
Department of Computer Science,
University of Otago

Technical Report OUCS-2013-03

Spinula: software for simulation and analysis of
spiking network models

Authors:

Mira Guise, Alistair Knott, Lubica Benuskova

Department of Computer Science, University of Otago, New Zealand

Status:

This is a document in support of a manuscript submitted to ICONIP 2013.

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.php

Spinula: software for the simulation and analysis of

spiking network models

Mira Guise, Alistair Knott, Lubica Benuskova

Dept of Computer Science, University of Otago, Dunedin

Abstract

Spinula is a software package for the simulation and analysis of spiking neural network models. It consists of
a core library that provides the simulation environment, and additional libraries that support the analysis
and visualization of simulation data. This report provides a description of the services implemented by
each of these libraries and some examples of how they are used.

Keywords: spiking neural network, software simulation

Spinula is a software package for the simulation of spiking networks based
on the Izhikevich neuron (Izhikevich, 2006a). The package allows the simu-
lation of networks of arbitrary size, from single neurons and single synapses
to networks containing thousands of neurons and more than one hundred
thousand synapses. Simulation experiments based on Spinula are normally
interactively constructed as scripts that define the run parameters for the
experiment and additional run-time details such as the network architecture
and the data collection requirements. Data analysis can also be scripted,
making use of a library of functions for loading, transforming and visualizing
the collected data. Spinula may also be used to add features to an existing
software program. For example, neural network simulation might be added
as a feature to an existing program by linking the program to a Spinula code
library.

1 Some common terms

A network engine generates the simulation environment and there are two of
these to choose from that provide a trade-off between performance and flex-
ibility. For example, the higher performing network engine can implement
only grid networks in which each neuron has a fixed number of connections
per neuron, while the less efficient engine can also construct ad hoc networks
with variable numbers of connections per neuron. Grid networks are cre-
ated by connecting each pre-synaptic neuron in the network with a fixed

Technical Report

number of randomly selected post-synaptic neurons. Each grid network is
therefore unique with respect to the connectivity between neurons, and the
polychronous neural groups that it supports.

Independently of the network engine type, the size of a new network is spec-
ified in terms of the total number of neurons in the network. Some typical
network sizes are 100 neurons (i.e. an N100 network) or 1000 neurons (an
N1000 network). The more flexible network engine also supports experiments
on single neurons or small networks of a few neurons. There is also support
for introducing both external stimulation and random background stimula-
tion to the network. The external stimulation (or stimulus) is the simulated
equivalent of an externally applied source of stimulation as might be applied
by a microelectrode to a single neuron. It is defined as a pattern that is
applied to the network repetitively with a constant period (both Stimulus
and Pattern are underlying types in the Spinula core library). The pattern
is both spatial (distributed over multiple neurons) and temporal (distributed
over time) and is therefore referred to as a spatio-temporal pattern. Random
background stimulation is also defined by a spatio-temporal pattern except
that the temporal component is generated by a random generator function
such as a Poisson Process. Random stimulation is an important contributor
to the dynamics of the network but as it is distinct from the externally ap-
plied (foreground) stimulus it is often referred to in this text as background
stimulation.

Spatio-temporal firing patterns are composed of neural firing events that
record the firing of specified neurons at specified times. These firing events
can be seen as dots in Panels A and B of Fig. 1. Panel A shows two com-
monly utilized patterns taken from Izhikevich (2006a) called the Ascending
pattern and the Descending pattern. Panel B shows three different stimuli
constructed by repeating the Ascending pattern at one of three different fre-
quencies. Random background stimulation is also composed of firing events
and examples of these random firing patterns can be seen in Fig. 2. The com-
plete set of firing events generated by the network during a simulation run
is called the network firing data and this dataset is one of the primary data
sources for Spinula analytical functions. Firing events are captured at one
millisecond resolution, a limitation imposed by the one millisecond timestep
employed by the simulator. The network can also be saved to a network
state file at specified intervals allowing the complete state of the simulated
network to be reconstructed at a later time. During a simulation run the
internal simulation time (i.e. the subjective time for the network) may be
either faster or slower than real-time depending on the size of the simulated
network and the performance of the underlying hardware.

2

(i)TAscendingTPattern (ii)TDescendingTPattern

(i)T1THz (ii)T5THz (iii)T25THz

A

B

N
eu

ro
nT

In
de

x

1000

800

600

400

200

0 500 1000

TimeT(msec)

1000

800

600

400

200

0 500 1000

TimeT(msec)

1000

800

600

400

200

0 500 1000

TimeT(msec)

N
eu

ro
nT

In
de

x

1000

800

600

400

200

TimeT(msec)

1 10 20 30 40

1000

800

600

400

200

TimeT(msec)

1 10 20 30 40

Figure 1: Some example patterns and stimuli. A. The Ascending and De-
scending patterns are two commonly utilized spatio-temporal patterns. B.
Three different stimuli constructed by repeating the Ascending pattern at
either 1, 5 or 25 Hz.

3

2 Scripts

Simulation experiments based on Spinula are normally scripted in a language
called F# that in its simplest form displays much of the sparse expressiveness
of pseudo-code. Most Spinula scripts are used to define network simulation
experiments and therefore contain instructions for constructing the experi-
mental network, starting the simulation run, and gathering network data over
the course of the run. Other scripts are written for the purpose of data anal-
ysis and involve reading and transforming potentially large volumes of simu-
lation data. Listing 2.1 shows an example of a network simulation script that
generates random spiking in a grid network of one thousand neurons.

1 // Test the Poisson Process background pattern generator at 1 Hz
2
3 let verbose = true
4 let runSeconds = 5
5 let backgroundFrequency = 1
6 let outputFilePath = ‘‘some file’’
7
8 // create a new network with no connections between neurons
9 let network = CrossbarNetwork.CreateAdHocNetwork(

10 CrossbarNetworkSpecifier.N1000_Unconnected_Network, None, verbose)
11
12 // run the network with background stimulation but no stimulus and collect firing data
13 network.Run(runSeconds, None, backgroundFrequency)
14
15 // select the third one second frame of firing data
16 let thirdFrameData = network.OneSecondEventCollector.SelectRange(2000, 3000, false)
17
18 // save the data
19 thirdFrameData.Save(outputFilePath)
20
21 // show the data as a spike raster
22 SpikeVisualisation.ShowSpikeRaster(thirdFrameData.AllEventPairs)

Listing 2.1: A sample script that tests the background pattern generator.

The script begins by constructing a network, making use of a predefined net-
work specifier that describes an N1000 network with no connections. The
call to the Run method in line 13 begins the network simulation with param-
eters that specify no stimulus (None) and a random background frequency
of 1 Hz. Random background stimulation is generated from a pattern gener-
ator on each neuron, the current implementation of which is a homogeneous
Poisson process where the probability distribution of spiking events gener-
ated from the pattern generator is proportional to the time period between
events. Firing events are collected automatically throughout the simulation
run and line 16 selects firing events generated during the third simulated
second between t = 2000 and t = 3000 msecs. This firing data is then saved
to a file in line 19 and displayed in a window in the final line of the script (see
Appendix B.3 for a more detailed explanation of this script, and Appendix B
for more script examples). Figure 2 shows the resulting output with the

4

background frequency set to either one hertz (Panel A) or ten hertz (Panel
B).

BOne Hertz Ten HertzA

N
eu

ro
n

In
de

x

Time (msec)

1000

800

600

400

200

2000 2200 2400 2600 2800 3000
N

eu
ro

n
In

de
x

Time (msec)

1000

800

600

400

200

2000 2200 2400 2600 2800 3000

Figure 2: The result of running the sample script: The background frequency
was set to either 1 Hz (A) or 10 Hz (B).

3 A small experiment

In this section we will explore some more Spinula features by performing
a simple experiment on a small ad hoc network. The network consists of
five neurons: two input layer neurons and three output layer neurons, with
the structure shown in Figure 3. The network has four synaptic connections
arranged in a W-pattern and we can therefore refer to it as a W-Network.
All connections have the same axonal delay (1 msec) and initial synaptic
weight (8.5). Output neurons 2 and 4 of this network are connected to just
one input neuron each, while output neuron 3 is connected to both input
neurons (0 and 1). The neuron types are excitatory RS type with a firing
threshold of about 17 mV so that, even with saturated connection weights,
the neurons in the output layer require simultaneous input from two neurons
in order to fire. Only neuron 3 receives input from two neurons and therefore
only neuron 3 can reach the firing threshold due to input from neurons 0 and
1 alone.

The W-network topology has been designed to provide a simple demonstra-
tion of the effects of spike-timing-dependent plasticity (STDP) in the pres-
ence of background firing. The STDP rule specifies that for each synaptic
connection in the network, the degree of synaptic potentiation or depression

5

is a function of the difference in the firing time of each post-synaptic neuron
and the arrival time of spikes at the synapse. There are therefore two nec-
essary conditions in order for the STDP rule to produce changes in synaptic
plasticity: both the pre-synaptic neuron and the post-synaptic neuron must
fire and the pre-synaptic spike must arrive close to a post-synaptic firing
event (within a small temporal window). In our experimental network, only
output neuron 3 is able to fire in response to the firing of input neurons, and
therefore only the connections leading to neuron 3 are plastic in the absence
of background firing.

(a) Connectivity

Neuron numbering:

Layer Neuron Indices

input 0, 1
output 2, 3, 4

Connection numbering:

Connection PreNeuron PostNeuron

0 0 2
1 0 3
2 1 3
3 1 4

Initial synaptic weight: 8.5

(b) Data

Figure 3: W-Network structure and parameters

A Spinula script must be written to orchestrate the experiment, including
definitions for the network architecture, the stimulus and the data collection
requirements. The script must then construct the W-network, start the sim-
ulation run and display the resulting data (see Listing B.5 of Appendix B for
the full script). The experiment requires that the two input neurons are si-
multaneously stimulated at intervals of one hundred milliseconds throughout
the simulation run. We will run the experiment twice with different param-
eters in order to test the effects of STDP with different levels of background
stimulation, firstly in the absence of background firing and secondly in the
presence of high frequency background noise. In the latter case the output
layer neurons will occasionally be selected to fire by the background pattern
generator and these firing events can therefore occur independently of any
input from the input layer.

In each run, the network is trained by repeated exposure to the stimulus
i.e. the STDP rule produces consistent potentiation of synaptic weights for

6

connections that see coherent pre- before post-synaptic firing, and consistent
depression of weights for connections that see post- before pre-synaptic firing.
We can therefore expect to see potentiation of connections 1 and 2, because
the connection architecture and the stimulus together ensure that neuron 3
will be consistently fired shortly after the firing of neurons 0 and 1. The effect
on connections 0 and 3 is less clear, especially if the simulation is run in the
presence of high-frequency noise. We will therefore let each simulation run
continue for 100 seconds internal simulation time so that any long-term trend
in the connection weights (either upwards or downwards) is apparent.

An effective demonstration of the effects of the STDP rule requires that the
network data be sampled at a high temporal resolution. We will need to
record both the membrane potential of each neuron and the synaptic weight
of each connection at the maximum temporal resolution of one millisecond.
To achieve this goal we create a OneMillisecTickDataCollector, specifying
the required number of neuron and connection samples as follows:

let hiDataResCollector =
let numberOfMembraneSamples = 1000
let numberOfWeightSamples = 100000
let selectedNeurons = [0; 1; 2; 3; 4;]
let selectedConnections = [0; 1; 2; 3;]
let parameters = new OneMillisecTickDataCollectorParameters(selectedNeurons, totalNeurons,

selectedConnections, totalConnections, numberOfMembraneSamples, numberOfWeightSamples)
new OneMillisecTickDataCollector(parameters)

Collection of weight samples occurs throughout the run (corresponding to
100 seconds × 1000 msec/sec = 100,000 samples). In contrast, only 1000
samples (i.e. the data produced in one second) are collected for the membrane
potential data, as there is little variation in the response to the stimulus over
the course of the simulation. Each weight sample includes both the current
synaptic weight (w) and the synaptic derivative (d), where the derivative is an
internal simulator variable that tracks the current magnitude and direction
of synaptic change. Membrane potential samples record both the membrane
potential (v) and the membrane recovery variable (u), both variables derived
from the Izhikevich equations (Izhikevich, 2006a).

After each simulation run, the collected weight and membrane samples can
be retrieved from the OneMillisecTickDataCollector and either saved to a
file or passed to a Spinula data visualization function as follows:

MillisecondResolutionDataVisualisation.ShowCollectedMembraneData(hiResDataCollector)

MillisecondResolutionDataVisualisation.ShowCollectedWeightData(hiResDataCollector)

7

The results after running the network for 100 seconds can be seen in Fig. 4,
with membrane potential data on the left and the corresponding synaptic
weight data on the right. With no background stimulation (A, left and right)
neuron 3 is the only output neuron to produce regular spiking in response to
repeated stimulation of the input neurons 0 and 1. If the firing of neuron 3
occurs just after the firing of the input neurons then the consistent correlation
between the regular spiking of the input neurons and the spiking of neuron 3
leads to potentiation of connections 1 and 2, as specified by the STDP rule.
However, the other two output neurons (2 and 4) receive insufficient input
from the input neurons (0 and 1) to reach firing threshold in the absence
of background firing. The STDP rule therefore produces no net effect on
connections 0 and 3.

If background firing is enabled then all of the output neurons will fire, al-
though perhaps only infrequently. This irregular firing can produce occa-
sional correlations in the firing of output and input layer neurons within the
STDP window. In order to study this effect we will repeat the experiment
but this time with a background firing rate of 50 Hz. The results in Fig. 4B
(left and right) show firing of all neurons, including output neurons 2 and
4. The spiking of output neuron 3 shows both correlated and uncorrelated
components although the correlations are sufficient to produce rapid poten-
tiation of afferent connections 1 and 2, despite the additional non-correlated
spiking. On occasion, the additional output neuron spiking events produced
by the 50 Hz background stimulation occur in the same STDP window as
a pre-synaptic spiking event and therefore produce synaptic change. These
rare correlated events can occur either before or after input neuron firing and
the connections leading to output neurons 2 and 4 therefore display both po-
tentiation and depression. Repeated runs of the experiment show a small
overall bias towards depression: if pre- before post-synaptic firing events are
equally as likely as post- before pre- events, then this bias is likely due to
the default parameters employed for the STDP implementation in the sim-
ulation engine: the parameters A+ = 0.10, A− = 0.12 produce a temporally
asymmetric STDP equation with a bias towards depression.

8

A

B

0 100 200 300 400 500 600 700 800 900 1000

Time (msec)

0

1

2

3

4

50
0

-50

50
0

-50

50
0

-50

50
0

-50

50
0

-50

0

1

2

3

4

50
0

-50

50
0

-50

50
0

-50

50
0

-50

50
0

-50

0 100 200 300 400 500 600 700 800 900 1000

Time (msec)

0

1

2

3

10
5
0

10
5
0

10
5
0

10
5
0

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

0

1

2

3

10
5
0

10
5
0

10
5
0

10
5
0

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

Figure 4: The response of a W-Network following repeated simultaneous
stimulation of the two input neurons. Panels on the left show changes in
membrane potential (v) for each neuron in the network and panels on the
right show synaptic weight (w) changes for each connection. The initial
synaptic weight value was 8.5. A. With no background stimulation just
one of the three output neurons produces regular spiking (neuron 3). The
synaptic weights onto neuron 3 are potentiated, reaching saturation within
a few seconds (Connections 1 and 2 in the right-hand panels). B. With a
background stimulation frequency of 50 Hz spiking events are frequent for
all three output neurons although only neuron 3 firing is strongly correlated
with the firing of the two input neurons. The visible stepping in the synaptic
weight is an artifact of the weight aggregation process occurring just once
each second (each step is exactly one second wide).

9

A Spinula Libraries

Spinula libraries are implemented using a development framework from Mi-
crosoft called the .Net Framework. Although this development choice creates
a dependency on the Microsoft platform, it also allows access to a large class
library containing many useful data structures and functions. In addition,
.Net is built upon a language-neutral platform called the Common Language
Infrastructure (CLI) and .Net developers are therefore able to select the most
suitable development language for their given task. Although the .Net Frame-
work is designed to run exclusively on recent versions of Microsoft operating
systems, alternative implementations of the CLI such as Mono support addi-
tional operating systems such as Linux. The Spinula package contains three
core libraries: the SpikingNeuronLib library provides core network simula-
tion services; the SpikingAnalyticsLib library provides data analysis services;
and the SpikingVisualisationLib library provides data visualization services.
These libraries may either be utilized within an interactive scripting environ-
ment, or linked into a new or existing program that provides a user interface
to the Spinula software.

A.1 The SpikingNeuronLib library

The most significant function provided by the SpikingNeuronLib library is
the simulation environment that is generated by one of two network engines,
either the IzhikevichNetwork engine or the CrossbarNetwork engine. I created
the initial IzhikevichNetwork engine as a Python port of the original Matlab
implementation from Izhikevich (2006a). The ported code made use of a C
matrix library called numpy to re-implement the matrix-based manipulations
that are central to the original Matlab code. Importantly, both Python and
numpy are widely utilized in the neuroscience community and many projects
have been built using these tools.

At a later date, a C++ version of the demonstration code became available
on the author’s website (Izhikevich, 2006b) that had substantially better per-
formance than the original Matlab version. This C++ version became the
foundation of a new version of the IzhikevichNetwork engine, after some code
refactoring and bug fixes. My primary aim in refactoring was to repackage
the code as a CLR-compliant software library and to provide some additional
flexibility in the interface between the core simulation engine and consumers
of the simulation data. The refactored network engine code also encompassed
the Izhikevich algorithms for finding PNGs (based on the original code from

10

Izhikevich, 2006b). For performance reasons both the original demonstration
code and the refactored IzhikevichNetwork engine implement a grid network
and no other network topologies are supported. Each neuron therefore has a
fixed number of connections allowing for an efficient array-based implemen-
tation.

A new more flexible engine was then developed that allows not only grid
networks but also more free-form network architectures. The CrossbarNet-
work engine utilizes the same simulation algorithm as the IzhikevichNetwork
engine, but with substantial changes to the underlying data structures that
allow a more flexible simulation engine and more opportunities for efficient
data collection and for instrumentation of the simulation. The CrossbarNet-
work engine supports the construction of ad hoc networks with arbitrary
connectivity such as the W-Network described in Section 3. The increased
flexibility has also aided in the development of new network features such as
metaplasticity that have been added to the CrossbarNetwork engine but not
to the less adaptable IzhikevichNetwork engine.

In addition to the network engines, the SpikingNeuronLib library exports a
number of additional types such as FiringEvent, Triplet, Pattern and Stim-
ulus. There are also more task-specific types such as the MatchScanner that
provides methods for searching the firing data for spatio-temporal patterns,
and the PatternGenerator that provides different methods for the generation
of random firing patterns.

A.2 The SpikingAnalyticsLib library

The SpikingAnalyticsLib library has two main purposes: firstly it extends
the services provided by the SpikingNeuronLib library, providing additional
functionality that wraps some of the core types exported from this library,
particularly the CrossbarNetwork engine, Pattern and Stimulus; secondly, it
provides a library of functions for the analysis of network data such as the
changes in neuron membrane potentials and synaptic weights that occur as
a network responds to a stimulus. Network firing data is the primary source
for many analyses and this data is generated at a rate of more than 30 million
firing events every hour in a simulated 1000 neuron network.

The extended CrossbarNetwork engine provided by the SpikingAnalyticsLib
library simplifies data collection by adding two specialised data collector
types: the OneMillisecTickDataCollector (briefly discussed in Section 3 and
discussed in more detail in Section B), and the OneSecondTickDataCollec-

11

tor. The former collects membrane potential or synaptic weight data that
quickly change over timescales close to the maximum time resolution of the
simulation engine, while the latter collects only firing data which, for perfor-
mance reasons, is made available just once each second. The large difference
in the sampling rate of the two collectors (one millisecond versus one second)
produces a difference in the performance penalty of enabling each collector
type. For this reason the collection of firing data is enabled by default (as the
OneSecondTickDataCollector has minimum overhead), while the collection
of higher resolution data is provided as an option due to the performance
penalty of enabling the OneMillisecTickDataCollector.

The extended CrossbarNetwork engine provides a number of additional func-
tions including methods for network maturation, for saving compressed ver-
sions of the network state and for deducing the structure of an activated
PNG. The structure of PNG activation is deduced by mapping the intervals
between the firing events collected during a stimulus response to the connec-
tion delays between the corresponding neurons in the network. The ability
to save compressed network state files is useful in experiments that examine
changes in the network state over extended time periods where disk space
usage can sometimes be substantial.

The SpikingAnalyticsLib library also defines types related to Response Profil-
ing: ResponseFingerPrintFrame, ResponseFingerPrintFrameSet, FrameScore,
FrameProfile, WindowMap, WindowMapSet, MatchedProfilePair, Matched-
ProfileSet and NaiveBayesClassifier are all types that support this method-
ology. Of these the most important are the FrameProfile and WindowMap
types. A frame profile is a measure of the neural response to a repeated
stimulus that is recorded for each neuron in the network. The profile is
composed of spike count histograms that are generated for each neuron in a
fixed-sized interval following each stimulus presentation. The WindowMap
type uses these histograms to define temporal windows, peaked regions in the
histograms where there is a high probability of post-stimulus spiking. See
Guise et al. (2014) for more details.

There are many other types and functions included in the SpikingAnalyt-
icsLib library: for example, extensions to the Pattern and Stimulus types
provide many additional methods for defining or modifying firing patterns
and stimuli; network specifier types provide a simplified means for defining
the structure and topology of a new network and also provide a number
of built-in network specifications; the PNGScanner type supports scanning
for PNGs in collections of matured networks; and the PNGDescriptor type
describes the connected structure of a PNG.

12

A.3 The SpikingVisualisationLib library

The SpikingVisualisationLib library provides convenience functions for plot-
ting PNGs, spike rasters and response histograms. It can be used for the
visualization of firing data or changes in neuron membrane potential and
synaptic weights etc. It also supports the visualization of polychronous neu-
ral groups, using connectivity data from the network or from analytical data
generated in the SpikingAnalyticsLib library. The current implementation
manipulates plot data using Deedle and generates R plotting commands us-
ing the R Type Provider (BlueMountain Capital Management LLC, 2012a).
It is therefore necessary to install the R Statistical Software (R Core Team,
2014) along with both of these libraries prior to using the SpikingVisualisa-
tionLib library.

B A walk-through of some scripts

Spinula scripts are written in a CLI-compliant language called F# (F-Sharp)
that was chosen for its flexibility and expressiveness (Microsoft, 2014). The
F# language supports two different modes of development: an interactive
scripting mode and a compilation mode. Multiple modes allow the scripts
in this section to be either compiled and executed as native code, or to
be executed in an interactive environment called F-Sharp Interactive (FSI).
The compilation option provides substantial performance advantages, while
the interactive mode is useful for data manipulation and for rapid iterative
development.

Spinula scripts are generally written in a simple procedural style although the
F# language allows both functional and object-oriented styles of program-
ming for more complex programming tasks. Although the scripts typically
make use of the underlying functionality provided by the Spinula libraries,
other libraries may also be referenced. Both Spinula libraries and any ad-
ditional libraries must be declared in advance by including a reference at
the start of each script. Most scripts only indirectly access the network
simulation engine, instead utilizing the additional functionality provided by
the SpikingAnalyticsLib library. Alternatively, Spinula scripts requiring di-
rect access to the simulation data may reference the SpikingNeuronLib li-
brary.

The following sections present a selection of Spinula scripts in order to pro-
vide some additional background on the use of the Spinula libraries. They

13

are intended to be read primarily by those with a background in software
development, and should ideally be read sequentially and together, as each
new script expands on the last to provide a more comprehensive description
of the scripting process. The first two scripts are composed of a simple se-
quence of commands, while later scripts employ more advanced techniques
and make use of additional libraries features.

B.1 Finding PNGs

This script introduces the general procedures for creating a Spinula script
and also the process of referencing the Spinula libraries. Both network spec-
ification and network maturation are discussed, and two Spinula types are
introduced: the IzhikevichNetwork and PNGScanner. The purpose of this
script is to find polychronous neural groups in a simulated network running
inside the IzhikevichNetwork engine. The script creates a new Izhikevich-
Network and matures it for two hours before scanning for adapted PNGs
in the network structure. The network weights are then scrambled and the
network is rescanned. The PNG counts, both before and after scrambling the
synaptic weights, are then reported. The script reproduces an experiment
reported in Izhikevich et al. (2004) that showed a substantial reduction in
PNG numbers following synaptic disruption of a matured network.

Izhikevich (2006b) has created two unique algorithms for the discovery of
polychronous neural groups, a fast event-driven algorithm and a slower more
precise activity-driven algorithm (see Izhikevich et al., 2004, Izhikevich, 2006a).
The Spinula implementation of these algorithms is described in Guise et al.
(2013). While both algorithms are intended to find what Martinez and
Paugam-Moisy (2009) call supported PNGs, the slower algorithm tests the
ability of each potential PNG to polychronise and can therefore discover
adapted PNGs i.e. groups in which the synaptic weights have been adjusted
by STDP to be compatible with polychronisation. Neither of these algo-
rithms is suited to finding activated PNGs that produce observable changes
in the firing data, although many of the PNGs discovered by the slower al-
gorithm may have the potential for activation if presented with a compatible
stimulus.

The maturation step is particularly important: networks are usually initial-
ized with either uniform synaptic weights or with small random variations
in the weight distribution, neither of which are conducive to the presence of
adapted PNGs. Maturation of a network involves running the simulated net-
work with a stimulation protocol that produces random neural firing, usually

14

at around 1 Hz (i.e. each neuron in the network is fired at a random time
such that it fires on average once per second). This maturation protocol is
continued for sufficient time to ensure that the synaptic weights come to an
equilibrium with the dynamics of the network produced by this low level of
stimulation. Izhikevich (2006a) typically matured the network for 24 hours
(internal simulation time) although just two hours simulation time seems to
be sufficient (Guise et al., 2013).

The script demonstrates the use of the slower algorithm for finding PNGs and
is shown in Listing B.1. The first few lines of the script specify references
to the required Spinula libraries. Within these reference declarations the
quoted strings normally specify the full filesystem paths to each dynamic link
library (DLL) although only the filename is shown in these script examples.
The script interpreter dynamically loads the libraries specified here, allowing
it to resolve the type and method names that are referenced throughout
the script. Some of the .Net Framework libraries are referenced here by
default: an example of one of these implicit references is the System library
which is opened in line 5 even though the underlying library is not explicitly
referenced. The open statements are used to provide easy access to the
specified libraries. In the Common Language Infrastructure, access to the
methods in a referenced library normally requires a namespace qualification,
a long path that is prepended to each method call. However, short-cut access
can be provided by opening the required libraries as shown in lines 5 - 7.

In line 9 the implicit reference to the System library is used to retrieve the
default document folder path for the Microsoft Windows platform. Lines 17
to 20 define the parameters of the new Izhikevich network: an N1000 net-
work with 800 excitatory neurons and 200 inhibitory neurons, 100 synapses
per neuron, and a maximum synaptic delay of 20 milliseconds. This specifi-
cation is packaged together into a network specifier in lines 21 and 22 that
can be used to reload the network in later steps. Network specifiers are con-
venience types that allow network parameters to be passed around and saved.
There are separate specifiers for each network engine i.e. the IzhikevichNet-
workSpecifier (used here), and the CrossbarNetworkSpecifier used in later
scripts. The CrossbarNetworkSpecifier has additional attributes that reflect
the increased feature set of this more flexible network engine (e.g. optional
attributes to specify metaplasticity parameters).

Even without maturation, the new network constructed in lines 25 and 26
will support many structural PNGs, although PNGs with adapted weights are
unlikely to occur. Spinula provides a convenience type called the PNGScan-
ner to simplify the scanning process for either supported or adapted PNGs,

15

1 #r @"SpikingNeuronLib.dll"
2 #r @"SpikingAnalyticsBaseLib.dll"
3 #r @"SpikingAnalyticsLib.dll"
4
5 open System
6 open SpikingNeuronLib
7 open SpikingAnalyticsLib
8
9 let outputFolder = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments)

10 let algorithmVersion = FindGroupsVersion.Current // slower activity-driven PNG search algorithm
11 let runSeconds = 2 * 3600 // mature for this many seconds
12 let backgroundFiringRate = 1 // with a one hertz random background
13 let matureNetworkBaseName = "MatureNetwork"
14 let matureNetworkName = sprintf "%s_%d.txt" matureNetworkBaseName (runSeconds / 60)
15
16 // Network definition
17 let numExcitatoryNeurons = 800
18 let numInhibitoryNeurons = 200
19 let numSynapsesPerNeuron = 100
20 let maxDelay = 20
21 let networkSpecifier = new IzhikevichNetworkSpecifier(numExcitatoryNeurons, numInhibitoryNeurons,
22 numSynapsesPerNeuron, maxDelay)
23
24 // Create a new Izhikevich network
25 let network = new IzhikevichNetwork(numExcitatoryNeurons, numInhibitoryNeurons,
26 numSynapsesPerNeuron, maxDelay)
27
28 // Mature the network and save the network state to a file
29 PNGScanner.GenerateMaturationStateFiles(network, None, runSeconds, backgroundFiringRate,
30 outputFolder, matureNetworkBaseName)
31
32 // Get a count of the PNGs in the network state file
33 let beforeCount = PNGScanner.FindAllPNGsInStateFile(outputFolder, matureNetworkName, networkSpecifier,
34 "before.txt", algorithmVersion)
35
36 // Load the same network state file and scramble the network
37 let scrambledNetwork = PNGScanner.ScrambleNetworkInStateFile(networkSpecifier,
38 outputFolder, matureNetworkName)
39
40 // Get a count of the PNGs in the scrambled network
41 let afterCount = PNGScanner.FindAllPNGsInState(scrambledNetwork, outputFolder,
42 "after.txt", algorithmVersion)
43
44 printfn "%d %d" beforeCount afterCount

Listing B.1: A script for finding PNGs in an Izhikevich Network.

16

and all subsequent steps in the script (maturation, synaptic shuffling and
scanning for PNGs) are performed using static methods on this type. The
maturation step is performed in lines 29 and 30 and the resulting matured
network is then saved to a network state file in the output folder. The saved
state file is then loaded in lines 33 and 34 and scanned for PNGs. Lines 37
and 38 load a new instance of the saved state file and shuffle the synaptic
weights. The shuffled network is then rescanned in lines 41 and 42, returning
the number of adapted PNGs in the network after shuffling. Finally, the
PNG count before and after shuffling is reported in line 44 using a standard
function for formatting and writing data to the console window.

B.2 Response Fingerprinting

This next script example provides an introduction to Response Fingerprint-
ing, particularly the FrameProfile and WindowMap types. Also new in this
script is the use of a CrossbarNetwork, the saving of network state files and
the creation of a stimulus using the Pattern and Stimulus types. A Response
Fingerprint is a probabilistic representation of the firing pattern produced
by PNG activation as a trained network responds to an input stimulus (see
Guise et al. (2014) for a description of the method). The script demonstrates
the effect of stimulus training on the size of the stimulus-specific PNG ac-
tivation response, using the number of temporal windows in the fingerprint
to determine the size of the activation response. The generation of a Re-
sponse Fingerprint has two steps: in the first step a frame profile is created
that represents the stimulus response over a defined number of fixed-sized
frames; and in the second step temporal windows are identified and mapped
within the profile data. The SpikingAnalyticsLib library defines two types
within the ResponseFingerPrint namespace that implement these steps: the
FrameProfile type creates a frame profile, and the WindowMap type per-
forms the mapping of temporal windows. These two important types are
further described in the following sections.

B.2.1 The FrameProfile type

A FrameProfile is a measure of the consistent spiking response of selected
neurons as the network responds to a known stimulus. It is generated by
repeatedly presenting the stimulus within fixed-sized response frames that
are sufficiently long to encompass both the stimulus and the subsequent
firing response. Histograms of the spike counts at each temporal offset within

17

the response frame are aggregated across multiple frames, and these response
histograms are stored for each selected neuron. Creating a frame profile is the
most time-consuming step in the fingerprinting process, with the processing
time depending on the required sensitivity. Using typical parameters of a
250 millisecond frame size and one hundred seconds of simulation produces
400 response frames of data. Additional response frames can be added to
increase the sensitivity of the fingerprint if the neural response to a stimulus
is minimal, such as with an unknown stimulus.

B.2.2 The WindowMap type

A WindowMap is a data structure for storing the temporal windows that de-
fine a Response Fingerprint and consists of a mapping between each selected
neuron and the temporal windows that have been identified for that neuron.
This mapping is generated from FrameProfile data (see Section B.2.3) and
is stored in a raw form that supports different views of the temporal win-
dows (see Section B.2.4). The WindowMap type provides window filtering
and selection methods and a range of other methods that manipulate the
raw window data e.g. for partitioning windows into layers, or for compar-
ing response profiles generated under different network conditions, or with
different stimuli.

B.2.3 WindowMap Generation

Unlike the generation of a FrameProfile, WindowMap generation is very fast.
Initial peak isolation involves scanning a small fixed-sized window across the
response histogram data for each neuron, selecting peaks in the accumu-
lated spike counts. Any peaks that pass an initial threshold are isolated as
potential windows by extending the histogram data within and around the
peak. The raw WindowMap data for each selected neuron consists of a pair
of lists representing the temporal offsets and spike counts for each of the
isolated peaks. Initial thresholding is set low by default so that small spike
count peaks are not excluded. Support for additional thresholding of the raw
window data is provided using a range of different criteria.

The algorithm for determining peaks in the data has three control param-
eters: the base threshold, the initial consistency threshold, and the window
size. Spike counts must be above the base threshold (the base spike count
level) in order to be included within a peak. Contiguous temporal offsets

18

with spike counts above the base threshold must additionally contain a min-
imum cumulative spike count that is calculated from the initial consistency
threshold. The window size determines the minimum number of contiguous
offsets that can be tested to meet the initial consistency criterion. For those
windows that pass, the isolated contiguous group is then extended at the
leading and trailing edges until the spike counts either dip below the base
threshold or begin increasing (indicating an adjacent peak).

B.2.4 WindowMap Views

The Response Fingerprinting method can be used in diverse ways such as ex-
amining changes in PNG activation with stimulus degradation, or exploring
the efficiency of different training methods. These different uses sometimes
require different analyses of the temporal window data: changes in the num-
ber of temporal windows might be sufficient for a simple analysis of the
fingerprint data, but more complex experiments might also require that any
changes in temporal window properties be examined e.g. changes in the tem-
poral precision of each peak, or in the temporal offset relative to the stimulus.
For this reason the data in a WindowMap is stored in a raw form that allows
different views of the underlying window data.

One such view is the spike count ratio view (see ExtractRatioData) that
computes values describing the selectivity and the consistency of the isolated
window peak for each temporal window. Selectivity is measured as a ratio
of the spike count within the peak relative to the total spike count, a ratio
that reflects the proportion of spikes that are captured by the window. Con-
sistency is the ratio of the spike count within the peak relative to the total
number of frames and reflects the proportion of trials in which the window
captured a spike.

Another view is the mean-variance view (see ExtractMeanVarianceData)
which computes the mean and variance of each of the selected temporal
windows. The variance is particularly useful for filtering the initial window
selection on the basis of the temporal precision of each window peak, but can
also be used to investigate changes in the temporal precision of windows with
training or with changes in network properties (e.g. see Guise et al., submit-
ted). Such comparisons require a mapping between the temporal windows
of two WindowMaps (e.g. WindowMaps generated from the same network
but with different network conditions). The mean value is primarily used to
facilitate these comparative mappings but is also useful for studying shifts in
window position under different network conditions.

19

B.2.5 Scripting the FrameProfile and WindowMap types

The script in Listing B.2 begins by constructing a new CrossbarNetwork and
maturing it over two hours (internal simulation time). It then profiles the
network’s response to a 5 Hz stimulus by analyzing the firing events gen-
erated by the network over a one hundred second simulation run. Using
the default frame size of 250 msec this produces 400 frames of firing data.
The script generates the following files: a network state file representing the
network state after maturation, another state file representing the network
state after training, and two files that store a frame profile of the network (be-
fore and after training). The filenames of these files include some metadata
that describes either the number of seconds of maturation or the number
of seconds of training. For this reason the filenames of the saved network
states are constructed on-the-fly by appending the appropriate metadata to
the base names defined in lines 21 and 22. Likewise, the filenames of the
saved network profiles are constructed from the corresponding network state
base names using a string formatting function called sprintf in lines 23 and
24.

Construction of the stimulus involves defining a pattern and then specify-
ing the pattern repetition frequency. The pattern is created as a linear se-
quence of 40 firing events, fired at one millisecond intervals and with the
neurons selected at uniform intervals across the range of neuron indices (line
27).1 Other static methods on the Pattern type provide alternative means
of defining the stimulus parameters. The Stimulus is then constructed from
this pattern at line 28 with a repetition frequency of 5 Hz. The method
call in lines 31 and 32 performs both initialization and maturation of a new
CrossbarNetwork with a network specifier that defines a 1000 neuron network
with randomly assigned connections, and additional arguments that specify
the output folder path and the network state base name used to construct
the filename for saving the matured network. The matured network is then
reloaded in lines 35 and 36 and the first of two profiles is generated (before
training) in lines 40 and 41. The pattern used to construct the stimulus is
passed to the profiling method and the resulting profile (saved to a file in line
44) represents the response of the network to that pattern. At this point of
the training procedure the network has had no prior exposure to the pattern
and the resulting profile is unlikely to show a strong response.

The script constructs a WindowMap for the untrained network at line 47
so that the number of temporal windows can be counted at a later stage.

1This combination of parameters produces the Ascending pattern of Fig. 1

20

1 #r @"SpikingNeuronLib.dll"
2 #r @"SpikingAnalyticsBaseLib.dll"
3 #r @"SpikingAnalyticsLib.dll"
4
5 open System
6 open System.IO
7 open SpikingNeuronLib
8 open SpikingAnalyticsLib
9 open SpikingAnalyticsLib.ResponseFingerPrint

10 open SpikingAnalyticsLib.PatternExtensions
11
12 let outputFolder = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments)
13 let backgroundFiringRate = 1 // one hertz background for maturation, training and profiling
14 let patternName = "Ascending" // pattern used for training and profiling
15 let includeInhibitoryNeurons = false // inhibitory neurons included for fingerprinting
16 let runSeconds = 2 * 3600 // two hour maturation period
17 let patternStimulationsPerSecond = 5 // training frequency
18 let trainSeconds = 120 // training period
19 let verbose = true // profiling feedback
20
21 let matureNetworkBaseName = "MatureNetwork"
22 let trainedNetworkBaseName = "TrainedNetwork"
23 let profileNameMatureNetwork = sprintf "profile_%s.txt" matureNetworkBaseName
24 let profileNameTrainedNetwork = sprintf "profile_%s.txt" trainedNetworkBaseName
25
26 // Create a linear firing pattern composed of 40 firing events, one each millisecond
27 let pattern = Pattern.FromLinearSequence(1, 1, 40)
28 let stimulus = Stimulus.Create(patternStimulationsPerSecond, pattern)
29
30 // Create a mature network composed of 1000 randomly connected neurons
31 CrossbarNetwork.CreateMatureNetwork(runSeconds, backgroundFiringRate,
32 CrossbarNetworkSpecifier.N1000Network, outputFolder, matureNetworkBaseName)
33
34 // load the matured network
35 let matureNetwork = CrossbarNetwork.CreateFromFile(
36 Path.Combine(outputFolder, sprintf "%s%d.txt" matureNetworkBaseName runSeconds)
37)
38
39 // Profile the network’s response to the stimulus
40 let profileBefore = new FrameProfile(matureNetwork, Some(pattern),
41 patternName, backgroundFiringRate, verbose)
42
43 // Save the profile
44 profileBefore.Save(Path.Combine(outputFolder, profileNameMatureNetwork))
45
46 // Create a response fingerprint (temporal windows)
47 let windowMapBeforeTraining = new WindowMap(profileBefore, includeInhibitoryNeurons, verbose)
48
49 // Train the network on a 5 Hz stimulus for 120 secs
50 matureNetwork.Train(stimulus, trainSeconds, backgroundFiringRate, outputFolder, trainedNetworkBaseName)
51
52 // load the trained network
53 let trainedNetwork = CrossbarNetwork.CreateFromFile(
54 Path.Combine(outputFolder, sprintf "%s%d.txt" trainedNetworkBaseName trainSeconds)
55)
56
57 // Re-profile the network’s response to the stimulus
58 let profileAfter = new FrameProfile(trainedNetwork, Some(pattern),
59 patternName, backgroundFiringRate, verbose)
60
61 // Save the profile
62 profileAfter.Save(Path.Combine(outputFolder, profileNameTrainedNetwork))
63
64 // Create the post-training response fingerprint
65 let windowMapAfterTraining = new WindowMap(profileAfter, includeInhibitoryNeurons, verbose)
66
67 printfn "%d %d" (windowMapBeforeTraining.AllWindows.Count) (windowMapAfterTraining.AllWindows.Count)

Listing B.2: A script that performs Response Fingerprinting.

21

The network is then trained on the stimulus at line 50 with the trained
network state being saved to a file at training completion. The saved state
is then reloaded in lines 53 and 54 and profiled in lines 58 and 59. The
profile saved in line 62 should now show a strong response to the stimulus
and the WindowMap generated from the profile at line 65 will reflect the
strong response by identifying a substantially larger number of temporal
windows relative to the earlier profile (for the untrained network). The count
of temporal windows both before and after training is reported in the final
line.

B.3 Background pattern generator

The next script is a version of the script shown in Listing 2.1 that has been
modified to allow the script to be run with different parameters. References
to the required Spinula libraries have also been added. The script has been
rewritten as a function definition with parameters, and a function call with
matching arguments. The modified script allows a range of experimental
scenarios to be tested by simply varying the values supplied as arguments
to the function. The script also demonstrates the use of one of the data
collector types (OneSecondTickDataCollector) and the use of a SpikeVisu-
alisation method for visualizing the firing data. The script references the R
type provider (lines 4 and 5) and a data manipulation library called Deedle
(lines 6 and 7) both of which are dependencies of the visualization library
(see BlueMountain Capital Management LLC, 2012a,b).

The function definition in Listing B.3 begins at line 16 and continues through
to line 37. The function call is on the final line of the script at line 41 and
passes the value ten as the background frequency, and a string value com-
puted at lines 39 and 40 as the output file path. Within the function def-
inition, the sequence of script commands is largely identical to the original
script in Listing 2.1. A new network is created using a built-in network spec-
ifier that creates a 1000 neuron network with no connections. The network is
then run with just random background stimulation at the frequency specified
by the first function parameter, and the third frame of firing data is saved
to the file specified by the second function parameter. Selection of the third
frame at lines 30 and 31 uses the OneSecondEventCollector property of the
CrossbarNetwork type to retrieve the data collector (of type OneSecondTick-
DataCollector) that was used behind the scenes to collect firing events. The
selected firing events are then displayed at line 37 using a static method on
the SpikeVisualisation type.

22

1 #r @"SpikingNeuronLib.dll"
2 #r @"SpikingAnalyticsBaseLib.dll"
3 #r @"SpikingAnalyticsLib.dll"
4 #I @"RProvider.1.0.12"
5 #load "RProvider.fsx"
6 #I @"Deedle.1.0.0"
7 #load "Deedle.fsx"
8 #r @"SpikingVisualisationRLib.dll" // references Deedle
9 #r @"SpikingAnalyticsFrameLib.dll" // references Deedle

10
11 open System
12 open System.IO
13 open SpikingAnalyticsLib
14 open SpikingVisualisationRLib
15
16 let TestBackgroundPatternGenerator (backgroundFrequency:int) outputFilePath =
17
18 let verbose = true
19 let runSeconds = 5
20 let showOnlyForegroundEvents = false
21
22 // create a new network with no connections between neurons
23 let network = CrossbarNetwork.CreateAdHocNetwork(
24 CrossbarNetworkSpecifier.N1000_Unconnected_Network, None, verbose)
25
26 // run the network with background stimulation but no stimulus and collect firing data
27 network.Run(runSeconds, None, backgroundFrequency)
28
29 // select the third one second frame of firing data (include background firing events)
30 let thirdFrameData = network.OneSecondEventCollector.SelectRange(
31 2000, 3000, showOnlyForegroundEvents)
32
33 // save the data
34 thirdFrameData.Save(outputFilePath)
35
36 // show the data as a spike raster
37 SpikeVisualisation.ShowSpikeRaster(thirdFrameData.AllEventPairs)
38
39 let outputFolder = Environment.GetFolderPath(Environment.SpecialFolder.MyDocuments)
40 let outputFilePath = Path.Combine(outputFolder, "temp.txt")
41 TestBackgroundPatternGenerator 10 outputFilePath

Listing B.3: A script that tests the Poisson Process background pattern
generator.

23

B.4 The effects of weights and delays on the membrane
potential

The next script shown in Listing B.4 demonstrates the importance of the
afferent connection weights and delays in determining the dynamics of the
neuron membrane potential. It defines two functions, an outer helper func-
tion that generates the stimulus for an inner function that runs a network
simulation while collecting membrane potential data from a single output
neuron. The script demonstrates the effect of varying the arguments to a
function, explains the importance of indenting, and introduces the use two
new types: the OneMillisecTickDataCollector type, used to collect synaptic
weight and membrane potential data, and the OneMillisecTickDataCollec-
torParameters type used to specify the data collection parameters.

The script specifies a network with a single output neuron and two or more
input neurons, and defines the number of inputs as a parameter to each of the
two functions. The helper function uses the number of inputs to construct
a stimulus that will fire all input neurons simultaneously. The idea is that
spikes will propagate along each of the connections between the input neu-
rons and the single output neuron, with the connection lengths determining
the propagation delays and hence the degree of spike convergence on the out-
put neuron. Firing of the output neuron is therefore a function of both the
connection weights and the connection delays, with the delays determining
the degree of spike convergence. The first function (GenerateMembraneData)
sets up and runs the network simulation and collects the membrane potential
data from the output neuron. The second function (GenerateMembraneData-
Helper) generates a stimulus appropriate to the number of inputs, calls the
first function and then displays the collected data.

The previous script used the OneSecondTickDataCollector type to collect
firing data over the course of the simulation. The collection of firing data
is enabled by default in a CrossbarNetwork and the OneSecondTickData-
Collector type is therefore implicitly created during network construction.
In contrast, the collection of synaptic weight or membrane potential data
requires the explicit construction of the OneMillisecTickDataCollector type
which is then passed to the network constructor method. Lines 19 to 40 of
the script show an example of this explicit construction method. The indent-
ing throughout the script is critical as it determines the lines in the script
which should be grouped together. Lines 20 to 40 define the construction
of the network and all have (at least) the same level of indenting, forming
a single functional group within the script. Within this group there are

24

1 #r @"SpikingNeuronLib.dll"
2 #r @"SpikingAnalyticsBaseLib.dll"
3 #r @"SpikingAnalyticsLib.dll"
4 #I @"RProvider.1.0.12"
5 #load "RProvider.fsx"
6 #I @"Deedle.1.0.0"
7 #load "Deedle.fsx"
8 #r @"SpikingVisualisationRLib.dll" // references Deedle
9 #r @"SpikingAnalyticsFrameLib.dll" // references Deedle

10
11 open System
12 open SpikingNeuronLib
13 open SpikingAnalyticsLib
14 open SpikingVisualisationRLib
15
16 // Generate membrane voltage data for a network with a single output neuron
17 let GenerateMembraneData numberOfInputs delays (weights:float list) stimulus =
18
19 let network =
20 let numberOfSamples = 5000
21 let specifier =
22 let postNeuron = numberOfInputs
23 let connections =
24 // zip three lists together: the presynaptic neurons, the delays and the weights
25 Seq.zip3 [for i in 0..numberOfInputs-1 -> i] delays weights
26 |> Seq.map (fun (preNeuron, delay, weight) ->
27 new Connection(preNeuron, postNeuron, delay, weight))
28 |> Seq.toList
29 new CrossbarNetworkSpecifier(numberOfInputs + 1, 0, 20, connections)
30 let hiResCollector =
31 let selectedNeurons = [specifier.TotalNeurons-1] // just the output neuron
32 let selectedConnections = []
33 let totalNeurons = specifier.TotalNeurons
34 let totalConnections = specifier.Connections.Value.Count
35 let numberOfMembraneSamples = numberOfSamples
36 let numberOfWeightSamples = 0
37 let parameters = new OneMillisecTickDataCollectorParameters(selectedNeurons, totalNeurons,
38 selectedConnections, totalConnections, numberOfMembraneSamples, numberOfWeightSamples)
39 new OneMillisecTickDataCollector(parameters)
40 CrossbarNetwork.CreateAdHocNetwork(specifier, Some(hiResCollector), false)
41
42 network.Run(10, Some(stimulus :> IStimulus), 0, false)
43 network.OneMillisecondEventCollector.Value
44
45 // Generate and show membrane data
46 let GenerateMembraneDataHelper numberOfInputs delays weights =
47
48 let stimulus =
49 let firingEvents =
50 let times = [for i in 0..numberOfInputs-1 -> 0]
51 let neurons = [for i in 0..numberOfInputs-1 -> i]
52 Seq.zip times neurons
53 |> Seq.map (fun (time, nindex) -> new FiringEvent(time, nindex, EventLabel.Foreground))
54 |> Seq.toArray
55 let patternStimulationsPerSecond = 1
56 Stimulus.Create(patternStimulationsPerSecond, firingEvents)
57
58 let dataCollector = GenerateMembraneData numberOfInputs delays weights stimulus
59 MillisecondResolutionDataVisualisation.ShowCollectedMembraneData(dataCollector, 1000, 1100)
60
61 GenerateMembraneDataHelper 2 [5; 5;] [10.0; 10.0;]
62 GenerateMembraneDataHelper 2 [5; 5;] [9.0; 8.0;]
63 GenerateMembraneDataHelper 2 [5; 5;] [8.0; 8.0;]
64
65 GenerateMembraneDataHelper 2 [6; 5;] [10.0; 10.0;]
66 GenerateMembraneDataHelper 2 [8; 5;] [10.0; 10.0;]
67 GenerateMembraneDataHelper 2 [12; 5;] [10.0; 10.0;]

Listing B.4: A script that demonstrates the effect of varying afferent connec-
tion weights and delays on the neuron membrane potential.

25

nested groups that define the network specifier (lines 22 to 29) and the data
collection parameters (lines 31 to 39).

The data collector can sample both neuron data and connection data by de-
fault. Data collection for each type is enabled by passing a non-empty list
to either the selected neurons or selected connections parameter of the One-
MillisecTickDataCollectorParameters constructor. For this example we are
sampling only neuron data i.e. the membrane potential and the membrane
recovery variable. Line 31 specifies data collection on the neuron with the
highest index (i.e. the output neuron) while line 32 specifies an empty list
for the selected connections, thereby disabling the sampling of connection
data. The OneMillisecTickDataCollector is then constructed at line 39 and
the simulation is run for ten seconds with an appropriately sized stimulus at
line 42. The data collector is used not only to collect membrane data but also
to pass the stored data between the two functions. The final line (line 43)
of the GenerateMembraneData function determines the function value that
is passed back to the calling function at line 58. The stored membrane data
is then displayed at line 59 using a static method on the MillisecondResolu-
tionDataVisualisation type. Lines 61 to 67 call the outer (helper) function
six times, with different arguments for the connection delays and weights
for each function call. The resulting membrane data plots show that both
insufficient connection weights, or delays that cause too much divergence in
the spike arrival times have a similar effect in preventing the output neuron
from firing.

B.5 Train a W-Network

The final script simulates the network described in Section 3 referred to
as a W-Network. Like the previous script, the script shown in Listing B.5
uses a OneMillisecTickDataCollector to collect neuron membrane potential
data, but as the W-Network experiment requires a comparison between the
neuron and connection data the synaptic weight data is also collected. New
features introduced in this script are type-casting, the use of options, saving
the collected data, and the display of both membrane potential and synaptic
weight data using methods on the MillisecondResolutionDataVisualisation
type.

The script defines a single function (TrainWNetwork) with parameters that
specify the output folder path (for saving the collected data) and the back-
ground stimulation frequency (see the description in Section 3 for more details
of the experimental setup). A built-in network specifier is selected at line

26

1 #r @"SpikingNeuronLib.dll"
2 #r @"SpikingAnalyticsBaseLib.dll"
3 #r @"SpikingAnalyticsLib.dll"
4 #I @"RProvider.1.0.12"
5 #load "RProvider.fsx"
6 #I @"Deedle.1.0.0"
7 #load "Deedle.fsx"
8 #r @"SpikingVisualisationRLib.dll" // references Deedle
9 #r @"SpikingAnalyticsFrameLib.dll" // references Deedle

10
11 open System
12 open System.IO
13 open SpikingNeuronLib
14 open SpikingAnalyticsLib
15 open SpikingAnalyticsLib.PatternExtensions
16 open SpikingVisualisationRLib
17
18 let TrainWNetwork pathToOutputFolder backgroundFrequency =
19
20 let verbose = true
21 let runSeconds = 100
22 let stimulusFrequency = 10
23
24 let specifier = CrossbarNetworkSpecifier.W_Network
25
26 let hiDataResCollector =
27 // membrane data: record the first 1000 samples from the run (one sample per msec)
28 let numberOfMembraneSamples = 1000
29 // weight data: record the entire run (one sample per msec)
30 let numberOfWeightSamples = runSeconds * 1000
31 let totalNeurons = specifier.TotalNeurons
32 let totalConnections = specifier.Connections.Value.Count
33 // collect membrane data for neurons: 0, 1, 2, 3, 4
34 let selectedNeurons = [for i in 0..totalNeurons-1 -> i]
35 // collect synaptic weight data for connections: 0, 1, 2, 3
36 let selectedConnections = [for i in 0..totalConnections-1 -> i]
37 let parameters = new OneMillisecTickDataCollectorParameters(selectedNeurons, totalNeurons,
38 selectedConnections, totalConnections, numberOfMembraneSamples, numberOfWeightSamples)
39 new OneMillisecTickDataCollector(parameters)
40
41 let network = CrossbarNetwork.CreateAdHocNetwork(specifier, Some(hiDataResCollector), verbose)
42
43 // create an input pattern: repeated firing of both input layer neurons simultaneously (at time 0)
44 let stimulus =
45 let pattern =
46 let times = [| 0; 0; |]
47 let neurons = [| 0; 1; |]
48 Pattern.FromFiringSequence(times, neurons)
49 Stimulus.Create(stimulusFrequency, pattern)
50
51 // run the network with this pattern and collect membrane and weight data
52 network.Run(runSeconds, Some(stimulus :> IStimulus), backgroundFrequency)
53 let hiResDataCollector = network.OneMillisecondEventCollector.Value
54
55 // save the membrane potential data (V and U)
56 let membraneDataPath = Path.Combine(pathToOutputFolder, "membraneData.txt")
57 hiResDataCollector.SaveMembraneData(membraneDataPath)
58
59 // save the synaptic weight data (weight and derivative)
60 let weightDataPath = Path.Combine(pathToOutputFolder, "weightData.txt")
61 hiResDataCollector.SaveConnectionData(weightDataPath)
62
63 // show the membrane potential plots
64 MillisecondResolutionDataVisualisation.ShowCollectedMembraneData(hiResDataCollector)
65
66 // Create a new plot window
67 VisualisationUtilities.NewWindow()
68
69 // show the synaptic weight plots
70 MillisecondResolutionDataVisualisation.ShowCollectedWeightData(hiResDataCollector)

Listing B.5: A script that shows the changes in synaptic weights in a W-
Network during training.

27

24 and the data collection parameters are defined in lines 26 to 39. The
construction method at line 41 uses an option type for the second parame-
ter: passing Some(hiDataResCollector) for this parameter will include this
optional data collector type in CrossbarNetwork construction, while passing
None for the second parameter will prevent the collection of neuron and
connection data (although firing data will still be collected using the implicit
OneSecondTickDataCollector). The stimulus is created between lines 44 and
49, first defining a firing pattern that fires both input layer neurons simul-
taneously at t = 0, and then constructing a Stimulus by repeating the firing
pattern every 100 milliseconds (i.e. 10 Hz). The script uses an array of firing
times and an array of input neuron indices to specify the required Pattern
type.

The simulation begins at line 52 and runs for one hundred seconds with the
background frequency specified by the second function parameter. The sec-
ond parameter on the Run method (of the CrossbarNetwork type) is also
an option type, allowing an optional stimulus of type IStimulus to be spec-
ified. Passing either Some(IStimulus) or None for this parameter will run
the simulation either with or without a stimulus respectively. IStimulus is
an interface type of which there are currently two implementations: Stimu-
lus and MultiStimulus. The stimulus in this script is of type Stimulus and
therefore must be type-cast (using the upcast operator :>) to the expected
(IStimulus) type.

After the simulation completes, the data collector contains one thousand
membrane potential samples and 100,000 weight samples (line 53). Mem-
brane potential data is collected only in the first second of the simulation
as the network responds to the repeated stimulus in a similar way over the
course of the simulation. In contrast, the synaptic weight data is expected to
change continuously as the network is trained on the stimulus, and therefore
the weight data is collected throughout the run. The collected membrane
data is saved in lines 56 and 57 and the corresponding weight data in lines 60
and 61. The final few lines display first the membrane data (line 64) and then
the synaptic weight data (line 70). In order to prevent the first plot being
overwritten by the second plot line 67 creates a new window in readiness for
the second data visualization method call.

References

BlueMountain Capital Management LLC, 2012a. F# R Type Provider.

28

URL http://bluemountaincapital.github.io/
FSharpRProvider/

BlueMountain Capital Management LLC, 2012b. Deedle: Exploratory data
library for .NET.
URL http://bluemountaincapital.github.io/Deedle/

Guise, M., Knott, A., Benuskova, L., 2013. Experiments on the
effect of synaptic disruption on polychronous group forma-
tion: detailed methods and results (OUCS-2013-02). Tech. rep.,
Dept of Computer Science, University of Otago, Dunedin, see
http://www.cs.otago.ac.nz/research/techreports.php.

Guise, M., Knott, A., Benuskova, L., 2014. A bayesian model of polychronic-
ity. Neural Computation 26 (9), 2052–2073.

Guise, M., Knott, A., Benuskova, L., submitted. Enhanced polychronisa-
tion in a spiking network with metaplasticity. Frontiers in Computational
Neuroscience.

Izhikevich, E. M., Feb. 2006a. Polychronization: computation with spikes.
Neural computation 18 (2), 245–82.

Izhikevich, E. M., 2006b. Reference software implementation for the Izhike-
vich model: Minimal spiking network that can polychronize.
URL http://www.izhikevich.org/publications/spnet.htm

Izhikevich, E. M., Gally, J. A., Edelman, G. M., Aug. 2004. Spike-timing
dynamics of neuronal groups. Cerebral cortex (New York, N.Y. : 1991)
14 (8), 933–44.

Martinez, R., Paugam-Moisy, H., 2009. Algorithms for structural and dy-
namical polychronous groups detection. In: Alippi, C., Polycarpou, M.,
Panayiotou, C., Ellinas, G. (Eds.), Artificial Neural Networks ICANN
2009. Vol. 5769 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg, pp. 75–84.
URL http://dx.doi.org/10.1007/978-3-642-04277-5_8

Microsoft, 2014. Microsoft Developer Network - Visual F# Development
Portal.
URL http://msdn.microsoft.com/en-us/library/
ff730280.aspx

29

http://bluemountaincapital.github.io/FSharpRProvider/
http://bluemountaincapital.github.io/FSharpRProvider/
http://bluemountaincapital.github.io/Deedle/
http://www.izhikevich.org/publications/spnet.htm
http://dx.doi.org/10.1007/978-3-642-04277-5_8
http://msdn.microsoft.com/en-us/library/ff730280.aspx
http://msdn.microsoft.com/en-us/library/ff730280.aspx

R Core Team, 2014. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria.
URL http://www.R-project.org

30

http://www.R-project.org

	Some common terms
	Scripts
	A small experiment
	Spinula Libraries
	The SpikingNeuronLib library
	The SpikingAnalyticsLib library
	The SpikingVisualisationLib library

	A walk-through of some scripts
	Finding PNGs
	Response Fingerprinting
	The FrameProfile type
	The WindowMap type
	WindowMap Generation
	WindowMap Views
	Scripting the FrameProfile and WindowMap types

	Background pattern generator
	The effects of weights and delays on the membrane potential
	Train a W-Network

