
Department of Computer Science,
University of Otago

Technical Report OUCS-2014-02

Practical use of SELinux for enhancing the security of
web applications

Authors:

Lech Szymanski and David Eyers
Department of Computer Science, University of Otago, New Zealand

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.php

Practical use of SELinux for enhancing the security of
web applications

Part 1: Using Type Enforcement Security

Lech Szymanski and David Eyers

August 14, 2014

Acknowledgement

The authors gratefully acknowledge the research grant from the University of Otago that
funded the project that facilitated the writing of this document.

1

Contents

1 Introduction 4

2 SELinux 6
2.1 Installation . 6

2.1.1 SELinux Tools . 6
2.2 SELinux architecture . 6

2.2.1 LSM . 7
2.2.2 Security labels . 9
2.2.3 Policy . 11

2.3 Domains . 11
2.3.1 Transitions . 17
2.3.2 Unconfined domain . 19

2.4 Role Based Access Control . 19
2.5 Multi Level Security . 22
2.6 Summary . 24

3 Case study: DokuWiki on SELinux 25
3.1 Installation . 25
3.2 DokuWiki setup . 26

3.2.1 DAC permissions . 27
3.2.2 SELinux permissions . 29

3.3 Working DokuWiki . 33
3.4 Changing the factory reset security contexts 33
3.5 Discussion . 35
3.6 Summary . 37

4 Case study: DokuWiki with double hull security 38
4.1 Installation . 38

4.1.1 SELinux module for Apache . 38
4.1.2 SELinux API for PHP . 39
4.1.3 SELinux Template . 39

4.2 Pages and namespaces . 42

2

4.3 DokuWiki ACL . 43
4.4 ACL vulnerability . 47
4.5 Double hull overview . 49
4.6 Policy modules . 49

4.6.1 Build setup . 50
4.7 The dokuwiki module . 50
4.8 Switching the domain . 52

4.8.1 SELinux plugin . 52
4.8.2 Cloning a domain . 57

4.9 DokuWiki ACL group domains . 59
4.10 ACL namespace types . 63
4.11 DokuWiki double hull security setup . 67
4.12 Discussion . 72
4.13 Summary . 73

3

1 Introduction

The Security-Enhanced Linux (SELinux) module [1] has been available in the mainline kernel
for many years (since 2003), and is included as part of a growing number of popular Linux
distributions, such as Fedora. However adopting its new and powerful security capabilities
has been daunting to many. On forums, the ubiquitous advice on many SELinux related
issues is: “Disable SELinux”. Though this might be a valid choice for a casual desktop user,
it makes little sense to disable your security system if you intend to run any type of a server
on your machine.

At its core, SELinux is an elegant, effective, and very flexible framework for providing Manda-
tory Access Control (MAC), yet it takes dedication and time to get used to. This is mostly
because the security of a multi-service system is an extremely complicated matter, which
often requires a thorough understanding of the inner workings of that system. There is an
intricate interplay of processes, sockets, files and inter-process communication on a Linux
server. The complexity in SELinux comes from the necessity to create a enormous number
of rules, conveyed by the policy, that spell out the way processes and resources are allowed
to interact with each other. Mastering SELinux is not just about getting to know the fun-
damental concepts of the way it implements MAC, but how the rules of SELinux policy
permeate and affect interactions of various subsystems of your Linux server.

This tutorial came about as a result of an investigation into the viability of using SELinux to
secure multi-tier web systems that process sensitive data, as inspired by the SafeWeb project
[2]. The aim of this document is to showcase SELinux and the targeted policy—the default
SELinux policy on Fedora—in action through case studies and examples of SELinux-aware
web services. Although a brief introduction to SELinux concepts is included, it might be a
good idea first to go through a general introduction to SELinux [3], [4].

This document is the first part of a two-part tutorial and it consists of the following chapters:

• Chapter 2 gives an overview of SELinux fundamentals and demonstrates the tools that
are useful for querying the policy;

• Chapter 3 demonstrates how to work with existing policy using the process of setting
up a secured DokuWiki1 web server as an example;

1https://www.dokuwiki.org

4

https://www.dokuwiki.org

• Chapter 4 continues with the DokuWiki example introducing the basics of policy writ-
ing in order to utilise SELinux as a second ring of security around the security that
the DokuWiki service provides itself.

It’s important to keep in mind is that this tutorial is a guide through a set of scenarios that
(hopefully) will aid in understanding of how SELinux works. For clarity of the presentation,
some liberties have been taken with various aspects of system security, which most likely
would be not appropriate for production systems.

5

2 SELinux

The fundamental concepts of SELinux are relatively straightforward. However, in order to
use SELinux, one needs to work within the framework of the default policy, which comes
with an overwhelming number of labels, rules, macros and definitions. In this chapter, as we
explain the principles of SELinux, we also demonstrate how to probe the active policy and
find examples relevant to the covered theory.

2.1 Installation

All the exercises in this tutorial were done on Fedora 20 Desktop Edition running on Vir-
tualBox. All the installation instructions relevant for the tutorial, except for how to install
Fedora Linux itself, are provided – they are scattered throughout this document introducing
the required components as the need arises. For the tutorial we created user setest with
sudo privileges.

2.1.1 SELinux Tools

For this chapter we only need a set of the standard SELinux tools that provide a means
of exploring the policy. From the terminal, issue the following commands to install the
aforementioned tools:

$ sudo yum install policycoreutils -gui policycoreutils -newrole
$ sudo yum install setools setools -libs

2.2 SELinux architecture

The packages we have just installed are scripts that fish out information about the current
SELinux configuration. SELinux itself didn’t need to be installed, because Fedora comes
with SELinux enabled by default. This can verified by issuing the following command from
the terminal:

6

$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 28

Unless the default settings have been changed, the SELinux status should come up as enabled.
Let’s briefly go over the elements of the SELinux framework.

2.2.1 LSM

SELinux rides on top of the Linux Security Modules (LSM) framework [5], [6], which is
a generic framework for Mandatory Access Control (MAC) for Linux. In contrast, the
standard security approach of Linux filesystems is a type of Discretionary Access Control
(DAC), because permissions for access to resources (files or directories) are at the discretion
of their owners. For example, using the chmod command, one can choose to give access to
their home directory to anyone on the system. MAC security does not allow users to make
such decisions. Instead, all the decisions on what’s permissible and what is not are conveyed
through the policy. While it is possible to set up SELinux so that an arbitrary user can
modify the policy, this would largely defeat the purpose of MAC, which is to centralise the
decision making about access control.

LSM is a service that advises the kernel on what’s permissible and what is not. It does
not replace the existing DAC system. SELinux and the DAC system operate independently
(which sometimes may be frustrating, because both must be configured properly in order
to get a service working). Linux kernels since version 2.6 have been fitted with hooks that
call LSM’s API at various places before performing certain actions (such as opening a file).
This API supplies the LSM with information about the security contexts of the participating
process and the resource being targetted, as well as the code (i.e. a symbollic identifier) for
the object class and the action that is about to be performed. The codes for the action and
the class of targeted object for a given LSM query are statically embedded into the API
– a given hook in the kernel corresponds to a specific action on a certain class of object.
LSM returns bearing information on whether, according to the current policy, the process is
allowed this action. It’s then up to the kernel whether or not to heed this advice. Whether
it will, depends on what ‘mode’ SELinux has been configured for:

• in the enforcing mode, the kernel will heed the advice of the LSM and abort any
operation that is not permitted;

• in the permissive mode, the kernel ignores the LSM’s advice, but still makes a log
entry for any denials reported – this is very handy for debugging;

7

• when SELinux is set to disabled, the kernel does not query the LSM at all.

Check the current mode by issuing the sestatus command:

$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 28

To switch to permissive mode, use the setenforce command:

$ sudo setenforce 0
$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: permissive
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 28

To get back to enforcing mode type:

$ sudo setenforce 1
$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 28

The effect of the setenforce command is not persistent across reboots. To configure the
SELinux mode at boot, one would modify the SELINUX variable in the /etc/selinux/config
file (this is also where SELinux can be disabled completely).

8

$ cat /etc/selinux/config

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected ,
minimum - Modification of targeted policy. Only selected processes are protected.
mls - Multi Level Security protection.
SELINUXTYPE=targeted

For now leave the SELINUX variable set to “enforcing”.

The LSM system is not limited to work solely for the kernel. Any application can use its API
to ask questions about what is permissible and what is not. In essence, LSM is a security
advisor that leaves the enforcement of its policy responses to the kernel or the application
making the query.

2.2.2 Security labels

Security labels are strings that describe a security context for a process or a system resource
– they are analogous to security badges. From an SELinux standpoint, the operating system
consists of a set of agents operating on objects. The agents are the running processes – they

9

are the sources of actions. The objects are the directories and files, even other processes,
sockets, etc. – they are the targets of those actions. Every process and every object on
the system is tagged with a security label – the kernel facilitates the tagging of processes,
whereas the file system implementations facilitate the tagging of files and directories.

The format of SELinux security label is as follows:
<seuser>:<role>:<type>:<sensitivity>:<categories>.

The meaning of different parts of the label will be discussed in detail later on. For now let’s
look at the current labels within part of the filesystem:

$ ls -Z
drwxr -xr-x. setest setest unconfined_u:object_r:user_home_t:s0 Desktop
drwxr -xr-x. setest setest unconfined_u:object_r:user_home_t:s0 Documents
drwxr -xr-x. setest setest unconfined_u:object_r:user_home_t:s0 Downloads
drwxr -xr-x. setest setest unconfined_u:object_r:audio_home_t:s0 Music
drwxr -xr-x. setest setest unconfined_u:object_r:user_home_t:s0 Pictures
drwxr -xr-x. setest setest unconfined_u:object_r:user_home_t:s0 Public
drwxr -xr-x. setest setest unconfined_u:object_r:user_home_t:s0 rpmbuild
drwxr -xr-x. setest setest unconfined_u:object_r:user_home_t:s0 Templates
drwxr -xr-x. setest setest unconfined_u:object_r:user_home_t:s0 Videos

The -Z switch of the ls command shows the SELinux labels of the contents of the cur-
rent directory. In the example above, all but one of the directories are labelled as "un-
confined_u:object_r:user_home_t:s0". The security context specified by this label is:
seuser="unconfined_u", role="object_r", type="user_home_t", sensitivity="s0",
with categories being undefined. Notice that the DAC flags are still there as well.

To see the context of the running processes, do:

$ ps -eZ
LABEL PID TTY TIME CMD
system_u:system_r:init_t:s0 1 ? 00:00:02 systemd
system_u:system_r:kernel_t:s0 2 ? 00:00:00 kthreadd
system_u:system_r:kernel_t:s0 3 ? 00:00:00 ksoftirqd /0
system_u:system_r:kernel_t:s0 5 ? 00:00:00 kworker /0:0H
system_u:system_r:kernel_t:s0 7 ? 00:00:00 kworker/u:0H
.
.
.

The context labels are different, but follow the same format.

To see the context of your shell (or the process that runs your terminal) use the id command
with -Z option:

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

New directories inherent the labels of their parent directories. Similarly, processes inherit
the labels of the process that spawns them. It is possible to change the security labels on
files and directories, as well as on a running process, but only if the policy allows it.

10

2.2.3 Policy

The policy, to which we have referred a number of times already, is the dictionary that defines
valid security labels, actions and all the rules dictating what is permissible. It specifies the
‘allow’ rules only – anything that is not explicitly allowed is not permitted. The policy is
is written using the m4 macro language and gets compiled into a binary – it’s much faster
for the LSM to query the policy in a binary format rather than parsing the text-based
representation.

Fedora 20 ships with a precompiled policy called the targeted policy. It comes in three
flavours: targeted, minimum and mls – in this part of the tutorial we will focus on the one
that is enabled by default, which is the targeted flavour. The binaries and various sup-
port files for the policy reside in the /etc/selinux/targeted directory. The policy binary
is /etc/selinux/targeted/policy/policy.<integer>. The factory reset labels for the
entire filesystem are listed in /etc/selinux/targeted/contexts/files/file_contexts –
this is where the labels come from when SELinux is enabled for the first time.

Policy can be monolithic or modular – depending on how it was written. Modular design
makes it easy to augment the policy at runtime with additional rules (modules). Monolithic
policy is more strict, and more secure, as any change necessitates recompilation of the entire
policy. We will not look at the policy source code at this point – it can be quite overwhelming
for a SELinux novice. Note however, that the targeted policy is modular. A module is
a self-contained sub-policy – it is dependent on the base module and may or may not be
dependent on other modules. Some aspects of the policy can only be defined in the base
module, which is the first module to loaded. Other modules can be activated or deactivated
at will – even at runtime, if there are no interdependencies with other active modules. To
see the currently active modules, you can issue the semodule command as shown:

$ sudo semodule -l
abrt 1.2.0
accountsd 1.0.6
acct 1.5.1
afs 1.8.2
aiccu 1.0.2
aide 1.6.1
ajaxterm 1.0.0
.
.
.

In Chapter 4 of this tutorial we will write our own policy module.

2.3 Domains

The essence of the SELinux framework is the division of the Linux system into a set of
domains. This is akin to virtualisation, where a number of services get separated and confined

11

to independent virtual machines. The goal of isolation is to provide assurances that a security
hole in one service cannot be exploited to gain access to another. While virtualisation is
generally highly effective, it is also frequently heavyweight and somewhat rigid, because
it isolates the services completely. Isolation of processes and resources into domains with
SELinux is achieved by using Type Enforcement (TE), which is flexible and customisable
through the policy. Although there are other important aspects of SELinux security (and
we will go over them shortly), the domain isolation is the most fundamental.

The policy defines a dictionary of types, object classes, and actions, and a set of rules
governing whether agents of certain types are permitted to perform actions on objects of
other types. A given type label can tag either the agent or the object of the action. It is the
syntax of the allow rule that identifies one type as the source and another as the object of
an action. It is even possible to have the same type functioning as both agent and object –
for instance, a process attempting to change its SELinux context is the agent and the object
of that action.

The type is specified by the third token of a security label:
<seuser>:<role>:<type>:<sensitivity>:<categories>.
The label "unconfined_u:object_r:user_home_t:s0" specifies type="user_home_t"; the
label "system_u:system_r:kernel_t:s0" specifies type="kernel_t". To see all the types
defined by the currently loaded policy, issue the following command:

$ seinfo --type

Types: 4054
bluetooth_conf_t
cmirrord_exec_t
colord_exec_t
foghorn_exec_t
jacorb_port_t
pki_ra_exec_t
pki_ra_lock_t
sosreport_t
etc_runtime_t
fenced_tmp_t
git_session_t
.
.
.

It’s a long list, created with intent of serving a wide range of services commonly offered on
Linux distributions. The policy also defines a set of object classes – to see the ones defined
by the current policy, issue the following command:

12

$ seinfo --class
Object classes: 83

netlink_audit_socket
tcp_socket
msgq
x_property
db_procedure
dir
.
.
.

The "dir" class corresponds to a directory object. The policy also defines a set of actions,
but the actions are only meaningful with respect to a given class of an object. To view the
valid actions for the "dir" class of objects, issue the following command:

$ seinfo --class=dir -x
dir

append
create
execute
write
relabelfrom
link
unlink
ioctl
getattr
setattr
read
rename
lock
relabelto
mounton
quotaon
swapon
rmdir
audit_access
remove_name
add_name
reparent
execmod
search
open

The allow statements in the policy follow this format:
allow <source type> <target type>:<object class> {<action>, <action>, ... };

Recall that any defined type can be the source or the target type. The allow statement can
be read as follows: a process labelled with the source type is allowed to perform the listed
actions on an object class labelled with the target type. The curly brackets can be
omitted if only one action is specified.

The source type is analogous with the concept of a domain, since it is always associated
with a process that is attempting to perform some action. For instance, the process that
runs your shell, labeled as—

13

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

—can be said to be running in the "unconfined_t" domain. And so the kernel allows the
ls command to list contest of your home directory (which is of the "user_home_t" type)
because there is a rule in the policy to:1

allow unconfined_t user_home_t: dir { getattr };

Hence, using the following allow rules as an example—

allow httpd_t httpd_sys_content_t : dir { ioctl read getattr lock search open } ;
allow httpd_t httpd_sys_content_t : file { ioctl read getattr lock open } ;

—we can say that a process running in the "httpd_t" domain (that is, a process tagged
with the "httpd_t" type) is allowed to read files and directories of "httpd_sys_content_t"
type. The default labelling settings of the targeted policy make use of this by tagging the
httpd process with the "httpd_t" type, and in so doing confine it to the "httpd_t" domain.
Everything under /var/www/html is tagged with the "httpd_sys_content_t" type. As a
result, in the default configuration, the web server is capable of reading, but is not allowed
to write to the files that provide HTTP content.

To see all the allow rules of the current policy for a specific source type, issue the following
command:

$ sesearch --allow -d -s httpd_t
Found 765 semantic av rules:

allow httpd_t jetty_var_lib_t : sock_file { ioctl read write create getattr setattr lock
relabelfrom relabelto append unlink link rename open } ;

allow httpd_t jetty_var_lib_t : fifo_file { ioctl read write create getattr setattr lock
relabelfrom relabelto append unlink link rename open } ;

allow httpd_t jetty_var_run_t : lnk_file { ioctl read write create getattr setattr lock
relabelfrom relabelto append unlink link rename } ;

allow httpd_t jetty_var_run_t : sock_file { ioctl read write create getattr setattr lock
relabelfrom relabelto append unlink link rename open } ;

allow httpd_t jetty_var_run_t : fifo_file { ioctl read write create getattr setattr lock
relabelfrom relabelto append unlink link rename open } ;

allow httpd_t logrotate_t : process sigchld ;
allow httpd_t port_type : tcp_socket { recv_msg send_msg } ;
allow httpd_t port_type : udp_socket { recv_msg send_msg } ;
.
.
.

Again, the number of rules is at first rather overwhelming, but from among them, we pick
out the following ones:

1That rule is specified indirectly through an attribute, but we won’t discuss attributes in this chapter.

14

allow httpd_t httpd_sys_rw_content_t : dir { ioctl read write create getattr setattr lock
unlink link rename add_name remove_name reparent search rmdir open } ;

allow httpd_t httpd_sys_rw_content_t : file { ioctl read write create getattr setattr lock
append unlink link rename open } ;

Thus, any processes running in the "httpd_t" domain is allowed to write to files and di-
rectories of "httpd_sys_rw_content_t" type – in the next chapter we will go through the
exercise of relabelling selected subdirectories of /var/www/html in order to allow the web
server to write to them.

To see all the allow rules with specific source and target types and an object class, issue the
following command:

$ sesearch --allow -s httpd_t -t httpd_sys_rw_content_t -c dir
Found 5 semantic av rules:

allow httpd_t httpd_content_type : dir { getattr search open } ;
allow httpd_t httpdcontent : dir { ioctl read write create getattr setattr lock unlink

link rename add_name remove_name reparent search rmdir open } ;
allow httpd_t httpd_content_type : dir { ioctl read getattr lock search open } ;
allow httpd_t httpd_sys_rw_content_t : dir { ioctl read write create getattr setattr lock

unlink link rename add_name remove_name reparent search rmdir open } ;
allow httpd_t httpd_sys_rw_content_t : dir { ioctl read write create getattr setattr lock

unlink link rename add_name remove_name reparent search rmdir open } ;

There is a tool that essentially provides a GUI for the sesearch command that can be
started by running:

$ sudo apol

The tool seems to require superuser privileges to access the directory that contains the policy
modules. In contrast to sesearch, which queries the currently running policy when no policy
is specified, the apol tool needs to load the policy from the stored binary policy files. Go
to File→Open and select the “Modular policy” option. For the base file name browse and
select /etc/selinux/targeted/policy/policy.27. Then add all (or as many as desired)
modules – they are the *.pp files in /etc/selinux/targeted/modules/active/modules.

15

Press “OK” and the policy should be loaded, so that you can search through and analyse it.

16

2.3.1 Transitions

Changing the the type in the security label of a process is equivalent to making a transition
into another domain. If the new type happened to have exactly the same ‘allow’ rules in
the policy as the old type, the change would not affect anything security-wise: although the
process would be technically running in a different domain, it would retain exactly same
permissions. However, the purpose of making such label changes is usually to transition into
a domain with extended, reduced, or even sometimes altogether different permissions.

When a process spawns another process, the context of the child, by default, is taken from
its parent. So, if you run an executable file labelled with the "bin_t" type from a shell,
the new process will not be labelled with the "bin_t" type, but instead with the type that
your shell is running under. In most cases this is the desired behaviour: that child processes
are confined to the domain of their parents. However there are also situations when the
child needs to transition in a different domain. For instance, when system starts up, the init
process, that spawns various services, is itself confined to the "initrc_t" domain. If all of the
services that get started were confined to the parent’s domain, this would be suboptimal:
the services being started are supposed to be independent, so from a security standpoint it
would be risky for them to share a domain – even if they only did so briefly before transi-
tioning to a different domain. Thus, there is a need to be able to specify that certain domain

17

transitions must occur immediately when a process is spawned, for which the policy provides
special syntax:

type_transition <source type> <target type> : process <transition type>;

The rule states that when a process running in the source type domain spawns a process
from an executable of a target type, the new process is to immediately transition into the
transition type. Let’s look at an example.

The binary file /usr/sbin/crond is tagged with the following label:

$ ls -Z /usr/sbin/crond
-rwxr -xr-x. root root system_u:object_r:crond_exec_t:s0 /usr/sbin/crond

That file gives rise to the crond processes, which is spawned during the boot sequence by
an init script, which is itself confined to the "initrc_t" domain. Let’s search the policy
for type_transition rules with "initrc_t" as the source type and "crond_exec_t" as the
target type:

$ sesearch -T -s initrc_t -t crond_exec_t
Found 1 semantic te rules:

type_transition initrc_t crond_exec_t : process crond_t;

Note the -T switch in the above statement – it restricts the search to only examine type_-
transition rules. According to the rule that is retrieved above, any process spawned by a
binary of "crond_exec_t" type when the parent is in the "initrc_t" domain will transition
to the "crond_t" domain. Let’s take a look at the label of the crond process:

$ ps -eZ | grep crond
system_u:system_r:crond_t:s0 -s0:c0.c1023 508 ? 00:00:00 ate
system_u:system_r:crond_t:s0 -s0:c0.c1023 516 ? 00:00:00 crond

Indeed, crond is running in the "crond_t" domain.

18

At first glance, domain transitions may seem kind of unsecure. However, recall that policy
must allow for a specific transition. Typically the domain that a process transitions to is not
allowed to transition to any other domain. When policy is set up that way, then transitions
are a bit like a process having a one-time use, one-way pass through into a secured area. It’s
best practice to transition processes on spawn – this way they only ever run in one domain.
It is also possible to provision for a transition at an arbitrary point in the process execution.
But this more risky, because the process will then spend time, and get to operate within,
two different domains.

For more on transitions refer to [7], [8].

2.3.2 Unconfined domain

The processes tagged with the "unconfined_t" type are said to be running in the unconfined
domain. The philosophy of the targeted policy is to put restrictions only on selected
services (such as httpd). Processes that have to do with direct user access, such as the shell,
or X-windows, run in the unconfined domain, which is allowed (in the policy) to do almost
everything. Hence the SELinux policy only targets certain services, while allowing casual
users to utilise their Fedora system for conventional desktop tasks, often without them even
realising that SELinux is there, carefully controlling the behaviour of a set of system services.

2.4 Role Based Access Control

SELinux also implements a Role Based Access Control (RBAC) security model, where per-
missions can vary for different users and the roles that they are able to acquire. Note that

19

SELinux users and roles are not the same as Linux users and groups. To avoid confusion, in
this document we will refer to SELinux users as ‘seusers’.

The RBAC model sits on top of TE. The policy defines a set of seusers and roles, specifies
the roles that a given seuser can take on, and sets the domains (types) that a given role
can enter. Figuratively, this means that a given seuser is restricted to certain domains. In
a literal sense, the policy specifies acceptable combinations of seuser, role and type for
valid security labels. Recall that the security label format is:
<seuser>:<role>:<type>:<sensitivity>:<categories>.
To see the list of seusers defined by the current policy, issue the following command:

$ seinfo --user

Users: 9
sysadm_u
system_u
xguest_u
root
guest_u
staff_u
user_u
unconfined_u
git_shell_u

To see the list of SELinux roles defined by the current policy, issue the following command:

$ seinfo --role

Roles: 15
auditadm_r
dbadm_r
guest_r
staff_r
user_r
git_shell_r
logadm_r
object_r
secadm_r
sysadm_r
system_r
webadm_r
xguest_r
nx_server_r
unconfined_r

To get the list of roles that a given seuser is permitted to take on, type:

$ seinfo -x --user=sysadm_u
sysadm_u

default level: s0
range: s0 - s0:c0.c1023
roles:

object_r
sysadm_r

20

From the preceeding output, we can see that "sysadm_u" can take on either the "object_r"
or "sysadm_r" role. Ignore the range part for now. To see which domains an seuser in a
given role is allowed to enter, issue the following command:

$ seinfo -x --role=sysadm_r
sysadm_r

Dominated Roles:
sysadm_r

Types:
git_session_t
bootloader_t
netutils_t
sandbox_x_client_t
git_user_content_t
.
.
.

The "object_r" role is a special role – all system resources take that role – meaning, their
security labels specify role="object_r". It might seem strange to assign an seuser and a
role to a resource, such as a file, which constitutes a target in some operation. However,
SELinux has only one syntax for security labels, and therefore the label syntax must serve
the needs of both the acting agents and the objects being acted upon. Thus, the seuser
and role must be specified in the security contexts for both.

Another way to access the seuser information, is through the semanage command:

$ sudo semanage user -l

Labeling MLS/ MLS/
SELinux User Prefix MCS Level MCS Range SELinux Roles

git_shell_u user s0 s0 git_shell_r
guest_u user s0 s0 guest_r
root user s0 s0-s0:c0.c1023 staff_r sysadm_r system_r

unconfined_r
staff_u user s0 s0 -s0:c0.c1023 staff_r sysadm_r system_r

unconfined_r
sysadm_u user s0 s0-s0:c0.c1023 sysadm_r
system_u user s0 s0-s0:c0.c1023 system_r unconfined_r
unconfined_u user s0 s0-s0:c0.c1023 system_r unconfined_r
user_u user s0 s0 user_r
xguest_u user s0 s0 xguest_r

For the most part, Linux users and SELinux seusers have nothing to do with each other.
However, there is a scenario where it does make sense to derive the seuser from the system
user, namely when a user logs into a terminal or an X-windows display manager. The
login shell and X-windows login interface, as is the case for all processes, are labelled with
SELinux contexts. It makes sense that a shell running on behalf of a Linux user would derive
its security label based on who the user is. Thus for this purpose, there is a mapping between
users and seusers. To see that mapping, issue the following command:

21

$ sudo semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0 -s0:c0.c1023 *
root unconfined_u s0 -s0:c0.c1023 *
system_u system_u s0-s0:c0.c1023 *

The default mapping specifies only two system users: root and system_u, that are mapped
to "unconfined_u" and "system_u" "seuser"s respectively. Any other user will have the
__default__ mapping applied to them, which maps to the "unconfined_u" seuser.

2.5 Multi Level Security

Multi-Level Security (MLS) is a third type of security supported by SELinux. Whereas
enforcement based on TE and RBAC is always active, MLS enforcement is optional – it can
be enabled or disabled at compile time of the policy. MLS security applies a more global
type of policy, in that it generally applies the same rules across all the domains. However, it
can be fine-tuned to some degree, by incorporating exceptions into the policy that are tied
to certain domain types.

MLS in SELinux introduces sensitivity levels and categories to the security context:

• Sensitivity levels can be thought of as levels of security clearance, which can be assigned
to processes and resources. These levels are hierarchical, from low to high clearance.
A process labelled with a certain sensitivity level will only have read rights to files
labelled with the same or lower sensitivity level. However, the same process will not
be allowed to write to files of a lower sensitivity: this will ensure that an entity with a
high security clearance cannot sharing information through resources that can be read
by an entity with a lower clearance. This prevents the unintentional (and intentional)
leakage of confidential data through the system.

• Categories, are a convenient way of fine-tuning available permissions while still run-
ning in the same domain. Occasionally it is necessary to give different permissions to
different instances of the same process. For instance, https might need to be ruled by
different read/write permissions depending on who is using the website (determined by
login credentials, source IP, etc.). It can be a bit of a hassle to need to create different
domains for this sort of purpose (although this is exactly what we’re going to do in this
tutorial). By assigning a set of categories to processes and resources, the read/write
access can be controlled based on whether the categories match. Access to a resource
is granted only if the categories of that object are a subset of the categories assigned
to the process attempting to perform an action on that object.

The targeted flavour of the targeted policy does come with MLS enabled (and so does the
mls flavour). To see the list of defined sensitivities in the current policy issue the seinfo

22

command as follows:

$ seinfo --sensitivity

Sensitivities: 1
s0

To list all the categories, type:

$ seinfo --category

Categories: 1024
c0
c1
.
.
.
c1023

Thus, there is only one sensitivity level, "s0", but there are 1024 categories – "c0" to "c1023".
The reason why there is only one sensitivity level is that once MLS is enabled, sensitivity
must be specified in the security label, despite the fact that targeted flavour of the targeted
policy is really just interested in using the categories that MLS provides.

When MLS is disabled, the label does not specify sensitivity nor categories, and so the
label format is as follows:

<seuser>:<role>:<type>.

When MLS is enabled, the format is—

<seuser>:<role>:<type>:<sensitivity>:<categories>,

—but the <categories> part can still be omitted (meaning, the labelled process or object
in not a member of any category).

The <sensitivity> part of the label specifies the lowest and the highest clearance level of
the process or object. The policy defines the level hierarchy. When only one sensitivity level
is defined, the highest and the lowest clearance are the same and so sensitivity="s0-s0".
For example, we can have:

system_u:system_r:crond_t:s0 -s0

When the lowest and highest clearance levels are the same, a simpler style of specification is
allowed: sensitivity="s0". Hence, the label below specifies exactly same security context
as the one above:

system_u:system_r:crond_t:s0

23

For the categories, an arbitrary combination of categories can be specified, or none at all (as
in the examples above). To specify only one category, categories="c0". For example:

system_u:system_r:crond_t:s0 -s0:c0

Multiple categories are comma separated, such as categories="c0,c3". This example label
specifies two categories, "c0" and "c3":

system_u:system_r:crond_t:s0 -s0:c0,c3

A range of categories is specified as follows: categories="c2.c5" – this example specifies
4 categories, equivalent to categories="c2,c3,c4,c5". We have already seen labels that
specify all categories, for example:

system_u:system_r:crond_t:s0 -s0:c0.c1023

Note the difference between a security context that doesn’t have a category and the one that
specifies all categories: the former will be permitted to work with objects that also do not
have a category, whereas the latter can work with any combination of categories (including
when none are specified).

2.6 Summary

SELinux is a security framework that brings MAC to Linux. This framework labels processes
and the filesystem with labels that are used to identify the security context of the agents
and targets of various actions. The permissions for processes of a given security context to
operate on resources within another security context are conveyed through the policy. The
system is not forced on the kernel, but functions as a consulting service and is also available
to applications through the SELinux API. It supports three types of security enforcement:
TE, RBAC and MLS – with MLS enforcement being optional.

In programming it is often the case that mastering a programming language requires becom-
ing proficient with use of its standard library in addition to learning the language syntax.
Similarly with SELinux, one needs a good grasp of the default policy in order to effectively
utilise the SELinux framework. In the next two chapters of this tutorial, we will demonstrate
how to work with the existing policy, and how to modify it in order to take advantage of the
TE security.

24

3 Case study: DokuWiki on SELinux

In this chapter we will go through the process of installing and securing DokuWiki (https:
//www.dokuwiki.org), which is a wiki web server that uses files for its back-end document
storage. This is a good starting point for dealing with the existing SELinux policy, because
DokuWiki is relatively simple, yet still requires additional privileges to that of a static
website. The objective of this exercise is not just to provide the correct SELinux configuration
to make the service work, but also to guide the reader through the process of troubleshooting
the problems that may result from denials caused by misconfigured SELinux security.

3.1 Installation

For this exercise we need to install the Apache server with PHP support:

$ sudo yum install httpd php

Enable and start the httpd service:

$ sudo systemctl start httpd.service
$ sudo systemctl enable httpd.service

Test whether Apache is running – from your web browser of choice, try to access localhost.
You should see the Apache test page:

25

https://www.dokuwiki.org
https://www.dokuwiki.org

This is optional, but if you want the web pages to be accessible from other machines, you
need to open port 80 in the Linux firewall:

$ sudo firewall -cmd --zone=public --add -port =80/ tcp
$ sudo firewall -cmd --zone=public --permanent --add -port =80/ tcp

3.2 DokuWiki setup

Download DokuWiki Anteater – we want this specific (quite old now) version, because it has
some vulnerabilities which will be later used to showcase SELinux in action.

$ wget http ://www.splitbrain.org/_media/projects/dokuwiki/dokuwiki -2010 -11 -07. tgz

Unpack it into the Apache’s root folder for the HTML and PHP content:

$ sudo tar -zxvf dokuwiki -2010 -11 -07. tgz -C /var/www/html

The remainder of the install needs to be done from the web browser. Go to http://
localhost/dokuwiki-2010-11-07/install.php in your browser. You should see the fol-
lowing page:

26

http://localhost/dokuwiki-2010-11-07/install.php
http://localhost/dokuwiki-2010-11-07/install.php

There’s a number of errors, all of which relate to the fact that by default, the files and
subdirectories inside /var/www/html are read only. DokuWiki requires write permissions to
a couple of subdirectories. Recall that there are two security systems that have to be taken
into account: the normal filesystem DAC permissions and SELinux. Usually, it’s best to sort
them out one at a time, and so let’s begin by switching SELinux into permissive mode. In
permissive mode SELinux is still there, being consulted about permissions, but the kernel
does not heed the LSM’s advice.

$ sudo setenforce 0

If you refresh the page the errors should be still there. Since SELinux is being ignored, this
means that DAC permissions are not in order.

3.2.1 DAC permissions

Let us take a look at the DokuWiki directory in detail:

$ ls -l /var/www/html/
total 4
drwxr -xr-x. 7 setest 102 4096 Nov 7 2010 dokuwiki -2010 -11 -07

27

User setest is the username under which DokuWiki was installed on our system. We’ll first
change DAC permissions to assign dokuwiki-2010-11-07 to the apache group – a group
that httpd is a member of.

$ sudo chown -R setest:apache /var/www/html/dokuwiki -2010 -11 -07
$ ls -l /var/www/html/
total 4
drwxr -xr-x. 7 setest apache 4096 Nov 7 2010 dokuwiki -2010 -11 -07

From the error messages in the browser it looks like httpd also requires write permissions to
the conf and data subdirectories. Let’s examine the current permissions:

$ ls -l /var/www/html/dokuwiki -2010 -11 -07/
total 88
drwxr -xr-x. 2 setest apache 4096 Nov 7 2010 bin
drwxr -xr-x. 2 setest apache 4096 Nov 7 2010 conf
-rw-r--r--. 1 setest apache 17992 Nov 7 2010 COPYING
drwxr -xr-x. 10 setest apache 4096 Nov 7 2010 data
-rw-r--r--. 1 setest apache 2185 Nov 7 2010 doku.php
-rw-r--r--. 1 setest apache 11730 Nov 7 2010 feed.php
drwxr -xr-x. 6 setest apache 4096 Nov 7 2010 inc
-rw-r--r--. 1 setest apache 182 Nov 7 2010 index.php
-rw-r--r--. 1 setest apache 17428 Nov 7 2010 install.php
drwxr -xr-x. 9 setest apache 4096 Nov 7 2010 lib
-rw-r--r--. 1 setest apache 306 Nov 7 2010 README
-rw-r--r--. 1 setest apache 22 Nov 7 2010 VERSION

At this point DAC allows only the owner, setest, to write to any of these directories. Let’s
change the group permissions so that members of the apache group are allowed to write as
well:

$ chmod -R g+w /var/www/html/dokuwiki -2010 -11 -07/ conf
$ chmod -R g+w /var/www/html/dokuwiki -2010 -11 -07/ data
$ ls -l /var/www/html/dokuwiki -2010 -11 -07/
total 88
drwxr -xr-x. 2 setest apache 4096 Nov 7 2010 bin
drwxrwxr -x. 2 setest apache 4096 Nov 7 2010 conf
-rw-r--r--. 1 setest apache 17992 Nov 7 2010 COPYING
drwxrwxr -x. 10 setest apache 4096 Nov 7 2010 data
-rw-r--r--. 1 setest apache 2185 Nov 7 2010 doku.php
-rw-r--r--. 1 setest apache 11730 Nov 7 2010 feed.php
drwxr -xr-x. 6 setest apache 4096 Nov 7 2010 inc
-rw-r--r--. 1 setest apache 182 Nov 7 2010 index.php
-rw-r--r--. 1 setest apache 17428 Nov 7 2010 install.php
drwxr -xr-x. 9 setest apache 4096 Nov 7 2010 lib
-rw-r--r--. 1 setest apache 306 Nov 7 2010 README
-rw-r--r--. 1 setest apache 22 Nov 7 2010 VERSION

Refresh the page http://localhost/dokuwiki-2010-11-07/install.php, and you should
get:

28

http://localhost/dokuwiki-2010-11-07/install.php

There is a warning about the data directory not being properly secured, but other than
that, it seems that this is going to be sufficient to get DokuWiki going. That warning is
about remote users’ ability to directly access the contents of DokuWiki’s directories through
Apache. This can be secured by appropriate .htaccess configuration, but for this tutorial
we will not worry about this.

3.2.2 SELinux permissions

Now that the DAC permission are in order, let’s turn our attention to SELinux. We’re
not going to change the SELinux mode just yet. First, refresh DokuWiki’s install page in
the browser and take a look at /var/log/audit/audit.log. Near the end of the file there
should be an AVC message like this (there might be other AVC messages as well):

type=AVC msg=audit (1367648942.891:501): avc: denied { write } for pid =4380 comm=" httpd"
name="conf" dev="dm -1" ino =164380 scontext=system_u:system_r:httpd_t:s0 tcontext=
unconfined_u:object_r:httpd_sys_content_t:s0 tclass=dir

AVC messages record SELinux denials. In permissive mode, these denials don’t impact the
system’s operation, but still get logged. Let’s turn enforcing mode back on just to confirm
that these messages have to do with access through DokuWiki.

29

$ sudo setenforce 1

Refresh the install page one more time. The errors, about the conf and data directories
not being writable, should be back. In fact, the AVC messages spells out what the problem
is – the source context of type "httpd_t" has no write permissions to directory of type
"httpd_sys_content_t". The AVC message also indicates that the problem has to do with
httpd process, and we can confirm this, by listing all of the processes that are running in the
"httpd_t" domain:

$ ps -eZ | grep httpd_t
system_u:system_r:httpd_t:s0 2115 ? 00:00:06 httpd
system_u:system_r:httpd_t:s0 2116 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 2117 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 2118 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 2119 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 2120 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 2189 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 2193 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 2194 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 2379 ? 00:00:00 httpd

We can also take a look at the SELinux labels on the files in DokuWiki’s root directory:

$ ls -Z /var/www/html/dokuwiki -2010 -11 -07
drwxr -xr-x. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 bin
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 conf
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 COPYING
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 data
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 doku.php
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 feed.php
drwxr -xr-x. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 inc
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 index.php
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 install.php
drwxr -xr-x. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 lib
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 README
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 VERSION

The type for all the files and subdirectories is "httpd_sys_content_t". Just out of curiosity,
let’s search the policy for rules that involve "httpd_t" as the source type and "httpd_sys_-
content_t" as the target type:

$ sesearch -d --allow -s httpd_t -t httpd_sys_content_t -C
Found 4 semantic av rules:

allow httpd_t httpd_sys_content_t : file { ioctl read getattr lock open } ;
allow httpd_t httpd_sys_content_t : dir { ioctl read getattr lock search open } ;
allow httpd_t httpd_sys_content_t : lnk_file { read getattr } ;

DT allow httpd_t httpd_sys_content_t : dir { ioctl read write getattr lock add_name
remove_name search open } ; [httpd_enable_cgi httpd_unified && httpd_builtin_scripting
&&]

The -C option adds information about which of the rules are conditional. Conditional rules,
marked with "DT", can be turned on and off using specially provided boolean variables (the

30

variables involved and the condition for the rule to turn on follow after the rule itself). The
"D" in "DT" stands for "disabled". The reason why we chose to reveal the conditional rules is
to point out that despite there being a rule that does "allow httpd_t httpd_sys_content_t
: dir write ", such a rule may not be active. As it turns out, the default SELinux settings
mirror the DAC permissions in that the policy does not allow the "httpd_t" domain (to
which httpd is confined) to write to /var/www/html, or any of its subdirectories. Enabling
that conditional rule to solve our configuration problem is not a good idea at this point –
after all, we do not want to allow "httpd_t" to write to all DokuWiki files and subdirectories.
Instead, we will relabel the two subdirectories that must be able to be written to, with the
type that "httpd_t" has the write permissions for.

The policy already defines a type intended for httpd writable content – the "httpd_sys_-
rw_content_t" type.

$ sesearch -d --allow -s httpd_t -t httpd_sys_rw_content_t -C
Found 7 semantic av rules:
ET allow httpd_t httpd_sys_rw_content_t : file { ioctl read write create getattr setattr

lock append unlink link rename open } ; [httpd_builtin_scripting]
DT allow httpd_t httpd_sys_rw_content_t : file { ioctl read write create getattr setattr

lock append unlink link rename open } ; [httpd_enable_cgi httpd_unified &&
httpd_builtin_scripting &&]

ET allow httpd_t httpd_sys_rw_content_t : dir { ioctl read write create getattr setattr lock
unlink link rename add_name remove_name reparent search rmdir open } ; [

httpd_builtin_scripting]
DT allow httpd_t httpd_sys_rw_content_t : dir { ioctl read write create getattr setattr lock

unlink link rename add_name remove_name reparent search rmdir open } ; [
httpd_enable_cgi httpd_unified && httpd_builtin_scripting &&]

ET allow httpd_t httpd_sys_rw_content_t : lnk_file { ioctl read write create getattr setattr
lock append unlink link rename } ; [httpd_builtin_scripting]

DT allow httpd_t httpd_sys_rw_content_t : lnk_file { ioctl read write create getattr setattr
lock append unlink link rename } ; [httpd_enable_cgi httpd_unified &&

httpd_builtin_scripting &&]
ET allow httpd_t httpd_sys_rw_content_t : sock_file { read write getattr append open } ; [

httpd_builtin_scripting]

All of these rules are conditional, but the "E" in the "ET" prefix stands for "enabled", and
so, to make this a bit more clear, let us filter out all but the enabled rules:

$ sesearch -d --allow -s httpd_t -t httpd_sys_rw_content_t -C | grep ET
ET allow httpd_t httpd_sys_rw_content_t : file { ioctl read write create getattr setattr

lock append unlink link rename open } ; [httpd_builtin_scripting]
ET allow httpd_t httpd_sys_rw_content_t : dir { ioctl read write create getattr setattr lock

unlink link rename add_name remove_name reparent search rmdir open } ; [
httpd_builtin_scripting]

ET allow httpd_t httpd_sys_rw_content_t : lnk_file { ioctl read write create getattr setattr
lock append unlink link rename } ; [httpd_builtin_scripting]

ET allow httpd_t httpd_sys_rw_content_t : sock_file { read write getattr append open } ; [
httpd_builtin_scripting]

It should be clear from the above set of rules that the policy does allow writing from "httpd_-
t" domain to files and directories of "httpd_sys_rw_context_t" type. To fix our configu-
ration problem, we just need to relabel the two DokuWiki subdirectories with the"httpd_-
sys_rw_context_t" type. Here’s the command that will achieve this:

31

$ sudo chcon -t httpd_sys_rw_content_t /var/www/html/dokuwiki -2010 -11 -07/ conf
$ sudo chcon -R -t httpd_sys_rw_content_t /var/www/html/dokuwiki -2010 -11 -07/ data

The -R option does the relabelling recursively, so that all the internal contents of the directory
get relabelled as well. Check that the new directories have been relabelled:

$ ls -Z /var/www/html/dokuwiki -2010 -11 -07/
drwxr -xr-x. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 bin
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 conf
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 COPYING
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 data
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 doku.php
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 feed.php
drwxr -xr-x. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 inc
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 index.php
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 install.php
drwxr -xr-x. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 lib
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 README
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 VERSION

Refresh the install page in your web browser, and there should be no errors now. Proceed
with the DokuWiki setup as instructed on the page. Give your wiki a name, enable ACL,
create superuser account and make sure to select the “Closed Wiki” ACL policy. When you
are finished, press the Save button.

32

3.3 Working DokuWiki

You have now a functioning DokuWiki with both DAC and SELinux allowing httpd to write
only to the conf and data subdirectories under /var/www/html/dokuwiki-2010-11-07. If
you login to DokuWiki as an admin you will see a number of security warnings – this is to
inform you that a newer, more secure, version of DokuWiki is available. Do not upgrade – we
are using this vulnerable version of DokuWiki on purpose in order to demonstrate SELinux
in action – we’ll come to that demonstration in the next chapter.

3.4 Changing the factory reset security contexts

In the previous section we have changed the security context of DokuWiki subdirectories
using the chcon command. This method of relabelling is persistent and so the labels we
changed will remain in their changed state even after a reboot. However, the policy specifies
the factory reset contexts for all files and directories – changes made with chcon are not
incorporated into that setting. The factory reset on SELinux labels is handy when SELinux
is enabled for the first time, or the policy is switched (the new policy might have completely
different labelling scheme), Hence, if one wished to incorporate the label changes into the fac-
tory reset labelling, here’s how this can be done for the two subdirectories we have relabelled

33

above:

$ sudo semanage fcontext -a -t httpd_sys_rw_content_t '/var/www/html/dokuwiki -2010 -11 -07/
conf '

$ sudo semanage fcontext -a -t httpd_sys_rw_content_t '/var/www/html/dokuwiki -2010 -11 -07/
data (/.*)?'

This command assures that the type in the security labels for the two directories is switched
to "httpd_sys_rw_content_t" during factory reset context restoration. The syntax at the
end of the second command is a regular expression that assure all the subdirectories are
relabelled as well. The command won’t work if you use an invalid combination of SELinux
seuser, role and type. You can check whether the changes have made it to factory reset
configuration as follows:

$ cat /etc/selinux/targeted/contexts/files/file_contexts.local
This file is auto -generated by libsemanage
Do not edit directly.

/var/www/html/dokuwiki -2010 -11 -07/ conf system_u:object_r:httpd_sys_rw_content_t:s0
/var/www/html/dokuwiki -2010 -11 -07/ data (/.*)? system_u:object_r:httpd_sys_rw_content_t:s0

The semanage command just changes the factory reset configuration, it doesn’t actually
relabel the directories. In our case the directories have been already relabelled with the
chcon command, but after the changes with semanage it’s probably best to apply the new
labels by sourcing them from the factory reset settings. For the two directories in question,
this can be done with the following commands:

$ restorecon -v '/var/www/html/dokuwiki -2010 -11 -07/conf '
$ restorecon -v -R '/var/www/html/dokuwiki -2010 -11 -07/data '

If after the restorecon the security contexts on those directories have switched back to
type="httpd_sys_content_t", then the changes made to the factory reset settings have not
worked as intended. If the labels list type="httpd_sys_rw_content_t", then the factory
reset context settings have been successfully changed to work as expected.

We should also mention here, that if there is a need to restore factory reset context on all
files, create an .autorelabel file in the system root directory and reboot:

$ touch /. autorelabel
$ reboot

On boot up, when .autorelabel is found in the root directory, everything gets relabelled
with the factory reset contexts before Linux starts-up (.autorelabel gets deleted automat-
ically afterwards, so there is not relabelling on the following reboot).

34

3.5 Discussion

Let’s pause for a moment and think how seemingly easy it was to change the SELinux
permissions by relabelling the files. It’s worth noting that, although we did have to elevate
Linux privileges to sudo in order to execute the chcon command, that was to overcome the
system’s DAC permissions, not the SELinux permissions for relabelling. However, behind
the scenes, SELinux did in fact check whether we were allowed to relabel those contexts. To
see why this all worked without a hitch let’s chase down the relevant permissions within the
policy.

When a process (our shell) attempts to change security label of a file, the kernel consults the
LSM regarding whether the policy allows the "relabelfrom" action on the file’s current type
and "relabelto" action to the new type. Let’s check what domain the shell is running in:

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

The shell is running in the "unconfined_t" domain. Let’s examine the policy whether
"unconfined_t" is allowed to perform "relabelfrom" on a "file" that is of "httpd_sys_-
content_t" type. While we’re at it, let’s also check for a similar rule, except with the
"relabelto" action and "httpd_sys_rw_content_t" target type.

$ sesearch --allow -s unconfined_t -t httpd_sys_content_t -p relabelfrom -c file
Found 1 semantic av rules:

allow files_unconfined_type file_type : file { ioctl read write create getattr setattr
lock relabelfrom relabelto append unlink link rename execute swapon quotaon mounton
execute_no_trans entrypoint open audit_access } ;

$ sesearch --allow -s unconfined_t -t httpd_sys_rw_content_t -p relabelto -c file
Found 1 semantic av rules:

allow files_unconfined_type file_type : file { ioctl read write create getattr setattr
lock relabelfrom relabelto append unlink link rename execute swapon quotaon mounton
execute_no_trans entrypoint open audit_access } ;

Strangely, the search returns with the same rule in both cases showing different types to
those specified in the query: "files_unconfined_type" for the source and "file_type" for the
target type. These new types are in fact attributes. An attribute is a feature of SELinux
policy that allows grouping of several types under one name. In cases where there are sets
of types that need the same permissions, it’s convenient to group them under an attribute
and write one allow rule that will apply to all the types. To make things a bit easier for
reading, by convention, types are named with a "_t" suffix and attributes with a "_type"
suffix. The sesearch command resolves the relationship between attributes and types and
displays the policy rule(s) that allow the operation that’s been specified in the command
arguments. It seems that "files_unconfined_type" is an attribute of "httpd_sys_content_-
t" and "httpd_sys_rw_content_t", and "file_type" is an attribute of "unconfined_t".
Let’s take a look at the types grouped under "file_type" (there’s a lot, so we narrow down

35

the results with grep):

$ seinfo --attribute=file_type -x | grep httpd_sys
httpd_sys_content_t
httpd_sys_htaccess_t
httpd_sys_ra_content_t
httpd_sys_rw_content_t
httpd_sys_script_exec_t

Indeed both "httpd_sys_content_t" and "httpd_sys_rw_content_t" are there. We can
also check the attributes for a given type. Let’s do that with the "unconfined_t" type (again,
we restrict the output with grep):

$ seinfo --type=unconfined_t -x | grep files
files_unconfined_type
filesystem_unconfined_type

As expected, "unconfined_t" has an attribute "files_unconfined_type". If we were to check
the allow rules against the "dir" class of objects, we would get rules similar to the ones we
have observed for "file" object. The reason why we were able to make those context changes
is because our shell is running in a domain that is allowed to do this particular relabelling.
In fact, processes running in the "unconfined_t" domain are allowed to do quite a lot under
the default policy. However, a process running in the "httpd_t" domain, would not be able
to make such context changes. You can check that policy has no allow rules for:

$ sesearch --allow -s httpd_t -t httpd_sys_content_t -p relabelfrom -c file

$ sesearch --allow -s httpd_t -t httpd_sys_rw_content_t -p relabelto -c file

h�pd_t

h�pd_sys_content_t h�pd_sys_rw_content_t

Client

WEB	SERVER

R

W

R

Figure 3.1: Apache server running in the "httpd_t" domain.

36

3.6 Summary

In this chapter we have set up a file-based DokuWiki service that required dynamic web
content. Using the labels predefined in the default policy, we modified security contexts on
selected directories in order to allow Apache to write to the directories that store DokuWiki’s
content. Figure 3.5 show a diagram of the current SELinux setup – the httpd process
runs in the "httpd_t" domain, which has read-only permissions for files and directories
of type "httpd_sys_content_t" and has read/write permissions to files and directories of
type "httpd_sys_rw_content_t".

37

4 Case study: DokuWiki with double
hull security

In the previous chapter we worked with existing SELinux policy to configure a DokuWiki web
service. In this chapter we will augment the existing policy to create a security ring around
the web service, which mirrors DokuWiki’s own security system. This type of configuration
is often referred to as double hull security, because it maintains two independent security
rings around a service. The appeal of double hull security is that it is unlikely that the same
vulnerability will be found in both systems, making it less likely that an attacker would
be able to penetrate both layers of protection. This is especially relevant to DokuWiki,
because it’s an open source software system that allows users to extend standard services
with custom-built plugins. It is possible for these plugins to interact with (and even bypass)
the DokuWiki access control system, and so there is the potential for bugs to arise that will
compromise security. We will demonstrate this scenario by using an old version of DokuWiki
with an old version of a plugin that is known to create such a security hole.

4.1 Installation

In the current configuration SELinux Apache (that is the httpd process) always runs in
"httpd_t" domain. For the double hull setup we will need to run an httpd fork for each
client’s request, potentially in different SELinux domains. We will also need to access the
SELinux API from PHP.

4.1.1 SELinux module for Apache

Install the mod_selinux module, which provides SELinux support for Apache:

$ sudo yum install mod_selinux

Documentation on how the module operates can be found at [9]. This module ensures that
each HTTP request is served by a fork of httpd with an SELinux context assigned according to

38

the rules given in the configuration file /etc/httpd/conf.d/mod_selinux.conf. This allows
for different clients’ requests to be served, by worker processes that run in different SELinux
domains. There are numerous options for configuring the SELinux contexts for clients: they
can be based on requested URL, the client’s IP or even HTTP authentication. In this tutorial
we will trigger context transitions from PHP, and thus will leave the configuration file as it
is, which should have only the following (not commented out) option:

selinuxServerDomain *:s0

This option specifies that a fork of httpd stays in the same domain as the parent, setting the
MLS part of the context sensitivity="s0".

4.1.2 SELinux API for PHP

To enable SELinux API calls from PHP we require a installation of an additional package
from the PECL collection, found at http://pecl.php.net/package/selinux. Here’s how
to install the latest (at the time of writing) version of the package:

$ sudo yum install php -devel libselinux -devel gcc
$ wget http :// pecl.php.net/get/selinux -0.3.1. tgz
$ tar -zxvf selinux -0.3.1. tgz
$ cd selinux -0.3.1
$ phpize
$./ configure
$ make
$ sudo make install
$ echo "extension=selinux.so"| sudo tee /etc/php.d/selinux.ini

In order for the new changes to take effect, restart the httpd service:

$ sudo systemctl restart httpd.service

The list of SELinux functions available from PHP is listed at [10].

4.1.3 SELinux Template

Having access to the SELinux API from PHP allows us to install a template that displays
SELinux configuration, as well as the context of the serving process, directly into DokuWiki’s
pages. This will provide some convenient visibility into the SELinux state, and is very useful
for this tutorial (though unlikely to be a good idea in a production deployment!). Download
the file dokuwiki_tpl_selinux.tgz and unpack it into the DokuWiki’s templates directory:

$ wget http://www.cs.otago.ac.nz/space/selinuxtutorial/archives/dokuwiki_tpl_selinux.tgz
$ tar -zxvf dokuwiki_tpl_selinux.tgz -C /var/www/html/dokuwiki -2010 -11 -07/ lib/tpl

39

http://pecl.php.net/package/selinux

There should now be a selinux subdirectory in DokuWiki’s templates directory:

$ ls -Z /var/www/html/dokuwiki -2010 -11 -07/ lib/tpl/
drwxr -xr-x. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 default
-rw-r--r--. setest apache unconfined_u:object_r:httpd_sys_content_t:s0 index.php
drwxrwxr -x. setest setest unconfined_u:object_r:httpd_sys_content_t:s0 selinux

In your browser, when logged-in to DokuWiki as an admin, go to the Admin page and click on
Configuration Settings. Under Basic Settings there should be now an option for an selinux
Template. Select it and Save.

The new template will provide SELinux information in the footer of every DokuWiki page.
Go to the main page (http://localhost/dokuwiki-2010-11-07/doku.php) and you should
see the usual start page, but now augmented with the SELinux information footer like this:

40

http://localhost/dokuwiki-2010-11-07/doku.php

The information in the footer tells you whether SELinux is enabled or not, whether or not
the optional MLS/MCS policy is enabled, the current policy name, and the SELinux context
of the process that fetched this page (which at this point should be of type="httpd_t").

The template that we just installed is simply a copy of the default DokuWiki template with a
few extra function calls added that fetch the required SELinux information. If you are curious
about what the PHP code looks like that calls SELinux, you can examine the contents of the
/var/www/html/dokuwiki-2010-11-07/lib/tpl/selinux/footer.html file. The function
that gets the security information is listed below:

File : footer.html
function selinux_info () {

echo "<div >SELinux: ";
$selinuxen = selinux_is_enabled ();
if($selinuxen) {

$selinuxenforce = selinux_getenforce ();
$selinuxerror = false;
if($selinuxenforce ==0) {

echo "Permissive";
} elseif($selinuxenforce ==1) {

echo "Enabled";
} else {

echo "Error";
$selinuxerror = true;

}
if(! $selinuxerror) {

echo " | MLS: ";
if(selinux_mls_is_enabled ()) {

echo "Enabled";
} else {

echo "Disabled";
}
echo " | Policy: " . selinux_getpolicytype ();
echo " </div ><div >Current context: " . selinux_getcon ();

41

}
} else {

echo "Disabled";
}
echo " </div >";

}

Note that the selinux_getcon function fetches the SELinux context of the process executing
the PHP script.

4.2 Pages and namespaces

While still logged-in to DokuWiki as an admin, go to the main page, http://localhost/
dokuwiki-2010-11-07/doku.php, and select Create this page (if you haven’t created it
yet). Add the following text:

Welcome to dokuwki SEtest. Take a look at these links:

- Link to [[devel:pageX|pageReadWrite]] in devel namespace

- Link to [[dev.l:pageY|pageReadOnly]] in dev.l namespace

Press Save. The start page should now contain the above text, and include two links. Click
on pageReadWrite. This will take you to pageX in DokuWiki’s devel namespace, which
does not exist yet. Click on Create this page and paste in the following text:

This page is in devel namespace. It should be ReadWrite for developer group.

Press Save. Go back to http://localhost/dokuwiki-2010-11-07/doku.php and click
the second link, pageReadOnly. This takes you to pageY in the dev.l namespace. Click
Create this page and paste in the following text:

This page is in dev.l namespace. It should be ReadOnly for developer group.

Press Save. If you go back to http://localhost/dokuwiki-2010-11-07/doku.php you
should have a page that looks like this:

42

http://localhost/dokuwiki-2010-11-07/doku.php
http://localhost/dokuwiki-2010-11-07/doku.php
http://localhost/dokuwiki-2010-11-07/doku.php
http://localhost/dokuwiki-2010-11-07/doku.php

Now you have three pages, start, PageX and PageY in DokuWiki’s root, devel and dev.l
namespaces respectively.

Next, we will create a DokuWiki user that has read and write permissions in the devel
namespace and read only permissions in the dev.l space.

4.3 DokuWiki ACL

DokuWiki maintains pages organised into namespaces. On the server these namespaces
correspond to different directories. DokuWiki’s Access Control Lists (ACL) [11] assigns
users to groups, and allows the setting of group permissions for different namespaces. The
possible permissions are (listed from the least to most privileged):

• none—not allowed to access DokuWiki content (will only see the login page)

• read—allowed to read data

• edit—allowed to modify existing pages

• create—allowed to create new pages

• upload—allowed to upload media files

• delete—allowed to delete media files

• admin—allowed to administer the site

These permissions are hierarchical – a given level allows everything that all of the lower
permission levels do; a group is assigned to only one permission level and the privileges from
levels below it are implied.

43

Let’s create a new DokuWiki user. While logged-in to DokuWiki as an admin, go to the
User Manager section from the Admin page. Create a new user: setest. Fill in all the
necessary information and write developer in the Group box – since that group doesn’t
exist yet, DokuWiki will create it.

Press the Add button at the bottom of the page. The new user should now appear on the
User List.

44

Next, we need to specify ACL permissions for the developer group. Go to the Access
Control List Management section from the Admin page. Select [root] namespace on
the lefthand side and in the Permissions for Group: type in developer and click Select.
In the Add new Entry windows select Read.

Click Save. A new line should appear at the bottom of the Current ACL Rules specifying
that developer group has read permissions to the root namespace (designated with the
symbol *).

45

Now select dev.l namespace in the left-hand window. The Permissions for should now
specify @developer group, so no need to type anything there. Make sure that Read is
selected in the Add new Entry window and press Save.

Finally, select devel namespace in the left window, give the developer group Edit permis-
sions. Press Save. The Current ACL Rules should look like the rules in the diagram
below:

Table 4.1 shows the permissions of the developer group for different namespaces:

46

Table 4.1: Group permissions for DokuWiki namespaces
XXXXXXXXXXXXNamespace

Group
ALL developer admin

root None Read Upload
dev.l None Read Upload
devel None Edit Upload

Note that group ALL corresponds to users that are not logged in, and that the group admin is
not shown in the Current ACL Rules window, but by default it has the highest privileges.

4.4 ACL vulnerability

Now, in your browser, logout from DokuWiki and login as setest. If you go to the start
page, http://localhost/dokuwiki-2010-11-07/doku.php?id=start, which is in the root
namespace, you’ll notice that you don’t have edit privileges for that page – instead of the
Edit this page button there is a Show pagesource button. This is because the developer
group, to which setest was assigned, has only read privileges in the root namespace. You
can click on the Show pagesource button and you will see a message explaining that to
your current user, the content is read-only.

Now visit PageX, http://localhost/dokuwiki-2010-11-07/doku.php?id=devel:pagex.
This page is in the devel namespace, to which setest has edit permissions. The Edit this
page button is present, and thus the current user is free to edit the page content.

47

http://localhost/dokuwiki-2010-11-07/doku.php?id=start
http://localhost/dokuwiki-2010-11-07/doku.php?id=devel:pagex

Now visit PageY, http://localhost/dokuwiki-2010-11-07/doku.php?id=dev.l:pagey.
This page is in the dev.l namespace, to which the setest user is supposed to have read
only permissions. Unexpectedly, however, the Edit this page button is still present. You
can test it – if you click on it and edit the content, the page will actually get modified!

The ACL has failed – in fact, this is a known vulnerability for this version of DokuWiki (de-
scribed here: https://bugs.dokuwiki.org/index.php?do=details&task_id=2136). It
turns out that there is a bug in the ACL implementation that confuses namespaces that

48

http://localhost/dokuwiki-2010-11-07/doku.php?id=dev.l:pagey
https://bugs.dokuwiki.org/index.php?do=details&task_id=2136

differ only by a letter replacement with the ‘.’ character.

4.5 Double hull overview

At the moment, SELinux is not shielding us against this ACL vulnerability, because we haven
not configured it yet to mirror DokuWiki’s ACL permissions for different namespaces. There
are a number of ways in which to configure SELinux to do this job. The approach in this
tutorial is as follows: we will create a set of SELinux types, each labelling a directory on the
server corresponding to a DokuWiki namespace (recall, that DokuWiki creates a separate
directory for each namespace). We will also create a set of SELinux types corresponding
to different DokuWiki groups. The httpd fork serving a client with credentials for a given
group will transition into the domain of the corresponding SELinux source type. We will
create allow rules in the policy such that for a given combination of source type and target
type the actions for operations on "file" and "dir" objects will mirror the DokuWiki ACL
permissions for the corresponding group and namespace. We can thus establish another
independent ring of security around the DokuWiki system.

Table 4.2 shows the SELinux types and rules we intend to set up – note how the first
three rows correspond to table 4.1 (SELinux does not allow periods in the label syntax, and
so "dokuwiki_content_dev_l_t" corresponds to the dev.l namespace). The empty cells
signify no allow rules. The last row of the table shows a domain created for media content,
which DokuWiki stores in a separate directory – we need this type to provide double hull
protection of the upload and delete permissions.

Table 4.2: SELinux types and allow rules that mirror DokuWiki’s ACL
``````````````̀target type

source type "dokuwiki_t" "dokuwiki_developer_t" "dokuwiki_admin_t"

"dokuwiki_content_t" read read,write,create,delete
"dokuwiki_content_devel_t" read,write read,write,create,delete
"dokuwiki_content_dev_l_t" read read,write,create,delete
"dokuwiki_content_media_t" read read,write,create,delete

4.6 Policy modules

In order to extend the policy to define new types and ‘allow’ rules we will write an SELinux
policy module. A typical module contains rules pertaining to a specific service. For instance,
the apache module specifies the rules regarding the domain that httpd is going to run in. It
makes sense to put everything relating to our DokuWiki service into a custom module, and
it is also a great way to get introduced to the art of SELinux policy writing.

49



The source code for a policy module is split into three files::

• <module name>.te – contains new policy definitions and permission rules

• <module name>.if – an interface file which contains macros – a typical macro consists
of a set of rules with placeholders for parts of the security context passed in through
tge arguments

• <module name>.fc – lists the configuration for SELinux labels on files

A module must have the *.te file, but the other two types of files are optional.

4.6.1 Build setup

In your home directory create a modules directory – that is where we will keep the source
code for the new module. Within that directory, create the following Makefile.

File : Makefile
SELINUX_MAKE := /usr/share/selinux/devel/Makefile

TE_MODULES := $(wildcard *.te)
PP_MODULES := $(subst , ,$(TE_MODULES :.te=.pp))

all:
make -f $(SELINUX_MAKE)

install: $(PP_MODULES)
@for module in $(PP_MODULES); do \

echo "semodule -i $$module ";\
semodule -i $$module ;\

done

clean:
make -f $(SELINUX_MAKE) clean

This Makefile contains instructions on compiling and installing a policy module. Note that
the make and clean rules are just a redirect to /usr/share/selinux/devel/Makefile.
This file got created when the libselinux-devel package was installed, and in addition
to providing all the rules for policy compilation, it defines a number of useful macros (that
speed up the process of policy writing).

4.7 The dokuwiki module

Our module will be called dokuwiki. At first it will define only one type, "dokukiwi_t",
that is intended to tag the httpd fork that serves a client with lowest DokuWiki possible
privileges (a non-logged in DokuWiki user that is allowed to access the login page only). We
will add also a rule that allows a process running in the "httpd_t" domain to transition to

50



the newly defined domain. In the modules directory create file dokuwiki.te that has the
following contents:

File : dokuwiki.te
policy_module(dokuwiki , 1.0)

# Import existing types from the policy
require {

type httpd_t;
class process { dyntransition };

}

# Create new domain/type
type dokuwiki_t;

# Restrict dokuwiki_t permissions to be a
# subset of those of httpd_t
typebounds httpd_t dokuwiki_t;

# Allow transition from httpd_t to dokuwiki_t
allow httpd_t dokuwiki_t:process { dyntransition };

The first line specifies the name of the module and version – dokuwiki 1.0. Lines beginning
with the # character are comments.

There require statement imports definitions from the existing policy – in this case a type
"httpd_t" and object class "process" with an action "dyntransition".

Outside the require block, the type statements define new types. The module defines one
new type – "dokuwiki_t". The typebounds statement creates a constraint, such that one
domain cannot exceed permissions of the other. In our case, we limit the permissions of
"dokuwiki_t" to never exceed those of the "httpd_t". This ensures that at runtime the
permissions of "dokuwiki_t" are restricted to subset of permissions on "httpd_t". Type-
bound restrictions are not checked at compile time. Hence, the policy will compile with allow
rules on "dokuwiki_t" that exceed those of "httpd_t", except that at runtime, the extra
permissions will be overruled by the typebound constraint. We can think of "dokuwiki_t"
as being a subdomain of "httpd_t". This is a safety feature, which is enforced by Apache’s
mod_selinux module – the module refuses transition of an httpd fork to a type that is not
type-bound to "httpd_t".

At runtime, whenever a change of type on a process is initiated, the kernel consults the LSM
as to whether the "dyntransition" action is allowed on a "process" object to the new type.
To allow this, at the end of dokuwiki.te there is an allow statement – it gives permission
for the transition of a "process" object to the "dokuwikit_t" type while running in the
"httpd_t" domain.

Compile this policy module—

51



$ make
make -f /usr/share/selinux/devel/Makefile
make [1]: Entering directory `/home/setest/modules '
Compiling targeted dokuwiki module
/usr/bin/checkmodule: loading policy configuration from tmp/dokuwiki.tmp
/usr/bin/checkmodule: policy configuration loaded
/usr/bin/checkmodule: writing binary representation (version 15) to tmp/dokuwiki.mod
Creating targeted dokuwiki.pp policy package
rm tmp/dokuwiki.mod.fc tmp/dokuwiki.mod
make [1]: Leaving directory `/home/setest/modules '

—and install it:

$ sudo make install
semodule -i dokuwiki.pp

You can check if the module was loaded successfully along with the rest of the policy using
the semodule command:

$ sudo semodule -l | grep dokuwiki
dokuwiki 1.0

4.8 Switching the domain

Having defined the policy, we can now consider when a forked httpd process, running on
behalf of some client, will transition into the "dokuwiki_t" domain. Ideally this switch
should happen at the time of the process forking. This type of transition can be provisioned
by appropriate configuration of Apache’s mod_selinux module. However, we will need to
switch into a domain based on DokuWiki’s ACL group, and that information is available
some time later in the execution of the httpd fork – specifically, in the PHP code that verifies
the credentials of the client.

4.8.1 SELinux plugin

We thus need to trigger the domain transition in PHP, as soon as possible after the login
credentials are available. By that time, the PHP script is being executed by an httpd fork,
which was spawned specifically for a given client’s HTTP request. The transition trigger can
be provisioned through a DokuWiki plugin.

DokuWiki’s source code defines a set of hooks, which will execute custom PHP code at various
points of the execution of DokuWiki’s scripts. One such point is right after the credentials
of the connecting client have been checked. That is when we will trigger a switch on the
SELinux context of the running process. Download the file dokuwiki_plugin_selinux.tgz
and expand the tar file into DokuWiki’s plugin directory

52



$ wget http://www.cs.otago.ac.nz/space/selinuxtutorial/archives/dokuwiki_plugin_selinux.tgz
$ tar -zxvf dokuwiki_plugin_selinux.tgz -C /var/www/html/dokuwiki -2010 -11 -07/ lib/plugins/

The new plugin should be picked up automatically by DokuWiki. Just to be sure, in your
browser, login to DokuWiki as superuser and go to the Manage Plugins page from the
Admin section of the website, http://localhost/dokuwiki-2010-11-07/doku.php?id=
start&do=admin&page=plugin, and confirm that selinux plugin is selected.

The PHP code that triggers the transition can be found in the
/var/www/html/dokuwiki-2010-11-07/action.php file; the contents of the file are listed
below:

File : action.php
<?php
/**
* DokuWiki Plugin selinux (Action Component)
*
* @license GPL 2 http ://www.gnu.org/licenses/gpl -2.0. html
* @author Lech Szymanski <lechszym@cs.otago.ac.nz>
*/

// must be run within Dokuwiki
if (! defined('DOKU_INC ')) die();

if (! defined('DOKU_LF ')) define('DOKU_LF ', "\n");
if (! defined('DOKU_TAB ')) define('DOKU_TAB ', "\t");
if (! defined('DOKU_PLUGIN ')) define('DOKU_PLUGIN ',DOKU_INC.'lib/plugins/');

require_once DOKU_PLUGIN.'action.php';

class action_plugin_selinux extends DokuWiki_Action_Plugin {

53

http://localhost/dokuwiki-2010-11-07/doku.php?id=start&do=admin&page=plugin
http://localhost/dokuwiki-2010-11-07/doku.php?id=start&do=admin&page=plugin


public function register(Doku_Event_Handler &$controller) {

$controller ->register_hook('AUTH_LOGIN_CHECK ', 'AFTER ', $this , 'handle_domain_switch '
);

}

public function handle_domain_switch(Doku_Event &$event , $param) {
global $conf;
global $USERINFO;

if(! $conf['useacl ']) {
return;

}

$grp = $USERINFO['grps'][0];

$domain = 'dokuwiki_t ';
if(! empty($grp)) {

$domain = 'dokuwiki_ ' . $grp . '_t';
}

$currentCon = selinux_getcon ();

/* First token is for user */
$tok = strtok($currentCon ,':');
$newCon = $tok;
$count = 2;
$tok = strtok(':');

while(false !== $tok && $count <7) {
/* $count == 2 is for role
* == 3 is for type
* == 4 is for sensitivity level
*/

if($count == 3) {
$tok = $domain;

}
$newCon .= ':' . $tok;
$tok = strtok(':');
$count ++;

}
selinux_setcon($newCon);

}
}

The script registers a hook for just after the login credentials check, which DokuWiki per-
forms for every client request to verify the user’s permissions, as picked up from the appro-
priate session cookie. The selinux_* functions are part of the SELinux API for PHP. The
plugin code retrieves the ACL group of the current user, and then retrieves the SELinux label
of the process executing the script. The label is parsed and the third token, corresponding
to type, is replaced with a type derived from the ACL group. If the user is not logged in, the
$grp variable will be empty and the new domain type will be "dokuwiki_t", otherwise the
new label is created with the following format "dokuwiki_<$grp>_t". The last function
call initiates the switch of the current process to the new context.

Since we have only defined the "dokuwiki_t" type, the types derived from ACL group name
in the above plugin will not be valid and SELinux transition of the context will not work.

54



The plugin is running already, and it should be trying to make a transition to the "doku_-
admin_t" domain (assuming you’re still logged-in to DokuWiki a a superuser). Take a look
at the footer of the current DokuWiki page – the type in the listed SELinux context should
be "httpd_t". That means that the transition didn’t work, and the reason is that the type
"doku_admin_t" has not been define yet.

Logout from DokuWiki. Now, when accessing DokuWiki’s login page, the plugin should
attempting a transition from "httpd_t" to "dokuwiki_t" on the running process. The
target type has been defined and the transition was allowed in our module. However, you’ll
notice that the context at the bottom of the DokuWiki login page still has type="httpd_t"
– the process did not switch domains.

If you check the log file /var/log/audit/audit.log there should be a message near the end
similar to this one:

type=AVC msg=audit (1368145147.499:1103): avc: denied { setcurrent } for pid =15438 comm="
httpd" scontext=system_u:system_r:httpd_t:s0 tcontext=system_u:system_r:httpd_t:s0
tclass=process

type=SYSCALL msg=audit (1368145147.499:1103): arch =40000003 syscall =4 success=no exit=-13 a0=
c a1=b4f21448 a2=20 a3=b4f21448 items=0 ppid =14057 pid =15438 auid =4294967295 uid=48 gid
=48 euid =48 suid =48 fsuid =48 egid =48 sgid =48 fsgid =48 ses =4294967295 tty=(none) comm="
httpd" exe ="/usr/sbin/httpd" subj=system_u:system_r:httpd_t:s0 key=(null)

It seems that SELinux is denying the transition from "httpd_t". The details state what
the problem is – a process of the "httpd_t" type is not allowed to perform the "setcurent"
action on a "process" of "httpd_t" type. Recall from the previous chapter, that in order to
change a label on a directory two sets of permissions are needed: "labelto" (the new type)
and "labelfrom" (the old type). Domain transitions for processes operate in a similar way. In
our module, we have created a rule that allows transition of a process to "domain_t" while

55



running in the "httpd_t" domain. That rule does not actually allow "httpd_t" to transition
from its type to another. We need to add a separate rule for that. Edit the dokuwikit.te
file to match the contents listed below:

File : dokuwiki.te
policy_module(dokuwiki , 1.1)

# Import existing types from the policy
require {

type httpd_t;
class process { dyntransition setcurrent };

}

# Create new domain/type
type dokuwiki_t;

# Restrict dokuwiki_t privileges to be a
# subset of those of httpd_t
typebounds httpd_t dokuwiki_t;

# Allow transition from httpd_t to dokuwiki_t
allow httpd_t dokuwiki_t:process { dyntransition };
allow httpd_t self:process { setcurrent };

Note that the "setcurrent" action has been added to the require block for the "process"
class. The rule to allow the transition from "httpd_t" while running in the "httpd_t"
domain is added at the bottom – it uses the keyword self, which derives the target type
from the source type of the rule. Hence, the last statement is analogous to the statement
allow httpd_t httpd_t:process {setcurrent}. Issue make and sudo make install.
The module with the new rules will simply replace the previous one. Refresh the webpage.

If you refresh your DokuWiki login page you’ll notice that the transition to "dokuwiki_t"
still is not happening. Searching through the audit log again will not reveal a clear AVC
message: this time there is no information from SELinux regarding what needs to be done
next. A reasonable step to take at this point would be to set SELinux to permissive mode
and test if the context switch occurs – usually this would verify that it’s SELinux permissions
on the transition that are the problem, and not something else. However, in this case, if you
do switch to permissive mode, the context switch still will not occur. This is unfortunate,
because despite what this might suggest, it is actually SELinux that is preventing the switch.
This is probably the greatest source of frustration for developers wrestling with SELinux –
sometimes, SELinux will not tell you what is wrong in its usual diagnostic logging. Sometimes
these ‘silent’ errors occur regardless whether SELinux is in permissive or enforcing mode.
Remember, in permissive mode the kernel still consults the LSM, and when the LSM API
generates an error (rather than a denial), the kernel might abort the action.

In our case, the problem stems from the fact that the newly created type actually needs a set
of attributes in order for the LSM to allow the type to tag a process. However, even that will
not be enough for "dokuwiki_t" to operate properly. Another problem is that "dokuwi_t"
is meant to tag the httpd process, and that process needs a large selection of permissions in

56



order to serve a web page to a client. Take a look at the set of permissions that the targeted
policy lists for the "httpd_t" type:

$ sesearch --allow -s httpd_t
Found 1175 semantic av rules:

allow httpd_t pcscd_var_run_t : file { ioctl read getattr lock open } ;
allow httpd_t pcscd_var_run_t : dir { getattr search open } ;
allow httpd_t privfd : fd use ;
.
.
.

There’s a lot of them, and (as you would expect) they are not there without a reason. In
order to allow the httpd process to function properly, all these permissions are necessary
(remember, if there is no ‘allow’ rule for some action, it means that it will be denied by
the LSM). We need to make sure that the "dokuwiki_t" type is set up with all of these
permissions.

4.8.2 Cloning a domain

Unfortunately, there is no easy way to copy all of the permissions of one domain to another
in SELinux. The typebounds statement restricts a domain to be a subset of another other,
but it does not actually transfer the ‘allow’ rules from one domain to another. There is no
statement in the policy that would allow a domain to take on all the properties of the other
domain. One possible workaround is to create an attribute, to which we can assign all of
the required permissions, and then assign the attribute to two (or more) types. However,
the targeted policy does not create a single attribute that contains all of the permissions
required for the httpd process.

We will use a particular workaround. We will use the sesearch command to list all the
permissions for the "httpd_t" domain and use a script to create a policy template that
assigns all those permissions to another domain. In the terminal, while in the modules
directory, download and run the following script:

$ wget http://www.cs.otago.ac.nz/space/selinuxtutorial/scripts/clone_selinux_domain.sh
$ bash clone_selinux_domain.sh httpd_t > dokuwiki.if

The script takes a while to run – this is because there are a lot of rules to process, and Bash
string manipulation (at least the way we wrote it in this script) is quite slow. The script
accepts an argument for the domain type that you want to clone – in this case "httpd_t".
The output of the macro is redirected to dokuwiki.if – the interface file for the dokuwiki
module. Once the script is finished, the macro should look like this:

57



$ cat dokuwiki.if
interface(`clone_httpd_t ',`

gen_require(`
type httpd_t;
type lib_t;
.
.
.

')

typeattribute $1 kernel_system_state_reader;
typeattribute $1 syslog_client_type;
.
.
.

allow $1 httpd_t : process { fork transition sigchld sigkill sigstop signull signal
getsched setsched getsession getpgid setpgid getcap setcap shar\

e getattr setfscreate noatsecure siginh rlimitinh dyntransition setkeycreate setsockcreate
ptrace_child } ;

allow $1 httpd_t : capability { chown dac_override kill setgid setuid net_bind_service
sys_nice sys_tty_config } ;

.

.

.
')

The name of the macro is clone_httpd_t and it takes one argument. It’s somewhat similar
to a bash script, in that it takes a list of arguments, which are referred to with the argument
number preceded by the $ sign. Since this macro resides in the interface file for our module,
dokuwiki.if, the Makefile will pick it up. All we need to do is to change dokuwikit.te
to call the macro after creating the new domain, as shown below:

File : dokuwiki.te
policy_module(dokuwiki , 1.2)

# Import existing types from the policy
require {

type httpd_t;
class process { dyntransition setcurrent };

}

# Create new domain/type
type dokuwiki_t;
clone_httpd_t(dokuwiki_t);

# Restrict dokuwiki_t privileges to be a
# subset of those of httpd_t
typebounds httpd_t dokuwiki_t;

# Allow transition from httpd_t to dokuwiki_t
allow httpd_t dokuwiki_t:process { dyntransition };
allow httpd_t self:process { setcurrent };

Run make and sudo make install. In the browser, refresh the DokuWiki login page, and
this time the transition to "dokuwikit_t" should be successful (as confirmed by the context

58



in the footer of the page).

The sesearch command used in the clone script picks up conditional allow statements,
regardless whether they are enabled or not. These rules go into the clone domain macro as
unconditional rules. However, in our case, the clone is typebound by the original domain,
which will prevent the new domain from doing something at runtime that the original one
is not allowed to do.

The new domain is working, and the transition works too – now it’s time to create SELinux
domains for the respective ACL groups.

4.9 DokuWiki ACL group domains

Recall that when a user logs into DokuWiki, the plugin we have installed attempts to transi-
tion the httpd process to domain "dokuwiki_<$grp>_t", where <$grp> is the ACL group
that the DokuWiki user belongs to. The transition occurs once for every HTTP request. We
need to create the following SELinux domains: "dokuwiki_admin_t" and "dokuwiki_de-
veloper_t" corresponding to DokuWiki’s admin and developer groups respectively. Modify
the dokuwiki.te file to match the following:

59



File : dokuwiki.te
policy_module(dokuwiki , 1.3)

# Import existing types from the policy
require {

type httpd_t;
class process { dyntransition setcurrent };

}

# Create new domain/type
type dokuwiki_t;
clone_httpd_t(dokuwiki_t);

# Restrict dokuwiki_t privileges to be a
# subset of those of httpd_t
typebounds httpd_t dokuwiki_t;

# Allow transition from httpd_t to dokuwiki_t
allow httpd_t dokuwiki_t:process { dyntransition };
allow httpd_t self:process { setcurrent };

# Create domain for admin group
type dokuwiki_admin_t;
clone_httpd_t(dokuwiki_admin_t);
typebounds httpd_t dokuwiki_admin_t;
allow httpd_t dokuwiki_admin_t:process { dyntransition };

# Create domain for developer group
type dokuwiki_developer_t;
clone_httpd_t(dokuwiki_developer_t);
typebounds httpd_t dokuwiki_developer_t;
allow httpd_t dokuwiki_developer_t:process { dyntransition };

Both new domains need to clone "httpd_t" and are type-bound by it. Also, transition to
each of those domains from httpd_t is allowed.

Run make and sudo make install. Now, when you test DokuWiki, the plugin should switch
to "dokuwiki_admin_t" when logged in as admin—

60



—and to "dokuwiki_developer_t" when logged in to DokuWiki as setest:

Recall that it is the SELinux plugin that, using ACL credentials, figures out what domain
to transition to.

Note that, at this point, the three new domains have the same permissions. Hence, we can
simplify the code by creating a macro. Add the following code at the top of dokuwiki.if –
but DO NOT overwrite the clone_httpd_t macro:

61



File : dokuwiki.if
interface(`create_dokuwiki_domain ',`

gen_require(`
type httpd_t;
class process { dyntransition };

')

# Create new domain/type
type $1;
clone_httpd_t($1);

# Restrict new domain privileges to be a
# subset of those of httpd_t
typebounds httpd_t $1;

# Allow transition from httpd_t to the new domain
allow httpd_t $1:process { dyntransition };

')

The create_dokuwiki_domain macro takes one argument, symbolised by $1. It generates a
require statement that will import existing types, classes and actions, used by the macro.
Then, the macro lists all the rules that will get assigned to the domain passed in the argument
(including the call to the clone_httpd_tmacro). Now, using the new macro, we can simplify
the code in dokuwiki.te as follows:

File : dokuwiki.te
policy_module(dokuwiki , 1.4)

# Import existing types from the policy
require {

type httpd_t;
class process { setcurrent };

}

allow httpd_t self:process { setcurrent };

# Create domain for no permissions
create_dokuwiki_domain(dokuwiki_t);

# Create domain for admin group
create_dokuwiki_domain(dokuwiki_admin_t);

# Create domain for developer group
create_dokuwiki_domain(dokuwiki_developer_t);

Compile and install the policy (make and sudo make install). The SELinux plugin should
function just like before, switching to the appropriate group domain for different users.

62



4.10 ACL namespace types

Although we have successfully caused the httpd process to transition to an SELinux domain
corresponding to the DokuWiki user’s group, at this point there are no rules that differentiate
these domains. Since DokuWiki group permissions can vary for different namespaces, we need
a different domain to label each namespace directory. Modify dokuwiki.te to the following:

File : dokuwiki.te
policy_module(dokuwiki , 1.5)

# Import existing types from the policy
require {

type httpd_t;
class process { setcurrent };

}

allow httpd_t self:process { setcurrent };

# Create domain for no permissions
create_dokuwiki_domain(dokuwiki_t);

# Create domain for admin group
create_dokuwiki_domain(dokuwiki_admin_t);

# Create domain for developer group
create_dokuwiki_domain(dokuwiki_developer_t);

# Create type for root namespace
type dokuwiki_content_t;
files_type(dokuwiki_content_t);

# Create type for devel namespace
type dokuwiki_content_devel_t;
files_type(dokuwiki_content_devel_t);

# Create type for dev.l namespace
type dokuwiki_content_dev_l_t;
files_type(dokuwiki_content_dev_l_t);

# Create type for media files
type dokuwiki_content_media_t;
files_type(dokuwiki_content_media_t);

We have created four new types: "dokuwiki_content_t", "dokuwiki_content_devel_t",
"dokuwiki_content_dev_l_t", and"dokuwki_content_media_t". The first three types
correspond to DokuWiki’s root, devel and dev.l namespaces respectively (policy doesn’t
like the period character in the type name). The last type is for upload and delete permis-
sions on media files. Whereas the types created in the previous sections were meant to label
a process, these new types are supposed to label files and directories. Once again, a long list
of rules is needed in order for a type to function as a label of a file or a directory, but to help
with this rule assignment the policy provides a file_type attribute that collects together
all of the required permissions. The easiest way to assign the attribute to a new type is
to use the files_type macro that is provided by the policy. This macro is defined in an

63



interface file /usr/share/selinux/devel/include/kernel/files.if, which is picked up
by our Makefile. If you wish to examine the macro, you will notice that it assigns a number
of attributes to the type that is passed in as an argument.

Next, we need to label DokuWiki’s directories with the appropriate namespace type. In the
previous section we used the chcon command to relabel files and directories. This time we
will take advantage of the *.fc file that gets compiled with our policy module. In the same
directory where your dokuwiki.te and dokuwiki.if reside, create dokuwiki.fc with the
following contents:

File : dokuwiki.fc
/var/www/html/dokuwiki -2010 -11 -07(/.*)? gen_context(unconfined_u:object_r

:httpd_sys_content_t ,s0)
/var/www/html/dokuwiki -2010 -11 -07/ conf (/.*)? gen_context(unconfined_u:object_r

:httpd_sys_rw_content_t ,s0)
/var/www/html/dokuwiki -2010 -11 -07/ data (/.*)? gen_context(unconfined_u:object_r

:httpd_sys_rw_content_t ,s0)
/var/www/html/dokuwiki -2010 -11 -07/ data/media (/.*)? gen_context(unconfined_u:object_r

:dokuwiki_content_media_t ,s0)
/var/www/html/dokuwiki -2010 -11 -07/ data/pages /(.txt)? gen_context(unconfined_u:object_r

:dokuwiki_content_t ,s0)
/var/www/html/dokuwiki -2010 -11 -07/ data/pages/devel (/.*)? gen_context(unconfined_u:object_r

:dokuwiki_content_devel_t ,s0)
/var/www/html/dokuwiki -2010 -11 -07/ data/pages/dev.l(/.*)? gen_context(unconfined_u:object_r

:dokuwiki_content_dev_l_t ,s0)

The *.fc file lists directories and their corresponding SELinux contexts. The term (/.*)?
is a regular expression signifying inclusion of all subdirectories and their contents. The
labelling rules we have are specified for the entire DokuWiki directory – the rules that come
last overrule the previous ones. So, although the entire DokuWiki directory is labelled with
"httpd_sys_content_t" (a readonly type for a process confined to the "httpd_t" domain),
the rules that follow label the subdirectories differently.

Compile the policy module and install it. Notice that the contexts of the namespace direc-
tories have not been changed:

$ ls -Z /var/www/html/dokuwiki -2010 -11 -07/ data/pages/
drwxr -xr-x. apache apache system_u:object_r:httpd_sys_rw_content_t:s0 devel
drwxr -xr-x. apache apache system_u:object_r:httpd_sys_rw_content_t:s0 dev.l
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 playground
-rw-r--r--. apache apache system_u:object_r:httpd_sys_rw_content_t:s0 start.txt
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 wiki

This is because the labels from the *.fc are not applied to the system when new module
is loaded. Instead, these labelling instructions get added to the default labelling configu-
ration. To verify that the default configuration settings have changed, take a look at the
/etc/selinux/targeted/contexts/file_context file. It should contain the following en-
tries:

64



$ cat /etc/selinux/targeted/contexts/file_contexts | grep dokuwiki
/var/lib/dokuwiki (/.*)? system_u:object_r:httpd_sys_rw_content_t:s0
/var/www/html/dokuwiki -2010 -11 -07(/.*)? unconfined_u:object_r:httpd_sys_content_t:s0
/var/www/html/dokuwiki -2010 -11 -07/ conf (/.*)? unconfined_u:object_r:httpd_sys_rw_content_t

:s0
/var/www/html/dokuwiki -2010 -11 -07/ data (/.*)? unconfined_u:object_r:httpd_sys_rw_content_t

:s0
/var/www/html/dokuwiki -2010 -11 -07/ data/media (/.*)? unconfined_u:object_r:

dokuwiki_content_media_t:s0
/var/www/html/dokuwiki -2010 -11 -07/ data/pages /(.txt)? unconfined_u:object_r:

dokuwiki_content_t:s0
/var/www/html/dokuwiki -2010 -11 -07/ data/pages/dev.l(/.*)? unconfined_u:object_r:

dokuwiki_content_dev_l_t:s0
/var/www/html/dokuwiki -2010 -11 -07/ data/pages/devel (/.*)? unconfined_u:object_r:

dokuwiki_content_devel_t:s0

To apply the new labelling, we can use the “restore default context” facility on DokuWiki’s
root directory:

$ sudo restorecon -R /var/www/html/dokuwiki -2010 -11 -07

The -R option makes the call recursive, so default contexts are also restored on all subdirec-
tories. The new labels should look like this:

$ ls -Z /var/www/html/dokuwiki -2010 -11 -07/ data
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 attic
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 cache
-rw-rw -r--. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 _dummy
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 index
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 locks
drwxrwxr -x. setest apache unconfined_u:object_r:dokuwiki_content_media_type:s0 media
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 meta
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 pages
-rw-rw -r--. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 security.png
-rw-rw -r--. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 security.xcf
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 tmp

If the labels are still not as shown above, it might be because of the changes we have made
previously to the default context with the semanage command. Take a look at the contents
of the cat /etc/selinux/targeted/contexts/files/file_contexts.local file:

$ cat /etc/selinux/targeted/contexts/files/file_contexts.local
# This file is auto -generated by libsemanage
# Do not edit directly.

/var/www/html/dokuwiki -2010 -11 -07/ conf system_u:object_r:httpd_sys_rw_content_t:s0
/var/www/html/dokuwiki -2010 -11 -07/ data (/.*)? system_u:object_r:httpd_sys_rw_content_t:s0

The restorecon command restores context from file_contexts.local after the contexts
from file_contexts, and so if your file_contexts.local contains the two entries as
shown above, they overwrite everything. Use the semanage command again to delete the
local default context settings like so:

65



$ sudo semanage fcontext -d /var/www/html/dokuwiki -2010 -11 -07/ conf
$ sudo semanage fcontext -d "/var/www/html/dokuwiki -2010 -11 -07/ data (/.*)?"

In the second command the quotes are necessary, because of the regular expression symbols
at the end. Check that file_contexts.local does not list those default contexts anymore;

$ cat /etc/selinux/targeted/contexts/files/file_contexts.local
# This file is auto -generated by libsemanage
# Do not edit directly.

Try the restorecon command again and now DokuWiki directories should be labelled cor-
rectly. Note that the media directory is labelled with the "dokuwiki_content_media_t"
type – this is a special type used for ACL upload and delete permissions.

$ ls -Z /var/www/html/dokuwiki -2010 -11 -07/ data/pages
drwxr -xr-x. apache apache system_u:object_r:dokuwiki_content_devel_type:s0 devel
drwxr -xr-x. apache apache system_u:object_r:dokuwiki_content_dev_l_type:s0 dev.l
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 playground
-rw-r--r--. apache apache system_u:object_r:httpd_sys_rw_content_t:s0 start.txt
drwxrwxr -x. setest apache unconfined_u:object_r:httpd_sys_rw_content_t:s0 wiki

Reload the DokuWiki website in your browser. You should get a message like this:

This error occurs because we have relabelled various DokuWiki directories, but no permis-
sions have been given to any of the process labelling types – or even the "httpd_t" domain
– to perform any actions on the newly defined content types. We need to specify those
permissions in our policy module, and we will do it to match the setup from Table 4.2.

66



4.11 DokuWiki double hull security setup

Since DokuWiki’s ACL permissions are hierarchical, we will create a set of macros, each
of which at its end will call the previous one, and thus inherit its permissions. Add the
following macros at the top of your dokuwiki.if.

File : dokuwiki.if
interface(`dokuwiki_acl_read ',`

getattr_files_pattern($1 ,$2,$2);
read_files_pattern($1 ,$2,$2);
read_files_pattern($1 ,dokuwiki_content_media_t ,dokuwiki_content_media_t);

')

interface(`dokuwiki_acl_edit ',`
dokuwiki_acl_read($1 ,$2);
manage_files_pattern($1 ,$2,$2);

')

interface(`dokuwiki_acl_create ',`
dokuwiki_acl_edit($1 ,$2);
create_files_pattern($1 ,$2,$2);

')

interface(`dokuwiki_acl_upload ',`
gen_require(`

type dokuwiki_content_media_t;
')

dokuwiki_acl_create($1 ,$2);
manage_files_pattern($1 ,dokuwiki_content_media_t ,dokuwiki_content_media_t);

')

interface(`dokuwiki_acl_delete ',`
dokuwiki_acl_upload($1 ,$2);
delete_files_pattern($1 ,dokuwiki_content_media_t ,dokuwiki_content_media_t);

')

interface(`dokuwiki_acl_admin ',`
dokuwiki_acl_delete($1 ,$2);

')

These six macros correspond to read, edit, create, upload, delete and admin privileges.
Each macro takes two arguments: $1 is the SELinux type corresponding to a DokuWiki
group, $2 is the SELinux type corresponding to a DokuWiki namespace. The macros
treat $1 and $2 as source and target types respectively. Aside from calling the previ-
ously defined macro, each macro also relies on some pre-defined macros that are found
in /usr/share/selinux/devel/include/support/file_patterns.spt. These macros are
a convenient way to assign appropriate ‘allow’ rules to the source domain for read and write
permissions to files and directories of a target type:

• getattr_files_pattern allows a process of type $1 to fetch attributes of directories
of type $2 and files of type $3

• read_files_pattern allows a process of type $1 to open and read directories of type

67



$2 and files of type $3

• manage_files_pattern allows a process of type $1 to open, read and write to direc-
tories of type $2 and files of type $3

• create_files_pattern allows a process of type $1 to create files inside directories of
type $2

• create_files_pattern allows a process of type $1 to delete directories of type $2 and
files of type $3

Note that the dokuwiki_acl_upload and dokuwiki_acl_delete permissions add read-
/write and delete permissions for files in the "dokuwiki_content_media_type" domain.
The dokuwiki_acl_admin macro gives the same permissions as the dokuwiki_acl_delete
macro, hence in our setup SELinux double-hull security only encompasses the access to the
DokuWiki content – permissions for administration of the website are handled solely by the
ACL.

Below are the contents of the new version of dokuwiki.te, which, using the newly defined
macros, adds the permissions for group domains on namespace types according to Table 4.2.

68



File : dokuwiki.te
policy_module(dokuwiki , 1.6)

# Import existing types from the policy
require {

type httpd_t;
class process { setcurrent };

}

allow httpd_t self:process { setcurrent };

# Create domain for no permissions
create_dokuwiki_domain(dokuwiki_t);

# Create domain for admin group
create_dokuwiki_domain(dokuwiki_admin_t);

# Create domain for developer group
create_dokuwiki_domain(dokuwiki_developer_t);

# Create type for root namespace
type dokuwiki_content_t;
files_type(dokuwiki_content_t);

# Create type for devel namespace
type dokuwiki_content_devel_t;
files_type(dokuwiki_content_devel_t);

# Create type for dev.l namespace
type dokuwiki_content_dev_l_t;
files_type(dokuwiki_content_dev_l_t);

# Create type for media files
type dokuwiki_content_media_t;
files_type(dokuwiki_content_media_t);

# Admin permissions for httpd_t on all namespaces
dokuwiki_acl_admin(httpd_t ,dokuwiki_content_t);
dokuwiki_acl_admin(httpd_t ,dokuwiki_content_devel_t);
dokuwiki_acl_admin(httpd_t ,dokuwiki_content_dev_l_t);

# Admin permissions for dokuwiki_admin_t on all namespaces
dokuwiki_acl_admin(dokuwiki_admin_t ,dokuwiki_content_t);
dokuwiki_acl_admin(dokuwiki_admin_t ,dokuwiki_content_devel_t);
dokuwiki_acl_admin(dokuwiki_admin_t ,dokuwiki_content_dev_l_t);

# Permissions for dokuwiki_developer_t on all namespaces
dokuwiki_acl_read(dokuwiki_developer_t ,dokuwiki_content_t);
dokuwiki_acl_edit(dokuwiki_developer_t ,dokuwiki_content_devel_t);
dokuwiki_acl_read(dokuwiki_developer_t ,dokuwiki_content_dev_l_t);

Note that the "httpd_t" domain requires all privileges on all namespaces, because all the
dokuwiki domains are type-bound by it. The domain corresponding to the admin group,
"dokuwiki_admin_t" is assigned admin privileges on all namespaces. The domain corre-
sponding to the developer group, "dokuwiki_developer_t", gets read-only privileges on the
"dokuwiki_content_t" and "dokuwiki_content_dev_l" types, and edit privileges on the
"dokuwiki_devel" type. The "dokuwiki_t" type is not assigned any privileges because that’s
the type corresponding to a client that has not logged in (it still can read "httpd_sys_con-

69



tent_t" and write to "httpd_sys_rw_content_t – it gets those permissions by inheriting
the permissions from the clone_httpd_t macro".

Compile and install the dokuwiki policy module.

The script that cloned the permissions for the "httpd_t" type was run before we allowed
"httpd_t" admin access to all the namespace types. Therefore, neither "dokuwiki_t" nor
any of the "dokuwiki_<$grp>_t" domains inherit those permissions through the clone_-
httpd_t macro. However, if one was to run that script to generate the clone macro after the
loading of the latest version of the dokuwiki module, the macro would include and assign
admin permissions to all dokuwiki group types on all namespace types. This illustrates the
potential dangers of domain cloning, and is probably why such a feature is not found in the
SELinux policy syntax.
Now, in the browser, refresh the DokuWiki page, there should be no error. Login as admin
– the SELinux context at the bottom of the page should state that the type of the process
serving the page was "dokuwiki_admin_t". Logout – the SELinux context should have
the type as "dokuwiki_t". Now login again as setest – the type should be dokuwiki_-
developer_t.

Now, while logged in as setest, go to http://localhost/dokuwiki-2010-11-07/doku.
php?id=devel:pagex in the web browser. As a member of the developer group, setest has
edit privileges to that namespace (hence the Edit this page button being present).

Now, go to http://localhost/dokuwiki-2010-11-07/doku.php?id=dev.l:pagey. As a
member of developer group, setest is supposed to have only read privileges to this names-
pace. Indeed the Edit this page button is not there present. Instead there is only the
Show pagesource option.

70

http://localhost/dokuwiki-2010-11-07/doku.php?id=devel:pagex
http://localhost/dokuwiki-2010-11-07/doku.php?id=devel:pagex
http://localhost/dokuwiki-2010-11-07/doku.php?id=dev.l:pagey


Recall that before the SELinux dokuwiki module was setup, this page was (due to a bug)
editable. To make sure that it is indeed SELinux that is preventing DokuWiki from allowing
unauthorised editing, switch SELinux to permissive mode.

$ sudo set enforce 0

Refresh the page. The footnote next to SELinux label should say Permissive instead of
Enabled. The page should be editable now.

71



So it is definitely SELinux that is guarding against the vulnerability. Switch SELinux en-
forcing mode back on.

$ sudo set enforce 1

You might ask, how come DokuWiki changes the button caption to reflect the correct per-
missions when SELinux is enabled? Does’t the ACL operate independently of SELinux? (in
which case we would expect the button to still provide the option of editing, but some kind
of error would occur when attempting to change the page content). What is happening is
that DokuWiki is checking the access permissions for the target page’s file before displaying
the page, and thus – since SELinux forbids write access – DokuWiki changes the page view
accordingly.

4.12 Discussion

It may seem that in this chapter we have gone through a lot of trouble to fix a known (and
fixed) DokuWiki vulnerability by using SELinux. The point, of course, is that this sort of
double-hulled approach security has the potential to protect against unknown vulnerabilities,
too. Not only that, but SELinux can be used to detect such vulnerabilities. For instance, in
the current setup, whenever a DokuWiki user from the developer group goes to a page in
the dokuwiki_content_dev.l space, SELinux generates the following error:

$sudo cat /var/log/audit/audit.log | grep AVC
.
.
.
type=AVC msg=audit (1403840178.646:400): avc: denied { write } for pid =2163 comm=" httpd"

name="pagey.txt" dev="dm -0" ino =799491 scontext=system_u:system_r:dokuwiki_developer_t:
s0 tcontext=system_u:object_r:dokuwiki_content_dev_l_type:s0 tclass=file

.

.

.

This error is a an indication that the ACL allows something that SELinux does not, at
which point investigation can be carried out to determine whether it’s SELinux that is too
restrictive, or indeed if there is a problem with the ACL.

Despite being effective, the SELinux policy we have created for our example is not very
flexible. Any time a new group is created, or permissions are changed in DokuWiki, the
policy module would have to be modified to reflect those changes, then recompiled and
reinstalled. Also, our example does not support a user being assigned to multiple groups
(for that we would have to create a new domain for every possible combination of groups).
However, it is not all that bad really – a script could be written that extracts information
from DokuWiki about groups and permissions, and outputs appropriate policy rules. It still
would need to be run every time there were changes to the ACL configuration. Possibly a

72



clever use of categories in the MLS part of the SELinux context could make the double-hull
scheme more manageable.

4.13 Summary

In this chapter we have written a custom SELinux policy module with a new set of types,
labels and rules that mirror the permissions of DokuWiki’s ACL security. We have configured
a PHP plugin that triggers a domain transition on the httpd fork serving a given client
depending on the client’s DokuWiki credentials. Figure 4.12 shows what happens on the
server (from the SELinux standpoint) before a client performs a login to DokuWiki, and
then both after they login as setest, and after they login as admin. The process serving
the client gets transitioned into a domain corresponding to the group of the DokuWiki
user and its permissions to view or manipulate files of different SELinux types are affected
appropriately.

73



Client

h�pd_t

h�pd_sys_content_t h�pd_sys_rw_content_t

WEB	SERVER
dokuwiki_t

R

W

RTransi�on

dokuwiki_content_t

dokuwiki_devel_t dokuwiki_dev_l_t

dokuwiki_media_t

Client

h�pd_tLogin:	setest

h�pd_sys_content_t h�pd_sys_rw_content_t

WEB	SERVER
dokuwiki_developer_t

R

W

RTransi�on

dokuwiki_content_t

dokuwiki_devel_t dokuwiki_dev_l_t

dokuwiki_media_t

R

W

R RR

Client

h�pd_tLogin:	admin

h�pd_sys_content_t h�pd_sys_rw_content_t

WEB	SERVER
dokuwiki_admin_t

R

W

RTransi�on

dokuwiki_content_t

dokuwiki_devel_t dokuwiki_dev_l_t

dokuwiki_media_t

W

R

W

R

W

R

W

R

Figure 4.1: Apache server running in the "dokuwiki_t", "dokuwiki_developer_t" or
"dokuwiki_admin_t" domain, depending on the login credentials of the DokuWiki user.

74



Bibliography

[1] P. Loscocco and S. Smalley, “Integrating flexible support for security policies into
the linux operating system,” in Proceedings of the FREENIX Track: 2001 USENIX
Annual Technical Conference, Berkeley, CA, USA: USENIX Association, 2001, pp. 29–
42, isbn: 1-880446-10-3. [Online]. Available: http://www.nsa.gov/research/_files/
publications/security_policies_linux_os.pdf (visited on 07/05/2014).

[2] P. Hosek, M. Migliavacca, I. Papagiannis, D. Eyers, D. Evans, B. Shand, J. Bacon,
and P. Pietzuch, “Safeweb: a middleware for securing ruby-based web applications,” in
ACM/IFIP/USENIX 12th International Middleware Conference (Middleware 2011),
Lisbon, Portugal, Dec. 2011.

[3] (2012). Red Hat Enterprise Linux 6 Security-Enhanced Linux - User Guide, [On-
line]. Available: https://access.redhat.com/documentation/en-US/Red_Hat_
Enterprise_Linux/6/pdf/Security- Enhanced_Linux/Red_Hat_Enterprise_
Linux-6-Security-Enhanced_Linux-en-US.pdf (visited on 06/25/2014).

[4] D. Walsh. (2013). Your visual how-to guide for SELinux policy enforcement, [Online].
Available: http://opensource.com/business/13/11/selinux- policy- guide
(visited on 06/25/2014).

[5] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman, “Linux security
modules: general security support for the linux kernel,” in Proceedings of the 11th
USENIX Security Symposium, Berkeley, CA, USA: USENIX Association, 2002, pp. 17–
31, isbn: 1-931971-00-5. [Online]. Available: http://dl.acm.org/citation.cfm?id=
647253.720287.

[6] S. Smalley, C. Vance, and W. Salamon. (2001). Implementing SELinux as a Linux
Security Module, [Online]. Available: http://www.nsa.gov/research/_files/
selinux/papers/module.pdf (visited on 07/12/2014).

[7] D. Walsh. (2008). Understanding SELinux Process Transitions, [Online]. Available:
http://danwalsh.livejournal.com/23944.html (visited on 06/26/2014).

[8] (2012). Typerules, [Online]. Available: http://selinuxproject.org/page/TypeRules#
type_transition_Rule (visited on 06/26/2014).

[9] K. Kohei. (2009). Introduction of the Apache/SELinux plus, [Online]. Available: https:
//code.google.com/p/sepgsql/wiki/Apache_SELinux_plus (visited on 07/03/2014).

75

http://www.nsa.gov/research/_files/publications/security_policies_linux_os.pdf
http://www.nsa.gov/research/_files/publications/security_policies_linux_os.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/pdf/Security-Enhanced_Linux/Red_Hat_Enterprise_Linux-6-Security-Enhanced_Linux-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/pdf/Security-Enhanced_Linux/Red_Hat_Enterprise_Linux-6-Security-Enhanced_Linux-en-US.pdf
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/pdf/Security-Enhanced_Linux/Red_Hat_Enterprise_Linux-6-Security-Enhanced_Linux-en-US.pdf
http://opensource.com/business/13/11/selinux-policy-guide
http://dl.acm.org/citation.cfm?id=647253.720287
http://dl.acm.org/citation.cfm?id=647253.720287
http://www.nsa.gov/research/_files/selinux/papers/module.pdf
http://www.nsa.gov/research/_files/selinux/papers/module.pdf
http://danwalsh.livejournal.com/23944.html
http://selinuxproject.org/page/TypeRules#type_transition_Rule
http://selinuxproject.org/page/TypeRules#type_transition_Rule
https://code.google.com/p/sepgsql/wiki/Apache_SELinux_plus
https://code.google.com/p/sepgsql/wiki/Apache_SELinux_plus


[10] ——, (2012). PHP-SELinux package README, [Online]. Available: http://svn.php.
net/viewvc/pecl/selinux/trunk/README?view=markup (visited on 07/03/2014).

[11] (2014). Access Control Lists (ACL), [Online]. Available: https://www.dokuwiki.org/
acl (visited on 07/03/2014).

76

http://svn.php.net/viewvc/pecl/selinux/trunk/README?view=markup
http://svn.php.net/viewvc/pecl/selinux/trunk/README?view=markup
https://www.dokuwiki.org/acl
https://www.dokuwiki.org/acl

	Introduction
	SELinux
	Installation
	SELinux Tools

	SELinux architecture
	LSM
	Security labels
	Policy

	Domains
	Transitions
	Unconfined domain

	Role Based Access Control
	Multi Level Security
	Summary

	Case study: DokuWiki on SELinux
	Installation
	DokuWiki setup
	DAC permissions
	SELinux permissions

	Working DokuWiki
	Changing the factory reset security contexts
	Discussion
	Summary

	Case study: DokuWiki with double hull security
	Installation
	SELinux module for Apache
	SELinux API for PHP
	SELinux Template

	Pages and namespaces
	DokuWiki ACL
	ACL vulnerability
	Double hull overview
	Policy modules
	Build setup

	The dokuwiki module
	Switching the domain
	SELinux plugin
	Cloning a domain

	DokuWiki ACL group domains
	ACL namespace types
	DokuWiki double hull security setup
	Discussion
	Summary


