
Department of Computer Science,
University of Otago

Technical Report OUCS-2013-11

Training and testing of a neural network model of
motor control

Authors:

Jeremy Lee-Hand and Alistair Knott

Department of Computer Science, University of Otago, New Zealand

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.php

Training and testing of a neural network model of
motor control

Jeremy Lee-Hand and Alistair Knott

September 12, 2013

Abstract

This paper is an appendix to Lee-Hand and Knott (in submission). It describes
the training and testing of the network model of motor control presented in that
paper.

1 Objects

We built several objects in the simulation environment which could serve as targets for hand
actions. One is a simple object (a cylinder) which serves as the target for three simple
motor actions: grasping, punching and slapping. Three others are articulated objects
which can undergo various changes in interal configuration. One is a lever which can pivot
around a joint, and can be bent; one is a hinged door in a plane, which can be pushed
open; one is a pair of horizontal plates connected by a spring, which can be ‘squashed’ by
pushing down on the top plate. These objects are illustrated in Figure 1.

Figure 1: Objects created for the simulations. From left: a cylinder (for grasping, punching
and slapping); a lever (for bending); a door (for opening); a compressable object (for
squashing).

1

2 The tactile signal classification system

The simple motor programs our model learns are grasp, slap and punch. In our model,
these motor programs are defined by distinctive patterns of haptic feedback recorded on
the hand. In the pattern associated with a grasp, the touch sensors on the pads of the
fingers and thumb are active concurrently while the hand is relatively closed, indicating
the presence of an object within the hand’s opposition space. Grasp patterns can be of
different qualities; the best are those where the finger pads are deformed, and register no
‘slip’. (The way the model registers light touch, skin deformation and slip is discussed in
Neumegen, 2013.) In the pattern associated with a slap, the sensors on the palm are active
concurrently with those on the finger pads while the hand is relatively open, indicating
contact with a surface; the best patterns are those where contact is registered over a large
surface area. In the pattern associated with a punch, sensors on the back of the fingers are
active while the hand makes a fist. Up to a certain threshold, the best patterns are those
registering the most forceful contact; beyond this threshold, contact is registered as pain,
and is not rewarding.

In our model, these three distinctive haptic patterns are simply hardwired to deliver
reward signals. In humans, we envisage there is some component of hardwiring, to encour-
age development of core useful motor programs like grasping. (Grasping has no adaptive
benefit by itself, but it contributes to many adaptive behaviours like eating, so there is
some evolutionary pressure to make it intrinsically rewarding.) But we also envisage there
may be an element of self-organisation to haptic patterns. When we interact with objects,
the resulting patterns are likely to fall into certain classes; a learning system that can
detect commonly occurring patterns is likely to be useful in developing a core set of simple
motor routines.

3 The external action classification system

To learn causative actions, the network contains a module for recognising actions taking
place in objects in the world. We do not implement a realistic model of action recognition;
instead the module uses oracles with direct access to the underlying physics engine, that
detect changes in the configuration of the target object. The three external actions the
module can recognise are bending, opening and squashing. A bend action is detected in
the lever object when it rotates through an angle of 45◦. An open action is detected in the
door object when the door panel rotates behind the wall it is attached to. A squash action
is detected in the squashable object when its top plate makes contact with its bottom
plate.

Again, while we have hardwired an ability to recognise our chosen external actions, we
assume the origin of external action categories in humans is due to a mixture of hardwiring
and self-organisation. The perceptual system certainly seems hardwired to detect certain
types of external action—for instance there is low-level circuitry specialised for detecting
objects moving in relation to their background (e.g. Britten et al., 1996). If the mirror

2

system hypothesis is correct, there are also special circuits training agents to recognise
actions from their own motor repertoire being performed by external agents (see e.g. Oztop
and Arbib, 2002). (‘Bending’ is conceivably learned through this kind of circuitry, as a
visual pattern associated with the bending movements of the agent’s own limbs, which
then generalises to inanimate objects like levers.) But we assume the perceptual system
is also able to form action categories representing arbitrary commonly-occurring patterns
of motion detected in external objects. Opening and squashing are better thought of as
categories of this type.

Crucially, although we predefine the external actions we want to be able to cause, we
do not predefine the motor actions that bring these effects about. These must be learned.

4 The plan activation network

The model also includes a network that selects a planned action sequence in each trial.
This network takes a localist encoding of the category of object presented to the system in
this trial, and produces as output a planned action sequence in the action planning system.
The action planning system holds localist encodings of all actions which can be executed
or perceived by the agent. It stores a sequence of actions by activating all actions in the
sequence in parallel, with activity levels proportional to their position in the sequence, the
action to be executed first being most active, as found in Averbeck et al.’s 2002 study of
prefrontal sequence plans. (A detailed model of this prefrontal planning medium is given
in Takac and Knott, 2013.) The plan activation network is a placeholder for a much more
complex network that selects a plan based not only on current sensory inputs but also
on elaborate internal representations of ‘the current context’. Its purpose in the current
model is just to learn which actions are appropriate for which object types.

5 Training the networks

The first network that is trained is the reach network. A single object (the cylinder)
is presented in each training trial in any location within the space reachable by the
arm. The retinotopic location of this object is computed, and provided as input to
the reach network, which generates an output goal motor state. Initially this output
is annealed with noise, so the goal motor state is essentially random. A feedback con-
troller then brings the hand towards the goal motor state. If the hand happens to make
contact with the object (i.e. if a tactile signal is received), the current motor state
is logged as training data for the reach network, paired with the retinotopic location
of the object. After each trial, the reach network is trained on all the training data
logged so far. During learning, the noise applied to the network’s output is progres-
sively reduced to zero. The training algorithm is displayed in more detail in Algorithm 1.

3

Algorithm 1: Learning Goal Arm states for reach actions

Data: o = (ox, oy, oz) (object centroid in retinal coordinates), θ = (θc1, θc2, θc3)
(current arm joint angles)

begin
o input into reach network to produce θg = (θg1, θg2, θg3) (goal motor state);
Random noise added to θg;
while Maximum time not exceeded do

Calculate force applied to arm using PID controller (a function of θ − θg);
if Tactile feedback occurs then

Store touch score paired with θ;

if Touch data recorded then
Log the maximum touch score and corresponding θ, paired with or, as a new
training item for the reach network;
Maximum possible random noise reduced;
if number of training items exceeds 200 then

Discard oldest training item;

Reach network trained on training data;

There is one further point to make about the training of the reach network (and those
that follow). It is of course unrealistic to assume a storage medium where a large number
of training items can be logged. In a more plausible online learning scheme, the network
being trained would interleave self-generated pseudo-training items with new training data
arriving sequentially (see e.g. Robins, 1995). To approximate an online scheme, we do
however impose various constraints to ensure that the quality of stored training data im-
proves during the course of training. Firstly, the learning rate used by the network for
any given logged training item is a function of a score associated with the haptic feedback
pattern that the hand received (recall some patterns are better than others). This means
that trajectories which result in higher scores influence the behavior of the network more
than trajectories producing lower scores. In addition to this, there is a minimum threshold
score needed in order for an action to be logged as training data, which is increased as
learning proceeds. Finally, we only retain the most recent 200 logged training items to use
for training.

The next network to be trained is the simple action network. In each training trial a
single object (the cylinder) is presented in one of a small number of training positions, as
shown in Figure 2a. The trained reach network generates a goal motor state as usual; this
is passed as input to the simple action network, along with a randomly selected simple ac-
tion category (grasp, slap or punch). The output of the network is a perturbation, which is
applied to the goal motor state. This output is again annealed with noise, which is reduced
to zero as training progresses. The motor contoller then moves the hand in the direction
of the perturbed goal motor state, and when the perturbation is removed, in the direction
of the actual goal motor state. If the resulting movement activates one of the predefined

4

(a) (b)

Figure 2: Possible locations of target objects (a) during training; (b) during testing

classes of rich tactile signal, a training item is logged, mapping the actual goal motor state
providing input to the netork, plus the simple action category corresponding to the acti-
vated tactile signal, onto the perturbation that was applied. After each trial, the network is
trained on all the logged training items. This training algorithm is shown in Algorithm 2.

5

Algorithm 2: Learning simple motor programs

Data: o = (ox, oy, oz) (object center in retinal coordinates), θc(θc1, θc2, θc3) (current
arm joint angles), d (perturbation removal distance)

begin
Reach algorithm and network used to determine θg = (θg1, θg2, θg3) (goal motor
state);
while Maximum time not exceeded do

θg input into reach network to produce ∆ = (∆1,∆2,∆3) (perturbation of
motor state);
θp = (θp1, θp2, θp3)← θg + ∆ (perturbed goal motor state);
Random noise added to θp;
if distance to object < d then

θp ← θg;

Calculate force applied to arm using PID controller (a function of θp − θc);
if correct tactile feedback occurs then

Store touch score, paired with θp;

if Touch data recorded then
Log the maximum touch score and corresponding θp, paired with or, as a new
training item for the simple action network;
Maximum possible random noise reduced;
if number of training items exceeds 200 then

Discard oldest training item;

Simple action network trained on training data;

Finally the causative action network is trained. In each training trial either the squash-
able, bendable or openable object is presented in one of the locations given in Figure 2a.
The plan activation network maps the object’s category onto a planned sequence of two
actions (a pair of two actions in the action planning system). The causative action network
maps the the current goal motor state and the planned action sequence onto a sequence of
two perturbations. (These outputs are again annealed with noise, reduced to zero during
training.) The two perturbations drive the hand/arm along a particular trajectory. If
this trajectory happens to result in the target object undergoing an action (bend, open
or squash), the action recognition system will activate the relevant action category, and a
training item is logged, mapping the current goal motor state, plus a unit in the action
planning system corresponding to the recognised action category, onto the perturbation
sequence. At the same time, the plan activation network learns to map the category of the
target object onto the sequence ‘cause’, followed by the perceived action. This training
regime is detailed in Algorithm 3.

6

Algorithm 3: Learning causative actions

Data: o = (ox, oy, oz) (object center in retinal coordinates),
c ∈ {lever, door, squashable object} (object category), θ = (θc1, θc2, θc3)
(current arm joint angles), d (perturbation removal distance)

begin
Reach network maps o onto θg = (θg1θg2, θg3) (goal motor state);
Plan activation network maps c onto action plan P = [P1, P2]
(P1, P2∈{squash, bend, open, cause});
Causative action network maps θg, P onto ∆ = (∆1,∆2,∆3) (perturbation of
motor state);
θp = (θp1, θp2, θp3)← θg + ∆ (perturbed goal motor state);
Random noise added to θp;
while θ 6= θp do

Calculate force applied to arm using PID controller (a function of θp − θc);
Store θp as p1;
θg input into causative action network to produce ∆;
θp ← θg + ∆;
Random noise added to θp;
while Maximum time not exceeded do

if distance to object < d then
θp ← θg;

Calculate force applied to arm using PID controller (a function of θp − θc);
if Action recognition system detects an action a then

Store action score with (θp1, θp2, θp3) as p2 paired with p1;

if An action a was recognised then
Identify unit in action planning system a′ corresponding to a;
Retrieve maximum stored action score smax;
Log a training item mapping a′, θ onto the perturbation sequence (p1, p2)
with learning constant smax;
Reduce maximum possible random noise;
if Number of Training items > 200 then

Discard oldest training item;

Causative action network trained on training data;
Plan activation network trained to map c onto the planned sequence
[cause, a′];

7

6 Testing the system’s ability to learn simple/causative

actions

Testing of the reach network is described in Lee-Hand et al. (2012). In this section we
describe experiments testing the simple action and causative action networks.

We trained the two networks as described in Section 5. They were then tested in a series
of trials; in each trial, a single target object was presented either in one of several possible
unseen locations (see Figure 2b) or in one of the seen locations used during training (see
Figure 2a). The trained simple action network was tested by presenting a cylinder at a
selected location, activating a simple motor program at random (grasp, slap or punch), and
observing how often the tactile stimulus associated with this motor program was produced.
Results from these tests are summarised in Figure 3a. The causative action network was

(a) (b)

Figure 3: (a) Results from testing the simple action network. (b) Results from testing the
causative action network. Error bars show 1 standard deviation.

tested in a similar way. In each trial, one of the articulated objects was presented at a
selected location, and the causative network attempted to produce the causative action
appropriate for this category of object. Results of these tests are presented in Figure 3b.

In general, the system was quite successful in producing motor actions with the expected
perceptual consequences. The motor program network produced actions resulting in the
expected tactile stimuli for X% of seen target locations and Y% of unseen locations; the
causative action network produced actions resulting in the target undergoing the expected
action in X% of seen locations and Y% of unseen locations. Illustrations of representative
successful action of each type are shown in Figure 4. The cases where actions do not result
in the expected sensory consequences can be accounted for by two main factors. Most
failures are due to the simplicity of the feedback motor controller that moves the hand
towards a goal state. The hand/arm system is subject to complex Coriolis forces when
in motion, and there are limits to how precisely it can be controlled by a simple feedback
controller. A few failures result from difficulties generalising from training locations to
unseen locations, but in general the networks do this quite well.

8

Figure 4: Learned actions. From top: grasping, slapping and punching a cylinder; bending
a lever, opening a door and squashing a sprung plate. These sequences are taken from the
latter stages of each action, when the hand makes contact with the target.

References

Averbeck, B., Chafee, M., Crowe, D., and Georgopoulos, A. (2002). Parallel processing of
serial movements in prefrontal cortex. PNAS , 99(20), 13172–13177.

Britten, K., Newsome, W., Shadlen, M., Celebrini, S., and Movshon, J. (1996). A rela-
tionship between behavioral choice and the visual responses of neurons in macaque mt.
Visual Neuroscience, 13(1), 87–100.

Lee-Hand, J. and Knott, A. (in submission). A neural network model of causative motor
actions and causative alternation. Manuscript.

Lee-Hand, J., Neumegen, T., and Knott, A. (2012). Representing reach-to-grasp trajecto-

9

ries using perturbed goal motor states. In Proceedings of the Pacific Rim Conference on
Artificial Intelligence (PRICAI), pages 250–261.

Neumegen, T. (2013). A computational platform for simulating reach-to-grasp actions:
modelling physics, touch receptors and motor control mechanisms. MSc thesis, Dept of
Computer Science, University of Otago.

Oztop, E. and Arbib, M. (2002). Schema design and implementation of the grasp-related
mirror neuron system. Biological Cybernetics , 87, 116–140.

Robins, A. (1995). Catastrophic forgetting, rehearsal and pseudorehearsal. Connection
Science, 7, 301–329.

Takac, M. and Knott (2013). A neural network model of working memory for episodes. In
Proceedings of the 35th Annual Meeting of the Cognitive Science Society , Berlin.

10

