
Department of Computer Science,
University of Otago

Technical Report OUCS-2013-10

Response Fingerprinting: a probabilistic method for
evaluating the network response to stimuli

Authors:

Mira Guise, Alistair Knott, Lubica Benuskova
Department of Computer Science, University of Otago, New Zealand

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.php

Response Fingerprinting: a probabilistic method for

evaluating the network response to stimuli

Mira Guise∗, Alistair Knott, Lubica Benuskova

Dept of Computer Science, University of Otago, Dunedin

Abstract

Spiking neural networks that have variable connection delays have the interesting property that they are
sensitive to both spatial and temporal patterns of input. Each neuron in the network receives input from
spatially-distributed input neurons whose precise firing times interact with connection delays to determine
whether the neuron can exceed the firing threshold and produce an output. The network is therefore most
responsive to spatio-temporal stimuli whose temporal components match the delays in the connected
structure of the network. Izhikevich (2006a) has shown that certain strongly connected groups of neurons
known as polychronous neural groups (or PNGs) exist in large numbers within the network structure.
The activation of these neural groups is stimulus-specific and produces unique firing signatures that are
detectable in the firing data. Previous methods for detecting PNG activation have relied on a template
matching technique that assumes a deterministic response to each stimulus presentation (Izhikevich, 2006a;
Martinez and Paugam-Moisy, 2009; Guise et al., 2013a). Here we present an alternative probabilistic view
of the stimulus response and demonstrate the application of this new detection method.

Keywords: spiking network, polychronous neural group, representation

Spiking neural networks, such as those in the brain, are connected net-
works of nodes that are able to produce computationally interesting trans-
formations on their inputs. The network nodes (called neurons) exchange
messages across their connections in the form of temporally discrete events
called spikes. The significance of these spiking messages is determined by the
weight of the connection bearing each message: messages borne on strong
connections carry greater significance than messages borne on connections
with lesser weight. The neurons in a spiking neural network receive spiking
messages on their input connections, evaluate their significance and option-
ally produce a spike on their output connections. Message evaluation involves
the integration of messages over a limited time frame, with the significance of
individual messages decreasing exponentially the moment they are received.
If the combined significance of recent messages reaches a threshold, the neu-
ron fires, producing an output spike that provides an input message to other
neurons.

∗Corresponding author at: Department of Computer Science, University of Otago, PO
Box 56, Dunedin 9054, New Zealand

Email address: mguise@cs.otago.ac.nz (Mira Guise)

Technical Report September 24, 2013

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

0 5 8
Time

0 5 8
Time

A

B

1

2

3

4

3 m
s

3 m
s

8
 m

s

8
 m

s

Figure 1: The significance of variable connection lengths. Each of the four
neurons in this model network require at least two near simultaneous inputs
in order to reach firing threshold. Neurons 1 and 2 are input neurons that
provide synaptic input to output neurons 3 and 4. Due to the variable delays
imposed by the different connection lengths, the precise firing times of each
input neuron determine which of the two output neurons is likely to fire.

The pattern of messages flowing through the network has both spatial
and temporal components: each neuron receives input messages from many
neighboring neurons distributed across the network space, and these mes-
sages arrive at the neuron at discrete times. Each neuron therefore sees
distinct spatio-temporal stimuli across its many input connections. The net-
work parameters are typically chosen such that it requires at least two near
simultaneous inputs for a neuron to fire. Incoming spikes from neighboring
neurons must therefore converge to produce sufficient combined input for the
neuron to exceed its firing threshold.

If the connections to neighboring neurons are of variable length, the pre-
cise firing time of each of the neighboring neurons interacts with the transit
times of each of the resulting spikes to determine whether the neuron will fire.
As shown in panel A of Fig. 1, if neuron 1 fires at t = 0 and neuron 2 fires at
t = 5 then the combined input from two near simultaneous spikes is sufficient
for neuron 4 to reach the firing threshold. While neuron 3 receives the same
spike messages, they are well-spaced in time and the threshold is therefore
not reached. In panel B, the input firing pattern is reversed i.e. neuron 2
fires at t = 0 and neuron 1 fires at t = 5. The result is that convergent input
arrives at neuron 3, and only neuron 3 will fire. To summarize, a neuron

2

will only reach the firing threshold when the input connection lengths are
congruent with the pattern of firing times of the input neurons. Each neu-
ron therefore has the ability to selectively respond to spatio-temporal stimuli
in which the precise timing of its input neurons matches the corresponding
connection delays.

The connected structure of a spiking neural network can be viewed as a
weighted digraph in which the graph vertices are replaced by neurons and
the directed edges are replaced by connections. Izhikevich (2006a) has shown
that certain strongly connected groups of neurons known as polychronous
neural groups (or PNGs) exist in large numbers within this connection graph.
A defining feature of polychronous groups is that the connected subgraph
that distinguishes the group forms a broad pathway of congruent connections
through the network that has the potential to sustain a causal cascade of
neural firing. Activation of a PNG produces polychronisation, a reproducible
and precisely timed sequence of firing events that is observable in the firing
data generated by the network (Izhikevich, 2006a; Izhikevich et al., 2004).

Group activation requires an appropriate spatio-temporal triggering pat-
tern that is able to match some portion of the PNG subgraph and produce
convergent firing. If the resulting polychronisation is to be sustained, multi-
ple group neurons must fire at precise times over the course of activation. The
interaction of the convergent connections within the group with these pre-
cisely timed firing events allows individual group neurons to reach their firing
thresholds, supporting further polychronisation. Although these pathways of
converging connections have the potential to support polychronisation, PNG
activation also requires that the connections between group members be suf-
ficiently strong to allow the combined inputs to group neurons to pass the
firing threshold. Training the network produces selective strengthening of
group connection weights so that polychronisation is more likely to occur.
The process of network training involves repeated exposure to a triggering
stimulus in the presence of an appropriate learning rule such as Spike-timing
Dependent Plasticity (STDP).

The unique pattern of firing events generated by each PNG activation
provides a distinct activation signature that can be detected in the network
firing data. In order to resolve these signatures within the massive flood of
firing events generated by the network, PNGs that are triggered by parts of
the stimulus are used as spatio-temporal templates that are matched against
the firing data (Guise et al., 2013a). Alternatively, the triggering patterns
that make up the stimulus are detected directly, on the assumption that the
presence of the triggering pattern will entail PNG activation (Martinez and
Paugam-Moisy, 2009).

One difficulty with these techniques is that in a network with recurrent

3

connections and random background firing, PNG activation is not determin-
istic: the same PNG can polychronise in different ways, with variation in
both the neurons that participate in each activation and in the precise time
of their firing. This variability is caused by perturbations in the internal dy-
namics of each neuron due to the integration of recent events. For example, if
random or recurrent input to a PNG neuron has recently caused it to fire, the
neuron may resist participating in the current activation for a small interval
(the neural refractory period), or may fire with a small delay. In addition,
Izhikevich et al. (2004) have noted that there is considerable competition be-
tween polychronous groups for the affiliation of individual neurons, causing
the synaptic weights to be constantly adjusted to support the activation of
first one group then the other. Methods for detecting group activation must
take these variations into account, typically by reducing the number of firing
events in a search template that must be matched, and by incorporating a
term that accounts for an allowed jitter in the neural firing time.

Using techniques such as these, Izhikevich (2006a) has explored the idea
that polychronous groups might provide a neural basis for representation and
memory. According to this proposition, stimuli evoke specific mental repre-
sentations by triggering PNG activation. However, for this to be true PNG
activation must be both consistent and selective i.e. PNG activations must
occur consistently on each stimulus presentation and must be specific to the
stimulus. Our group has used a template matching technique to provide
initial evidence for the consistency of PNG activation (Guise et al., 2013a).
There is also some initial evidence for selectivity: using a network trained
on two different stimuli, Izhikevich (2006a) has shown that different groups
of PNGs were activated in response to each stimulus. However, similar work
within our group has found that PNGs can be activated by different but
overlapping stimuli and that individual PNG activations cannot therefore be
selective for the input stimulus. Nevertheless, both our results and those
of Izhikevich (2006a) are consistent with the idea that sets of PNG activa-
tions could be selective. Given this view, the response of the network to
overlapping stimuli can be modeled by allowing two sets of PNG activations
to overlap such that individual PNG activations occur in both sets. Thus,
while the set as a whole is selective for the stimulus, the activation of any
individual PNG within the set is not.

The PNG activations that comprise the network’s response to a stimulus
presentation together provide a stimulus-specific activation signature that
will be referred to hereafter as the stimulus response. On first exposure to
a stimulus, there may be few if any PNG activations making up the stimu-
lus response, and any activations that occur may be partial. This initially
weak response becomes increasingly well defined over the course of training

4

as the connection weights supporting PNG activation are strengthened. In
previous research, the stimulus response has been studied on the assumption
that PNG activation generates a fixed and deterministic sequence of firing
events. However, both the variability between individual PNG activations
and the changes in the stimulus response that occur with training are in-
compatible with this view. In the current paper we abandon this view in
favor of a more probabilistic representation of the stimulus response. In or-
der to explain this approach we will begin by creating a Response Profile,
a profile of the firing behavior of each neuron that uniquely qualifies the
network’s response to the stimulus. Next, we will build upon this response
profile to generate a stimulus-specific Response Fingerprint that supports a
probabilistic interpretation of the stimulus response.

1. Response Profiling

A firing event records the firing of a specific neuron in the network at
a specific time and can occur in direct response to an external stimulus or
in response to input from recurrently connected neighboring neurons. An
external stimulus is represented as a spatio-temporal pattern of firing events
that causes the specified neurons to fire at the specified times. This input
pattern may be repeatedly presented to the network at regular intervals,
typically at a frequency of one hertz or greater. In addition, a random
pattern of firing is generated within the network by causing each neuron
in the network to fire at a random time in each second (the mean random
background firing rate is typically set to one hertz).

Regular stimulation of a trained spiking network with a known pattern
produces observable consistencies in the firing events occurring after each
presentation of the stimulus. In response to an external stimulus the input
pattern neurons fire, providing an activation trigger for one or more PNGs.
If coherent external stimulation is provided to a network at regular inter-
vals, the consistent firing of PNG neurons produces firing events whose firing
times occur at a consistent interval following each stimulus presentation. In
contrast, neurons that are not a part of any activated polychronous group
will fire at random times over the same interval.

In this section we will characterize this consistent activation response by
accumulating the firing times of each neuron over multiple stimulus presen-
tations. The resulting histograms can be generated for every neuron in the
network, creating a response profile that is unique to each stimulus.

5

0 200 400 600 800 1000

200

400

600

800

1000

Time (msec)

N
e
u
ro

n
 I

n
d
e
x

Figure 2: A schematic of a single response frame showing the presentation of
a stimulus at the time indicated by the arrow, and the subsequent stimulus
response caused by one or more PNG activations. Firing events are filtered
so as to show just the stimulus events and those events that are part of the
resulting stimulus response. This single response frame is assumed to be one
of many in a long consecutive sequence of frames.

1.1. Qualifying the response to an input pattern

We start by defining a fixed interval called a response frame over which
firing times are accumulated (see Fig. 2). The stimulus is presented at the
start of each response frame and the stimulus response is then collected over
the remainder of the interval.

A count of the number of firing events is accumulated for each fixed tem-
poral offset relative to the start of the frame, producing a response histogram
for each neuron. The collection of response histograms for each neuron in
the network together define a unique profile of the response of the network
to a specific input pattern (a frame profile).

Figure 3 shows the response histograms for eight selected neurons (neuron
indices are indicated to the right of each plot). The temporal offset within
the response frame is shown on the x-axis, with spike counts on the y-axis.

A low level of random background firing can be seen in each histogram,
with firing times distributed throughout the frame. However, each histogram
also shows one or more significant peaks in the spike counts, occurring within
a small range of offsets relative to stimulus presentation. For the purposes of
explaining these peaks, it is useful to view the stimulus response as a causal
sequence of firing events as shown in Figure 4. The firing of neurons in the

6

600
1200

1

300
600

90

300
600

419

300
600

746

300
600

2

300
600

3

300
600

5

50 100 150 200 250

300
600

8

Offset (msec)

S
pi

ke
 c

ou
nt

Figure 3: Histograms of spike counts for selected neurons over a 250 mil-
lisecond response frame. Spiking data was collected from a trained network
following repeated stimulation with an ascending input pattern. Each neuron
in the network averaged nearly 3000 firing events over the 400 second run.
Some of these events were due to background firing, and some due to the di-
rect or indirect effects of the firing of input pattern neurons. The histograms
of just eight neurons (of 1000 total) are shown. The selected neurons are
either directly or indirectly connected to neuron 1 (see index numbers on the
right). They are as follows: neuron 1 is a neuron from the input pattern;
neurons 90, 419 and 746 are neurons immediately post-synaptic to neuron
1; neurons 2, 3, 5 and 8 are not directly connected to any input pattern
neurons. Both the directly connected and the indirectly connected neurons
respond to only some of the 1600 stimuli. Note that neuron 1 is externally
stimulated (as part of the input pattern) and responds to most presentations
of the stimulus (for this reason, the y-axis for neuron 1 is approximately
twice that of the remaining plots).

7

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

Time (msec)

N
e

u
ro

n
 I
n

d
e

x Input 1 2 3

Figure 4: Activity propagation through multiple layers during activation of
a PNG following stimulation of a trained network with an ascending input
pattern. Nodes represent the firing of PNG neurons and lines represent causal
links between firing events. For the purposes of explication most of the firing
events and causal links have been removed and the timing of some firing
events has been adjusted.

input layer produces subsequent firing of neurons in layer 1 that together
produce firing in layer 2, and so on into deeper layers of the network. Given
repeated stimuli then, the firing of input pattern neurons should be highly
correlated with the subsequent firing of neurons in layer 1. We might also
expect to see correlations between input pattern events and firing events in
deeper layers of the network, although these correlations might get progres-
sively weaker due to the non-deterministic nature of these firing events.1

Figure 3 shows the histograms for some of the more strongly responding
neurons in the network. Other neurons produce a weaker response, or per-
haps no response to the same input pattern. External input produces the
first peak for neuron 1, an input pattern neuron (top histogram in Figure 3).
The firing of neuron 1 and other input pattern neurons leads to subsequent
firing of neurons immediately post-synaptic to the input neurons, including
neurons 90, 419 and 746. These neurons show peaks at offsets that reflect the
axonal delays between the input neurons and their post-synaptic neurons.2

1While it is useful to entertain a perspective on PNG activation that emphasizes a
layered architecture, no such abstraction exists in a network with random connections.
In such a network, the causal effects of firing events might be limited to a single layer in
Figure 4, or might span across multiple layers in the diagram, limited only by the axonal
lengths. Note the intra-layer and multi-layer links in Figure 4.

2The offsets also reflect the firing latencies for both sets of neurons.

8

Firing events in layer 1 then produce firing of the neurons in progressively
deeper layers (neurons 2, 3, 5 and 8).

Secondary peaks are also observable in the figure: a strong secondary
peak following external stimulation of neuron 1 suggests a long recurrent
pathway producing self-stimulation of this neuron; a series of secondary peaks
following the firing of neuron 90 might be due to a shorter recurrent pathway
producing a sequence of progressively weaker inputs on each cycle.

These spike count peaks in the histograms of the strongly responding
neurons define a spatio-temporal response signature that is unique to a given
input pattern. If we assume that the effect of training is to reinforce the
connections within one or more structural PNGs then this response signa-
ture describes the activation of these structural groups. More precisely, the
response signature describes a statistical average over many activations of
the connectivity subgraphs within the underlying groups. Each presentation
of the pattern produces a stimulus response where the vast majority of the
firing events are statistically likely to fall within temporal windows defined
by the histogram peaks. It should therefore be possible to use this unique
response signature to infer the presence of the input pattern, even after a
single presentation of the pattern. We will explore this idea further in the
next section.

2. The Response Fingerprinting method

In this section, a new method is presented that allows the presence of a
particular input pattern to be inferred from the stimulus response using a
pattern-specific fingerprint. A pattern fingerprint is a spatio-temporal pat-
tern of temporal windows that together define the statistical response to the
pattern. Each temporal window specifies a small range of temporal offsets
within which the probability of a spike occurring is significantly greater than
average. The temporal windows in the fingerprint are spatio-temporally ar-
ranged so as to capture the majority of the firing events in the stimulus
response. If the majority of windows capture a spike, then it is probable
that the input pattern associated with the fingerprint was present. On the
other hand, if few windows capture a spike, then it is unlikely that the input
pattern was present.

The process of generating a response fingerprint requires first generating
a response profile and then analyzing the resulting histograms to determine
the temporal windows that straddle the peak spike counts. Window start
times and widths are mapped to the temporal offsets that optimally overlap

9

each peak.3 Once a window is defined for each neuron, a thresholding step
removes those that capture only a small proportion of the available spikes,
leaving just the windows for strongly responding neurons. Although creating
a response profile requires the gathering of statistics over many presentations
of the input pattern, this process need only be performed once for each
pattern. The fingerprint can then be used for pattern inference over multiple
experiments, provided that the stimulus response does not diverge too far
from the gathered statistical data.

The presence or absence of the input pattern associated with a finger-
print is inferred from the evidence provided by the stimulus response. Im-
portantly, the response fingerprinting method expands on the response pro-
filing method by imposing a probabilistic view on the response. Placing
this evidence within a probabilistic framework usefully allows us to quantify
the non-deterministic relationship between the input pattern and respond-
ing neurons. Ideally, we would like to make statements such as “given some
spiking of selected neurons in these selected time ranges, the probability that
the input pattern was presented is X”. In order to support such statements
we need to be able to compute the conditional probability that the input
pattern was present, given a specific stimulus response.

2.1. A probabilistic view of the stimulus response

If we define the event of one or more spikes occurring within a temporal
window as a window activation, then our objective is to compute the prob-
ability that a specified input pattern was presented, given the evidence of
window activation (i.e. p(InputPattern |WindowActivation)). For conve-
nience we will define ip = InputPattern, act = WindowActivation. Applying
Bayes Theorem we get,

P (ip | act) =
P (act | ip)P (ip)

P (act)
(1)

Given that each frame may include multiple items of evidence (i.e. mul-
tiple window activations), we need to compute: P (ipi | act1 ∧ act2 ∧ act3 . . .).
For this we can use an extended form of Bayes Theorem that supports mul-
tiple events. Or more simply we can assume conditional independence of
act1, act2, act3 such that:

P (act1 ∧ act2 ∧ act3 . . . actn| ip) =
∏
i

P (acti| ip) (2)

3The window width is typically kept to a fixed value of 8 milliseconds.

10

allowing the more general equation:

P (ipi | act1 ∧ act2 ∧ act3 . . . actn) = α
P (ipi)

∏
j P (actj| ipi)

P (act1 ∧ act2 ∧ act3 . . . actn)
(3)

A naive Bayes classifier probabilistically selects the best hypothesis from
a range of competing hypotheses based on evidence provided by a set of class
features. For our purposes, we wish to decide on the presence or absence
of a particular stimulus, given the set of coincident window activations in
the frame. In equation 3 the denominator (P (act1 ∧ act2 ∧ act3 . . . actn)) is
constant and independent of the hypothesis on the input pattern allowing us
to simplify4:

P (ipi | act1 ∧ act2 ∧ act3 . . . actn) = argmax(P (ipi)
∏
j

P (actj| ipi)) (4)

We are now able to infer the presence of a particular stimulus by applying
equation 4 to the evidence of coincident spiking in each frame. More gener-
ally, we can infer which of a number of potential input patterns was presented
by applying equation 4 to multiple fingerprints and selecting the result with
the largest probability. A strong correlation between the spiking of input
neurons and the later firing of other neurons also provides evidence of a re-
producible non-synchronous but nevertheless polychronous spatio-temporal
firing pattern that is the hallmark of PNG activation. We can therefore
use the response fingerprinting method for the detection of PNG activation
within the firing data, despite the high variability in the stimulus response.

3. Examples of using the Response Fingerprinting method

Experiments that utilize the Response Fingerprinting method require that
a test stimulus is presented in the context of a response frame, and that the
firing data following each stimulus is collected for analysis. For some exper-
iments the test stimuli will vary between frames, while in other experiments
the same test stimulus will be presented in each response frame. In either
case, a single test stimulus is presented in each frame so that the stimulus
response can be analyzed in isolation. Where multiple test stimuli are used
in the experiment, the stimulus selection for each frame is either randomly
assigned or is selected from a pre-assigned stimulus-frame sequence. With
the exception of experiments that study the evolution of PNG activation over

4The function, argmax selects the maximum value of its arguments i.e. the best hy-
pothesis.

11

the course of training, the network will have been trained on the test stimuli
prior to the start of each experiment. The test stimuli are therefore assumed
to be either known training stimuli, or are generated from a blend of these
known stimuli.

A frame profile of each experimental stimulus is provided to the Response
Fingerprinting method, and the method then produces a probability distri-
bution over the probabilities for each frame profile pattern. As a simple
example consider the test for the presence or absence of a particular stimu-
lus: in this case both the frame profile for the chosen stimulus and the frame
profile for the null-pattern will be provided to the method, and a probability
distribution over the presence or absence of the stimulus will be generated for
each response frame in the experiment. The following sections provide some
further simple examples of the use of the Response Fingerprinting method.

3.1. The effect of stimulus degradation on the PNG activation response

We have seen that the firing of neurons in a spiking network is not de-
terministic, due to the combined effects of random background firing and
recurrent connections on firing times. Even the input pattern neurons that
are directly stimulated by the external stimulus are affected by these pro-
cesses, producing firing jitter and even occasional mis-firings. However, a
small amount of degradation of the input stimulus appears to have little ef-
fect on the resulting PNG activations and is therefore likely to have minimal
impact on probability scores.

In the following sample experiment we hypothesize that the Response
Fingerprinting method will be resistant to small amounts of stimulus degra-
dation but will produce diminished probability scores with substantial degra-
dation. The script that performs this experiment can be found in Listing B.4
of the appendix (see Method Scripts). In brief the script loads a network that
has been trained on a specific stimulus and tests the effects of progressively
degrading the stimulus on the resulting probability scores. Each score repre-
sents the probability that the stimulus was present in each response frame.
Probability scores, and the number of window activations, are averaged over
multiple frames for each degraded stimulus sample, and multiple samples
are tested for each level of stimulus degradation. The results are shown in
Figure 5.

Increasing degradation of the stimulus produces a steady decline in win-
dow activation counts, although the variation in counts across multiple sam-
ples remains fairly constant throughout the decline. In contrast, the prob-
ability scores are unaffected by small amounts of stimulus degradation (0
- 10%), but then show a rapid decline beyond this range. The probability

12

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600

Percent Stimulus Degradation

W
in

do
w

 A
ct

iv
at

io
n

C
ou

nt

(a) Window Activation Counts

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

Percent Stimulus Degradation

P
ro

ba
bi

lit
y

S
co

re

(b) Probability Scores

Figure 5: The effect of progressively degrading the stimulus on the number
of window activations (top) and the probability scores (bottom). The degree
of degradation ranges from zero to fifty percent, increasing in five percent
increments from left to right. The gray bars show mean values over multiple
tests, while error bars show either the standard deviation (top) or the range
between minimum and maximum values (bottom). Stimulus degradation is
produced by randomly deleting a specified proportion of the firing events
that constitute the spatio-temporal pattern. At each level of stimulus degra-
dation, one hundred degraded samples were tested and the means, ranges
and standard deviations were calculated over these samples. Each of these
degraded test samples was independently generated, and the test scores and
window activation counts for each sample were averaged over ten response
frames.

13

scores vary wildly on degraded stimulus samples, unlike the window activa-
tion counts which show a constant variation with increasing degradation.

3.2. Visualization of PNG activation

The presentation of a stimulus to a network that has been previously
trained on the stimulus triggers the activation of PNGs that are associated
with the stimulus. In previous sections we have seen that firing events that
occur within specific temporal windows in the activation response are suf-
ficiently consistent to allow these window activations to be assessed prob-
abilistically. Although the firing events that constitute the activated PNG
can vary across response frames, the spatio-temporal pattern of the response
in each frame is sufficiently consistent to produce a high probability of firing
events occurring within these stimulus-specific temporal windows within the
frame.

The Response Fingerprinting method provides a probabilistic evaluation
of the stimulus response, but can also be used to visualize the response: the
visualization technique involves filtering the firing events generated in each
frame through the temporal windows defined by the fingerprint, leaving only
those firing events that correspond to the response. The spatio-temporal
causality between the remaining firing events can then be inferred using the
underlying network connectivity: two firing events whose neurons are directly
and strongly connected, and whose temporal spacing conforms with the ax-
onal length of the underlying connection, are likely to be causally connected
i.e. the earlier event is likely to be causal in the generation of the later event.

A script that uses this procedure to extract PNG activations from the fir-
ing data can be found in Listing B.5 in the Method Scripts section. The script
generates ten frames of firing event data from a trained network and then
extracts a PNG structural description from each frame. The PNG activation
response in four selected frames is shown in Figure 6. The lines between
nodes in the graph represent causal links between the firing events that con-
stitute the group activation. For the purposes of this figure only connections
with saturated weights are shown, although removing this restriction has
very little effect on the resulting graph implying that most connections in
the underlying structural group are saturated.

In order to prevent the evolution of the underlying structural PNG, synap-
tic plasticity was disabled during the collection of firing data for this exper-
iment. The observable small variations between frames are therefore due to
changes in the network dynamics. There are two types of variation: firstly,
a firing event can occur in one frame but be absent in another; secondly, a
firing event can occur in multiple frames but with variation in the precise
firing time (i.e. temporal jitter). An example of jitter can be seen with the

14

0 10 20 30 40
0

200

400

600

800

Frame 1
0 10 20 30 40

0

200

400

600

800

Frame 2

0 10 20 30 40
0

200

400

600

800

Frame 3
0 10 20 30 40

0

200

400

600

800

Frame 4Time (msec)

N
eu

ro
n

In
de

x

Figure 6: The PNG activations produced in four different frames in response
to the descending input pattern. Nodes in the figure represent firing events,
and the lines between nodes denote causal links inferred from the underlying
network connectivity between event neurons. Only connections with satu-
rated weights are shown (synaptic weight > 9.9). To produce this data, a
network trained on the descending input pattern (thirty seconds at 5 Hz)
was stimulated once per second using the descending pattern, producing a
sequence of response frames.

15

firing event in the south-west region of each response: neuron 178 fires at
t = 16 in frame 2 but t = 18 in frames 1 and 3 (it does not fire in frame 4).
The same firing event is causal in producing either two, one or three subse-
quent firing events in frames 1, 2, and 3 respectively (observe the number
of out-going lines from the node representing the event). This variation in
the causality between the firing of neuron 178 and subsequent firing event
might be due to the jitter in the firing of this neuron, or to jitter in the firing
events of other neurons that are themselves causal in the firing of the same
downstream neurons.

The network used for generating the data in Figure 6 is not a fully trained
network having had only 150 presentations of the stimulus during the training
period. The number of firing events and causal links in a structural diagram
produced from a fully trained network is very dense, and a partially trained
network was therefore chosen for clarity, to avoid obscuring the variability
between frames.

The results shown in Figure 6 represent consecutive response frames gen-
erated from a single network state. However, the variability between frames
limits the ability to compare between different network states, particularly
in following changes in network response over the course of training. This
variability can be reduced, and the generated structural diagrams made more
accurate by averaging the stimulus response across multiple frames to pro-
duce a single response for each network state. Figure 7 demonstrates such a
comparison by showing the evolution of the stimulus response as a network
learns the ascending input pattern.

The forty input pattern events can be seen at each stage in Figure 7 as
a straight ascending line of nodes. Any gaps between nodes are due to the
removal of input pattern events that were not causal in the generation of later
firing events. Nevertheless, almost all of the input pattern events participate
in causal relationships, either with later input pattern events (these intra-
pattern links are difficult to distinguish as they all occur on the same straight
line), or with events that are a part of the subsequent PNG activation.

As learning proceeds, the size of the PNG activation resulting from each
presentation of the stimulus increases. Most of this size increase occurs within
one hundred seconds (500 stimulus presentations) although the probability
scores suggest that the stimulus response is stable within the first minute of
learning i.e. around 300 presentations (results not shown).

Figure 8 shows a different view of the data that focuses on just the fir-
ing events, removing the causal connections between events. The averaging
method increases the selection accuracy for the filtering procedure that re-
moves firing events unrelated to the stimulus response. In addition, averaging
of the response across multiple frames also allows the empirical firing proba-

16

0 10 20 30 40
0

200

400

600

800

10 seconds
0 10 20 30 40

0

200

400

600

800

30 seconds

0 10 20 30 40
0

200

400

600

800

50 seconds
0 10 20 30 40

0

200

400

600

800

70 secondsTime (msec)

N
eu

ro
n

In
de

x

Figure 7: The evolution of the stimulus response over the course of training
with the ascending input pattern. At four selected points (10, 30, 50 and
70 seconds) during training the network state was saved and the stimulus
response to the ascending pattern was isolated. The stimulus response in
each figure represents an average over one hundred response frames using a
single stimulus presentation in each frame. The number of firing events and
associated causal connections increases rapidly over the course of training.

17

bility of each firing event in the response to be calculated, generating a firing
probability for each of the firing events that is consistently captured within
a fingerprint window. Figure 8 shows changes in firing probability over the
course of learning the ascending pattern. Firing events are colour-coded ac-
cording to the empirical firing probability of the event, revealing a substantial
increase in the firing probabilities as learning proceeds, particularly within
the inhibitory neurons at the top of each diagram.

4. Discussion

The Response Fingerprinting method provides a new means of studying
the response of a network to stimulus presentation and overcomes some of
the difficulties of analyzing the stimulus response in terms of individual PNG
activations. This new method views the stimulus response as a set of con-
ditional firing probabilities for each of the neurons in the network. In the
presence of a triggering stimulus, neurons that are involved in the resulting
PNG activations have an elevated conditional probability of firing. The pur-
pose of this technical report is to describe the background to the development
of the method and also to provide some examples of the method in use. The
first of the two provided examples tests the effect of stimulus degradation on
the stimulus response, and the second example demonstrates the use of the
Response Fingerprinting method to visualize PNG activation.

The effect of stimulus degradation was tested by progressively degrading
a known stimulus and comparing the probability scores computed from each
stimulus response. Both the window activation counts and the probability
scores were found to decrease as the degree of stimulus degradation increased,
although the probability scores were almost unaffected by small amounts of
stimulus degradation. However, with heavy degradation of the stimulus, the
probability scores became increasingly variable, suggesting that the score
values were strongly influenced by which of the firing events were deleted in
each iteration. Additional analyses support this hypothesis, with some firing
events having a disproportionate impact on the probability score, at least
on the single network used in this sample experiment. These early results
suggest that some stimulus firing events (perhaps those that occur earlier)
are more influential than others in producing PNG activation.

A particularly useful application of the Response Fingerprinting method
is the visualization of PNG activation. Visualization supports the detailed
study of significant features of PNG activation, such as the variability of the
stimulus response and the role of inhibitory neurons in limiting activation.
This visualization technique relies on the observation that the majority of
firing events that constitute the PNG activations in each response frame

18

0 10 20 30 40
0

500

1000

10 seconds
0 10 20 30 40

0

500

1000

30 seconds

0 10 20 30 40
0

500

1000

50 seconds
0 10 20 30 40

0

500

1000

70 seconds

1

0.9

0.8

0.7

0.6

0.5

Time (msec)

N
eu

ro
n

In
de

x

Figure 8: The evolution of the stimulus response over the course of train-
ing showing changes in firing probability. Each firing event is colour-coded
according to the empirical firing probability of the event as measured over
one hundred response frames (firing probability is encoded in the color bar
on the right). The forty firing events that make up the ascending input pat-
tern have a firing probability of 1.0 while the events in the resulting stimulus
response often have significantly lower firing probabilities. Events with a fir-
ing probability lower than 0.5 were rejected. The firing probability of each
event, and the number of firing events in the stimulus response both rapidly
increase over the course of training. Inhibitory neurons (neurons 800-999)
related to the stimulus response show a particularly large increase in both
numbers and probabilities. The data shown in this figure and in Fig. 7 were
produced in separate training runs of the same network and cannot therefore
be compared. Note that inhibitory neurons (shown here) were not included
in previous figures depicting PNG activation.

19

must occur within the temporal windows defined by the fingerprint because
these firing events are strongly correlated with the stimulus. The fingerprint
can therefore be used to filter the events in each response frame, assigning
the firing events that are captured inside fingerprint windows to the stimulus
response and rejecting the rest.

Analysis of the responses produced over multiple runs of the experiment
found that the response of the first frame in each run was consistently muted
when measured relative to subsequent frames. The first presentation of the
stimulus occurs over the initial 40 milliseconds of the first one second frame
and the subsequent stimulus response therefore occurs before the network
has had the opportunity to come to equilibrium. The muted response in the
first frame suggests that the firing events that make up the input pattern
are not sufficient to trigger PNG activation, without the addition of the
recurrent input produced by the underlying network dynamics of a network at
equilibrium. To counter this reduced response in the first frame the network
was first primed with ten frames of just random background stimulation,
prior to presenting the first test stimulus.

The results from the visualization experiment show that the evolution
of the stimulus response with training occurs very quickly, with a stable
representation in as few as three hundred presentations of the stimulus. Al-
most all of the stimulus firing events were found to participate in causal
relationships, although many of these causal connections were with later fir-
ing stimulus events at least initially (see Figure 7). Synapses between input
pattern neurons are quick to learn the strong correlations between the indi-
vidual firing events that make up the stimulus, and these intra-pattern links
therefore tend to dominate the causal relationships in the early evolution of
the stimulus response. As excitation builds within the PNG neurons, firing
events that are not a part of the input pattern become increasingly involved
in the PNG activation.

A significant feature of the mature stimulus response is that it does not
extend beyond the last firing event of the input stimulus. The most likely
explanation is that mounting inhibitory firing prevents any firing events that
might occur later in the stimulus response, bringing the stimulus-driven PNG
activations to an end (see Fig. 8). This activation dampening mechanism may
also explain the apparently greater influence of earlier stimulus firing events
on the successful stimulus response, as suggested by the stimulus degradation
experiment. The ability to limit the temporal scope of PNG activation has
implications for a representational system based on PNG activation and is
worthy of further study.

20

References

Guise, M., Knott, A., Benuskova, L., 2013a. Evidence for response consis-
tency supports polychronous neural groups as an underlying mechanism
for representation and memory. In: Lecture Notes in Artificial Intelligence
to appear.

Guise, M., Knott, A., Benuskova, L., 2013b. Spinula: software for simula-
tion and analysis of spiking network models. Tech. rep., Dept of Com-
puter Science, University of Otago, Dunedin, see http://www.cs.otago.ac.
nz/research/techreports.php.

Izhikevich, E. M., Feb. 2006a. Polychronization: computation with spikes.
Neural computation 18 (2), 245–82.

Izhikevich, E. M., 2006b. Reference software implementation for the Izhike-
vich model: minimal spiking network that can polychronize.
URL http://www.izhikevich.org/publications/spnet.htm

Izhikevich, E. M., Gally, J. a., Edelman, G. M., Aug. 2004. Spike-timing
dynamics of neuronal groups. Cerebral cortex (New York, N.Y. : 1991)
14 (8), 933–44.

Martinez, R., Paugam-Moisy, H., 2009. Algorithms for structural and dy-
namical polychronous groups detection. Artificial Neural Networks ICANN
2009 5769, 75–84.

21

A. Methods

A.1. Networks

Sample experiments were conducted using networks composed of 1000
Izhikevich neurons (800 excitatory and 200 inhibitory) with parameters as
described in Izhikevich (2006a). The networks were matured for two hours
by exposure to 1 Hz random input generated by a Poisson process. Following
maturation, the networks were trained on one of two input patterns or were
left untrained.

A.2. Software

An implementation of the Response Fingerprinting method is available
by downloading the Spinula software package (Guise et al., 2013b). Spin-
ula is based on the reference software provided by Izhikevich (2006b) and is
composed of a set of Microsoft Windows dynamic link libraries that provide
functions for network construction, execution and analysis. These libraries
can either be incorporated into a user program or instrumented using a Mi-
crosoft .Net scripting language such as F# Interactive. Some F# scripts are
provided in later sections that allow a detailed reproduction of the example
experiments.

A.3. Creating a response fingerprint

In order to employ this probabilistic approach, we must first gather some
empirical data and generate a fingerprint. We need the following data: the
frequency of presentation of each pattern during the data collection period;
the temporal windows identified for each pattern; and for each temporal
window of each pattern, the empirical probability of a window activation,
both when the pattern is present and when the pattern is absent. Together
these items provide the necessary pattern statistics that allow a naive Bayes
classifier to compute the probability that a given input pattern was presented,
given the evidence of coincident window activations within the current frame.

In the Spinula library, a response fingerprint is a type that exposes spe-
cialized data structures for the purpose of response classification. Of these,
the most significant are the window map and the probability distribution
map. The window map defines the layout of the temporal windows within
the fingerprint while the probability distribution map holds an activation
probability distribution for each temporal window in the fingerprint. Each
of these probability distributions stores window activation frequencies as a
conditional probability distribution over the presence or absence of the fin-
gerprinted input pattern. The generation of a fingerprint therefore requires

22

that statistical data be gathered under two conditions: when the input pat-
tern is present (i.e. the active pattern is the input pattern); and when the
input pattern is absent (i.e. the active pattern is the null-pattern).

A fingerprint needs to store certain data that is needed to support its
function, namely the input pattern, a frame profile, and a small set of pa-
rameters. Only these data items are saved to a file when a fingerprint is
saved. The frame profile provides the core statistical data from which fur-
ther statistics can be derived, while the parameter set provides arguments for
the on demand generation of the window map and probability distribution
map from this frame profile data. The parameter set specifies the window
size, the frame size, the number of frames analyzed, and the initial and final
threshold values. The primary task in the creation of a fingerprint is therefore
the generation of a frame profile from the firing data produced by repeated
stimulation of the network with the input pattern. By default, firing data is
collected for each active pattern by running the network engine for 100 sec-
onds in the presence of background stimulation. Typically, response profiles
are only created for the excitatory neurons in the network.

A.3.1. Window selection

The primary window map is a map of window offset data keyed by neu-
ron index and is generated on demand using the stored frame profile. For
each neuron in the frame profile, temporal windows are selected by scanning
a fixed sized typically 8 millisecond window along the time axis of the as-
sociated response histogram and selecting the temporal offset that produces
the highest spike count within the sliding window. For each neuron a ra-
tio is then computed of the window spike counts to the total spike count
in the profile. The profiles for neurons in the input pattern typically pro-
duce spike count ratios approaching 100% while profiles for neurons further
downstream produce progressively weaker ratios as the number of interven-
ing causal links increases. Input pattern neurons are of course excluded from
generating temporal windows.

Two levels of thresholding are applied over the course of window selec-
tion. Initial thresholding is applied to the spike count ratios with the effect of
retaining only those profiles that show significant peaking.5 Most neural pro-
files fail this initial thresholding step and therefore fail to produce a temporal
window. A second thresholding step is applied to the ratio of the number
of spikes in each window to the number of frames in the data (the stimulus

5The initial threshold defaults to 0.16, or five times the expected fraction assuming an
equal distribution of spikes throughout the frame. Using a typical frame size of 250 msec
and a window size of 8 msec, the expected fraction is 0.032.

23

response ratio). This final thresholding step requires that more than three
quarters of the stimuli produce window activation and thus ensures that each
of the selected windows is consistently activated by the input pattern.

A.3.2. Computing conditional probabilities of window activation

The probability distribution map stores the window activation proba-
bility for each temporal window in the fingerprint. The map is built from
the stored frame profile by sampling the empirical probability of activation
in both the presence and the absence of the input pattern. Background
stimulation is provided in both present and absent sampling runs and there
is therefore a non-zero probability of window activation within any of the
selected temporal windows even when the input pattern is absent. The sam-
pling procedure involves computing the proportion of spikes that fall within
each selected window (the spike count ratio). For each temporal window, the
resulting value is the conditional probability of window activation given the
presence or absence of the pattern i.e. p(WindowActivation | InputPattern),
or p(WindowActivation | ¬InputPattern).

A.3.3. Classification of the response

The fingerprint can now be used to probabilistically evaluate the firing
data from a network and provide evidence that supports the presence or
absence of a specific input pattern. The classification of the stimulus response
from a network given a regular stimulus produces a probability score for each
frame of the resulting data. The idea of scoring a frame is to compute the
probability that the stimulus is present, given the coincident window spikes
in the frame. The fingerprint provides the window layout and the conditional
probability values for this process (the probability distribution map and the
window map, respectively). The process begins by collecting firing data in
the presence (or absence) of the test pattern and using the accumulated data
to generate a map of temporal offsets for each firing event and each neuron in
the frame. A list of the activated windows in each frame is then produced by
using the window map as a mask and counting the spikes that fall both inside
and outside each temporal window. The window is recorded as activated for
each neuron if one or more spikes occur within the window.

Scores are generated as a probability distribution over the presence or
absence of the input pattern as shown in Equation A.1.

P (ippresent/absent | actall) ∝ P (ippresent)
∏
j

P (actj| ippresent/absent) (A.1)

The conditional probabilities for each window are accumulated as fol-
lows: if the window was activated in the current frame, the values in the

24

probability distribution map are used directly (a probability distribution
over P (act | ip), assuming the pattern is present, or P (act | ¬ip), assuming
the pattern is absent); otherwise the probability distribution map values are
subtracted from one (representing a probability distribution over P (¬act | ip)
or P (¬act | ¬ip)). The accumulated conditional probabilities are then multi-
plied with the input pattern frequency to produce two values that represent
the probability distribution over the presence or absence of the pattern given
the evidence from all window activations i.e. P (ip | actall) and P (¬ip | actall).

25

B. Method Scripts

B.1. Response Histograms

Listing B.1 shows a script that generates and displays a frame profile
for selected neurons, using firing data that has been accumulated from a
network stimulated with the ascending input pattern. A trained network is
stimulated 1600 times with the ascending input pattern and the resulting
firing data is then folded into 250 millisecond frames to produce a firing
response histogram for each neuron.

1 // Create and show response histograms for selected neurons
2 let CreateResponseHistograms pathToTrainedNetwork pathToOutputFolder =
3
4 let responseProfileTimeSlots = 250 // collect spike counts over this range
5 let runSeconds = 400
6 let backgroundFrequency = 1
7
8 // create an input pattern: the ascending input pattern at 4 Hz
9 let inputPattern = Stimulus.CreateLinearInputPattern(4, 1, 1, 40)

10
11 // load the state for a network trained on the ascending pattern
12 let network = CrossbarNetwork.CreateFromFile(
13 CrossbarNetworkSpecifier.N1000Network, pathToTrainedNetwork)
14
15 // select neurons for profiling
16 let selectedNeurons =
17 [
18 1; // an input pattern neuron
19 90; 419; 746 // directly connected to neuron 1
20 2; 3; 5; 8; // indirectly connected to input pattern neurons
21]
22
23 // run the network and collect firing data
24 network.RunWithDataCollection(runSeconds, backgroundFrequency, inputPattern)
25
26 // generate a response profile
27 let profile =
28 let firingData = network.OneSecondEventCollector.AllEventTriplets
29 let profileData = FrameProfile.GenerateFrameProfileData(responseProfileTimeSlots,
30 network.TotalNeurons, selectedNeurons, firingData)
31 ResponseProfile(profileData)
32
33 // save the profile to a text file
34 let outputPathDescriptor = PathDescriptor.Create(pathToOutputFolder, "Profiles")
35 profile.Save(outputPathDescriptor)
36
37 // show the response histograms as a chart
38 let maxY = profile.GetMaxProfileSpikeCount(selectedNeurons)
39 SpikeProfileVisualisation.ShowReponseProfileHistograms("Counts for Selected Neurons",
40 outputPathDescriptor, profile, maxY, selectedNeurons)

Listing B.1

On line 9, a forty neuron ascending input pattern is generated at four
hertz. The network state data from a network trained on the ascending pat-
tern is then loaded into a newly created network at lines 12 and 13. Lines
16 to 21 define a list of eight indices for selected neurons that are indirectly
or directly connected to neuron 1 (one of the input pattern neurons). The
network is then stimulated 1600 times over 400 seconds with the ascending
input pattern in the presence of 1 Hz background (line 24). Note that synap-
tic plasticity is disabled during data collection. The accumulated firing data

26

(around 1,700,000 firing events using a 4 Hz input pattern) is then passed
to a method in lines 29 and 30 that generates response histograms for each
selected neuron. The resulting frame profile is saved in lines 34 and 35, and
then displayed in lines 39 and 40. The method call at line 38 determines
the largest spike count in the response histograms which is used to set the
maximum Y-value for the chart.

The process of creating a frame profile (lines 29 and 30) involves folding
the collected firing data into fixed-sized frames to produce a firing response
histogram for each neuron. Typically only excitatory neurons are profiled and
the first step is therefore to filter the firing data to remove the firing events of
inhibitory neurons. The event time is then remapped into the specified frame
size and a list of firing response times is created for each neuron as an offset
relative to the start of frame. Each response time list is then aggregated into
a map of spike counts keyed by time, creating a response profile for each of the
selected neurons. Some of these response histograms show distinctive peaks
in the spike counts, producing a unique response signature when viewed over
multiple neurons.

27

B.2. Network Training

Listing B.2 shows a script that trains each network in a folder of matured
networks using a single input pattern (either the Ascending or Descending
pattern) at 5 Hz. The trained networks are saved in separate folders, one
for the Ascending pattern and one for the Descending pattern. The training
period is typically 1200 seconds (twenty minutes) and the background firing
rate is normally set to 1 Hz.

1 // Train each mature network in the specified folder
2 let Net20TrainWithCoherentStimulation runSeconds backgroundFiringRate
3 rootInputFolderPath rootOutputFolderPath basename saveState saveInterval =
4
5 // Run a mature network while providing coherent external stimulation
6 let TrainWithCoherentStimulation stateFilePath runSeconds patternType patternStimulationsPerSecond
7 backgroundFiringRate pathToOutputFolder basename saveState saveInterval =
8
9 // create an input pattern composed from a 40 msec ascending or descending pattern

10 // continuously repeated over each second at a rate specified by patternStimulationsPerSecond
11 let inputPattern =
12 let patternStep = if patternType = InputPatternType.Ascending then 1 else -1
13 Stimulus.CreateLinearInputPattern(patternStimulationsPerSecond, 40, 1, patternStep, 40)
14
15 // load the untrained network
16 let network = CrossbarNetwork.CreateFromFile(stateFilePath)
17
18 // train the network with the input pattern
19 let saveParameters =
20 new NetworkStateActionParameters(pathToOutputFolder, basename, saveState, saveInterval)
21 network.Train(inputPattern, runSeconds, backgroundFiringRate, saveParameters)
22
23
24 // train on both ascending and descending patterns at 5 Hz
25 let combinations = [(InputPatternType.Ascending, 5); (InputPatternType.Descending, 5);]
26
27 // get all the untrained networks
28 let filesMap = Span.GetFilesMap(rootInputFolderPath, basename, "txt")
29
30 for patternType, patternStimulationsPerSecond in combinations do
31 let outputFoldername =
32 sprintf "Trained%s%d" (patternType.ToString()) patternStimulationsPerSecond
33 let pathToOutputFolder = Path.Combine(rootOutputFolderPath, outputFoldername)
34
35 for kvp in filesMap do
36 let key, stateFilePath = kvp.Key, kvp.Value
37
38 let outputBasename = sprintf "%s%d" basename key
39
40 TrainWithCoherentStimulation stateFilePath runSeconds patternType
41 patternStimulationsPerSecond backgroundFiringRate
42 pathToOutputFolder outputBasename saveState saveInterval

Listing B.2

Two parameters to this script (saveState and saveInterval) determine
whether the network state will be saved over the course of training. Typically
saveState is set to false and saveInterval to 0 so that only the final trained
network is saved.

Lines 6 to 21 define a function (TrainWithCoherentStimulation) that per-
forms the training for each network: lines 11 to 13 generate an input pattern
(either Ascending or Descending) and line 16 loads the network state data of
the current network. The save parameters defined in lines 19 and 20 deter-
mine the output folder and base filename used for saving the network state,

28

both over the course of training and for the final trained network.
The script begins on line 25 by setting the required training parameters;

here they specify the Ascending and Descending patterns with a training
frequency of 5 Hz for both patterns. Line 28 retrieves a list of the ma-
ture networks to be trained and lines 30 to 42 iterate through the training
combinations (outer loop) and the network list (inner loop). The TrainWith-
CoherentStimulation function is called in lines 40 to 42 to perform the actual
training procedure on each network.

29

B.3. Response Profiling

Listing B.3 shows a script that extracts and saves frame profiles for each
network in a folder of trained networks. The frame profile specifications are
defined by a list of pattern and pattern name pairs, with a unique frame
profile generated for each combination of pattern and network.

1 // For each trained network in the specified folder, extract the frame profile statistics and save
2 let Net20ExtractProfiles backgroundFiringRate rootInputFolderPath rootOutputFolderPath basename =
3
4 let ExtractFrameProfile outputFolderPath basename (stateFilePath:string)
5 profileSpecs backgroundFiringRate =
6
7 let engine = new CrossbarNetwork(CrossbarNetworkSpecifier.N1000Network)
8 engine.LoadNetworkState(stateFilePath)
9

10 profileSpecs
11 |> Seq.iter (fun (pattern, patternName) ->
12 let fp = new FrameProfile(engine, pattern, patternName, backgroundFiringRate, true)
13
14 let fileName = sprintf "profile_%s_%s.txt" basename patternName
15 fp.Save(Path.Combine(outputFolderPath, fileName))
16)
17
18 // create profiles for these pattern/pattern name pairs
19 let profileSpecs =
20 let CreatePattern step =
21 let events = Pattern.CreateLinearPattern(1, step, 40)
22 new Pattern(events)
23 [(1, "Ascending"); (-1, "Descending"); (0, "Null");]
24 |> Seq.map (fun (step, patternName) ->
25 if step = 0 then
26 None, patternName
27 else
28 Some(CreatePattern step), patternName
29)
30 |> Seq.toList
31
32 // for both ascending and descending trained networks
33 let folderCombinations = [(InputPatternType.Ascending, 5); (InputPatternType.Descending, 5);]
34
35 for patternType, patternStimulationsPerSecond in folderCombinations do
36
37 let foldername = sprintf "Trained%s%d" (patternType.ToString()) patternStimulationsPerSecond
38 let inputFolderPath = Path.Combine(rootInputFolderPath, foldername)
39 let outputFolderPath = Path.Combine(rootOutputFolderPath, foldername)
40
41 // get all the trained networks in this folder
42 let filesMap = Span.GetFilesMap(inputFolderPath, basename, "txt")
43
44 for kvp in filesMap do
45 let key, stateFilePath = kvp.Key, kvp.Value
46
47 let outputBasename = sprintf "%s%d" basename key
48
49 ExtractFrameProfile outputFolderPath outputBasename stateFilePath
50 profileSpecs backgroundFiringRate

Listing B.3

Lines 4 to 16 define a function (ExtractFrameProfile) that extracts a frame
profile from the current network for each pattern in the profile specification.
Lines 7 and 8 load the current network state data into a new network ready for
profiling. Lines 10 to 16 iterate through the required patterns in the profile
specification: for each pattern a frame profile is generated by repeatedly
stimulating the network with the pattern (typically in the presence of 1 Hz

30

background firing) and analyzing the resulting firing data. The profile is then
saved in line 15.

The main part of the script begins by defining the profile specification.
Here the specification in lines 19 to 30 specifies the Ascending, Descending
and null patterns for profiling, with each pattern paired with the correspond-
ing pattern name. Line 33 defines the different sets of trained networks to
be profiled: in this case trained networks stored in both the TrainedAscend-
ing5 and TrainedDescending5 subfolders will be profiled. Lines 35 to 50 then
iterate through each subfolder, retrieving a list of trained networks (line 42)
and iterating through each file (lines 44 to 50). For each file, the function
ExtractFrameProfile is called to generate the required frame profiles.

31

B.4. The effect of stimulus degradation
Listing B.4 shows a script that examines the effect of stimulus degradation

on the activation response. The script accepts a list of degradation values
that determine the percentage of stimulus degradation that will be tested
e.g. [10, 30, 50] where a 10% degradation value indicates that one tenth
of the firing events will be randomly deleted. For each degradation value, a
naive Bayes classifier computes the probability that the pattern is present.
To allow for variations in the influence of deleted firing events in failing to
trigger the stimulus response, the test is performed multiple times at each
level with a different randomly selected set of deletions for each iteration (see
the iterations parameter). The probability computation uses a matched pair
of frame profiles (stimulus present/absent) as if the test were being performed
on an undegraded stimulus.

1 // Compute pattern scores using progressively degraded input patterns
2 let ScoreDegradedPattern (percentDegradationList:seq<int>) iterations
3 (stateFilePath:string) (profilePair:MatchedProfilePair) (outputStream:StreamWriter) =
4
5 let engine = new CrossbarNetwork(CrossbarNetworkSpecifier.N1000Network)
6 engine.LoadNetworkState(stateFilePath)
7
8 let classifier = new NaiveBayesClassifier(engine)
9

10 for percentDegraded in percentDegradationList do
11
12 // score multiple instances of the degraded pattern
13 let scores, windowActivations =
14 seq {
15 for sample in 1..iterations do
16 let pattern =
17 let undegradedPattern = profilePair.TestPatternProfile.Pattern.Value
18 let proportionToKeep = 1.0 - (float percentDegraded / 100.0)
19 undegradedPattern.CreateDegradedPattern(proportionToKeep)
20
21 // average scores over ten frames
22 yield classifier.ComputeProbabilityPresent(pattern, profilePair, 10)
23 }
24 |> Seq.toList
25 |> List.unzip
26
27 let scoreStrings, windowActivationStrings =
28 System.String.Join(" ", scores), System.String.Join(" ", windowActivations)
29
30 outputStream.WriteLine(percentDegraded)
31 outputStream.WriteLine(scoreStrings)
32 outputStream.WriteLine(windowActivationStrings)
33 outputStream.Flush()

Listing B.4

Lines 5 and 6 create a new network by loading the specified network
state. The classifier is initialized in line 8. Lines 10 to 33 iterate over each
level of degradation, while an inner loop at lines 15 to 22 performs multiple
iterations of each test. An averaged probability score is generated at line 22
using a degraded version of the frame profile stimulus that is generated in
lines 16 to 19. The pair of values generated by the test at line 22 is separated
(unzipped) at line 25. Lines 27 to 33 aggregate the scores and save them to
a file.

32

B.5. Visualizing PNG activation

Listing B.5 shows a script that allows PNG activation to be visualized by
filtering the firing data in a response frame through the temporal windows
defined by the pattern fingerprint. The script generates multiple structural
diagrams, one for each response frame, and is therefore useful for showing
variability in the stimulus response across consecutive frames.

1 // Show PNG activation over multiple frames
2 let ShowPNGActivation pathToNetworkStateFile pathToFrameProfileFile
3 pathToOutputFolder baseName =
4
5 let numberOfFrames = 10 // show this many frames
6 let maxPNGLength = 50 // maximum length (for image saving only)
7 let synapticThreshold = 9.9 // exclusive threshold: weights must be greater than this value
8 let saveGraph = true
9

10 let network = CrossbarNetwork.CreateFromFile(
11 CrossbarNetworkSpecifier.N1000Network, pathToNetworkStateFile)
12
13 // collect firing data in response to the selected pattern
14 // and create a list of activation-related firing events for each frame
15 let frameGroups =
16 let profile = FrameProfile.Load(pathToFrameProfileFile)
17 let classifier = NaiveBayesClassifier(network)
18 classifier.GetIndividualFrameGroups(numberOfFrames, profile)
19
20 // save each frame
21 for index in 0..numberOfFrames-1 do
22
23 let savePath =
24 let fileBase = sprintf "%s_%d" baseName index
25 PathDescriptor.Create(pathToOutputFolder, fileBase)
26
27 // generate a PNG structural description (saturated weights only)
28 let groupDescriptor =
29 network.GetPNGDescriptor(frameGroups, index, synapticThreshold)
30
31 // save the network graph data
32 groupDescriptor.Save(savePath)
33
34 // optionally save the image
35 if saveGraph then
36 PNGVisualisation.SaveGraph(savePath, maxPNGLength, network.TotalNeurons, groupDescriptor)

Listing B.5

In lines 10 and 11 of this script, a new network is initialized by loading
the network state of a trained network. A frame profile containing response
histograms for the required input pattern is then loaded at line 16. Using the
input pattern associated with this profile, a Bayesian classifier then performs
ten trials, generating ten frames of firing event data (line 18). Instead of
scoring each frame, the classifier uses the pattern windows defined by the
profile to select firing events related to group activation. Each of the ten
sets of filtered firing events is then processed to extract a PNG structural
description (lines 28 and 29) and the resulting graphs are saved (lines 32 and
36).

Listing B.5 generates multiple structural diagrams from a single network
state. The next script, shown in Listing B.6 averages the stimulus response

33

over multiple frames producing a single structural diagram. Averaging in-
creases the accuracy of the resulting structure and allows the empirical firing
probability of each firing event in the response to be generated. The averag-
ing method is useful for creating structural diagrams that compare different
network states, such as the network states saved over the course of learning.

1 // Show PNG activation using an averaged stimulus response over multiple frames
2 // Generate an empirical probability for each window activation
3 let ShowAveragedPNGActivation stateFilePath trainedProfilePath outputFolder basename =
4
5 let numberOfFrames = 100 // average over this many frames
6 let maxPNGLength = 50 // maximum length (for image saving only)
7 let threshold = 0.5 // keep firing events with at least this firing probability
8 let synapticThreshold = 9.9 // exclusive threshold: weights must be greater than this value
9 let saveGraph = true

10
11 let network = CrossbarNetwork.CreateFromCompressedFile(
12 CrossbarNetworkSpecifier.N1000Network, stateFilePath)
13
14 // collect firing data in response to the selected pattern
15 // and create a list of group-related firing events averaged over multiple frames
16 let response =
17 let profile = FrameProfile.Load(trainedProfilePath)
18 let classifier = NaiveBayesClassifier(network)
19 classifier.GetAveragedResponse(numberOfFrames, threshold, profile)
20
21 // save the response
22 let responsePath =
23 let filename = sprintf "response_%s.txt" basename
24 Path.Combine(outputFolder, filename)
25 response.Save(responsePath)
26
27 // generate a PNG structural description (saturated weights only)
28 let groupDescriptor = network.GetPNGDescriptor(response.Data, synapticThreshold)
29
30 let savePath =
31 let filename = sprintf "descriptor_%s" basename
32 PathDescriptor.Create(outputFolder, filename)
33
34 // save the network graph data
35 groupDescriptor.Save(savePath)
36
37 // optionally save the image
38 if saveGraph then
39 PNGVisualisation.SaveGraph(savePath, maxPNGLength, network.TotalNeurons, groupDescriptor)

Listing B.6

The script is similar to the previous script except that only a single av-
eraged response is generated rather than a response for each frame. The
important difference between the two scripts is the call on line 19 to a clas-
sifier method that produces the averaged response. Internally, this method
collects response frames and accumulates the spike times for each window
across all frames. Typically one hundred frames are collected and windows
that are only infrequently activated over the collected frames are rejected.
Firing events are generated for each window by pairing the associated window
neuron with the average spike time for the window. The empirical proba-
bility of activation is calculated for each window by dividing the number of
activations by the total number of frames.

34

