
Department of Computer Science,

University of Otago

Technical Report OUCS-2017-05

Child Modules for Erlang and Prolog

Author:

Richard O’Keefe
Department of Computer Science, University of Otago, New Zealand

Department of Computer Science,

University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.php

Child Modules for Erlang and Prolog

Richard A. O’Keefe
Computer Science, Otāgo

Revised June 2017

Abstract

Prolog and Erlang have similar module systems, where modules in a
flat namespace are both the sole form of encapsulation and the units of
code loading and replacement. They also support the inclusion of text
files as a way of sharing declarations and private functions between mod-
ules. This note proposes a replacement for text inclusion inspired by child
modules in Ada.

1 A common problem and a common solution

Prolog and Erlang have many similarities. For historic reasons, the syntax of
Erlang is very close to the syntax of Prolog. Both of them have a “flat” module
system where a module is a chunk of code named by an atom, which may
import routines from other modules and export routines to any module that is
interested.

Neither Prolog nor Erlang has any “structured” kind of unit that is smaller
than a module file. If you want to compose a module from smaller pieces, you
use an “include” directive.

1.1 Prolog includes

ISO/IEC 13211-1:1995 section 7.4.2.7 says

If F is an implementation-defined ground term designating a Prolog
text unit, then Prolog text P1 which contains a directive include(F)
is identical to a Prolog text P2 obtained by replacing the directive
include(F) in P1 by the Prolog text denoted by F.

This is typical standardese (more precisely, typical ISO Prolog standardese)
for

if a top level form is :- include(F)., where F is a file name, your
Prolog system will act as though the top level forms inside that file
appeared in place of the :-include directive.

1

In the formal version: “the Prolog text denoted by F” should be “the Prolog
text contained in the text unit designated by F”. Above all, the standard text
suggests that the contents of the file just replace the include(F) part, leaving
the :- and the full stop stranded just so they can cause trouble.

Include directives are mainly useful so that operator declarations can be
shared by several modules; anything else can be imported as normal code.

1.2 Erlang includes

Section 4.2.4 “File Inclusion” of the Erlang Reference Manual, version 5.4.131

says

The same syntax as for module attributes is used for file inclusion:

-include(File).

-include_lib(File).

File, a string, should point out a file. The contents of this file are
included as-is, at the position of the directive.

Include files are typically used for record and macro definitions that
are shared by several modules. It is recommended that the file name
extension .hrl be used for include files.

File may start with a path component $VAR, for some string name
$VAR. If that is the case, the value of the environment variable VAR as
returned by os:getenv(VAR) is substituted for $VAR. If os:getenv(VAR)
returns false, $VAR is left as is.

If the file name File is absolute (possibly after variable substitu-
tion), the include file with that name is included. Otherwise, the
specified file is searched for in the current working directory, in the
same directory as the module being compiled, and in the directo-
ries given by the include option, in that order. See erlc(1) and
compile(3) for details.

Examples:

-include("my_records.hrl").

-include("incdir/my_records.hrl").

-include("/home/user/proj/my_records.hrl").

-include("$PROJ_ROOT/my_records.hrl").

include lib is similar to include, but should not point out an ab-
solute file. Instead, the first path component (possibly after variable
substitution) is assumed to be the name of an application. Example:

-include_lib("kernel/include/file.hrl").

1http://www.erlang.org/doc/doc-5.4.13/doc/reference_manual/part_frame.html

2

The code server uses code:lib dir(kernel) to find the directory
of the current (latest) version of Kernel, and then the subdirectory
include is searched for the file file.hrl

Erlang’s include lib is not as big an addition to Prolog’s include as it
looks; Prolog systems commonly allow structured file names that do the same
job more generally.

2 What the common solution gets right

• Common code only has to be written once; it can then be used many
times.

• The feature is a standard part of the language; you can always use it.

• Any kind of declaration can be shared this way.

• While current practice seems to ignore it, you can build a module out of
un-shared pieces this way.

• Source file inclusion is a familiar technique available in a wide range of
languages, so programmers feel comfortable using it.

3 What the common solution gets wrong

• Source file inclusion is a familiar technique available in a wide range of
languages, so programmers feel comfortable using it, even when another
approach might be more appropriate. The whole Erlang preprocessor is
seductively familiar to C hackers.

• Common code gets recompiled inside each module where it is used.

• The interface between an included file and a file that includes it is to-
tally implicit; a maintenance programmer looking at an :-include or
-include directive has no way whatever of telling what the included file
needs from its includer or what it provides to its includer, other than going
and looking.

• There are no encapsulation boundaries between inclusions in the same
module. If module M includes files F and G, then F can see everything in
M, including everything in G. So a maintenance programmer who is look-
ing at F cannot be sure of understanding it without looking at everything
it is included into and everything it is included with.

• In both Prolog and Erlang you can replace a module at run time; this can
be an important part of keeping a long-lived program like a web service
running while it is maintained. But you cannot replace part of a module
that was included from another file.

3

• Typical cross referencers for these languages can tell you that routine UR
in module UM uses routine PR from module PM, but do not tell you
about dependencies that involve included files. For example, it cannot tell
you that modules M1 and M2 both use included file F.

• A major problem for portability is that included files are not named in a
portable way; the file names have to be operating-system specific, possibly
even installation specific. There is nothing analogous to an OASIS cata-
logue or an Eiffel LACE file that can map from portable program-specific
inclusion names to system-specific file names.

• If there is some feature provided by an inclusion, and there is more than
implementation of it, the only way to conditionally select the implementa-
tion is by using some sort of preprocessor to conditionally select a directive.
Example:

-ifdef(use_ping).

-include("ping.hrl").

-else.

-include("pong.hrl").

-endif.

This is an issue for Prolog, because there is no standard or commonly
accepted conditional compilation feature for Prolog, but it’s also a problem
for Erlang. In particular, you cannot “drop in” a new or experimental
version of an inclusion without changing the module file.

4 What could we do instead?

I propose a solution in which

• There are modules, just like we had before, and child modules, analogous
to inclusions.

• File names never appear in source files, only module names and child
module names.

• A separate configuration language says how to map module names and
child module names to file names.

• By having more than one configuration file, you can have several different
configurations for a set of modules.

• The interface between a module and a child is explicit.

• Children can be replaceable, although the default is that they are not.

• Items provided by a child are used without a module prefix in the parent.

4

5 Syntax, Erlang version

5.1 Module (reference manual 4.2.1)

-module(Module Name).
(-export(Exports).
| -import(Other Module Name, Imports).
| -compile(Options).
| -vsn(Version).
| -behaviour(Behaviour Module Name).
| -Other Tag(Term).
)*
(Preprocessor directive.
| -include(File Name).
| -include lib(File Name).
| Out of line child
| In line child
| -Other Tag(Term).
| Function definition.
)+

The only change here is the addition of Out of line child and In line child.
Modern Erlang has an optional type system, with -type and -spec declara-

tions, and types may be imported and exported. Think of function -specifications
as another kind of Function declaration and types as function-like values in a
separate namespace.

5.2 Out of line child

-use child(Child Name,
From The Child [,
To The Child [,
integrated | replaceable]]).

From The Child is like an -import directive; it says that the child module
is required to provide the listed functions. Those functions will be available in
the parent without any module qualification; a child module is not a full module
and module qualification applies only to things imported from full modules.

For any module or child module X, the From The Child lists of all its chil-
dren must be disjoint, and none of them may mention anything defined in X
proper. Nor may a From The Child list have any element in common with the
To The Child list for the same child. However, “cyclic” dependencies between
children are allowed. Example:

:- use child(fred, [roast/1], [beef/2]).
:- use child(mary, [beef/2], [roast/1]).

5

To The Child is like an -export directive; it says that the child module
is allowed to use the listed functions visible in the parent, and those only. If
To The Child is omitted, it is taken to be an empty list. Note that a child
module is allowed to import functions from full modules, and that includes its
own ancestor.

The integrated option says that the child is to be bound early with the
parent. The interface specification controls visibility, but the compiler may con-
sider the module together with all its integrated children (and their integrated
children, transitively) as a single unit and do whatever type inference, inlining,
or other optimisation it wishes. The replaceable options says that the child is
to be bound late with the parent. Whatever code is generated must allow the
child to be replaced at run time. The default is integrated.

5.3 In line child

-begin child(Child Name,
From The Child [,
To The Child).

(-import(Other Module Name, Imports).
| -vsn(Version).
| -Other Tag(Term).
)*
(Preprocessor directive.
| -include(File Name).
| -include lib(File Name).
| Out of line child
| In line child
| -Other Tag(Term).
| Function definition.
)+

-end child(Child Name).

The preprocessor ?MODULE hack remains available in the proper body of a
full module. It is not available in any child module, whether in line or out of
line. You are supposed to be able to understand most things of importance
for understanding a child module just by looking at it. Even an in line child
may have been -included, so a child module might be shared by any number
of modules in which case you don’t know what ?MODULE means. In particular,
code like

-child(fred, [f/0]).

f() ->

f(?MODULE).

6

f(mummy) -> true;

f(daddy) -> false.

can be done with plain -include, but intentionally cannot be written using
child modules of any kind.

A child module may not -export anything. The closest it can come is to
provide features to its parent.

In contrast, a child module may -import from other (full) modules. Func-
tions imported from other modules cannot be provided to the parent, only func-
tions defined in the child or available in it from children of its own. The scope
of an -import directive in an In line child is limited to that child. Conversely,
an -import directive in a parent has no effect on its children. The idea is that
you should be able to take an out of line child and move it in line, or an in
line child and move it out of line, without any change to its body. There is one
exception, discussed next.

An in line child may not contain a -compile directive; the compiler options
that apply to an integrated child are the same as those that apply to its parent.
An out of line child may contain such directives.

An in line child may contain a -vsn directive of its own.
A child module may not contain a -behaviour directive. Only a full module

may be an instance of a behaviour.
The body of a child module is just like the body of a full module.
An in line child is closed by an -end child directive; the Child Name is

repeated for readability and must match the Child Name in the corresponding
-begin child.

5.4 Out of line child

-child(Child Name,
From The Child [,
To The Child]).

(-import(Other Module Name, Imports).
| -compile(Options).
| -vsn(Version).
| -Other Tag(Term).
)*
(Preprocessor directive.
| -include(File Name).
| -include lib(File Name).
| Out of line child
| In line child
| -Other Tag(Term).
| Function definition.
)+

7

Module Name, Other Module Name, and Child Name are all unquoted atoms.

5.5 Exports

[functor (, functor)*]

An export list is a non-empty list of functors, where a functor is either
name/arity, referring to an ordinary function, or #name/arity, referring to an
abstract pattern, or a reference to a type. There is no point in an empty export
list, so it isn’t allowed.

5.6 Imports

[(functor (, functor)*)?]

An import list is a possibly empty list of functors. An empty import list
can be useful to state a dependency on another module without allowing the
abbreviation of any function names, so it is allowed.

From The Child is

[item (, item)*]

This is a non-empty list of items, where an item is either a functor or
#record name or a reference to a type. Records may only be required of or
provided to an integrated child (either in line or out of line). Long term, ab-
stract patterns are envisaged as a replacement for records. These days, Erlang
has “maps”, which are also meant as a replacement for records.

Restricting record items to integrated children means that there is no need
to mention anything more than the record name. Mentioning the record name
means that it is obvious to a maintenance programmer which children what
records come from.

5.7 Exports to children

To The Child is

[(item (, item)*)?]

The list of things provided to a child is a possibly empty list of exportable
items. Records may only be provided to an integrated child (either in line or
out of line).

5.8 Example

-module(demo).

-export([f/0]).

-use_child(shared_stuff, [k/1, #r]).

f() -> k(#r{x=1}).

8

% Eof

-child(shared_stuff, [k/1, #r]).

-record(r, {x=0}).

k(#r{x=0}) -> 137;

k(#r{x=1}) -> 42.

% \textit{Eof}

-module(listy).

-export([length/1, reverse/1]).

-begin_child(length, [length/1]).

length(Xs) -> length(Xs, 0).

length([_|Xs], N) -> length(Xs, N+1);

length([], N) -> N.

-end_child(length).

-begin_child(reverse, [reverse/1]).

reverse(Xs) -> reverse(Xs, []).

reverse([X|Xs], Ys) -> reverse(Xs, [X|Ys]);

reverse([], Ys) -> Ys.

-end_child(reverse).

% Eof

6 Syntax, Prolog version

The Prolog version is very similar to the Erlang version, so is described in
less detail. Prolog directives begin with :- instead of -, and Prolog module
declarations have always had the form

:- module(Module Name, [
functor (, functor)*]).

The new forms are

:- child(Child Name,
From The Child [,
To The Child]).

:- use child(Child Name,
From The Child [,
To The Child [,
integrated | replaceable]]).

9

:- begin child(Child Name,
From The Child [,
To The Child [,
integrated | replaceable]]).

:- end child(Child Name).

6.1 Example

:- module(demo, [f/1]).

:- use_child(shared_stuff, [k/2]).

f(X) :- k(r(1), X).

end_of_file.

:- child(shared_stuff, [k/2]).

k(r(U), V) :-

k_aux(U, V).

k_aux(0, 137).

k_aux(1, 42).

end_of_file.

:- module(listy, [length/2, reverse/2]).

:- begin_child(length, [length/2]).

length(Xs, N) :- length(Xs, 0, N).

length([], N, N).

length([_|Xs], N0, N) :-

N1 is 1 + N0,

length(Xs, N1, N).

:- end_child(length).

:- begin_child(reverse, [reverse/2]).

reverse(Xs, Ys) :- reverse(Xs, [], Ys).

reverse([], Ys, Zs).

reverse([X|Xs], Ys0, Ys) :-

reverse(Xs, [X|Ys0], Ys).

:- end_child(reverse).

end_of_file.

The predicate names child/[2,3] are too useful to take away from pro-
grammers, so :- child is only interpreted as a child module header when it is
the very first directive in a file.

10

7 The Configuration Language

This is a very preliminary draft, and is more intended as something to get the
idea across than as anything approximating a serious proposal.

The configuration language has two primary tasks:

• To map module names (and child module names) to file names.

• To provide a conditional mapping so that the versions appropriate to a
particular configuration can be chosen.

Why have an elaborate system like this?
So that we can separate module names from file names.
Both Prolog and Erlang in principle allow a module name to be any sequence

of characters that could be used as the name of a procedure, and that is literally
any sequence of characters whatever. The problem is that this is not a good fit
for file systems, in three ways.

• A file system may, and Windows does, impose a limit on the total length
of a file name that is shorter than the limit set by Prolog or Erlang on
name length.

• A file system may, and real file systems do, impose limits on the characters
that may be used in file names. For example, UNIX and Windows both
disallow the NUL character in file names, whereas ’a\0b’ is a perfectly
good identifier in Prolog and Erlang.

• A file system may identify characters that the language distinguishes. For
example, Windows ignores alphabetic case when matching file names, and
treats / and \ the same, whereas ’a’ and ’A’ are different in Erlang and
Prolog.

The other issue with mapping module names to file names, as Erlang does
and Prolog typically does, is that it is hard to change the location of a file
without changing the name of the module.

Basically, the whole point of the configuration language is to solve this.
SGML catalogues are a good analogy for what we are trying to do here. The

official specification is SGML Open Technical Resolution TR401:19972. There is
now an XML equivalent3, with all the readability disadvantages of XML. James
Clark4 has an explanation of the SGML version. Some of the entries that can
occur in a catalogue are:

PUBLIC pubid sysid These map a portable (public) object name to a system-
dependent name. Practically everything that can be named in an SGML
document can have up to three names: a simple name that is unique within

2http://xml.coverpages.org/sotr9401-a2.html
3http://xml.coverpages.org/walsh-ent-spec20010109.html
4http://www.jclark.com/sp/catalog.htm

11

some class of nameable objects, a public identifier, which is a portable
unique identifier which is supposed to be unique across the whole planet-
wide world of things in SGML documents, and a system identifier, which
is any system-dependent way of referring to an object, but in XML is
always a URL.

ENTITY entity-id sysid

NOTATION notation-id sysid

DOCTYPE doctype-id sysid These map type-specific simple names to files
(or URLs).

SGMLDECL sysid

DOCUMENT sysid These say where to find the SGML declaration for a
document (a sort of parametric meta-grammar) or the document to be
parsed, if either is not otherwise specified.

SYSTEM sys-id-1 sys-id-2 An SGML document may already contain system-
dependent identifiers. This catalogue entry lets you override those, forcibly
remapping some file.

BASE sysid If something is mapped to an absolute system identifier, there’s
no more to be said. If it’s mapped to a relative system identifier v(relative
file name or relative URL), that is to be interpreted relative to some
base. The base for interpreting relative names is either the location of the
catalogue itself, or the sysid provided in a BASE declaration.

CATALOG sysid This is a sort of (nearly) position-independent inclusion
feature. If you can’t resolve an object name using the rules in a catalogue,
try each of the catalogues named in any CATALOG declarations.

DELEGATE pubid-prefix catalogue-sysid ¿This is also a sort of inclusion
feature. What it says is that any public identifier which has pubid-prefix as
a prefix should be resolved by looking in the catalogue found at catalogue-
sysid instead of this catalogue.

The simplest possible scheme for our purposes would be a simple list of
{module name, file name} pairs, with all conditional processing done by some
other means, such as the macro processor M4. This could work, but M4 is
Turing-complete, and it would be nice to have something simpler.

7.1 Grammar of the configuration language

configuration = (inclusion | var-def | search-def)*

default? module-def*

inclusion = "<" file-name

12

var-def = uc-identifier ("|" guard "=" expression)+

| uc-identifier "=" expression

guard = guard "&&" guard

| guard "||" guard

| "~" guard

| "(" guard ")"

| expression relop expression

expression = expression "+" expression

| expression "-" expression

| "(" expression ")"

| lc-identifier

| number

| uc-identifier

search-def = "$" uc-identifier ("|" guard "=" search-list)+

| "$" uc-identifier "=" search-list

search-list = (search-list ",")? file-name

file-name = "/"? file-part ("/" file-part)* ("(" file-part ")")?

file-part = regular-file-part "." simple-file-part

| regular-file-part

regular-file-part = (regular-file-part "++")?

(simple-file-part | "*")

simple-file-part = lc-identifier

| uc-identifier

| "$" uc-identifier

| string

default = "*" "=" search-list

module-def = lc-identifier ("|" guard "=" module-rhs)+

| lc-identifier "=" module-rhs

module-rhs = search-list children?

| children

children = "{" search-def* default child-def* "}"

| "{" search-def* child-def+ "}"

13

child-def = child-name ("|" guard "=" child-rhs)+

| child-name

child-name = ("." (lc-identifier | uc-identifier))+

child-rhs = module-rhs

A file-part may only contain a “*” if it is in the search list of a default. A
default rule says that unless overridden by a later rule, a module is to be sought
by substituting its name for the “*” in the search list.

A module-rhs may omit the search-list only when there is a default; an
omitted search-list means to use the default fule.

Example:

$STDLIB = lib/stdlib/src

$ERL = erl

lists = $STDLIB/lists.$ERL {

$LISTS = $STDLIB/lists.d

.deprecated = $LISTS/old_stuff.$ERL

.sorting = $LISTS/sorting .$ERL

}

...

Example with defaults:

$STDLIB = lib/stdlib/src

$ERL = erl

* = $STDLIB/*.$ERL

lists = {

$LISTS = $STDLIB/lists.d

* = $LISTS/*.$ERL

.deprecated = $LISTS/old_stuff.$ERL

% .sorting is handled by the inner default

}

% sets is handled by the outer default

...

Basically, a configuration file is a back-to-front lazy functional program, be-
cause there are no mutable data structures. Lazy, because nothing is evaluated
until it is needed. Evaluation is driven by first processing the tops of all the
module declarations, and then looking up the children of those modules as they
are demanded by the compiler. Back-to-front, because the usual approach in
functional languages is that the first declaration wins, while here the last rule
to match any need is used. This ordering is chosen so that inclusions, going at
the front, can be over-ridden by later definitions.

14

File names use slashes, but those slashes are operators, not literal text.
Whether they map to “/”, to “\”, to “:”, or even whether /a/b/c maps to
[a.b]c, is system-dependent. In the same way, “.” precedes an “extension” (also
known as a file type), and whether that maps to “.” or to “;” or to something
else is system-dependent. Code may be kept in plain or compressed archives
(Unix “.a”, “.zip”, “.jar”, and so on, or MVS partitioned data sets), and the
“(” “)” part of a file name refers to selecting a member from such a file. For
example, we might have

$MYLIB = lib/otago/raok.zip

* = $MYLIB(*)

Identifiers in simple-file-parts beginning with a lower case letter are literal
text. Identifiers beginning with an upper case letter are meant for “wild-card”
child module matching. Identifiers preceded by a dollar sign are path names.

Conditional selection uses Haskell syntax.
An inclusion says to simply copy all the definitions in the included file.

8 Implementation

Child modules share a feature with textual inclusion: if two modules use the
same child, each has its own copy. This is because a child module may use items
from its parent.

This means that integrated child modules basically are textual inclusion,
just with encapsulation, and can be processed using renaming.

If a child module is replaceable, the simplest way to deal with it is to
generate a normal separate module, with the parent’s module name prefixing
calls to imported functions. Each use needs its own name. For example, a
replaceable child Z of a replaceable chld Y of a module X might be called
“Z,Y ,X”. The automatically generated modules would be held separately from
normal modules.

15

