaning that just because an expression has been evaluated to the point where
we know it is (SD _ _) that doesn’t necessarily mean the components are known.
We use strict data annotations to say that either nothing is known about a
number yet or all of it is known. There are only two places where this module
takes advantage of Hasell’s laziness, and they aren’t needed to specify Smalltalk.

data ScaledDecimal = SD !Integer !Int

The standard says

The maximum allowed precision for a scaled decimal numeric object
is implementation defined and may be unbounded. (3.4.6.1)

The maximum precision must be at least 30. (3.6)

If the result [of an operation] is outside of the range of the com-
mon numeric representation, the effect of underflow or overflow is
implementation defined. (5.6.2.1 and elsewhere)

The effect of underflow and overflow is implementation defined. (5.6.2.17)

It is an error if the [source of a conversion] cannot be represented
within the maximum precision of the [ScaledDecimal] implementa-
tion. (5.6.5.3)

The representation must be able to accurately represent decimal
fractions. The standard recommends that the implementation of this
protocol support unbounded precision, with no limit to the number
of digits before and after the decimal point. If a bounded implemen-
tation is provided, then any operation which exceeds the bounds has
an implementation-specified result. (5.6.6)

It is not obvious why a language that is required to support integer arithmetic
with no fixed bounds should allow arbitrary bounds to be imposed on scaled
decimal arithmetic. The answer appears to be VisualAge Smalltalk, which im-
plements decimal numbers using 17 bytes; one byte for the scale and 16 to hold
31 decimal digits and a sign in IBM/360 packed decimal format. In the case of
precision or scale overflow, VisualAge Smalltalk shifts the decimal point to the
right if possible. Such a representation makes excellent sense for interfacing to

3

an SQL implementation with a similar representation, but it does not make for
arithmetic that is easy to reason about.

In order to accommodate some such implementation-specific fudging, this
specification uses a function

approx :: Integer -> Int -> ScaledDecimal

approx n s = SD n s -- may be redefined by an implementation

We use the constructor SD where it is obvious that no overflow is possible,
approx otherwise.

Many of the operations that work on two numbers need to have those num-
bers represented in the same scale. The function common_scale does this. It is
not exported. It works by multiplying the number with the smaller scale by a
suitable power of 10.

common_scale :: ScaledDecimal -> ScaledDecimal -> (Integer, Integer, Int)

common_scale (SD nx sx) (SD ny sy)

| sx > sy = (nx, ny * 10^(sx-sy), sx)

| sx < sy = (nx * 10^(sy-sx), ny, sy)

| True = (nx, ny, sx)

The scale of a scaled decimal number can be recovered using the scale

function. Since integers behave like scaled decimals with a scale of zero, we may
as well extend scale to cover them. We shall see later that defining a version
of division that returns a scaled decimal result is problematic, but since they
are abstractly rational numbers, it should be easy to divide two scaled decimals
and get an exact rational answer. This too we extend to integers.

class Integral a => Scaled a

where

scale :: a -> Int

scale _ = 0

ratio :: a -> a -> Rational

ratio x y = fromIntegral x % (fromIntegral y :: Integer)

instance Scaled Int

instance Scaled Integer

instance Scaled ScaledDecimal where

scale (SD _ s) = s

ratio x y = ratio nx ny where (nx,ny,_) = common_scale x y

This gives us a way to convert a scaled decimal to rational: ratio x 1.
The Smalltalk standard requires a function that takes a number and a scale and

4

returns a scaled decimal with that scale approximating the given number as well
as possible. Basically, we are going to convert x to round(x × 10s). Plugging
this into the Haskell numeric framework is a little tricky, because while round is
defined on rational numbers and floats, it is not defined on integers. Fortunately,
we are producing an executable specification, not a high performance library,
so we can start by converting x to a rational number.

toScaledDecimal :: Real a => a -> Int -> ScaledDecimal

toScaledDecimal x s =

approx (round (toRational x * 10^s)) s

\end{Code}

If a type belongs to the Haskell type class called Eq,

you can use equality (\verb|==|) and inequality (\verb|/=|)

on that type. If we define either function, the other is

automatically defined.

\begin{code}

instance Eq ScaledDecimal where

x == y = nx == ny

where (nx,ny,_) = common_scale x y

The type class Ord deals with the ordered comparison predicates (<), (>=),
(>), (<=), max, min, and the three-way comparison compare. If you define three-
way comparison, the other functions are automatically defined, as are things
like sorting.

instance Ord ScaledDecimal where

compare x y = compare nx ny

where (nx,ny,_) = common_scale x y

Now we can define arithmetic. The arithmetic operations are spread across
several classes, and the assignment of operations to classes is not always con-
venient. Addition, and subtraction seem trivial, but express our intention that
these numbers be regarded as exact. For approximate numbers, we would con-
vert the operands to the smaller scale, not the larger.

instance Num ScaledDecimal where

negate (SD n s) = SD (negate n) s

abs (SD n s) = SD (abs n) s

signum (SD n _) = SD (signum n) 0

fromInteger i = approx i 0

x + y = approx (nx+ny) s where (nx,ny,s) = common_scale x y

x - y = approx (nx-ny) s where (nx,ny,s) = common_scale x y

(SD nx sx) * (SD ny sy) = approx (nx*ny) (sx+sy)

5

Since we view scaled decimal numbers as exact rationals, we should be able
to convert them to the Rational type. C programmers beware: (%) is not a
remainder operator, but a division operator that produces Rational results.

instance Real ScaledDecimal where

toRational (SD n s) = n % 10^s

Now we run into one of the glitches in the Haskell numeric classes. We
want to define quotient and remainder for our numbers, which means they have
to belong to the Integral class (glitch one), and that requires them to be in
the Enum class (glitch two), which not only provides enumeration over ranges
of numbers, but also provides two-way conversion between these numbers and
hardware integersfromEnum (glitch three). It happens that we can define enu-
meration reasonably enough, so glitch two is not much of a problem. Converting
machine integers to scaled decimal is always possible, but the fromEnum func-
tion is a problem. We don’t want it; it is there just to satisfy Haskell. The
definition of the Enum class for floating point types is somewhat contentious in
the Haskell community. The following definitions of fromEnum and toEnum for
are consistent with those for Double.

Of the four enumeration functions, we only need the two finite ones for
specifying Smalltalk, and could have managed without those.

• (enumFrom x) enumerates all the rational numbers with the same scale
as x, starting from x. This is an infinite list. It’s one of the two functions
that depends on laziness.

• (enumFromThen x y) reports x, x + (y − x), x + 2(y − x), . . . This is an
infinite list. It is the other function that depends on laziness.

• (enumFromTo x z) enumerates all the rational numbers with the same
scale as x, lying between x and z inclusive.

• (enumFromThenTo x y z) reports x, x + (y − x), x + 2(y − x), . . . , up to
and including z. The first and second elements may have different scales;
this is deliberate.

round_to_integer (SD n s) = (n * 10 + signum n * 5) ‘quot‘ 10 ^ (s + 1)

instance Enum ScaledDecimal where

succ (SD n s) = approx (succ n) s

pred (SD n s) = approx (pred n) s

toEnum i = approx (fromIntegral i) 0

fromEnum x = fromIntegral (round_to_integer x) -- bogus

enumFrom x = x : enumFrom (succ x)

enumFromThen x y = loop x (y-x)

where loop x d = x : loop (x+d) d

enumFromTo x z = if x > z then [] else x : enumFromTo (succ x) z

6

enumFromThenTo x y z = loop x (y-x)

where loop x d = if x > z then []

else x : loop (x+d) d

What we really want is quotient and remainder operations. The traditional
quotient operator truncates towards zero; this was used in Fortran and Algol
60, and is still used in C. That definition has been criticised for a long time,
with truncation towards negative infinity (floor division) preferred. LIA-1 offers
both definitions. So does Smalltalk, and so does Haskell. The quotRem function
provides truncating quotient and remainder. Defining it gives us quot and rem

as well. The divMod function provides flooring quotient and remainder. Defining
it gives us div and mod as well.

The Haskell library designers took the view that these operations only made
sense for integral numbers. Not so. They make perfect sense for any ratio-
nal numbers. The definition of toInteger is not just a type conversion, it is
rounding. The reporting of division by zero is delegated to the integer division
functions.

instance Integral ScaledDecimal where

toInteger x = round_to_integer x

quotRem x y = (SD q 0, SD r s)

where (nx, ny, s) = common_scale x y

(q, r) = quotRem nx ny

divMod x y = (SD q 0, SD r s)

where (nx, ny, s) = common_scale x y

(q, r) = divMod nx ny

You would expect that the step from quotient and remainder to conversion
to integer would be a small one. After all,

floor x = q where (q,r) = x ‘divMod‘ 1

You would be wrong. In order to define these Haskell functions on scaled decimal
integers, these numbers have to count as Fractional, which means supporting
division that returns a number of the same kind as the operands.

Now we run into a big difficulty. If x = m× 10−s and y = n× 10−t, it does
not follow that the ratio x/y has this form. Consider 0.3/0.7.

Possible responses to this problem are

• do not define this operation. Since the Smalltalk standard requires it, we
can’t do that.

• observe that the answer is always a rational number, so have the quotient
of any mix of integers, rationals, and scaled decimals produce a rational
number answer. Since the other operations on scaled decimals are exact,
it would be pleasant and consistent for this one to be exact also. The
Haskell type system does not permit that: x/y must have the same type
as its operands. That need not be a problem because we could define

7

Smalltalk’s (/) in terms of some other Haskell function like our ratio.
However, the Smalltalk standard does not allow it.

• define it to return a scaled decimal approximation to the exact rational
result.

The Smalltalk standard says only that “the scale of the result is at least the
scale of the receiver”, where the receiver in x/y is x. It is not enough to make
the scale of the result be the greater of scale x and scale y; that would give a
very poor result for 1.0/3.0, as PL/I programmers knew to their cost. Here we
have to make an essentially arbitrary choice about the scale of the result, and
raise the scale to at least 18.

The fromRational function is used, amongst other things, to allow over-
loaded floating point literals. Haskell defines the value of a literal with a decimal
point to be the result of applying fromRational to an exact rational version of
the literal. The function here is not total: it works only when the conversion
can be done exactly. It is enough to make literals like 1.5 work.

instance Fractional ScaledDecimal where

recip y = 1 / y

x / y = toScaledDecimal (ratio x y) (scale x ‘max‘ scale y ‘max‘ 18)

fromRational x = find_scale (numerator x) (denominator x) 0

where find_scale n 1 s = approx n s

find_scale n d s =

if d‘mod‘10 == 0 then find_scale n (d‘div‘10) (s+1) else

if d‘mod‘ 2 == 0 then find_scale (n*5) (d‘div‘ 2) (s+1) else

if d‘mod‘ 5 == 0 then find_scale (n*2) (d‘div‘ 5) (s+1) else

error "ScaledDecimal.fromRational: not a decimal number"

We complete the arithmetic operations with floor and friends. The calls to
fromIntegral are required to allow the caller to determine the integral result
type.

instance RealFrac ScaledDecimal where

properFraction (SD n s) = (fromIntegral q, SD r s)

where (q,r) = quotRem n (10^s)

truncate (SD n s) = fromIntegral (n ‘quot‘ 10^s)

floor (SD n s) = fromIntegral (n ‘div‘ 10^s)

ceiling (SD n s) = fromIntegral (negate (negate n ‘div‘ 10^s))

round (SD n s) = fromIntegral ((n*10+5) ‘quot‘ 10^(s+1))

Smalltalk adds extends the idea of converting to a whole multiple of 1 to a
whole multiple of some given y, but it only provides two of the expected four.
We can define these operations on any numeric type that can be converted to a
rational number.

8

truncateTo, floorTo, ceilingTo, roundTo :: Real a => a -> a -> a

helper :: Real a => (Rational -> Integer) -> a -> a -> a

helper f x y = fromIntegral (f (toRational x / toRational y)) * y

truncateTo = helper truncate

floorTo = helper floor

ceilingTo = helper ceiling

roundTo = helper round

All that’s left is conversion between internal representations and textual rep-
resentations. The Smalltalk standard defines output of scaled decimals, weakly,
and scaled decimal literals in source code, but offers nothing that can convert
from text to numeric form at run time. Actual Smalltalk systems do have a
way to do input conversions, but it was too powerful (and so vulnerable) to be
included in the standard. The conversions here are not exactly what Smalltalk
wants, not that existing Smalltalks agree perfectly, but are building blocks from
which suitable definitions can be made.

instance Show ScaledDecimal where

showsPrec p (SD n s) suffix

| n < 0 && p > 6 = "(-" ++ showAbs n s (")" ++ suffix)

| True = showAbs n s suffix

where showAbs n s suffix

| s <= 0 = shows n suffix

| True = take (n1-s) d1 ++ "." ++ drop (n1-s) d1 ++ suffix

where d0 = show n

n0 = length d0

d1 = replicate (s+1-n0) ’0’ ++ d0

n1 = length d1

instance Read ScaledDecimal where

readsPrec _ cs = parse cs

where parse (c:cs) | isSpace c = parse cs

parse (’+’:cs) = before cs 0 False

parse (’-’:cs) = before cs 0 True

parse cs = before cs 0 False

before (c :cs) n neg | isDigit c = before cs (n*10 + val c) neg

before (’.’:cs) n neg = after cs n neg 0

before cs n neg =

[(approx (if neg then negate n else n) 0, cs)]

after (c:cs) n neg s | isDigit c = after cs (n*10 + val c) neg (s+1)

after cs n neg s =

[(approx (if neg then negate n else n) s, cs)]

9

val ’0’ = 0

val ’1’ = 1

val ’2’ = 2

val ’3’ = 3

val ’4’ = 4

val ’5’ = 5

val ’6’ = 6

val ’7’ = 7

val ’8’ = 8

val ’9’ = 9

Smalltalk defines sqrt for all numbers. The usual definition applies to floats;
integers return the floor of the square root as an integer; but for rational numbers
and scaled decimals the standard defers to ISO 10967, which has explicitly
nothing to say about rational numbers or scaled decimals. Historic systems just
convert to floating point. It would be possible to implement a floor square root
like the one for integers, but it was easiest to follow historic practice.

Smalltalk also defines a general exponentiation operator for all numbers.
However, section 5.6.2.27 says of (x raisedTo: y) that

If [y is an integer]. answer the result of [raising x to an integral
power]. Otherwise, answer

(x asFloat ln * operand) exp

This has the unfortunate consequence that −271/3 is an error instead of −3, but
it does mean that we do not need to specify this operation for scaled decimals.

Every value in Smalltalk can be hashed. If x = y it is required that xhash =
yhash. This means, for example, that 1, 1.0, 1.00, and 1.0e0 must all have the
same hash value. We can express that requirement by definining

hash :: Real a => a -> Int

hash x = rationalHash (toRational x)

but there is nothing specific to say about rationalHash, so neither it nor hash
is defined here.

3 Testing the specification

Using the QuickCheck library, we can write tests like these:

prop_scale =

forAll siGen $ \i -> -- i is a signed Integer

forAll ssGen $ \s -> -- s is a small non-negative Int

scale (toScaledDecimal i s) == s

prop_ratio =

10

forAll siGen $ \n ->

forAll piGen $ \d -> -- d is a positive Integer

forAll ssGen $ \s ->

ratio (toScaledDecimal n s) (toScaledDecimal d s) == ratio n d

prop_equality_ignores_scale =

forAll siGen $ \n ->

forAll ssGen $ \s ->

forAll ssGen $ \t ->

toScaledDecimal n s == toScaledDecimal n t

prop_equality_commutes =

forAll sdGen $ \x -> -- x is a ScaledDecimal

forAll sdGen $ \y ->

(x == y) == (y == x)

prop_equality_is_transitive =

forAll sdGen $ \x ->

forAll sdGen $ \y ->

forAll sdGen $ \z ->

x == y ==> (y == z) == (x == z)

prop_less_and_greater_are_opposites =

forAll sdGen $ \x ->

forAll sdGen $ \y ->

(x < y) == (y > x)

prop_less_and_greater_equal_are_complements =

forAll sdGen $ \x ->

forAll sdGen $ \y ->

(x < y) /= (x >= y)

prop_negate_negates_sign =

forAll sdGen $ \x ->

signum (negate x) == negate (signum x)

prop_negate_cancels =

forAll sdGen $ \x ->

negate (negate x) == x

prop_abs_times_sign_is_identity =

forAll sdGen $ \x ->

abs x * signum x == x

prop_to_integer_is_inverse_of_from_integer =

forAll siGen $ \i ->

11

toInteger (fromInteger i :: ScaledDecimal) == i

prop_zero_is_additive_identity =

forAll sdGen $ \x ->

forAll ssGen $ \s ->

let z = toScaledDecimal 0 s in

z + x == x && x + z == x && x - z == x

prop_addition_commutes =

forAll sdGen $ \x ->

forAll sdGen $ \y ->

x + y == y + x

prop_addition_associates =

forAll sdGen $ \x ->

forAll sdGen $ \y ->

forAll sdGen $ \z ->

x + (y + z) == (x + y) + z

prop_negation_is_compatible_with_subtraction =

forAll sdGen $ \x ->

forAll sdGen $ \y ->

x - y == x + negate y

Other test cases were also written and run. These tests were very effective in
finding errors, all but one of which turned out to be mistakes in the formulation
of the tests. The original definition of (/) was quite wrong.

12

4 Defining the Smalltalk operations

x ∗ y x ∗ y
x + y x + y
x− y x− y
x/y x/y
x//y x ‘div‘ y
x < y x < y
x = y x == y
x\\y x ‘mod‘ y
x abs abs x
x asFloat asFloatE or asFloatD
x asFloatE fromRational (toRational x) :: Float
x asFloatD fromRational (toRational x) :: Double
x asFloatQ like asFloatD
x asFraction toRational x
x asInteger toInteger x
x asScaledDecimal: s toScaledDecimal x s
x ceiling ceiling x
x floor floor x
x fractionPart snd (properFraction x)
x integerPart fst (properFraction x)
x negated negate x
x negative x < 0
x positive x >= 0
x printString shows x (’s’ : show (scale x))
x quo: y x ‘quot‘ y
x raisedToInteger: y x ^^ y
x reciprocal recip x
x rem: y x ‘rem‘ y
x rounded round x
x roundTo: y roundTo x
x scale scale x
x sign signum x
x sqrt sqrt (fromRational (toRational x) :: Double)
x squared x ^^ 2
x strictlyPositive x > 0
x to: z enumFromThenTo x (x + 1) z
x to: z by: y enumFromThenTo x (x + y) z
x truncated truncate x
x truncateTo: y truncateTo x

13

5 Generality of this specification, and suitability
of Haskell

There are other programming languages than Smalltalk with some kind of fixed
point support. The present specification is equally suitable for languages with
static typing (it’s written in one) and dynamic typing (it was devised for one).
Languages like PL/I, Ada, and SQL make the scale part of the static type of
a literal, variable, or expression; this specification makes it part of the values.
However, Haskell with multi-parameter type classes is powerful enough to make
the scale part of the type also, at the price of not fitting into the Haskell numeric
classes.

This specification appears to make essential use of unbounded integers.
Thanks to the approx function, this is not so. There are no limitations on
the specification due to the choice of Haskell.

14

