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Representing Symbolic Logic  
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Technical Report I. 
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Anthony Robins 

Computer Science Department, Otago University, New Zealand 
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Abstract: We report detailed experimental results for the paper 
‘Representing Symbolic Logic in an Artificial Neural Network, Part I: 
the Static Case’. 

1 Introduction 
This technical report provides supporting information and experimental results for 
the paper “Representing Symbolic Logic in an Artificial Neural Network, Part I: the 
Static Case”. The paper is concerned with finding an artificial neural network 
representation for supra-classical logic. 

The technical report is divided into four parts. Section 2 Micro-Worlds: gives 
information about the experimental environment. Section 3 Boltzmann Machine: 
gives some features of the machine implementation and experimental results. These 
results support the Boltzmann machine as a viable candidate for the representation 
of supra-classical logic. Section 4 Multi-Layer Perceptron (MLP): looks at these 
experimental results with discussion about the implementation, which is not 
included in our paper. These results indicate that simple feed-forward networks do 
not have the properties required to represent the logic.  

2 Micro-worlds 
We attempted to find a neural network representation by training and testing our 
candidate machines in the limited environment of logical micro-worlds. Some 
discussion and justification for this approach is given in our paper. The logic for 
these worlds was loosely based on the idea of a room, which had its temperature 
regulated for a minimal energy cost. A set of micro-worlds of increasing size and 
complexity were designed by adding atoms and preference levels. The design 
details of these 3, 4, 5, and 6-atom micro-worlds are given in Appendix A. 

For each world a short description of the atoms and default rules are provided in 
the appendix, with the consequent ranked interpretation. The interpretation of the 
default rules is somewhat arbitrary and alternative worlds would be possible. We 
investigated the effect of arbitrary changes in interpretation within the 5-atom world 
by looking at two alternatives to the world shown in Appendix A. The changes did 
not affect the ability of the networks as representations. In theory such a change 



should not have any impact, as the networks tested were trained on the final 
interpretation alone.  

The semantic design of these worlds deliberately involved dependency between 
some variables and this resulted in occasional outputs from the machines that were 
unexpected. The ability of the Boltzmann machine to learn and represent atomic 
probability and not just state distribution will be the subject of a separate paper. 

It should be noted that the machines are trained using binary logic and tested 
using ternary logic. During training the machines are only given inputs: +1 for true 
and -1 for false. Model states are shown in adapted binary format, for example in 
the 3-atom world (Light-Fan-Heater) state “-1, 1, 1” stands for the state with “Light 
off, Fan on, Heater on”.  We will frequently use an abbreviated decimal format; in 
the example above, the state would be represented as decimal 3 (the two lowest 
order bits are on).  When testing, the machines received inputs of 1, -1, or 0 for 
unknown or equivocal. For example the input state/query “0, 1, 0” stands for the 
premise “Light not observed, Fan on, Heater not observed”, which has no 
equivalent in real binary. 

Generally four alternative training sets were used for each world. Two training 
sets have the patterns (model states) at exponentially increasing frequency of 
preference and two have an arithmetic distribution. Within each pair, one set has the 
least preferred model states absent; the other has them present for one pattern only. 
The distribution of patterns in each training set is given in Appendix A, both as the 
actual number of patterns and the percentage of the set. 

 

  



3 Boltzmann Machine 
3.1 Implementation 

As indicated in our paper, the initial implementation of the Boltzmann machine was 
based on Hinton’s 424 Encoder. Early experimentation with this implementation 
involved diagnostic data sets, both mechanical and medical, with a variety of data 
relationships: both many-to-one (mathematical functions) and one-to-many (non-
functions). 

The machines performed tolerably well on even the most difficult medical data 
set which contained 8 diagnoses spread over 13 symptoms, with a large proportion 
of one-to-many relationships. The data set consisted of 120 training patterns; the 
machines were trained on a subset of 80 patterns.  

• Tested on previously seen patterns, machines achieved a recall (correct set of 
diagnoses, although not always in the correct order of preference) of 88-94%.  

• Tested on unseen patterns, machines had a credible accuracy of 73-78% 
(depending on the pattern tested).  

These data sets still had a large component of classification as part of a mixed 
task and, at this stage, the weights of the network were not converging during 
training. Several methods of weight constraint were attempted including:  

• Weight decay: Use of a penalty term (c = 0.001) multiplied by the total size of 
each weight layer matrix was partially effective in limiting the weight 
expansion to 1.12.  

• Sparcity was implemented using a target and penalty cost as per Hinton (1985). 
However, this is probably only appropriate in a Restricted Boltzmann machine 
and was not effective in our case. 

• Momentum: The standard use of momentum was most effective in limiting 
weight expansion and improving performance generally. 

We refined the task as part of the micro-world experiments, to remove any 
classification component. The machines were simply required to learn the 
distribution of patterns (model states) in their environment. Under this task there 
was rapid adaption of the weights to a plateau within the first few hundred epochs, 
followed by a gradual linear increase in the larger inter-layer weights. We have not 
confirmed whether different machines converged initially to the same weight 
matrix for the same problem. It is likely that several different weight matrices 
might be possible given the nature of the optimisation problem and the stochastic 
nature of the Boltzmann machine. 

A brief overview of the object-oriented design and the changes made to the 
learning algorithm of our Boltzmann machine are given in Appendix D. 

3.2 Results in General 

Tuning of the Boltzmann machine was difficult. The detail of the annealing 
schedules for the Boltzmann machine can critically influence results. A wide variety 
of temperature ranges and cycling schemes were experimented with: both at high 
“40 down to 10” and low “5 down to 1” temperatures with long and short ranges for 
varying numbers of cycles at each temperature point. There was no one single 
correct schedule. The other tuning parameters were on average: training time 2,000 
epochs, learning rate 0.3, momentum 0.7, with 20 samples per pattern. Alterations 
in the number of hidden nodes were investigated, for each micro-world, but the final 



numbers were: 4 in the 3-atom world, 6 in the 4-atom world, 8 in the 5-atom world 
and 10 in the 6-atom world. The detailed results for testing of the Boltzmann 
machine are shown in Appendix B. 

For each micro-world, testing of the neutral premise is discussed first. Five runs 
of 60 machines per run are given for each of the four different training sets, for each 
micro-world with the aim of retrieving the complete ranked interpretation. This 
gives a total sample size of 60,000 samples. The actual number of output samples 
and the percentage are shown in the tables. These results are then accumulated at the 
end of a row to give the average result and standard deviation for the errors over 
300 machines. The sampled percentage output can be compared directly with the 
training distributions, on the left of each row. 

Second, a selection of more specific interesting premises are shown in an attempt 
to demonstrate how well (or otherwise) a run of 60 machines performs the task of 
model selection. Adequate training of the machines is demonstrated by inclusion of 
some complete premises (without uncertainty). Others require a range of preference 
levels in the output or a single preference level. In this setting the results need to be 
considered qualitatively. The correct model selection within the ranked 
interpretation is provided, with the expected input distribution, for comparison with 
the actual output of the machines.  

We have not however, provided the accumulated error figures for the specific 
premises, as these calculations were often misleading. The logic does not require 
exact numerical output: there were specific premises where the ranking from the 
logic was correctly represented by the machine but the numerical output was inexact 
and more importantly, there were results where the numerical output was accurate 
but the representation of the logic was not what was expected. These interesting 
premises will form the basis of a discussion of the representation of atomic 
distribution in a further paper. 

3.3 3-Atom Micro-World 

The results of testing the Boltzmann machine against the neutral premise in the 3-
atom micro-world were uniformly satisfactory (Figures 5 & 6). The average error 
per state on the worst training set with 44 patterns was just over 2% and on the best 
training set with 30 patterns was less than 0.5%, with a standard deviation of ±0.11. 
When the least preferred models were present in a training set, their probability 
tended to be overestimated slightly by the network: 3-5% actual output versus 2.9% 
expected. In this circumstance, the probabilities of more preferred patterns were 
slightly underestimated. 

The results for testing against specific premises are shown in Figure 7. The 
training set with 34 patterns was used for this testing: it has an arithmetic 
distribution and the least preferred model states are present. Looking at the 
completely specified premise “-1, -1, 1” it can be seen that the machine was 
adequately trained for the more preferred patterns (decimal state 1 - output 95%), 
but considering premise “1, 1, -1” not well trained for the least preferred patterns 
(decimal state 7 - output only 54%). The machine had difficulty adequately 
learning/retrieving the least preferred patterns in this micro-world, despite 
adjustments in the training sets and tuning parameters. A further example of this 
problem can be seen with premise “1, 1, 0” where the machine is ‘asked’ to select 
two of the least preferred model states. An appropriate selection would be (6) and 
(7) but the machine also outputs samples of (4) and (5). 



However, this was not a problem when the machine was ‘asked’ to rank model 
states at different preference levels. For example, premises “-1, 0, 1”, “1, 0, 0” and 
“0, 0, 1”, in these cases the machine clearly and correctly distinguished between the 
probability of the most, intermediate and least probable model states. What is more, 
the degree of separation between preference levels was qualitatively appropriate 
considering the ranked interpretation. 

3.4 4-Atom Micro-World 

The results of testing against the neutral premise in the 4-atom micro-world were 
also uniformly satisfactory (Figures 8 & 9). The average error per state on the worst 
training set with 96 patterns was under 2% and on the best training set with 88 
patterns was just over 0.5% ± one standard deviation 0.07. As for the 3-atom micro-
world when the least preferred models were present in the training set, their 
probability tended to be overestimated slightly by the network: 2.5% actual output 
versus 1% expected and the probabilities of more preferred patterns were then 
slightly underestimated. 

The results for testing against 28 specific premises are shown in Figures 10 - 13. 
The training set with 98 patterns was used for this testing: it has an arithmetic 
distribution and the least preferred model states are present. Looking at the fully 
specified premises;  “-1, -1, -1”, “-1, -1, -1, 1”, “1, -1, -1, -1” and “1, -1, -1, 1” it can 
be seen that the machine was adequately trained across the whole distribution (a 
most preferred state, decimal 0 - output 92% and a least preferred state, decimal 6 - 
output 85%). The machine did not have the same difficulty with learning the least 
preferred patterns present in the 3-atom micro-world. 

The vast majority of the results for the individual specific premises indicate that 
the machine can select appropriate preferred model states. For example, consider 
premises; “0, 1, 0, 0”, “0, 0, 0, 1”, “-1, 0, 0, 0”, “0, 0, -1, 1”, “0, -1, 0, -1”, “1, -1, 0, 
-1” and “-1, 0, -1, -1”. The machine not only selects the correct model states placing 
them in the correct ranking, but it also maintains a qualitative degree of separation 
between states that might be expected from the levels in the ranked interpretation.   

However, there were some exceptions to this expected behavior: for example 
premises “0, 0, -1, 0” and “-1, 0, -1, 0”. In these circumstances the machine 
‘performs a tie-break’ between models that should have the same state frequencies. 
We believe in these situations the machine demonstrates it ability to learn not just 
state but atomic distributions and to retrieve information related to atomic 
dependency within its training set. As mentioned earlier, this will be the basis of 
discussion in a further paper. 

3.5 5-Atom Micro-World 

The results of testing against the neutral premise in the 5-atom micro-world were 
mixed (Figures 14 - 17). The average error per state was maintained at an acceptable 
level: on the worst training set with 158 patterns under 2% and on the best training 
set, with 120 patterns, just over 1.5% ± 0.05. However, these numbers exaggerate 
the accuracy of the machine in this world. On all the training sets the machine 
grossly underestimated the probability of the most preferred model states. Moreover 
testing in the training sets with the least preferred patterns absent, demonstrated that 
the design of this micro-world had many dependent variables, the machine was ‘tie-
breaking’, even where the premise made no observation of the environment. 
Initially this was felt to be unacceptable. 



It was decided for completeness however, that 12 more specific premises would 
be tested (Figures 18 - 20). The training set with 158 patterns was used for this 
testing: it has an exponential distribution and the least preferred model states are 
present. Looking at the fully specified premises,  “1, -1, -1, -1” and “1, 1, -1, 1, 1”, it 
can be seen that the machine was adequately trained across the whole distribution (a 
most preferred state, decimal 16 - output 97% and a least preferred state, decimal 27 
- output 89%). 

Despite the failings of testing against the neutral premise, selection of model 
states from the specific premises was remarkably appropriate. For example consider 
premise “0, -1, 0, -1, 1”; this premise selects states over a range of the most 
preferred models. The selected states are correct, their ranking is correct and the 
magnitude of the separation between states is appropriate. Similarly premises “0, -1, 
0, 0, 1” and “1, -1, 0, 0, 1” select a range of states, including the least preferred 
models; again these states are correctly selected and ranked with appropriate 
separation. Only premise “0, -1, 0, 0, 0” causes difficulty; it is quite close to the 
neutral premise and requires 16 model states to be retrieved. Still this result is 
acceptable, but with a narrow margin between each of the models. 

3.6 6-Atom Micro-World 

The results of testing against the neutral premise in the 6-atom micro-world were 
mixed (Figures 21 & 22 - only two of the training sets are shown because of their 
size). The average error per state on the worst training set with 332 patterns was just 
over 1% and on the best training set with 180 patterns was a remarkable 0.3% ± 
0.02. However, on training sets where a large majority of patterns are expected to 
return 0, the average error per pattern will be ‘diluted’. As for the 5-atom world, the 
machine underestimated the probability of the most preferred model states on all the 
training sets. Moreover, on the training sets with least preferred patterns present, the 
small percentage separation between ranking levels became blurred or even 
overlapped. 

Again for completeness, it was decided that 12 specific premises would be tested 
(Figures 23 & 24). The training set with 232 patterns was used for this testing: it has 
an arithmetic distribution and the least preferred model states are present. Looking 
at the fully specified premises,  “1, -1, -1, -1, -1, -1” and   “-1, 1, 1, 1, 1, 1”, it can be 
seen that the machine was adequately trained across the whole distribution (a most 
preferred state, decimal 31 - output 96% and a least preferred state, decimal 27 - 
output 93%). 

Despite the shortcomings of the testing with the neutral premise, selection of 
model states from the more specific premises was accurate. For premises with less 
than three uncertain atoms the machine correctly selects and ranks models states, 
with a degree of separation appropriate for the ranked interpretation. Model 
selection only becomes marginal with three uncertainties, for example “0, -1, 0, -1, 
0, 1”. For premise “0, -1, 0, -1, -1, 0” the selection of the most preferred states is 
overlapped: (32), (33), (0) and (1), but in this situation the machine is ‘performing a 
tie break’ based on the atomic probability of dependent variables. 

We did not test the Boltzmann machine representation beyond the 6-atom world: 
considering its stochastic error of approximately 2% per state and that the next level 
of complexity (7-atoms/preference levels) comprises 128 states. The Boltzmann 
machine is known to scale poorly from small to larger tasks but this could perhaps 
be addressed by a longer, slower annealing and training process.  



4 Multilayer Perceptron (MLP) 
The MLP was chosen as a typical candidate feed-forward network, to ascertain 
whether this most common type of neural network could represent a probabilistic 
distribution over the output states.  

4.1 Implementation 

The MLP architecture for our representation consisted of input nodes, one for each 
atomic variable (n) in the micro-world, a hidden layer and output nodes locally 
coded, one for each of the world states (2n). Biases were included in both the 
hidden and output layers. The implementation can be seen as a function converting 
binary to decimal numbers. The implementation was first separately verified with a 
flat distribution over all 16 training patterns in the 4-atom micro-world and tuned 
with regard to: number of hidden nodes, learning rate (typically 0.4) and 
momentum (typically 0.8). The final numbers of hidden nodes were: 6 in the 4-
atom world and 10 in the 5-atom world. Verification on previously seen atomic 
training patterns gave single output activations on the corresponding decimal state 
of over 0.9 and activations of under 0.1 on the others.  

4.2 Results in General 

The MLP was only tested in the 4-atom and 5-atom micro-worlds. Machines were 
trained with the proportional set of patterns based on the ranked interpretation 
derived from the default rules of the micro-world. The training and testing 
followed exactly in the fashion of the Boltzmann machines. The results for testing 
of the MLP representation are given in Appendix C. 

4.3 4-Atom Micro-World 

The results of testing against the neutral premise in the 4-atom micro-world were 
uniformly unsatisfactory (Figures 25 & 26). The average error per state on the worst 
training set with 96 patterns was over 10% and on the best training set with 90 
patterns was over 8%. Examination of any of the individual machine runs or 
average results confirms that the network is not representing the input distribution. 

There is however, a subtle relationship between the expected distribution and the 
machine output. The machine weights are maximally trained to the states, which are 
the least frequent input patterns. These maximally trained weights have a 
predominate effect on the network output because of the low overall activation of 
the network. In the case of training sets 88-0 and 90-0 the intermediate preference 
states are least frequent (the least preferred states are absent). The architecture and 
learning algorithm of the MLP are not designed for the task of ‘recalling’ the 
training set distribution. 

The results for testing against 28 specific premises are shown in Figures 27 - 30). 
The training set with 98 patterns was used. Looking at the fully specified premises;  
“-1, -1, -1”, “-1, -1, -1, 1”, “1, -1, -1, -1” and “1, -1, -1, 1”, it can be seen that the 
machine was adequately trained across the whole distribution (a most preferred 
state, decimal 0 - output 99% and a least preferred state, decimal 6 - output 97%). 

The vast majority of results for the individual specific premises indicate that the 
machine can select model states, but not in the correct preference ranking and not 
with an appropriate degree of separation between the levels of preference. For most 
of the premises where selection of multiple levels is required, the machine often 



outputs a uniform distribution across all levels of preference, for example premises 
“-1, 0, 0, 1” and “-1, -1, 0, 0”.  The more uncertainty in the premise, the poorer is 
the representation of the input distribution. 

Where the MLP is given almost complete information in the premise, Figure 30, 
it is able to appropriately rank two model states at different levels. 

4.4 5-Atom Micro-World 

The results of testing against the neutral premise in the 5-atom micro-world were 
uniformly unsatisfactory (Figures 31- 34). The average error per state on the worst 
training set with 142 patterns was close to 6% and on the best training set with 136 
patterns was over 4%. This may seem reasonable but examination of any of the 
individual machine runs or average results confirms that the network is not 
representing the input distribution. 

The same subtle relationship between the expected distribution and the machine 
output applies in this micro-world as in the 4-atom world. The machine weights are 
maximally trained to the states, which are the least frequent input patterns. The 
architecture and learning algorithm of the MLP are not designed for this task. 

The results for the individual specific premises (Figures 35 - 37) indicated as in 
the 4-atom world, that although the machine can select correct model states: the 
preference ranking and degree of separation between the levels of preference were 
incorrect. Again, where selection of multiple levels of preference was required, the 
machine would often output a uniform distribution. The more uncertainty in the 
premise, the poorer was the representation of the input distribution. This can be seen 
in Figure 37 where two bits of the premise are uncertain or for example in premise 
“0, -1, 0, 0, 1” where three bits of the premise are uncertain. Often one of the least 
preferred model states had the highest output. Even where the premise was almost 
fully specified, for example “1, -1, -1, -1, 0” the MLP was not able to place two 
model states appropriately at the same level. 

The MLP representation was not tested beyond the 5-atom (preference level) 
environment as we felt its performance had already been unsatisfactory at both the 
previous levels. 

 

  



Appendix A:  Micro-Worlds 

 
Figure 1.  Details of the 3-atom micro-world. Ranked interpretation and the distribution 

of patterns in the training sets are shown. 

 
Figure 2.  Details of the 4-atom micro-world. Ranked interpretation and the distribution 

of patterns in the training sets are shown. 



 
Figure 3.  Details of the 5-atom micro-world. Ranked interpretation and the distribution 

of patterns in the training sets are shown. 

 
Figure 4.  Details of the 6-atom micro-world. Ranked interpretation and the distribution 

of patterns in the training sets are shown. 



Appendix B: Blotzmann Machine Results 

 
Figure 5.  Results for the Boltzmann machine in the 3-atom micro-world, tested against 

the neutral premise. States are given in decimal format. 

 
Figure 6.  Results for the Boltzmann machine in the 3-atom micro-world, tested against 

the neutral premise. States are given in decimal format. 

 



 
Figure 7.  Results for the Boltzmann machine in the 3-atom micro-world, tested against 

specific premises. States are given in decimal format. 



 

Figure 8.  Results for the Boltzmann machine in the 4-atom micro-world, tested against 
the neutral premise. States are given in decimal format. 

 



 

Figure 9.  Results for the Boltzmann machine in the 4-atom micro-world, tested against 
the neutral premise. States are given in decimal format. 

 

 



 

Figure 10.  Results for the Boltzmann machine in the 4-atom micro-world, tested against 
specific premises. States are given in decimal format. 



 

Figure 11.  Results for the Boltzmann machine in the 4-atom micro-world, tested against 
specific premises. States are given in decimal format. 



 

Figure 12.  Results for the Boltzmann machine in the 4-atom micro-world, tested against 
specific premises. States are given in decimal format. 



 

Figure 13.  Results for the Boltzmann machine in the 4-atom micro-world, tested against 
specific premises. States are given in decimal format. 



 

Figure 14.  Results for the Boltzmann machine in the 5-atom micro-world, tested against 
the neutral premise. States are given in decimal format. 



 

Figure 15.  Results for the Boltzmann machine in the 5-atom micro-world, tested against 
the neutral premise. States are given in decimal format. 



 

Figure 16.  Results for the Boltzmann machine in the 5-atom micro-world, tested against 
the neutral premise. States are given in decimal format. 



 

Figure 17.  Results for the Boltzmann machine in the 5-atom micro-world, tested against 
the neutral premise. States are given in decimal format. 



 

Figure 18.  Results for the Boltzmann machine in the 5-atom micro-world, tested against 
specific premises. States are given in decimal format. 



 

Figure 19.  Results for the Boltzmann machine in the 5-atom micro-world, tested against 
specific premises. States are given in decimal format. 



 

Figure 20.  Results for the Boltzmann machine in the 5-atom micro-world, tested against 
specific premises. States are given in decimal format. 



 

Figure 21.  Results for the Boltzmann machine in the 6-atom micro-world, tested against 
the neutral premise. States are given in decimal format. 



 

Figure 22.  Results for the Boltzmann machine in the 6-atom micro-world, tested against 
the neutral premise. States are given in decimal format. 

 



 

Figure 23.  Results for the Boltzmann machine in the 6-atom micro-world, tested against 
specific premises. States are given in decimal format. 

 



 

Figure 24.  Results for the Boltzmann machine in the 6-atom micro-world, tested against 
specific premises. States are given in decimal format. 

  



Appendix C: Multi-Layer Perceptron (MLP) Results 

 

Figure 25.  Results for the MLP in the 4-atom micro-world, tested against the neutral 
premise. States are given in decimal format. 



 

Figure 26.  Results for the MLP in the 4-atom micro-world, tested against the neutral 
premise. States are given in decimal format. 



 

Figure 27.  Results for the MLP in the 4-atom micro-world, tested against specific 
premises. States are given in decimal format. 



 

Figure 28.  Results for the MLP in the 4-atom micro-world, tested against specific 
premises. States are given in decimal format. 



 

Figure 29.  Results for the MLP in the 4-atom micro-world, tested against specific 
premises. States are given in decimal format. 



 

Figure 30.  Results for the MLP in the 4-atom micro-world, tested against specific 
premises. States are given in decimal format. 



 

Figure 31.  Results for the MLP in the 5-atom micro-world, tested against the neutral 
premise. States are given in decimal format. 

 



 

Figure 32.  Results for the MLP in the 5-atom micro-world, tested against the neutral 
premise. States are given in decimal format. 

 



 

Figure 33.  Results for the MLP in the 5-atom micro-world, tested against the neutral 
premise. States are given in decimal format. 

 



 

Figure 34.  Results for the MLP in the 5-atom micro-world, tested against the neutral 
premise. States are given in decimal format. 

 



 

Figure 35.  Results for the MLP in the 5-atom micro-world, tested against specific 
premises. States are given in decimal format. 



 

Figure 36.  Results for the MLP in the 5-atom micro-world, tested against specific 
premises. States are given in decimal format. 



 

Figure 37.  Results for the MLP in the 5-atom micro-world, tested against specific 
premises. States are given in decimal format. 



Appendix D: Blotzmann Machine Implementation 

 
Figure 38.  Simplified UML diagram for the object-oriented design of the Boltzmann 

machine. 

 



 
Figure 39.  Modified learning algorithm for the Boltzmann macine. The network is 

separated into layers and the annealing schedule is varied between phases. 

 

 


