
Department of Computer Science,

University of Otago

Technical Report OUCS-2013-13

BWS: Beacon-driven Wake-up Scheme for Train

Localization using Wireless Sensor Networks

Authors:

Adeel Javed, Haibo Zhang, and Zhiyi Huang
Department of Computer Science, University of Otago, New Zealand

Jeremiah Deng

Department of Information Science, University of Otago, New Zealand

Department of Computer Science,

University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.php

BWS: Beacon-driven Wake-up Scheme for Train
Localization using Wireless Sensor Networks

Adeel Javed, Haibo Zhang, and Zhiyi Huang
Department of Computer Science
University of Otago, New Zealand

Email: {adeel, haibo, hzy}@cs.otago.ac.nz

Jeremiah Deng
Department of Information Science
University of Otago, New Zealand
Email: jeremiah.deng@otago.ac.nz

Abstract—Real-time train localization using wireless sensor
networks (WSNs) offers huge benefits in terms of cost reduction
and safety enhancement in railway environments. A challenging
problem in WSN-based train localization is how to guarantee
timely communication between the anchor sensors deployed
along the track and the gateway deployed on the train with
minimum energy consumption. This paper presents an energy-
efficient scheme for timely communication between the gateway
and the anchor sensors, in which each anchor sensor runs an
asynchronous duty-cycling protocol to conserve energy and wakes
up only when it goes into the communication range of the gateway
on the train. A beacon-driven wake-up scheme is designed and
we establish the upper bound on the amount of time that an
anchor sensor can sleep in one duty cycle to guarantee timely
wake up once a train approaches. We also give a thorough
theoretical analysis for the energy efficiency of our scheme and
give the optimal amount of time that an anchor sensor should
sleep in terms of minimizing the total energy consumption at
each anchor sensor. We evaluate the performance of our scheme
through simulations. Simulation results show that our scheme
can timely wake up anchors sensors at a very low cost on energy
consumption.

Keywords—wireless sensor networks, Localization, wake-up
scheme.

I. INTRODUCTION

The world’s railway infrastructure has been experiencing
substantial growth in the last two decades. This growth im-
poses much greater pressure on railway operators due to the
need to guarantee the safety of railway transportation. Real-
time train localization plays an important role in achieving
high-level railway safety and reliability, since it can assist the
signalling system to initiate traffic signals, activate crossing
gates, send alarms to trackside workers, and so on. Even
though many GPS-based approaches have been designed and
deployed for localization and tracking applications, drawbacks
such as limited coverage and sophisticated infrastructures have
prevented them from being used for train localization. For
example, trains in subway systems primarily operate under-
ground. Even in the above-ground railway transportation, trains
may frequently pass through GPS dark territories such as
tunnels and hilly regions [1]. Other technologies like WLAN,
RFIDs and bluetooth also have certain limitation for train
localization scenario due to either high cost of infrastructure
installation and complicated protocol stack, or limited trans-
mission range and lack of collision avoidance with limited
computational capabilities.

Wireless sensor networking (WSN) is a promising technol-
ogy for real-time train localization due to its huge benefits such

as low cost, large coverage, and easy deployment/maintenance.
Anchor sensors with hardcoded global coordinates can be
deployed along the tracks to detect train movement. When
the train is approaching, the anchor sensors can report their
locations to the gateway installed on the train. Based on the
locations of the anchor sensors as well as the Received Signal
Strength (RSS) for transmissions from anchor sensors to the
gateway, some localization schemes such as particle filter [2]
can be used to estimate the train location in a real-time manner.

It is worth noting that several factors may influence the
value of the RSS received by the gateway, e.g., presence of
obstacles, interference, noise. Since particle filter uses RSS
values and the location information sent by the anchor sensors,
the more information provided by the anchor sensors, the more
accuracy of the localization the particle filter will provide.
However, the focus of this work is to ensure anchor sensors to
timely communicate with the gateway sensor with maximum
energy saving, which is crucial to the particle-filter-based train
localization.

The accuracy of train localization heavily depends on the
timely communication between the anchor sensors and the
gateway on the train. At any time period, each anchor sensor
that is within the communication range of the gateway stays in
active state and reports to the gateway quickly as a train can
move very fast. A straightforward approach is to let all sensors
turn their radio transceivers on and work in idle listening state
to detect the coming of the train. However, sensor devices
are commonly powered by batteries, and this approach can
quickly deplete the battery energy at each anchor sensor as
idle listening consumes almost the same amount of energy
as data transmission. Even though extensive work has been
done on investigating energy harvesting techniques by using
external energy sources such as solar or vibration energy,
these techniques either demand large sized generators or can
only produce power less than 100 µW [3], [4]. Providing
power through the AC power lines is also not an efficient
approach as it will be very expensive to deploy and maintain
the infrastructure of the AC power lines along the tracks.

Duty-cycling is commonly used in WSNs to save energy by
periodically turning radio off. A major challenge in applying
duty-cycling for train localization is to guarantee that each
anchor sensor can wake up in time once it goes into the com-
munication range of the gateway. Even though many sensor
wake-up schemes have been proposed, they are not suitable
for real-time train localization due to the special features of
railway environments. In this paper we focus on designing
an efficient wake-up scheme which can guarantee that each

anchor sensor can wake up timely for communication with the
gateway using the minimum energy. The main contributions of
this work are summarized as follows:

• We proposed a beacon-driven anchor sensor wake-up
model in which the gateway on the train continually
broadcasts beacon packets to wake up anchor sensors
that are going to communicate with the train. To
guarantee that an anchor sensor can wake up in time,
we first derive the upper bound on the amount of sleep
time in one duty-cycle, and then design a beacon-
driven anchor sensor wake-up protocol.

• We analyzed the energy efficiency of our scheme, and
gave the optimal setting for the amount of sleep time
in one duty-cycle in terms of minimizing total energy
consumption at each anchor sensor node.

• We evaluated the performance of our scheme through
simulations, and simulation results demonstrate that
our scheme can timely wake up anchor sensors at a
very low cost on energy consumption.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III describes the system
model and the problems we addressed. Section IV gives the
details of the wake-up scheme for train localization. Section V
analyzes the energy efficiency of our scheme. Section VI
presents the simulation results. Finally, Section VII concludes
the paper and sheds some lights on future work.

II. RELATED WORK

Existing wake-up schemes can be divided into two classes:
synchronous wake-up and asynchronous wake-up. In syn-
chronous wake-up protocols, sensor nodes wake up at the
same time periodically to communicate with one another [5],
[6]. Since all the participating nodes have to synchronize
their clocks, synchronous duty-cycling is most appropriate
for single-hop networks in which all the nodes can hear
each another. The wake-up scheme presented in [7] requires
some level of synchronization of clocks. The tracking scheme
proposed in [8] is based on a combinatorics approach that sets
delay bound at maximum target speed and ignores the timely
tracking of object along with minimized energy consumption.
However, real-time train localization is not delay tolerant due
to the fast train speed. Also it is often difficult to predict at
what time a train will pass by which sensor nodes, and thus
it is impossible for synchronous duty-cycling protocols to use
a static global schedule for all sensor nodes to wake up and
to sleep. Moreover, it is nontrivial to synchronize distributed
clocks of many sensor nodes [9].

In asynchronous duty-cycling protocols, sensor nodes are
not required to synchronize their clocks with each other and
sensor nodes can wake up independently. Since there are fewer
communications among sensor nodes, asynchronous protocols
are more energy efficient than synchronous protocols. Existing
work on asynchronous wake-up schemes [10], [5] mainly
focuses on the tradeoff between energy efficiency (i.e. network
lifetime) and transmission latency. While our objective is to
guarantee timely sensor wake up with the minimum energy
consumption. Hence communication latency will affect the
accuracy and reliability of localization and is not tolerable.

Other related works include a variety of MAC protocols
designed based on asynchronous duty-cycling [11], [12], [13],
[14]. Asynchronous duty-cycling provides a periodic channel
sampling mechanism to detect potential transmissions. In order
to start transmission, a sensor node transmits a long preamble
packet to make it detectable by the neighbor nodes while each
neighbor node performs CCA checks. A neighbor sensor node
receives the preamble packet and prepares to receive data.
Asynchronous duty-cycling protocols such as B-MAC [11], X-
MAC [12] and Wise-Mac [13] deal with preamble packets in
a way that the transmitter takes the responsibility to activate
the receiver for data transmission. RI-MAC [14] eliminates
the overhead of the preamble packet by letting the receivers
initiate transmissions. However, these protocols are designed
for general purpose and not suitable for train localization.

III. SYSTEM MODELS AND PROBLEM STATEMENT

A. Network Model

TSc TSb

RbRb

Rc Rc

da

ai-1 ai ai+1 aj-1a.. aj+1aj aj+2ai-2a0 . . . an. . .

Gateway Sensor

Anchor Sensor

Zone 3 Zone 2Zone 1

Train Direction

Fig. 1: A WSN architecture for train localization

The network consists of two types of sensor nodes: anchor
sensor and gateway sensor, as shown in Figure 1. A set of
anchor sensors {a0, a1, ..., an} are uniformly deployed along
a straight track with equal distance da between any two
consecutive anchor nodes. Each anchor sensor is equipped with
a single radio transceiver with transmission range of Rc. We
assume that each anchor sensor is hard-coded its geographic
coordinates before deployment. A single gateway sensor is
installed on the train. The gateway sensor is equipped with two
radio transceivers: TSc and TSb. TSc is used to communicate
with the anchor sensors that fall into its transmission range,
and TSb is used to continually broadcast beacon packets to
activate the anchor sensors before they go into the transmission
range of TSc. The transmission range for TSc and TSb is
Rc and Rb, respectively. We assume that Rb is larger than
Rc. To avoid interference we assume TSc and TSb operate
on two non-overlapping channels chc and chb respectively.
Each anchor sensor operates on both channels, that is, uses
chb during duty-cycling and switches to chc to communicate
with TSc. As shown in Figure 1, zone 1 is the region covered
by TSc, and zone 1, zone 2 and zone 3 are the region covered
by TSb.

The train localization scheme works as follows: as the
train moves, TSb continually broadcasts beacon packets. Each
beacon packet contains information of the current train location
(represented by the location of the gateway) and speed. Once
an anchor sensor receives a beacon packet, it stops duty-cycling
and switches to channel chc to prepare for communication with
TSc. When an anchor sensor goes into the transmission range
of TSc, it sends its geographic coordinates to the gateway
sensor. After an anchor sensor finishes the communication
with the gateway sensor, it switches back to channel chb and

resumes duty-cycling. Based on the geographic coordinates
received from anchor sensors as well as the RSS information
of the transmissions from anchor sensors, the train location
will be computed at the gateway in a real-time manner.

B. Asynchronous Duty-Cycling Model

All anchor sensors operate in an asynchronous duty-cycling
mode in which each anchor switches between sleep and
wake-up states independently without global synchronization.
Figure 2 shows one duty-cycle, in which an anchor sensor
first sleeps for tsleep second with its radio turned off, and
then wakes up and turns its radio on to perform clear channel
assessment (CCA) to detect incoming signals. If an incoming
signal is detected, the anchor sensor will keep in active state
until the scheduled communication between the anchor sensor
and the gateway sensor is completed; otherwise it switches
back to sleep state and repeats another duty-cycle. The length
of one duty-cycle is represented by Td, and the time for turning
on/off radio and performing CCA is denoted by tsw and tcca,
respectively.

Wakeup State (Radio ON):

Sleep State (Radio OFF):
tsleep tsw tcca

 One Duty Cycle (Td)

tsw

Fig. 2: Illustration of one duty-cycle

C. Problem Statement

In our train localization scheme, each anchor sensor must
be in wake-up state and reports to the gateway once it goes
into the transmission range of TSc. However, each anchor
sensor runs an asynchronous duty-cycling protocol, and can be
woken up only if it detects the transmission signal from TSb
by performing CCA. The duty-cycling parameter tsleep plays
an important role in terms of timely waking up anchor sensors.
If tsleep is small, each anchor sensor needs to frequently turn
on and turn off its radio, thereby wasting too much energy.
From energy saving perspective, the larger the tsleep, the more
energy each anchor sensor can conserve. However, if tsleep is
too large, an anchor sensor may miss the chance to detect
the beacon packet broadcast by TSb and fail to wake up in
time. The first issue we will address in this paper is to derive
the upper bound on tsleep, which enables that each anchor
sensor can work in sleep state as long as possible while still
guarantees that each anchor sensor can wake up in time once
the train approaches.

The second issue we will address is to design an energy-
efficient wake-up scheme, which guarantees that each anchor
sensor can wake up in time once it goes into the transmission
range of TSc, and resume low power duty-cycling once
it finishes communication with the gateway. The designed
scheme will be evaluated through both theoretical analysis and
simulations.

IV. BWS: BEACON-DRIVEN WAKE-UP SCHEME

A. Upper Bound on tsleep

As shown in Figure 3, suppose that anchor sensor ai enters
into the transmission range of TSb at time tb, and enters into

the transmission range of TSc at time tc. Since anchor ai must
be active at time tc to communicate with TSc, it must wake
up during the period tc − tb. To wake up, anchor ai should
receive at least one beacon from TSb. Therefore, the following
constraint on tsleep has to be satisfied:

tsleep 6 tc − tb, (1)

otherwise, ai may just start sleeping at tb, and will still remain
in sleep state at time tc, thus will fail to wake up.

Gateway Gateway

ai-j ai-j+1 ai-j+2
. . . ai-1ai-2

ai+1ai ai+2

tb tc

ai-j+3

D

ai+k ai+k+1

Zone 1 Zone 2

ai-3 . . .

Fig. 3: BWS: Illustration of Sensor-Train Communication

Let D denote the distance travelled by the train during the
period of tc − tb, and dT represent the vertical distance from
the gateway (train) to the line along which the anchor sensors
are deployed. To find the upper bound for tsleep, we first work
out the size of Zone 2, as follows:

Dz2 =
√
R2

b − d2T −
√
R2

c − d2T.

As dT is very small as compared to Rb and Rc, this is
ignorable and size of Zone 2 can be calculated as;

Dz2 = Rb −Rc. (2)

Let Smax represent the maximum train speed, at which the
distance travelled by the train in the period tc − tb is D =
Smax(tc− tb). To guarantee that anchor ai must perform CCA
at least once in the period tc − tb regardless the actual train
speed, the following condition must be satisfied:

Dz2 > Smax(tc − tb) (3)

Based on Equations (1), (2) and (3), we have

tsleep 6 tc − tb 6
Dz2

Smax
=
Rb −Rc
Smax

. (4)

B. Design of BWS Protocol

The key idea behind the BWS protocol is to wake up any
anchor sensor that goes into the transmission range of TSb
by detecting the beacon packets broadcast by the gateway.
Specifically, the TSb radio continuously broadcasts beacon
messages that contain the following information: (a) the gate-
way ID (GW_ID), (b) the current train speed (ST), and (c) the
current train location (LocT). Once an anchor sensor receives
a beacon packet from the gateway, it performs the following
three tasks: Duty-cycling Pause, communication with TSc and
Duty-cycling resumption. In the Duty-cycling Pause task, the
anchor sensor will pause the running of the default duty-
cycling protocol and prepare for communication with TSc. In
the Communication with TSc task, the anchor will report its
location to the gateway via radio TSC . Once the anchor moves
out the transmission range of TSc, it performs the third task
to resume the default duty-cycling protocol. The three tasks
are described in more detail below, and the pseudocode for
wake-up protocol is given in Algorithm 1.

1) Duty-cycling Pause: Upon receiving of a packet, the
anchor sensor first checks if the packet is a beacon packet
broadcast by gateway (line 2 in Algorithm 1). As the received
beacon packet contains the current train location, the anchor
sensor can check in which zone it is located by comparing its
location with the train location. If the anchor sensor is located
in zone 2, it should first pause the running the duty-cycling
protocol, stays active and then switches to channel from chb
to chc (lines 3 and 4).

2) Communication with TSc: When an anchor sensor ai
receives a beacon packet, it wakes up to prepare for com-
munication with TSc. The amount of time since ai wakes
up till it first goes into Zone 1 can be estimated by α =√

(xai
−xT)2+(yai

−yT)2−Rc

ST
, where (xai , yai) and (xT , yT) are

the coordinates of ai and the train respectively. Once ai
receives a beacon packet, it will initialized a timer, denoted by
start_timer with value of α (line 7 in Algorithm 1). When
start_timer expires, ai will report its location to the gateway
after getting medium clear by CSMA control layer (line 15
& 17). Once the gateway receives the packet from ai, it will
send back an acknowledgement. If ai does not receive the
acknowledgment, it will retransmit the packet after a short
while (line 19 in Algorithm 1).

3) Duty-cycling resumption: Once an anchor node ai goes
out of the transmission range of TSc (i.e., Zone 1 in Figure
1), it should resume the duty-cycling protocol. To achieve this,
each anchor node maintains another timer called stop_timer
(line 8). Once stop_timer is expired, the node should resume
duty-cycling. The stop_timer is initialized with value β which
is the amount of time elapsed since the node wakes up till the
time it goes out of Zone 1, and β can be estimated using the

train speed, that is, β =

√
(xai

−xT)2+(yai
−yT)2+Rc

ST
.

BWS enables an anchor sensor to accomplish these three
tasks and guarantees the wake up of an anchor sensor for
communication with TSc. However, it is possible for an anchor
sensor to get beacon packets when it is located in Zone
3 due to large omnidirectional transmission range of TSb.
BWS adaptively avoids unnecessary wake ups, but it uses the
gateway’s location information received in the beacon packet
to calculate its zone. If an anchor sensor lies in Zone 3, BWS
ignores such beacon packets and allows an anchor sensor to
continue following duty-cycles. Although train location LocT
may not be always accurate at a particular point of time, the
associated localization error is acceptable by an anchor sensor
to calculate its zone. However, for correct decision making for
wake up, we assume that localization error due to time drift
between anchor sensors and the train will never be larger than
distance da.

V. ANALYSIS OF ENERGY CONSUMPTION

In our system, the energy consumed at each anchor sensor
can be divided into two parts: energy consumed in duty-cycling
and energy consumed in wake-up state. Table I gives the
list of states in which an anchor sensor can operate and the
corresponding power level for each state.

A. Energy consumed during wake up

If an anchor sensor goes to sleep at the point when it just
goes into Zone 2, the amount of time that the anchor will sleep

Algorithm 1: Beacon-driven Wake-up at Anchor ai
1 On receiving beacon packet:
2 if SourceID = GW_ID then
3 if ai locates in Zone 2 then

/* Pause duty-cycling */
4 duty_cycling = False
5 Channel = chc /* channel switch */
6

7 start_timer (

√
(xai

−xT)2+(yai
−yT)2−Rc

ST
)

8 stop_timer (

√
(xai

−xT)2+(yai
−yT)2+Rc

ST
)

9 else
10 Ignore Beacon
11 duty_cycling = True

12 else
13 Ignore Beacon

/* Resume duty-cycling */
14 duty_cycling = True

15 On start_timer expiry:
16 if start_timer is expired then

/* Communicate with TSc */
17 Send_Packet(xai , yai)
18 Repeat process at line 17, until ack is received
19

20 On stop_timer expiry:
21 if stop_timer is expired then
22 Stop Sending Packets to Gateway
23 Channel = chb /* channel switch */
24

/* Resume duty-cycling */
25 duty_cycling = True

States Power Level Energy Consumed
Transmission Ptx Etx = ttxPtx

Idle Listening Pl El = tlPl

Packet Reception Prx Erx = trxPrx

Switch radios b/w ON & OFF Psw Esw = 2ttswPsw

CCA Pcca Ecca = tccaPcca

Sleeping Psleep Esleep = tsleepPsleep

TABLE I: Anchor sensor’s states and their power level

throughout Zone 2 is tsleep. However, if the anchor sensor
wakes up at the point when it just goes into Zone 2, it will
receive a beacon packet and stay active. In this case the amount
of sleeping time throughout Zone 2 is 0. Since duty-cycling is
not synchronized among all anchor sensors, an anchor sensor
may wake up at any time between the above two extremes
when it is in Zone 2. The amount of time that an anchor
sensor sleeps in Zone 2 follows a uniform random distribution
between 0 and tsleep. Hence the average amount of time that
an anchor sensor stays in sleep state throughout Zone 2 is
tsleep/2.

The average amount of time that an anchor sensor stays in
Zone 2 can be calculated by

Rb −Rc
Savg

, (5)

where Savg is the average train speed.

Let Tz2 denote the average amount of time that an anchor
sensor stays active when it is in Zone 2 for one train pass.
Then

Tz2 =
Rb −Rc
Savg

− tsleep
2

. (6)

Let Tz1 denote the average time that an anchor sensor stays
in Zone 1 for one train pass. Then

Tz1 =
2Rc
Savg

. (7)

Let Twk denote the average time that an anchor sensor stays in
active state for one train pass. Since each anchor sensor will
resume duty-cycling at point when it enters into Zone 3, we
have

Twk = Tz1 + Tz2

=
Rb +Rc
Savg

− tsleep
2

.
(8)

To simplify our analysis we assume reliable communica-
tion between anchor sensors and the gateway. So each anchor
sensor will receive one beacon packet, send one report packet
and receive one ACK packet. Let ttx and trx denote the time
for transmitting and receiving a packet respectively. Therefore,
the amount of time that an anchor sensor stays in idle listening
state for one train pass, which is represented by tl, can be
computed as follows

tl = Twk − ttx − 2trx, (9)

Let Ewk denote the amount of energy consumed at an anchor
sensor during wake-up state for one train pass. According to
Table I ,

Ewk = ttxPtx + 2trxPrx + tlPl (10)
= ttxPtx + 2trxPrx + (Twk − ttx − 2trx)Pl.

B. Energy consumed during duty-cycling

As shown in Figure 2, one duty-cycle includes three parts:
sleep (tsleep), CCA(tcca) and state switch (2tsw). Let Edc
denote the energy consumption for one duty-cycle. Then from
Table I we have,

Edc = 2tswPsw + tccaPcca + tsleepPsleep. (11)

The time required for switching radio between on and off
states and the time for CCA check are constants, therefore
the amount of energy consumed by state switching and CCA
check is fixed for one duty-cycle. For simplicity, we use ex to
denote this amount of energy, that is,

ex = 2tswPsw + tccaPcca. (12)

Then,
Edc = ex + tsleepPsleep. (13)

C. Total energy consumption for a period

Let L be the total length of the time that the anchor sensors
operate, and Td be the length of one duty-cycle. We use λ to
denote the total number of times that a train passes by an
anchor sensor. Let Etotaldc be the total energy consumed during
duty-cycling for the whole period L. Then

Etotaldc =
L− λTwk

Td
Edc, (14)

where L−λTwk

Td
is the total number of duty-cycles in time

period L. Let Etotalwk be the total energy consumed during wake
up for whole period L. Then

Etotalwk = λEwk. (15)

Let EtotalL represent the total energy consumed by an anchor
sensor in time period L. Then,

EtotalL = Etotaldc + Etotalwk . (16)

Based on Equations (14) and (15), Equation (16) can be
expressed as,

ELtotal =
L− λTwk

Td
Edc + λEwk. (17)

By substituting Equations (8), (10) and (13) in Equation
(17), we have,

EtotalL =
1

2tsw + tcca + tsleep

(
L− λ

(Rb +Rc
Savg

− tsleep
2

))
(ex + tsleepPsleep) + λ

(
ttxPtx + 2trxPrx

+
((Rb +Rc

Savg
− tsleep

2

)
− ttx − 2trx

)
Pl

)
(18)

D. Optimal tsleep for minimizing energy consumption

The minimization of energy consumed at each anchor
sensor node can be formulated as the following optimization
problem,

minimize ELtotal
subject to 0 < tsleep 6 tubsleep

(19)

where tubsleep is the upper bound for tsleep which is given in
Section III.A. As can be seen from Equation (18), the only
variable is tsleep, and it can be proved that ELtotal is strictly
decreasing with the increase of tsleep. The optimal tsleep in
terms of minimizing the total energy consumption at each
anchor sensor is tubsleep =

Rb−Rc

Smax
.

VI. SIMULATION RESULTS

A. Simulation Setup

We implement our scheme in TinyOS and run the simula-
tions in the COOJA simulator [15]. In our simulations the train
speed changes according to a random distribution between
5m/s and 10m/s, and we use the mobility plugin in COOJA
to simulate the movement of the train. We modelled packet
losses and retransmissions by using CSMA layer of CC2420
layer stack provided by TinyOS. The detailed configurations
for the simulations parameters are given in Table II. As there
are no specific wake-up schemes for the train localization, we
have compared our simulational results with their theoretical
counterparts.

Parameters Values Parameters Values
Simulation time period L 1000s Rb ∼ 160m

Train trip frequency λ 1 Rc ∼ 150m
No. of Anchor Sensors 800 Voltage 3.0v

Size of Zone-1 300m Size of Zone-2 Zone-3 160m
dT 2m Size of Zone-3 160m

Simulation iterations 1000 Maximum train speed (Smax) 10m/s
tub
sleep 16s Minimum train speed 5m/s

TABLE II: Simulation Parameters

B. Number of Active Anchor Sensors in Zone 1

Since the size of Zone 1 is 300m and the distance between
two adjacent anchor sensors is 100m, the number of anchor
sensors that fall into Zone 1 can vary from 3 to 4. Figure
4 shows the number active anchor sensors in Zone 1 with
different setting of tsleep. According to Equation (4), the
maximum tsleep that can guarantee timely wake up of anchor
sensors is 16 seconds. It can be seen that, for all case where
tsleep is not larger than 16s, the number of active anchor
sensors that are active in Zone 1 fluctuates between 3 and 4.
For the case where tsleep = 32s, the number of active anchor
sensors in Zone 1 varies from 0 to 4, and in most time there are
only 1 or 2 active anchor sensors. This is because that the value
of tsleep (i.e., 32s) exceeds the upper bound tubsleep. Since the

100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

3

3.5

4

A
ve

ra
ge

 N
um

be
r

of
 A

ct
iv

e
A

nc
ho

r
S

en
so

rs
 in

 Z
on

e−
1

Simulation Time (s)

tsleep=0s

tsleep=4s

tsleep=8s

tsleep=16s

tsleep=32s

Fig. 4: Number of active anchor sensors in Zone 1 at different
tsleep.

size of Zone 1 is 300m, the anchor sensors are deployed with
minimum density of 1sensor/100m (σ = 4 sensors in Zone
1) to maximum 8sensors/100m (σ = 24 sensors in Zone 1),
the maximum number of anchor sensors within Zone 1 vary
between total number of deployed anchor sensors in Zone 1
and one less than that (i.e., σ = 24, theoretically maximum
anchor sensors in Zone 1 vary between 23 and 24). Even when
all the anchor sensors follow the tubsleep, the average number of
active anchor sensors can be increased by densely deploying
the anchor sensors along the track. Figure 5 shows that, for
all the cases average number of active anchor sensors are
increased as the deployment density (σ) is increased and the
simulation results are very close to the theoretical counterparts.

4 8 12 16 20 24
0

5

10

15

20

25

A
ve

ra
ge

 N
um

be
r

of
 A

ct
iv

e
A

nc
ho

r
S

en
so

rs
 in

 Z
on

e−
1

Deployment Densities− σ

Theoretical
Simulation

Fig. 5: Number of active anchor sensors in Zone 1 at different
deployment densities and tsleep = 16s.

However, if tsleep is increased to a larger value (e.g.
32s) than tubsleep, as shown in Figure 6, though the average

number of active anchor sensors in Zone 1 increases along
the increase in the deployment density, the average number of
active anchor sensors decreases as compared to tsleep = 16
(refer to Figure 5).

4 8 12 16 20 24
0

2

4

6

8

10

12

14

A
ve

ra
ge

 N
um

be
r

of
 A

ct
iv

e
A

nc
ho

r
S

en
so

rs
 in

 Z
on

e−
1

Deployment Densities− σ

Theoretical
Simulation

Fig. 6: Number of active anchor sensors in Zone 1 at different
deployment densities and tsleep = 32s.

C. Energy Consumption

Figure 7 shows the average energy consumption at each
anchor sensor in simulation compared with their theoretical
counterparts. All calculations are based on the current and
voltage specifications of CC2420 radio chipset datasheet. It

 Fig. 7: Energy consumed by an anchor sensor at different tsleep
values. Hatched bars are theoretical results, while clear bars are

simulation results.

can be seen that always keeping anchor sensors active without
duty-cycling consumes a huge amount of energy. With the
increase of tsleep, the total energy consumption drops signif-
icantly because the energy consumed in active state drops.
The amount of energy consumed by duty-cycling slightly
increases since the amount of time that each anchor stays in
sleep mode increases. Figure 7 also shows that the energy
consumption obtained in simulations is close to the results
computed based on our theoretical analysis. Note due to more
realistic settings in the simulation (such as speed changes,
packet loss and retransmission), more energy is consumed
than in theory. Whereas, in theoretical results we didn’t model
packet losses, retransmission and only considered reliable
transmission. However, it is obvious that the theoretical and
simulation results match at the optimal sleep time (16s).

VII. CONCLUSIONS

This paper investigates the problem of designing an energy
efficient communication protocol for real-time train local-
ization using wireless sensor networks. In our scheme each
anchor sensor runs an asynchronous duty-cycling protocol to
conserve energy and wakes up only when it goes into the
communication range of the gateway on the train. We designed
a beacon-driven wake-up scheme and derive the upper bound
on the anchor sensor sleep time within one duty cycle in
order to guarantee timely wake up. We theoretically analyze
our scheme on energy efficiency and evaluate its performance
through simulations. Future work includes further improving
our beacon-driven scheme, and evaluating possible schemes by
conducting extensive simulation for comparison.

REFERENCES

[1] A. Acharyaa, S. Sadhu, and T. Ghoshala, “Train localization and parting
detection using data fusion,” Transportation Research Part C: Emerging
Technologies, vol. 19, pp. 75–84, 2011.

[2] M. Klepal, D. Pesch et al., “A bayesian approach for rf-based indoor
localisation,” in Wireless Communication Systems, 2007. ISWCS 2007.
4th International Symposium on. IEEE, 2007, pp. 133–137.

[3] R. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens,
“Micropower energy harvesting,” Solid-State Electronics, vol. 53, no. 7,
pp. 684–693, 2009.

[4] S. Beeby, M. Tudor, and N. White, “Energy harvesting vibration sources
for microsystems applications,” Measurement science and technology,
vol. 17, no. 12, p. R175, 2006.

[5] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An
energy-efficient coordination algorithm for topology maintenance in ad
hoc wireless networks,” in Proc. of ACM/IEEE 7th International Conf.
on Mobile Computing and Networking (MobiCom). ACM, 2001.

[6] A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup scheduling in
wireless sensor networks,” in Proceedings of the 7th ACM international
symposium on Mobile ad hoc networking and computing. ACM, 2006,
pp. 322–333.

[7] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient mac protocol
for wireless sensor networks,” in INFOCOM 2002. Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 3. IEEE, 2002, pp. 1567–1576.

[8] Y. Wong, L. Ngoh, W. Wong, and W. Seah, “A combinatorics-based
wakeup scheme for target tracking in wireless sensor networks,” in
Wireless Communications and Networking Conference, 2007. WCNC
2007. IEEE. IEEE, 2007, pp. 3569–3574.

[9] R. Zheng, J. Hou, and L. Sha, “Asynchronous wakeup for ad hoc
networks,” in Proceedings of the 4th ACM international symposium
on Mobile ad hoc networking & computing. ACM, 2003, pp. 35–45.

[10] Y. Tseng, C. Hsu, and T. Hsieh, “Power-saving protocols for ieee
802.11-based multi-hop ad hoc networks,” in Proc. of INFOCOM, 2002.

[11] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access
for wireless sensor networks,” in Proceedings of the 2nd international
conference on Embedded networked sensor systems. ACM, 2004, pp.
95–107.

[12] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-mac: a short
preamble mac protocol for duty-cycled wireless sensor networks,” in
Proceedings of the 4th international conference on Embedded net-
worked sensor systems. ACM, 2006, pp. 307–320.

[13] A. El-Hoiydi and J.-D. Decotignie, “Wisemac: An ultra low power mac
protocol for multi-hop wireless sensor networks,” Algorithmic Aspects
of Wireless Sensor Networks, pp. 18–31, 2004.

[14] Y. Sun, O. Gurewitz, and D. B. Johnson, “Ri-mac: a receiver-initiated
asynchronous duty cycle mac protocol for dynamic traffic loads in
wireless sensor networks,” in Proceedings of the 6th ACM conference
on Embedded network sensor systems. ACM, 2008, pp. 1–14.

[15] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Demo
abstract: Cross-level simulation in cooja,” in Proceedings of the First
IEEE International Workshop on Practical Issues in Building Sensor
Network Applications, 2006.

	I Introduction
	II Related Work
	III System Models and Problem Statement
	III-A Network Model
	III-B Asynchronous Duty-Cycling Model
	III-C Problem Statement

	IV BWS: Beacon-driven Wake-up Scheme
	IV-A Upper Bound on tsleep
	IV-B Design of BWS Protocol
	IV-B1 Duty-cycling Pause
	IV-B2 Communication with TSc
	IV-B3 Duty-cycling resumption

	V Analysis of Energy Consumption
	V-A Energy consumed during wake up
	V-B Energy consumed during duty-cycling
	V-C Total energy consumption for a period
	V-D Optimal tsleep for minimizing energy consumption

	VI Simulation Results
	VI-A Simulation Setup
	VI-B Number of Active Anchor Sensors in Zone 1
	VI-C Energy Consumption

	VII Conclusions
	References

