Initialising Neural Networks with

Prior Knowledge

Nathan Rountree

A thesis submitted for the degree of

Doctor of Philosophy
at the University of Otago, Dunedin,
New Zealand.

September 2006

Abstract

This thesis explores the relationship between two classification models: decision

trees and multilayer perceptrons.

Decision trees carve up databases into box-shaped regions, and make predictions
based on the majority class in each box. They are quick to build and relatively
easy to interpret. Multilayer perceptrons (MLPs) are often more accurate than
decision trees, because they are able to use soft, curved, arbitrarily oriented
decision boundaries. Unfortunately MLPs typically require a great deal of effort
to determine a good number and arrangement of neural units, and then require
many passes through the database to determine a good set of connection weights.
The cost of creating and training an MLP is thus hundreds of times greater than

the cost of creating a decision tree, for perhaps only a small gain in accuracy.

The following scheme is proposed for reducing the computational cost of creating
and training MLPs. First, build and prune a decision tree to generate prior
knowledge of the database. Then, use that knowledge to determine the initial
architecture and connection weights of an MLP. Finally, use a training algorithm
to refine the knowledge now embedded in the MLP. This scheme has two potential
advantages: a suitable neural network architecture is determined very quickly,

and training should require far fewer passes through the data.

In this thesis, new algorithms for initialising MLPs from decision trees are
developed. The algorithms require just one traversal of a decision tree, and
produce four-layer MLPs with the same number of hidden units as there are
nodes in the tree. The resulting MLPs can be shown to reach a state more
accurate than the decision trees that initialised them, in fewer training epochs
than a standard MLP. Employing this approach typically results in MLPs that are

just as accurate as standard MLPs, and an order of magnitude cheaper to train.

i

Acknowledgements

Most important of all, thanks to my wonderful wife Janet, for a truly amazing

amount of encouragement and support.

Many thanks to my supervisors, Associate Professor Anthony Robins and Doctor
Ian McDonald. Your unwavering belief that I could do this has meant a great
deal to me. Thanks also to Doctor Chris Handley, for your positive exuberance in

reading and commenting on drafts.

I would like to thank my colleagues Doctor Richard O’Keefe and Doctor Willem
Labuschagne. Both of you have had an enormous effect on how I see the world
of computing. Special mention must also be made of Professors Brian Cox and
Geoff Wyvill. Without your initial interest and encouragement, I wouldn’t be

doing what I’'m doing.

Also, special thanks to the staff and students in the Department of Computer
Science at Otago. Your patience and understanding made it possible for me to
finish this thesis—what a great bunch of people to work with! Especially my
postgrad students: Yun Sing, Zhou, and Chris; thanks for being so patient these

last few months.

To Joe and Roanne at Profiler Corporation: thanks for giving me a shot. In many
ways, the extra stimulation really helped me to clarify my ideas, and get this
thesis finished.

I would not be able to do what I do but for my parents, who worked very hard so
that I could have the best education possible. Got there in the end! Thanks, Mum
and Dad. And thanks Marina, Bruce, and David for always being positive and

encouraging.

Finally, I cannot thank enough all the friends who have provided company, food,
and wine while Janet and I have worked on our doctorates. Janet’s brother David,

Corrin, Andrea, Sandy, Nuran, Ben, Sana, Dave, and Miche; thank you all.

I owe my thanks to so many; I hope I have not forgotten anyone. If so, please

forgive my oversight, and accept my gratitude.

1l

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

2.1

22

2.3

24

2.5

3.1

32

33

Making Predictions L L
Decision Trees and Artificial Neural Networks
Hybrids e
Thesis Structure e
Research Contributions

Methods of Classification

General Issues
2.1.1 Some Formal Notation
2.1.2 Estimating Error
2.1.3 Overfitting e
Discrimination Classifiers
2.2.1 Linear Discriminant Analysis
2.2.2 K-Nearest-Neighbours
2.2.3 Support Vector Machines,
Probabilistic Classifiers
23.1 NaiveBayes
23.2 LogisticRegression. o
Models That Partition the Feature Space
24.1 DecisionTrees L
2.4.2 Artificial Neural Networks
Remarks

Decision Trees and Multilayer Perceptrons

Decision Tree Background oo,
3.1.1 History
3.1.2 Splitting L.
3.1.3 Pruning e
Multilayer Perceptron Background
3.2.1 Notation
322 History
3.2.3 Modifying MLP Weight Update
Transformational Perceptrons
3.3.1 EBL Networksand KBANN
332 EntropyNets

v

[

R W

3.3.3 Initialisation of MLPs by Decision Tree
34 Comments e e e

A Pilot Study

4.1 Introduction

4.2 Experimental Tools,
4.2.1 Decision Tree Software
4.2.2 General Description of the race Program
4.2.3 General Description of the pruner Program
4.2.4 General Description of the tester Program
4.2.5 General Description of the rules Program
4.2.6 Extension to Banerjee’s Method
427 MLPTools
4.2.8 Gradient Descent Enhancements

4.3 Pilot Study Questions

44 TheDatabases e
4.5 First Four Experiments,
451 Iris e
452 Glass e e

4.5.3 Synthetic Database with Categorical Attributes

4.5.4 Australian Credit Database
4.6 Interpretation and Implications,
4.7 Final Two Experiments

A General Method of Transfer from Decision Trees to MLPs

5.1 The Knowledge of Decision Treesand MLPs
5.1.1 A Simple Database with One Hyperplanar Decision Boundary . . .
5.1.2 Simple Databases with Two Hyperplanar Decision Boundaries . . .
5.1.3 ConvexRegions
5.1.4 Multiple Convex Regions

5.2 Knowledge Transfer.
521 AnExample
5.2.2 Categorical Attributes
5.2.3 Multiple Output Classes
5.2.4 A Multiple Output Example

5.3 Pointsof Difference oo

5.4 Knowledge Refinement Lo

Experiments
6.1 Preliminaries
6.2 Experimental Environment and Databases
6.3 BuildingTrees. e
6.4 BuildingMLPs
6.5 A Walk-Through
6.6 Results. e
6.6.1 Error Ratesof Treesand MLPs.

58
58
59
60
61
64
65
66
67
70
71
74
75
79
81
84
87
90
91
95

97

97

98
103
105
106
108
114
115
118
118
121
121

6.7

6.6.2 False Positive and False Negative Rates
6.6.3 Partial Initialisation L Lo
Summary

Future Work and Conclusion

7.1
7.2
7.3

7.4

Research Contributions
Summary of Material
Future Work
7.3.1 Arbitrary Statements of Knowledge
7.3.2 Initialisation by Oblique Decision Trees
7.3.3 Tree Structured Logistic Regression
AFmalNote

References

C++ and C Source Code

Al

A2
A3
A4
AS

The race Program
A.1.1 Global configurationfile
A.1.2 ThemetadataClass
A.13 ThetupleClass. i v ittt
A.1.4 ThedecisionClass
A.1.5 ThehistogramClass
A.1.6 The count matrixClass
A.1.”7 ThedecisiontreeClass
A.1.8 TheclassifierClass.
A.19 race . .. e
The pruner Program
The tester Program
The rules Program
ThemlpProgram

R Source Code

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9

Code for Manipulating MLPs
Code for Supporting Experiments
Setup of Randomised Test Sets
Setupof Decision Trees oo
Setupof Pruned Trees
Setup of ISE Pruned Trees
Typical MLP Experiment
Typical RMLP Experiment
Typical Multi-way Experiment

vi

144
144
145
148
149
149
150
150

152

159
160
160
160
161
163
164
166
168
171
175
176
179
179
182

List of Tables

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

The BGB Example Database 9
An Example Confusion Matrix 12
A Database with Interacting Categorical Features 20
Example EBLRuleBase 50
Attributes Contained in the Surgical Audit Database 78
Attributes Contained in the German Credit Database 78
Iris Database: Accuracy over 10-fold Cross Validation 84
Glass Database: Accuracy over 10-fold Cross Validation 87
Synthetic Database: Accuracy over 10-fold Cross Validation 90
Australian Database: Accuracy over 10-fold Cross Validation 93
Cross validation results for Surgical Audit and German Credit databases . . 96
RMLP Results for the Iris Database 135
RMLP Results for the Pima Database 136
RMLP Results for the Segment Database 137
RMLP Results for the Heart Database 138
RMLP Results for the Australian Credit Database 138
RMLP Results for the German Credit Database 139
False Positive and False Negative Rates for All Databases 141
Partial Initialisation Error Rates 142
Partial Initialisation Costso 142

Vil

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10

3.1
32
33

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
53
54
5.5
5.6
5.7
5.8
59

The BGB database represented as objects in a feature space 10
An idealised plot of model complexity against errorrate 13
LDA line separating two clusters of the BGB database 15
Demonstration of KNN on the BGB database with k=7 17
Discretisation of the BGB database 21
Decision tree derived from the BGB database. 23
Boundaries implied by the decision tree in Figure 2.6 24
A schematic diagram of Rosenblatt’s perceptron 27
An MLP for modelling the BGB database 29
MLP decision boundaries through the BGB database 29
Translationof EBLtoMLP, 50
Sethi’s translation from decision treeto MLP 52
Banerjee’s translation from decision tree to MLP 56
Pre-processing a database for SPRINT 61
Idealised error rates of a sequence of pruned trees 66
An ineffective way to represent nominal attributes L. 68
A working representation of a nominal attribute 69
Error-reduction rates on the Iris database for MLPs 81
A comparison of MLP learning speeds on the Iris database 82
Error-reduction rates on the Glass database for MLPs 85
A comparison of MLP learning speeds on the Glass database 86
Error reduction rates on the Synthetic database for MLPs 88
A comparison of MLP learning speeds on the Synthetic database 89
Error-reduction rates on the Australian database for MLPs 91
A comparison of MLP learning speeds on the Australian database 92
A database that follows a simple classificationrule 98
An MLP with a single axis-parallel soft hyperplane 99
An MLP with a sharper soft hyperplane. 100
An MLP with a single oblique soft hyperplane 101
A one-node MLP acting as a logistic regressionmodel 102
An MLP with two soft hyperplanes 103
An MLP with two soft interacting hyperplanes 104
An MLP with four soft hyperplanes modelling a convex region 105
A database that requires the modelling of two convex regions 107

viil

5.10 An MLP capable of distinguishing two convex regions 109

5.11 An MLP with one re-curved softboundary 110
5.12 An MLP that deals with a mixture of continuous and categorical input . . . 116
5.13 A decision tree corresponding to a particular setofrules 120
6.1 Effects of weight strength on MLP training 134

X

List of Algorithms

3.1
5.1

52

5.3

54

5.5

5.6

BUILD-DECISION-TREE(D): Build a decision tree given a database
SET-WEIGHTS (tree, class, truelist, falselist): Set the weights of an MLLP
with all continuous inputs and one output
INIT-MLP(tree, database, class): Initialise an MLP with continuous inputs
to recognise one outputclass Lo
SET-WEIGHTS-MIXED(tree, class, truelist, falselist): Set the weights of
an MLP with mixed continuous and categorical inputs and one output
INIT-MLP-MIXED(tree, database, class): Initialise an MLP with mixed
continuous and categorical inputs to recognise one outputclass
SET-WEIGHTS-MIXED-MULTI(tree, truelist, falselist): Set the weights of
an MLP with mixed continuous and categorical inputs and multiple outputs
INIT-MLP-MIXED-MULTI(tree, database): Initialise an MLP with mixed
continuous and categorical inputs to recognise multiple output classes

Chapter 1

Introduction

1.1 Making Predictions

To what purpose do we collect data? We certainly collect a lot of it—almost every article on
data mining begins with some comment about “drowning in data”—and we spend a good deal
of money storing it, querying it, and generating reports from it. Retaining records allows us to
revisit the past, or at least review pertinent features of it, in a manner that would be impossible
if we relied only on human memory. However, we do not collect data at such a rate merely
for the sake of keeping records, nor as a convenience for tax gatherers, nor even to review
performance with an eye to rewarding the strong and punishing the weak. We do it because
we hope that, if only we gather enough good data, we will be able to predict the future.

Any database is no more than a collection of measured features of some real-world objects.
Some features allow us to categorise objects into groups (those that default on loans, or emit
light at a particular frequency, or have six cylinders) while others provide unique identification
(such as a name or a serial number). Sometimes, a measurement for a particular object
is missing; either because it was not recorded at the time, or because it is not yet known.
Statistical reasoning suggests that the missing data may be inferred from the rest with some
degree of accuracy: possibly high if the other data are pertinent to those missing, probably
low if not. Predicting the values of unknown features is engaging in a form of prophecy, and
gambling that the future will be much like the past.

The process of deciding just how the missing data should be inferred is that of creating a
model. A model may be a simplification of the data one has (in the same way that a model
aeroplane is a simplification of an aeroplane), or a simple way to view all of the available data

(like a photograph of a real aeroplane), or perhaps both. There are many ways of building

models, and many ways of using them to make predictions. It is therefore convenient to
categorise models into families.

There are two major families of prediction model. If the missing data are measurements of
some continuous value, then we are dealing with a regression model. If they are categorical,
then we are dealing with a classification model. In both types of model, the output of the
model need not be a value of the same fype as the one being inferred. For instance, it may
be useful in regression to state a range that the predicted value falls into (e.g. high, medium,
or low), and in classification it may be useful to state a probability that the predicted group
is correct (some real-valued number between 0.0 and 1.0). As a result, the families can be
somewhat muddled; for instance, logistic regression is used to estimate the probability that an
object falls into a particular class: a classification model by usage, but a regression model by
name.

In both families, an instance of a model is said to generalise well when it performs
accurately on data that was not used in its building. Performance may be poor for two reasons:
either the model is too simple, in which case it cannot account for complex structure in the
data, or it is too complex, in which case it will overfit the data used to build it, mistaking noise
for structure. Herein lies the difficulty of building good models. Those that have the potential
to overfit data must be constrained so that they do not, and models that are too simplistic
for the data at hand must be augmented in some fashion. Whether and how to simplify or

augment models are non-trivial questions.

1.2 Decision Trees and Artificial Neural Networks

This thesis is concerned with two popular classification models: decision trees and artificial
neural networks. Both are very powerful models, in that they can grow complex enough
to overfit data. Both are used in the discipline of data mining, which is a blending of the
fields of database systems, artificial intelligence (especially machine learning), and applied
statistics (particularly statistical modelling and inference). The twin concerns of data mining
are description and prediction: helping database owners understand the nature of their data
by describing its structure, and using the data to build predictive models. Some techniques
participate in both roles; for instance, decision trees provide rules that describe cluster
boundaries in the data, as well as providing predictive models. Other techniques sacrifice
interpretability for modelling power and, we might hope, greater accuracy. The most famous
artificial neural network of all, the multilayer perceptron (MLP), is often described as just

such a “black box.”

Data miners are pragmatic: if accuracy is really important, then a highly accurate “black
box” model will be preferred over a less accurate, more easily interpreted model. It is a
rare textbook on data mining that does not mention “neural nets” in this context, but few
will propose serious use of them, citing a number of concerns. The problem that seems to
dominate is that artificial neural networks require many passes over the data to “converge,” or
to find that set of parameters that make the model as accurate as possible. If the database to be
modelled is large, then this will take an infeasible amount of time. Furthermore, the analyst
may have to repeat the whole process several times with differing architectures (i.e. differing
numbers and arrangements of the neural units that comprise the model) because there is no
reliable way of determining a good architecture a priori.

Nevertheless, there is a sense—almost an article of faith—that, if one can find a good
architecture and a good set of parameters, then a neural network will generalise well. This
seems to be bolstered by a commonly stated observation that, even when neural networks are
overfitted, they often behave as if they are not. Sometimes, accuracy is king—the model that
gives the right answer most often is preferred over the model that is easy to interpret.

In contrast to artificial neural networks, decision trees are often seen as a good initial
choice for data mining. They are quick to build, easy to interpret, and powerful enough to
model quite complex data. But the “decisions” in decision trees are harsh: slicing up the
data along knife-edge boundaries, producing perfect little cuboids of data. On one side of
the boundary, an object is predicted to be in one class, on the other side, another. Neural
networks, on the other hand, infer soft, curved boundaries through the data. This gives us
some reason to expect that, in modelling data from real world situations, neural networks

could do better than decision trees.

1.3 Hybrids

A handful of authors over the last two decades have put forward the following proposal. If you
wish to model a database using a neural network (specifically, an MLP) but are frustrated by
the infeasibility of searching for a good architecture and good free parameters, then perhaps
it is worth building a decision tree first, and then using that decision tree to determine the
architecture and free parameters of an MLP. If you then optimise the free parameters of the
MLP in the usual way, the process should end sooner due to it having started in a fairly
good state. If you view the original decision tree as a form of “knowledge,” then the process
represents a form of “knowledge refinement,” as long as the final model generalises better

than the initial one.

The process of initialising a neural network by a decision tree represents a special form of
hybridisation—that of combining a symbolic form of knowledge representation (a decision
tree) with a “connectionist” form (an MLP, inspired by biological neural structures). This is
inherently interesting, since it is something that human beings can do: take symbolic knowl-
edge (e.g. “things with teeth and claws are dangerous”) and integrate it into a connectionist
structure almost immediately (sometimes you only have to tell someone once).

In all of the published material in this area—and there is surprisingly little—one thing
stands out. It is rarely questioned that an MLP is a more desirable model than a decision tree. It
is always assumed that an MLP is a better tool for the job, and that changing the representation
from decision tree to neural network is a good idea. This seems worth examining. Why
should we expect neural networks to do better? The mere fact that an MLP might have a
more accurate state than a decision tree is no guarantee that we will find it. With notoriously
unreliable parameter optimisation algorithms, why should we expect knowledge to be “refined”
at all? If we use an initialisation process like those already published, should we ever expect
the MLP to have (or find) any state that generally makes fewer mistakes while classifying
new instances?

Given that some algorithms exist for initialising neural networks with decision trees,
do they actually do what we want? What do we want from such an algorithm anyway? If
we should want something different, then what would that be? Is it possible to describe an
algorithm that, given any database, could produce tree and network models that are equivalent?
And, if one were to run standard “learning” algorithms on the resulting neural network, is
its accuracy even likely to be improved? Could some optimisation algorithms work better
than others? And if one were to describe an algorithm that worked in the general case, is it

possible that the ideas behind it could be applied to other neuro-symbolic hybrids?

1.4 Thesis Structure

This document will try to shed some light on the questions raised above, in roughly the order
that they are stated. In Chapter 2, we examine six different types of classification model, for
two reasons: to provide some historical context for decision trees and neural networks, and
to compare and contrast what they can and cannot be expected to do in terms of modelling
power. Chapter 3 provides a review of three areas of literature: decision trees and their use,
MLPs and their use, and hybrid systems that attempt to derive MLPs from decision trees. It is
established that, from a data mining perspective, none of the current methods do quite what

we would ideally like, although some are quite close.

In Chapter 4, a pilot study is described in which one of the hybridisation methods from
the previous chapter is implemented and tested on some real and synthetic data. The purpose
here is not to be exhaustive, but to get some sense as to whether such techniques are likely
to produce good results. While previous work has established that the error rate of hybrid
neural networks plummets briskly during parameter optimisation, it is not established that the
final state is any better in terms of generalisation accuracy. Here, we see that at least some
situations exist where the network can be expected to do better, and that it is therefore worth
the effort to initialise MLPs with prior knowledge.

Next, in Chapter 5, an attempt is made to generalise the concept of knowledge transfer
between decision trees and MLPs. To do so, it is necessary to become more precise about
what each unit in a MLP does, and how layers interact with each other. A compact notation for
MLPs is derived, emerging from a link between MLPs and tree-structured logistic regression.
The notation makes it possible to describe a simple recursive algorithm that traverses a
decision tree, visiting each node exactly once, generating an MLP that precisely mimics the
behaviour of the original tree. The examination of the internal behaviour of the network also
leads to a precise theory of what the MLP might do to better the accuracy of the tree that was
used to initialise it.

Chapter 6 contains a demonstration of the new MLP initialisation algorithm, using some
well-known databases from the Machine Learning Repository of the University of California
at Irvine. An earlier concern, the extent to which redundancy in the MLP is useful, is also
revisited. Chapter 7 concludes the thesis with a summary that addresses some of the questions

raised in the introduction, and proposes some avenues of future research.

1.5 Research Contributions

The major aim (and primary contribution) of this thesis is to propose new algorithms for the
initialisation of MLPs with decision trees. The context for this work is therefore the research
of Sethi (1990), Ivanova and Kubat (1995), and Banerjee (1997). This thesis extends that
work, explains why it works, estimates the extent to which we should expect it to work, and
presents methods to make it work as efficiently as possible. To support this aim, the following

material is presented in this thesis:
e A review of crucial concepts in the problem of classification.

e A review of the development of decision trees, MLPs, and hybridisations of the two.

A characterisation of MLPs that removes all architecture except the connection weights,

allowing a simple recursive procedure to perform the feed-forward function.

An empirical study of the question of whether we ought to expect tree-initialised MLPs
to out-perform the trees that initialised them (a question not yet considered in the

published literature).

A statement and explanation of new algorithms for initialising MLPs from decision
trees, that produce MLPs with the minimum possible architecture for the purposes of

representing the original decision tree.

An empirical study of those algorithms to establish that they do indeed produce MLPs
that train faster and are more accurate than both MLPs produced by standard methods,

and than the trees used to initialise them.

Chapter 2

Methods of Classification

The word “classification” has come to refer to a particular type of data mining activity that
has two phases: first, the construction of a predictive model, and then the application of
that model to predict the class membership of unclassified objects. While some authors use
alternative terms to refer to the first phase (e.g. “predictive modelling for classification” in
Hand, Mannila, and Smyth (2001)), others use the term to refer to both phases as a genre of
data mining (see, for example, Dunham (2003)). Some authors consider classification to be the
main task of data mining rather than just one of many possible data mining activities (see, for
example, Weiss and Indurkhya (1997), Witten and Frank (1999)). To confuse matters further,
members of the Al community may refer to this activity as “machine learning” (Mitchell,
1997), “inductive learning” (Shavlik and Dietterich, 1990), or “supervised learning” (Bishop
(1995), Reed and Marks (1999), and many others). From this point on, classification will be
used to refer to the entire process of building, evaluating, refining, and using a classification
model.

The following sections are intended to provide a sense of the overall landscape of clas-
sification techniques. There is no attempt to separate classification methods systematically
into families, although themes of discriminatory and probabilistic methods will emerge. The
purpose of this overview is not to suggest that tree methods or multilayer perceptrons are
the pinnacle of classification techniques, but to contrast their nature with other methods and
show why they are interesting from a practical data mining viewpoint. At the same time, we
shall establish some notation and general ideas common to all classifiers, such as estimating
misclassification rate. There is no attempt to be exhaustive in identifying all methods used in
pattern recognition; for instance, there is only a light discussion of support vector machines
(Vapnik, 1995) or rule-based methods such as PRISM (Witten and Frank, 1999). For truly

comprehensive overviews of classification, see Bishop (1995), Hastie, Tibshirani, and Fried-

man (2001), or Duda, Hart, and Stork (2001). The following material attempts only to make
clear the “landmarks” of the classification countryside, and to indicate their relevance to the

task of initialising neural networks with prior knowledge.

2.1 General Issues

2.1.1 Some Formal Notation

Suppose we are interested in discriminating between members of several groups. Perhaps we
should like to be able to discriminate between good and bad debtors in a set of customers, or
maybe between safe and poisonous fruit to eat. Perhaps, more ambitiously, we would like to
assess our entire surroundings and distinguish between those situations in which we should
run and hide or stay and fight. If we have a record of the outcomes of previous situations
(or customers, or fruit), then any strategy developed for dealing with new situations can be
checked by seeing if its result would be correct for the previously encountered (and correctly
labelled) data and modified if it gets the wrong answer. This process is usually referred to as
supervised learning. Having developed the strategy, it can be applied to new situations. If
the supervised learning process went well, then the strategy should produce a good outcome
more often than a random choice would.

More formally, suppose we have a database DD whose rows consist of n observations,
with the i*" observation D; of the form & = x,, T, . . . T,, where there are m features. The
features may be continuous (a measured quantity such as 181.3 cm or 35 years), ordinal
(discrete ordered values such as an education level or a preference rating), or nominal (an
observed quality such as blue or female). Ordinal and nominal features are collectively
referred to as categorical. Each row in the database has one further attribute «x,,,, 1, which
can take on one of y possible class labels from the set {c;, ¢, ..., ¢,}. D is our training set
for supervised learning; it consists of our experience of prior outcomes. To simplify this

exposition, we shall make several assumptions regarding D, namely:

1. D contains no missing or incorrect values; that is, each observation in D has been
recorded accurately, precisely, and thoroughly. Unknown values in training sets cause
problems of varying degree for different classification methods, and are beyond the
scope of this study. See Hastie ef al. (2001, p293 ff) for a brief treatment of the issue,
or Little and Rubin (1987) for an entire book on the subject.

2. The relative frequency of each class label ¢; in D reflects the frequency in the “real”
world; no attempt has been made to collect disproportionately more examples of a

particular class.

3. The features recorded in D have at least some relationship with the class of each object.
If all of the features and combinations of features are strictly independent of the class,

the resulting classifier will be unable to make better-than-chance predictions.

As an example, consider the database in Table 2.1. Here we have n = 30 observations,
m = 2 features (both continuous), and y = 2 class labels (¢; = bad and ¢y = good). Perhaps
these are observations of the leaf length and width of some newly discovered plant that is
supposed to be “good” for a particular purpose (perhaps eating, or the production of a drug)
but, in some cases, is not. We shall be returning to this database often, so it needs a name: due
to its clusters of bad, good, and bad objects, it shall be referred to as the “BGB” database.

It is common to think of the features defining a “feature space,” with the range of values of
each feature providing coordinate axes. Each object « in D can therefore be treated as a vector,
in which case we can think of it as defining a point in m-dimensional space; straightforward
for continuous features (just think of each feature’s value as a Cartesian coordinate) but harder
to conceptualise for ordinal features (is satisfied exactly in-between unhappy and thrilled?)
and taking on a completely different, non-Euclidean meaning with nominal features (should
red be plotted to the left or the right of yellow?). As a simple example of a feature space,
Figure 2.1 shows a plot of the BGB database, with circles representing the label good and
triangles representing the label bad.

We now have sufficient terminology and notation to define classification quite precisely:
given any object represented as a vector x of feature values, from training set D, or possibly
from a previously unseen test set, predict the class label c that should be associated with .

To make that prediction, we assume the existence of a function f that maps a feature vector to

Table 2.1: The BGB Example Database

length | width | class length | width | class length | width | class
9.43 11.59 bad 13.20 8.65 good 14.07 0.68 bad
7.58 9.68 bad 9.57 5.67 good 13.52 2.13 bad
5.90 10.38 bad 11.72 7.92 good 12.16 2.33 bad
5.23 8.92 bad 7.53 3.10 good 16.11 7.17 bad
6.18 9.15 bad 7.01 2.09 good 12.35 3.60 bad
4.47 6.66 bad 5.59 2.08 good 16.56 5.90 bad
4.62 8.31 bad 11.14 4.72 good 15.51 4.77 bad
6.79 6.98 bad 7.56 2.79 good 12.84 2.10 bad
5.05 9.86 bad 11.17 5.99 good 14.54 1.71 bad
5.79 9.61 bad 9.61 4.66 good 13.73 1.74 bad

Plot of BGB database

~ o good
- A A bad
A
S_ AA A
A
A
A o
© o
A
< A
S A
2 ©o ° o A
o o A
q_
A
8 A
N — o o AAA
A
o -
T T T T T T T
4 6 8 10 12 14 16

length

Figure 2.1: The BGB database represented as objects in a feature space

a class label, or possibly to a tuple consisting of a class label and the probability of error. In
practice, f must be constructed in such a way that, if possible, it has a higher probability of
being right than a) random guessing, or b) consistently predicting the most common class.

Classification is the task of constructing, evaluating, and using such a function.

2.1.2 Estimating Error

Leaving aside for the moment how we might construct f, we need to consider briefly how we
might evaluate its performance. The most straightforward method is just to ask “if we used f
a large number of times, what proportion of results would be wrong?” This quantity is R*(f),
or the misclassification rate of f.

When the probabilistic effects of the features on the class labels is fully known in advance,
as is the case when generating synthetic data rather than collecting data from the real world,
then it is possible to state the error rate of an optimal classifier. This “ideal” error rate is
referred to as the Bayes optimal misclassification rate. If there is any “noise” in the data’s
generating function, then the Bayes optimal rate will be greater than zero. In the case of

artificial data generation, noise is usually a result of randomly reassigning class labels, in

10

order to simulate the noise of real-world situations. In measuring the features of real objects,
we have many sources of error: imprecise or inaccurate measurement tools, data entry error,
failure to measure pertinent features, and a host of others. As a result, two very similar or
even identical objects may have differing class labels, making it impossible to achieve perfect
classification.

Estimating the misclassification rate of a classifier is not completely straightforward. Using
the data on which f was built to estimate R*, producing R(f), the resubstitution estimate, is
usually unsatisfactory. Most classifier-building procedures do their best to minimise R, but
may well have a higher R*. To put it another way, we expect that f may not perform as well
on new data as it does on the data with which it was constructed.

The usual solution for estimating R* is to hold data aside during the construction of f
so that it may be used to estimate R*(f) without having been used to build f. A common
practice is to hold back a third or a quarter of the training data during construction of f, then
test f on the held-back portion and record the number of errors. This is quite satisfactory
when data for a training set is readily available, but not as convenient when data are scarce.

If there is barely enough data to build f, then it is common to use v-fold cross validation to
estimate the error, where v is a constant chosen so that an attempt to classify * objects would
yield a reasonable estimate of R*(f). The procedure works as follows. First, build f using
D as the training set. Next, split D into v disjoint sets of the same size, called d;, ds, . . ., d,.
Now, build v classifiers f; = fi, fo, ..., f, using as the training set D with the items in the
corresponding d; left out. Having constructed each f;, estimate its error R’(f;) by testing it on
d;. The final estimate for R*(f) is the mean of those error rates. Breiman, Friedman, Olshen,
and Stone (1984) discuss v-fold cross validation in Chapters 1, 3, 8, and 11 of their book on
decision tree classifiers. The topic is also important in relation to constructing classifiers that
fit the training data too precisely, reducing R at the expense of R*. This issue is discussed
further in the next section of this chapter.

Although it is useful to have a good estimate of how often a prediction is likely to be
wrong, focusing exclusively on R* can be misleading. For instance, R*(f) may be 0.1,
which seems quite good (it gets 9 out of every 10 predictions right) until one finds that the
incidence of class ¢; in D = 95%, with the incidence of class ¢, = 5%. In that case, f is
not doing as well as function g(x) = c¢; (a function that always returns c¢;) which will be
correct 95% of the time. Nor will it be doing as well as a function that makes a random
selection from a distribution of D’s class labels (which has a probability of being correct of
0.95 x 0.95 + 0.05 x 0.05 = 0.905, or 90.5%). Is there a situation in which f is still useful

despite these apparently unfortunate results?

11

Table 2.2: An Example Confusion Matrix

predicted class
positive | negative
positive 5 0
negative 10 85

actual class

We might accept an apparently bad misclassification rate if the cost of false positives
or false negatives is too high. Suppose c, represents the presence of a particularly virulent
disease, and c; represents the absence of that disease. Suppose further that the disease is
particularly difficult to detect—perhaps the test is very prone to error or contamination—but
the cost of not detecting it when it is present is very high. In this situation, the analyst wants
no false negatives, that is no result that says the disease is not present when in fact it is. To do
that, it may be necessary to make the test very sensitive; so sensitive that it may report the
presence of the disease even when it is not there. The resulting classifier has a rather high
false positive rate. Under the circumstances, this is preferable to the alternative; although
a test subject may be concerned that the disease is present when it is not, this is better than
believing the disease absent when it is in fact present. The overly sensitive test may be useful
as a “screening” test for another test that is more accurate, but much more expensive.

Consider the “test” in question to be our classification function f. If, out of 100 tests, f
reports 85 true negatives, 0 false negatives, 10 false positives, and 5 true positives (when the
known incidence is 5%), then it matches our desire for a highly sensitive test—even though
R*(f)is 0.1. We refer to the likelihood of a “positive” when the correct answer is positive as
sensitivity and the likelihood of a “negative” result when the correct answer is indeed negative
as the specificity of f. Occasionally, we find that a procedure for constructing f looks poor
when considered in terms of R*, but looks much better when considered in terms of sensitivity
and specificity.

The differences between what a classifier predicts and what is actually the case may be
tabulated in a confusion matrix, as shown in Table 2.2. Each cell can be associated with the
“cost” of having an entry in it, so that f’s performance can be weighted for specificity or
sensitivity. Clearly, it is easy to extend the matrix with further class labels and costs so that
the overall cost of a particular f may be calculated. Furthermore, a table of this type may be
used during the construction of f, so that the type of error to be minimised is not necessarily
the raw misclassification rate; we may be happy to accept a poor accuracy overall if it allows

f to be particularly sensitive to a class of interest to us.

12

typically preferred
model

test set

error rate

training set

complexity of model

Figure 2.2: An idealised plot of model complexity against error rate

2.1.3 Opverfitting

Some classifiers are constructed in such a way as to fit the training data perfectly, usually by
making the predictive model more and more complex. When R(f) is made perfect, R*(f) is
unlikely to be very good because the classifier has fitted all the noise in the data as well as
the structure. In this situation, an outlier or measurement error in the training data will have
an undue influence on the quality of a prediction made about a new object. Such models are
referred to as overfitted. In general, classifiers that are prone to overfitting require strategies
to keep them just simple enough, but not so simple as to be unable to model structure that is
really there.

In practice, dealing with overfitting is related to estimating misclassification rate. If one
plots the error of a successively more complex classifier on a training set, it will steadily
decrease until it reaches the Bayes optimal misclassification rate on the training set (assuming
it is free to add parameters without limit). On fest data (i.e. data not used to train the model)
the error will start high because the model is too simple, decrease as the classifier’s complexity
increases, then begin to increase as the model becomes overfitted. An idealisation of this
situation is plotted in Figure 2.2.

One of two solutions to overfitting is usually employed, depending on the nature of the
classifier being built. Either the model is made as complex as possible first (so that it is likely
to be overfitted) and then “pruned” back until it reaches the smallest possible model with
acceptable error on test data; or, the model starts off simple and is made successively more
complex, but is “stopped early” when its error rate on test data begins to rise. In either of
these situations, cross validation is sometimes used to estimate a sensible misclassification

rate for the model to aim for.

13

2.2 Discrimination Classifiers

Given the large number of methods that researchers have developed to construct classifiers,
writers often try to categorise methods under headings such as “discriminative” or “probabilis-
tic.” This sometimes has the unfortunate effect of ignoring the spatial nature of a supposedly
probabilistic method, or vice versa. Instead, the following methods are organised according
to historical context rather than their mathematical underpinnings. As we shall see, some
methods only make sense if their spatial and probabilistic natures are considered at the same

time.

2.2.1 Linear Discriminant Analysis

Fisher (1936) is usually cited as the first serious attempt to build a function whose purpose is
to discriminate between classes. The idea is to project each multidimensional point onto a
single dimension, chosen so that the centres of the class groups are as far apart as possible.
The vector that will do this is

z =8z, —x.,) .1)

where S~! is the inverse of the covariance matrix for the two groups, and &, and Z., are
the centroids of the groups. Having found z, there are points in the feature space that, when
projected onto z, are equidistant from the projected centres of the groups. These constitute a
line in two dimensions, a plane in three, and a hyperplane in more than three dimensions. Any
unclassified object will be assigned the class of the group on the same side of the hyperplane.
The process of finding the dimension z (or finding the best line that separates the two groups)
is called linear discriminant analysis (by some authors discriminant function analysis), or
LDA.

As an example, consider just the upper two clusters of the BGB database. The linear

discriminant function that results in maximal separation of these two groups is

dx) = zz'

2.2
= [0.85,—0.91]x7 2

where z is calculated as in Equation 2.1. This places the projection of the centroid of the
good cluster (which is at (9.4,4.8)) at d(9.4,4.8) = 3.6, and the centroid of the bad cluster
(at (6.1,9.1)) at d(6.1,9.1) = —3.1, suggesting that anything on the line separating the two
clusters should project to 0.25. (Any point projecting to a lower value would be considered

closer to the bad cluster than to the good.)

14

LDA line through simplified BGB database

o o good
- A A bad
A
S NN A
A B o
A
o — (]
=l A
£ A
2= © — o
o
fe) (]
< -
0
[}
N - (¢] o
o -
T T T T T T 1
4 6 8 10 12 14 16
length

Figure 2.3: LDA line separating two clusters of the BGB database

Solving for length with width = 0 and vice versa gives a line passing through (0, —0.55)
and (0.59, 0), which is the equation width = 0.93 length —0.55. Figure 2.3 shows this line
plotted through the data; it clearly does the job of separating the two groups. Under linear
discriminant analysis for a two-class problem, where members of class ¢; have centroid .,

and members of class ¢, have centroid @.,, we could consider f as being:

fl@)= a if (dz)-dz.,)) < (d) - dz.,))*

¢y otherwise

Suppose, based on an f generated by LDA, we wished to discover the class of a new
object whose length was 9 units and whose width was 7 units. We transform the centroids
of the two groups and the new point (9, 7) into the z dimension, getting —3.1, 3.6, and 1.3
respectively. We note that 1.3 is closer to 3.6 than —3.1 and so classify the new object as
belonging to the good class.

LDA rests on several assumptions. It behaves best with multivariate normal data with
common covariance, and tends to break down fairly quickly when those assumptions are
violated. It requires all features to be continuous, and classes to be linearly separable, or
at least nearly so. The technique extends to more than two classes, but because each class

is characterised by its own centroid, it cannot cope with the situation in which one class is

15

“surrounded” by members of another, since the centroid of the flanking class may end up very
close to the centroid of the class being flanked.

In fact, the full BGB database is exactly the sort of thing that LDA does not handle well.
If we include the lower cluster of bad items, the bad centroid falls very close to the good
centroid, and there is no good discriminant line that will separate the two: we refer to the
classes as linearly inseparable. 1f the lower cluster were a third class (say peppermint) then
all would be well, since multiple LDA lines can be defined. It might seem enough to recognise
that the second bad group is a separate cluster and treat it as such (perhaps renaming it), but
that would depend on a (potentially difficult) cluster analysis beforehand. Cluster analysis
seems easy to do in two dimensions (plot the data and use your eyes) but it is not so simple in
4-D or more. Also, it is not uncommon to get linearly inseparable data from just two clusters;

for instance, if the bad class surrounded the good in a horseshoe formation.

2.2.2 K-Nearest-Neighbours

Fix and Hodges (1951) provided a way around the problems of normality assumptions and
linearly inseparable data. Their method is known as k-nearest-neighbours, or KNN, and
requires only one assumption: that there is a well defined metric for the distance between
any pair of objects in the training set. The method is easy to describe. Choose some positive
natural number £ that is reasonably large, but small compared to the size of the training set,
and then find the & objects closest to the one to be classified. The class prediction is whatever
class predominates among the k£ objects. When & = 1, the prediction will be the class label of
the nearest object. When k = n, the prediction will be the most common class in the training
set.

It is easy to see that KNN will do a rather fine job on the full BGB database, using
Euclidean distance to find the % closest objects. Its behaviour in classifying a new object at
(9, 7) is demonstrated in Figure 2.4, with £ = 7. Since 5 of the closest 7 objects are good
and only 2 are bad, the classifier will predict that the new object’s class label should be good.
In any number of dimensions, the method amounts to finding a hypersphere, centred on the
object to be classified, that is just large enough to contain £ items from the training set. If it is
convenient to do so, KNN may be interpreted probabilistically, by returning the proportion of
the majority class among the £ items.

In situations with more complex distributions of classes, there are many methods to
improve the likelihood of making a correct prediction; e.g., sophisticated methods of choosing
a good k, and weighting schemes that give preference to objects closer to the query point (see

Dasarathy (1990) for a large collection of papers concerning KNN’s origins and variants).

16

K-nearest neighbours on the BGB database

~ o good
- A A bad
¢ to be classified
o _|
—
o
o0 —
< A
=]
2 © A
A
q —
A
~N o o A A A A
A
o -
T T T T T T T
4 6 8 10 12 14 16

length

Figure 2.4: Demonstration of KNN on the BGB database with &k = 7

The method is far from ideal, however. For KNN, the training set is the prediction model,
so it makes no attempt to describe patterns in the data; it is purely predictive and not at
all descriptive (linear discriminant analysis might at least give the analyst a list of good
discriminatory surfaces in the data). If the training set is large, then classifying a new instance
is costly, requiring one complete scan of the database to find the £ nearest items.

A different problem arises if one extends the data in the BGB database to include just one
categorical attribute. It is by no means clear that it is now possible to define a distance metric
(e.g. is blue closer to green than to purple?). There is recent work in the area of defining
similarity/distance metrics for mixed continuous/categorical objects in the field of automatic
cluster detection; for instance, Zhou, Wang, Dougherty, Russ, and Suh (2004) use mutual
information between clusters to improve cluster analysis of gene-wide expression data; and
Al-Harbi, McKeown, and Rayward-Smith (2004) use Cramer’s V' statistic as an analogue of
covariance to produce a scaled distance metric for categorical data. It is not yet clear whether
these tactics are extensible to mixed continuous/categorical feature spaces, or how well they

will perform in KNN systems.

17

2.2.3 Support Vector Machines

KNN classifiers avoid assumptions of normality by placing hypersphere boundaries enclosing
k items. However, it is also possible to make parametric enhancements to the basic idea of
LDA that will allow the setting of good discrimination boundaries. Vapnik (1979) describes a
method of setting a discrimination boundary using the following simple idea: maximise the
distance between the boundary and both the nearest positive data point and the nearest negative
data point.The points that cause the boundary to fix in a particular place are referred to as
support vectors, and a “learning machine” that uses such a boundary is therefore referred to
as a support vector machine (SVM). The space between the boundary and the support vectors
is called the margin, and SVMs are sometimes referred to as maximum margin classifiers.

In its most basic form, an SVM requires the data to be linearly separable, and will place a
boundary in almost the same place as LDA—but not quite, since the boundary only moves
if the support vectors move; it does not depend at all on the rest of the data. In later work
(Cortes and Vapnik, 1995) the idea of slack variables was introduced, adding a penalty for
misclassification. By maximising margin and minimising errors, a good boundary may be
placed through data that has overlapping clusters. However, as with LDA, there is no good
linear boundary that can be placed through a dataset such as the BGB database.

The extension that allows the method to be applied to situations where the decision
function is not a linear function of the data is presented by Boser, Guyon, and Vapnik (1992).
Again, the concept is ingeniously simple: pretend that we are mapping all of the data to a
higher-dimensional (possibly infinitely-many-dimensional) space. It is now possible to find a
single boundary in the new space that will separate the data. Except we do not really perform
the mapping (which would be impossible in an infinite number of dimensions anyway), we
just define an appropriate kernel function that can be used in the training phase and produces
an SVM that behaves as if it lives in the higher dimensional space.

There is, of course, a catch. The analyst must have some idea a priori as to what sort of
kernel function will do a good job on the data under consideration. Nevertheless, SVMs seem
to be popular due to their mathematical tractability and the wealth of statistical theory behind
them. For further consideration, a superb survey of SVMs has been produced by Burges
(1998).

2.3 Probabilistic Classifiers

If categorical attributes and linear inseparability in a feature space cause difficulty in building

discriminatory classifiers, it is often possible to exploit probability as an alternative. For

18

instance, consider the case of classifying documents (streams of text of some kind) into
categories such as “spam” and “not spam.” Each token in the document can be treated as
contributing to the probability that the document as a whole should be classified one way or

the other; in other words, each token can be seen as the appearance of a categorical attribute.

2.3.1 Naive Bayes

In the mid 1700s, the Reverend Thomas Bayes provided a mathematical theorem that related
the prior and posterior probabilities of classes and features, usually expressed as:
P(x|cy)

P(z)

which simply says that the probability of a particular class c; given a particular set of features

P(ck|az) = P(Ck) X

x is the real-world proportion of that class, multiplied by the probability of seeing that class
with those features, divided by the real-world proportion of those features. These proportions
are typically estimated from a training set, but estimating P(x|cy) is difficult because there is
usually a huge possible number of valuations of £—one must account for all combinations of
all possible values.

Therefore, a popular simplification is to assume that each feature x; of x is independent
from all others. Given this assumption, P(x|c;) no longer has to take into account all of
the possible interactions between features, nor the effect of each interaction on the outcome.
This is plainly ridiculous in most practical situations. For instance, in spam detection, the
likelihood of a particular word appearing in a document is highly dependent on context (i.e.
on the appearance of other particular words). However, in practice the assumption often works
amazingly well. Some words are vastly more “evidential” than others, and a small collection
of the most important words quickly provides collective evidence for or against a particular
classification. The assumption of independence is referred to as naive, and a classifier that
uses the assumption is referred to as a Naive Bayes classifier. Naive Bayes classification is a
favourite strategy in the field of Information Retrieval (see, for example, the review of Naive
Bayes methods in Lewis (1998)) and for detecting spam (popularised by Paul Graham in his
famous online article “A Plan for Spam” http://www.paulgraham.com/spam.html).

To calculate the probability that a word belongs to a spam email, simply divide the number
of times that word appears in all spam messages by the number of times it appears in both
spam and non-spam messages (possibly biased to discourage false positives). Given a new
piece of mail to classify, the classifier finds the £ words which appear to provide the “most”
evidence, either for or against, where “evidence” is calculated as distance from a neutral

probability of 0.5. The probabilities are then combined by dividing their product by the sum

19

Table 2.3: A Database with Interacting Categorical Features

colour size count class

red big 5 good
red small 4 bad
blue big 5 bad
blue small 5 good

of their product and the product of their complementary probabilities. If the result is near 1.0,
the document is probably spam, and probably not spam if the result is nearer 0.0. Although
all the calculations assume the independence of words, and are therefore naive, this method
works astonishingly well in detecting spam. It almost never generates false positives, since it
is very hard for a spammer to design a message that avoids all “bad” words and predominantly
uses words only from a recipient’s personal “good” database.

For the purposes of creating general classifiers, Bayesian methods run into the converse of
the KNN problem; there are difficulties with continuous attributes and their relationship with
the likelihood of a particular class. The usual response is to use some sort of discretisation
process that breaks continuous attributes into bins, and then proceed with Naive Bayes
classification based on the associations between bins and classes (see Yang and Webb (2002)
for a comprehensive review of discretisation methods in this context). Such feature reduction
can be dangerous in a machine learning context; what if the thresholds generated in the
discretisation process turn out not to suit whatever algorithm estimates the model’s parameters
during training? Worse, Naive Bayes classifiers cannot deal with simple cases where the
dependency between features is important, such as the one that appears in Table 2.3. In this

example, red would provide evidence of g for falling into the good class, as would small.

25
a1’

0.61 (assuming no bias in favour of false negatives or false positives). This does not accord

Thus, a new red,small object would be classified as good with a probability of 22, or about
well with the fairly obvious pattern that an object is bad if it is small and red or big and blue.

Consider also the effect of discretisation combined with the naive assumption. Suppose
we were to carve up the BGB database into length and width values at the 4, 8, and 12 marks
on each axis, as depicted in Figure 2.5. The Bayes calculation would then award a 100%
chance of the class being good to anything that fell in the diagonal cells from bottom left to
top right, and a zero chance for anywhere else. One would need to bring in methods from

elsewhere if one wished to optimise the discretisation boundaries.

20

BGB Database Discretised for Bayesian Inference

N
- A
A
S] A A A
A
A
A o
[ee] \%J
A
c A
S A
2= ©o ° o A
o o A
<
A
8 A
N o o A A A
A
o -
T T T T T
4 6 8 10 12 14 16
length

Figure 2.5: Discretisation of the BGB database

2.3.2 Logistic Regression

Another way of exploiting the probabilistic relationship between features and classes is to
employ logistic regression. Techniques such as least squares regression can be used to
create a linear model that uses a weighted combination of features to estimate a continuous
outcome. However, when the task is to predict a categorical outcome, it does not make sense
to allow the possibility of a response above 1.0 or below 0.0, which is what can happen if
we use a standard linear model ¥y = a + xb. Instead, logistic regression uses the model
In 1% = a + xb, where p is the probability of a positive outcome, finding good coefficients
for @ and b by maximum likelihood estimation via the Newton-Raphson method. Hosmer
and Lemeshow (1989) provide an overview of the process and a mathematical treatment of
methods to determine the significance of coefficients, to select features, and to analyse for
situations where interactions of features affect the class distribution.

No distinction need be made between categorical and continuous attributes in logistic
regression, since the coefficient estimation process will simply find good constants to multiply
each feature by, with categorical features “dummy-coded” as a 1 for “this category is present,”

and 0 otherwise. A category’s importance with respect to the class distribution just gets

21

reflected in the coefficients that get chosen. However, logistic regression does assume linearity
between the features and the log-odds of the class. If that linearity is violated, a logistic
regression model is likely to produce false negatives. Furthermore, logistic regression assumes
only an additive model, so interactions between features will not be captured unless the analyst
specifically adds them as “dummy codes” to the feature list (for instance, by adding a column
length x width to the BGB database). This makes logistic regression useful for testing
the evidence for theories, but less useful for exploratory data analysis. However, we draw
an interesting connection between MLPs and logistic regression in Chapter 5, so further

discussion on the matter is left until then.

2.4 Models That Partition the Feature Space

While LDA and KNN place simple boundaries in the feature space, naive Bayes and logistic
regression assign simple probabilities. Decision trees and neural networks are more complex
models, able to partition the feature space of the training set in an (almost) arbitrary manner,
the decision tree by recursively placing hard decision boundaries, and the neural network by
placing “soft” boundaries by assigning a probability of class membership to every possible

point in the feature space.

2.4.1 Decision Trees

Morgan and Sonquist (1963) pointed out that interactions between explanatory variables were
often neglected in the processing of survey data. Their proposed solution was to induce a
decision tree from the data by splitting it in such a way as to reduce the diversity of classes in
each of the two newly created groups, then to continue doing this recursively until groups
contain mostly one class or the other. Each time such a split is made, the decision is recorded
in a directed acyclic graph. The graph will end up being a tree, with the root node associated
with all the data. The tree can be described recursively thus: a decision tree is either a leaf
containing data of all one class, or it is a branching node containing a decision that would split
the data into two groups; each arc of the branching node leads to decision tree. A decision
tree that might be induced on the BGB database is depicted in Figure 2.6.

To classify a new item, just “drop” it through the tree, examine its features at each
decision node, and follow the appropriate arc to the next node. When a leaf is entered, predict
that the object is the majority class at that leaf. Our classification function f now has a

logical/mathematical structure, looking something like this:

22

fl®)=if (mApaA...Ap)V
(GA@A. ANg)V

(7’1/\7’2/\.../\7”j)
then c¢;, otherwise ¢y

The clauses in each sequence of ANDs are decisions to be made at each node, and the
OR sequence recognises that there may be more than one path to regions of the feature space
where the class of interest is common. Figure 2.7 illustrates the result of plotting the decision
boundaries of the tree from Figure 2.6 through the feature space of the BGB database. Note
that the space is partitioned into areas where the frequency of one class is much higher than
its expected frequency across the whole space.

Linear inseparability is dealt with easily by decision trees, because they can have as many
nodes as required to carve up the feature space into regions that are pure (or nearly so) in
one class, and predictions for one class may be found at more than one leaf. In this way,
interactions that affect class membership can be found and exposed: the tree will simply
discover which features need to be tested and ANDed together in order to hunt down dense
regions of one class. These interactions may occur just as well between continuous attributes,

categorical attributes, or a mixture of both; each decision being either a threshold decision on

length < 11.94

yes no
width < 6.325 width < 7.91
/7\ yes no
good length < 10.575 bad good
N
bad good

Figure 2.6: Decision tree derived from the BGB database.

23

Decision tree boundaries on BGB database

~ O good
- A A bad
A
o _|
— AA A
A
A
A o
© o
A
- A
S A
S © o o A
o o A
ﬁ'—
A
Q
° A
o~ [e} (e} A A A
A
O_
T T T T T T T
4 6 8 10 12 14 16

length

Figure 2.7: Boundaries implied by the decision tree in Figure 2.6

a continuous attribute, or a subset-membership decision on a categorical one. This strength of
decision trees is also related to the method’s greatest weakness: all boundaries are thresholds
(all or nothing) and axis-parallel (perpendicular to the axis on which the decision is being
made). Note the result of axis-parallel splitting in the case of attempting to classify the point
(9, 7) in the BGB feature space: the boundaries in Figure 2.7 mean that the tree would produce
the result bad when KNN and LDA would both predict good.

Researchers in both artificial intelligence and statistics quickly began to show great interest
in decision trees. Hunt, Marin, and Stone (1966) published experiments to show how the
procedure of inducing a decision tree might be related to human concept formation—that
the successive, hierarchical decision process could provide an analogy for not only the
discrimination of one situation from another, but also for the development of the ability to
discriminate in the first place. Quinlan (1986) provided algorithms based on Claude Shannon’s
idea of information entropy to ensure that splits in the data maximised (locally) the chance of
reducing class diversity at each split, and Breiman et al. (1984) demonstrated algorithms and

mathematical analysis for growing trees for both classification and regression.

24

When classification was reinterpreted as a data mining task (Agrawal, Imielinski, and
Swami, 1993), researchers became interested in creating programs that could induce accurate
decision trees from large amounts of data in reasonable time (Mehta, Agrawal, and Rissanen,
1996; Shafer, Agrawal, and Mehta, 1996). Decision trees quickly became a favoured method
for classification in data mining due to their ability to combine continuous and categorical
data, their ability to model the same class in distant parts of the feature space, and the speed
with which they could be induced: approximately log(n) passes of the training set, one pass
for each level of the tree.

While decision trees often provide a good solution to classification problems, real data
often turn out to be messy, noisy, and badly behaved. They occupy oddly shaped regions of
the feature space, and overlap with little regard to thresholds or subsets. Sometimes these
spaces cannot be modelled with a series of axis-parallel hyperplanes (see Murthy, Kasif,
and Salzberg (1994) for trees that make oblique hyperplane splits), and so a decision tree
model may be good for approximate discrimination but no more. Yet, animals and human
beings are often able to make very fine distinctions in noisy environments: between edible
and poisonous, natural and artificial, Pinot Gris and Gewiirztraminer. Is this kind of reasoning
able to be specified in terms of symbols and symbol processing (as in a decision tree), or is
there some other requirement?

After the Dartmouth conference on Artificial Intelligence in 1956 most of the attendees
(John McCarthy—who coined the much-lamented phrase “Artificial Intelligence”—Marvin
Minsky, Nathaniel Rochester, Claude Shannon, Trenchard More, Arthur Samuel, Oliver
Selfridge, Ray Solomonoff, Herbert Simon, and Allen Newell) began to pursue a programme

of research into “Symbolic Al.” This is summed up in the theme of the conference, that:

Every aspect of learning or any other feature of intelligence can in principle
be so precisely described that a machine can be made to simulate it.
(Crevier, 1993)

One might see decision tree classification as part of this programme, consisting of a careful
description of the process of partitioning data and discriminating objects based on rules
concerning their features. However, another programme of research was leading in a different

direction: that of artificial neural networks, or the simulation of brain-like activity.

2.4.2 Artificial Neural Networks

McCulloch and Pitts (1943) introduced a simple mathematical model for the behaviour of a

single neuron in a biological nervous system. Working on the principle that biological neurons

25

2

receive “input” (i.e. electrical voltage) from many sources and produce just one “output,
they proposed a model for a neural unit that calculates the sum of its numerical inputs. If
the sum reaches a certain threshold, the unit produces an output of 1.0, otherwise 0.0. If the
inputs are “weighted” (i.e. some inputs are treated as more important than others) then the
McCulloch-Pitts neuron behaves like a linear discriminant function. However, wiring up
many of these units so that the output of several can flow into the input of another allows
arbitrary decision boundaries to be created; rather like the ANDing part of a decision tree, but
with oblique hyperplane splits. McCulloch claimed that many connected neural units would
be computationally as powerful as a Turing machine.

If neural units could compute by combining inputs until a threshold is reached, it still
remained to be shown how they could learn; that is, under what conditions they would
change the weights attached to each connection and the threshold at which they would
fire. Hebb (1949) suggested that brain connections change as we learn different tasks; new
connections are formed, old connection strengths change. The “Hebb Rule” simply states that
the simultaneous activation of two neural units via one connection increases the conductivity
of that connection. Therefore if any two units are firing, and one provides the input to another,
the weight on the connection between the two should be increased. Under this scheme a
“brain-like” network of units could potentially “train” itself to reach a correct representation,
given the right sort of stimuli.

Having established that a network of McCulloch-Pitts neurons could learn at all, it
remained to be shown just what could be learned. Rosenblatt (1958) investigated a feed-
forward network of units which he called a perceptron and which Widrow and Hoff (1960)
called an adaline. A schematic diagram of a perceptron is provided in Figure 2.8; it consists of
a sensory layer which receives input from the environment and passes it through fixed-weight
connections to McCulloch-Pitts association units, an adaptive layer of connections whose
weights could change in order to improve classification accuracy, and response units that
summed and applied a threshold to the adaptive layer. Rosenblatt’s perceptron learning rule,
formalised and extended to real-valued outputs as the Widrow and Hoff delta rule, provided
a Hebb-like scheme for training the network: assign “blame” to the adaptive layer units
according to strength of their connection with the output, and adjust them in the appropriate
direction according to the proportion of that blame. If done iteratively, in small increments,
the device should converge on a reasonable mapping of input to output.

The perceptron caused great excitement: here we had brain-like computing that could
learn things by example. However, there was a strict limitation, demonstrated by Minsky and

Papert (1969): the perceptron, consisting as it did of a single series of linear discriminant

26

Association Units
(McCulloch-Pitts neurons) Response Units

Fixed weights

Variable weights

Figure 2.8: A schematic diagram of Rosenblatt’s perceptron

devices, could not learn a representation for a problem that was linearly inseparable—it had to
depend on the constructor of the network to get the initial layer of association units right. For
instance, it could not learn the mapping of XOR (a 0 if both of two inputs are the same, and a
1 if the inputs differ), three-bit parity (a 1 if an even number of three inputs are 1, 0 otherwise),
or the mapping in Table 2.3. Unless the layer of fixed processing weights immediately after
the input units could be made adaptive, there was no way to go from a state where the network
could not represent a linearly inseparable problem to one where it could. If more than one
layer of adaptive weights is allowed, establishing a training procedure proves to be difficult.
It is easy to work out which units in the layer immediately before the output unit are to blame
for incorrect classification in a perceptron, and to what extent, but how could units one layer
farther back be appropriately “blamed” for a given output?

The answer was provided by Werbos (1974), and popularised by Rumelhart, Hinton, and
Williams (1986): exchange threshold units for logistic units (to make the activation function
differentiable), then use first-derivative methods to drive the weights in the “hidden” layer(s) in
the appropriate direction on an error surface in the weight/output space. The method is greedy,
so can end up in a local minimum, but usually seems to produce good results. It is incremental,
so requires potentially many scans through the training data before it “converges,” and it may
oscillate rather than converge, as do many iterative optimisation methods. The multilayer
perceptron (MLP) is in fact doing something similar to a decision tree: examining the features,
deciding for itself which to treat as most important, estimating decision boundaries that
discriminate one class from another in the feature space, and adjusting those boundaries to
produce the best classification that it can. The technique of deciding to what extent units in

the previous layer are to blame for a misclassification is referred to as error backpropagation,

27

or backprop for short. There are several variations of the method, which shall be covered in
detail in Chapter 3.

Due to each unit in the MLP having a logistic activation function, each unit behaves as a
single logistic regression equation, providing a “soft” decision boundary in the feature space.
If the layer of units immediately forward of the sensory layer sets up these boundaries, layers
further on in the network can AND them (producing arbitrary region boundaries) and still
further layers can OR them (producing arbitrarily nested or separated regions). Since the final
output unit is also activated logistically, it can be interpreted as a probability, thus allowing
the network as a whole both to partition the feature space and estimate the density of classes
within those regions. Since the sensory layer need not be concerned with whether inputs are
continuous or categorical (categorical inputs may be dealt with by providing all-or-nothing
sensors that detect the presence or absence of a particular category), the feature space may be,
as with decision trees, non-Euclidean. Empirical investigations of MLPs suggest that, despite
having a large number of parameters (connection weights as well as the units themselves),
they appear to remain accurate on test data.

Figure 2.9 shows the architecture of an MLP that could be used to model the linearly
inseparable data in the BGB database. It has three layers of adaptive weighted connections,
one layer of sensory units (which do nothing other than “detect” input and feed it forward
though connections), and three layers of processing units with logistic activation functions
(denoted by a(-)). Note that there is a “bias” term on each node, denoted by b, that represents
the amount that the inputs have to reach before the activation of the unit will reach 0.5. Each
bias term is local to its particular node; thus, some nodes will “tend” to be off while others
will “tend” to be on. These bias terms can be treated as if each were just another connection
weight coming from a unit whose activation were frozen at 1.0. The ¥ term in each node
represents the sum of the net input to the unit. Since there are four connected layers of units,
we refer to it as a four-layer MLP.

Figure 2.10 shows the decision boundaries of the MLP in Figure 2.9 after training by
backprop on the linearly inseparable data in the BGB database. Blue represents an output
close to 0.0, and beige an output close to 1.0. Note that the boundaries are “fuzzy” rather
than sharp (due to the logistic activation function), and “oblique” rather than axis-parallel
(unlike the decision tree boundaries in Figure 2.7). We would therefore expect this MLP not
to make the kind of error that a decision tree might in classifying a point at position (9, 7).
And indeed, (9, 7) falls within the wedge-shaped beige region indicating output close to 1.0.

Suppose that the weights of a three-layer MLP are stored in two matrices, w* and w?.

If there are M nodes in the sensory layer (indicating that the input is a vector of size M),

28

k

Figure 2.9: An MLP for modelling the BGB database

0
VERY

Output of MLP trained on BGB database

width

Figure 2.10: MLP decision boundaries through the BGB database — values

close to 0.0 are represented by blue and values close to 1.0 by beige

29

A must have M + 1 rows and

H nodes in the hidden layer, and just one output unit, then w
H columns, and w?” must have H + 1 rows and one column. In each case, the extra row is
to store the bias weight for the appropriate unit. Rows and columns are numbered from 0;
thus wéQ refers to the weight on the connection between the fifth sensory unit and the third
(not the second) unit in the hidden layer. Similarly, 'wgl,2 refers to the bias on the third (not
the second) unit in the hidden layer. To keep with the convention used so far, features of x

are still numbered from 1 to m. The output value for feeding forward an input vector x is

therefore:
H-1 M
feedforward(x) = a g a g T Wi, + W, w5+1 +wy
h=0 m=1

The function symbol a represents the logistic activation function, a(x) = H% Further
hidden layers can be represented simply by “wrapping” the whole expression in further
summation/activation terms. Strategies for optimising the weights in the matrices will be
presented in Chapter 3, along with more convenient notation.

Despite the felicitous combination of probabilistic and discriminatory representation, the
soft, smoothly curved decision regions that can be modelled, and their almost mysterious
ability to generalise well in the presence of many parameters, MLPs have several detracting
features from a data mining perspective. Where sheer predictive accuracy is the main concern,
MLPs are an attractive option. However, it has never been clear how to choose the initial
architecture of an MLP (that is, the number of hidden layers and the size of each hidden
layer), nor has it been clear how to choose the size of the increment during the training phase,
although the smaller the increment, the smoother the gradient descent. If the increment is
very small, the training data may have to be presented to the MLP many times (in the order
of hundreds or thousands) and if too large, the MLP may never converge as the position
in weight/error space oscillates. Typically, MLPs have been initialised with small random
connection and bias weights, so that they essentially “know nothing,” and are able to learn
“their own” representation by way of their training algorithm. This, too, can lead to a
prohibitively large number of presentations of the training data, since the MLP’s weights
could start off a long way from those that will minimise R(f). Finally, if description is
as important to the analyst as prediction, MLPs provide little insight, since their decision
boundaries are all emergent from their many connection weights and unit biases.

A promising tactic for the more efficient use of MLPs has always been to initialise them
with domain knowledge before training commences: but how should this be done? And where
should the knowledge be derived from? In a data mining situation, prior knowledge may be

scarce.

30

2.5 Remarks

Sometimes a straightforward approach to discrimination is the best. If data are cleanly
separated into their classes, are fully defined by continuous features, and are not interleaved
in any awkward manner, then linear discriminant analysis or logistic regression are fine
candidates for generating classification functions. If data are interleaved awkwardly but
follow some reasonable probability density distribution, and consist entirely of continuous
features, then k-nearest-neighbours works well. If the features can reasonably be expected to
be independent, Naive Bayes classifiers are easy to construct and provide clear “reasons” for
reaching their conclusions. These tools are clean, simple, and sharp; often they are right tools
for the job.

However, data are often messy, noisy, incomplete, and of mixed feature types. Those
features interact: sometimes importantly, and not always as a simple additive or multiplicative
combination. In these cases, decision trees and neural networks are very useful. Decision
trees provide models that can easily be interpreted as simple threshold rules, and are computa-
tionally efficient to construct, at the cost of making sharp, axis-parallel decisions. They can
be interpreted probabilistically, if the hypercuboids at each leaf contain the distribution of
classes that are found in that part of the feature space. As knowledge representations in Al,
they might shed light on how we make decisions and how we develop default rules. MLPs, by
contrast, can model the feature space with arbitrary combinations of oblique, soft decision
boundaries, allowing huge flexibility in the decision model. As research tools in Al, they may
shed light on how animal brains store and retrieve information. However, one can spend a
great deal of time finding a good architecture for the MLP, and then more time training it.

If an analyst is in a situation where accuracy is more important than explicability, then
producing an MLP decision model might be highly desirable. Is it possible to make decisions
about an MLP’s architecture and starting state based on what we might already know about the
training data? Further, is it possible to transfer prior knowledge regarding the training data to
the MLP, and will that actually reduce the MLP’s training time? Where can we get that prior
knowledge from? Are other, simpler classification methods a useful source of such knowledge,
or will their output simply cause an MLP to reach a local minimum, or to oscillate? If an MLP
can refine knowledge that it is initialised with, is it possible to characterise that refinement?
Can the refined knowledge be extracted without ruining it, or is it intrinsically tied to the
representation of the MLP? These questions are explored in Chapter 4, after a discussion of

tree-building and MLP-building details in Chapter 3.

31

Chapter 3

Decision Trees and Multilayer

Perceptrons

Having sketched the broad outline of classification methods in the previous chapter, we turn
our attention to just two: decision trees and multilayer perceptrons (MLPs). Our interest lies
in trying to exploit the complex decision regions that MLPs can model, while alleviating those
aspects that make them less satisfactory in data mining situations, such as their long training
times, and the difficulty of determining a good initial architecture.

It is generally accepted that artificial neural networks of various kinds may be initialised
either in a random state or in a state that encodes prior knowledge. Sometimes the former
is preferred, in an attempt to eliminate “preconceptions.” However, if the idea is to “refine”
knowledge rather than generate it in the first place, then we need some way to get the
knowledge into the MLP. While there is a huge body of work on getting knowledge out of an
MLP after training finishes, the literature concerning the initialisation of MLPs is remarkably
sparse, and tends to focus on neural networks other than “plain” MLPs. The small amount
of literature that does address the initialisation of feed-forward MLPs with prior knowledge
has a unifying theme, which is the use of decision trees to generate (or at least to encode) the
prior knowledge, and a primary interest in how much faster the MLP converges having been
initialised.

It is hardly surprising that tree-structured knowledge is the focus of this previous work.
There is an appealing similarity between the graph-like structures of trees and MLPs, and
decision trees may be induced fairly quickly (typically in log n passes through the training
data). Thus the answer to the question, “where do we get our prior knowledge from?” is
easily answered: from a decision tree induced on the training data. Both decision trees and

MLPs carve up the feature space into sub-regions, and neither is particularly challenged by

32

the presence of categorical features. However, there is a general belief that MLPs typically
achieve better generalisation accuracy than decision trees, and that it is therefore worth
transforming decision trees into MLPs. In the next chapter we shall begin to examine this
claim, using the transformation method that best seems to suit data mining situations.

This chapter addresses the following three topics:

1. the historical development of decision tree classifiers and attempts to improve their

efficiency and accuracy;
2. the historical development of MLP classifiers and attempts to improve their efficiencys;

3. progress in the area of initialising MLPs with decision trees.

3.1 Decision Tree Background

3.1.1 History

The earliest suggestion of using computers to generate decision trees seems to have been
made by Morgan and Sonquist (1963). The authors note that, in survey data, explanatory
variables tend to interact, making an additive model inappropriate. Their solution was to
induce a decision tree by choosing sub-groups of the data that reduce the sum-of-squares
error in predicting the dependent variable, then to recursively apply the same process to
the groups just created. The process terminates when no group accounts for more than two
percent of the error. The analysis thus produced is in tree form, and captures interactions
in the form of logical ANDs; for instance, the example survey analysis that Morgan and
Sonquist provide suggests that the highest income group in their sample was that consisting
of people who were Caucasian AND between 45 and 65 AND not farmers AND college
graduates. Retaining a focus on the analysis of survey data, these ideas were developed as
AID (Automatic Interaction Detection), THAID (Theta-AID, Morgan and Messenger, 1973),
and eventually CHAID (Chi-squared AID, Kass, 1980). CHAID is still used in data mining
packages available today, such as SPSS AnswerTree.

The use of decision trees as a statistical analysis tool makes for an interesting contrast
with the work of Hunt ef al. (1966), which explores the idea of decision trees as concept
formation devices. The programs described by the authors fall squarely into the field of
Artificial Intelligence rather than Exploratory Data Analysis (the second section of the book
is entitled “Experiments in Artificial Intelligence”) and the idea is that new “concepts’ are

formed by recursively partitioning the training data and following paths to leaf nodes that

33

contain only positive exemplars of the concept. Splits are performed as the data is scanned
(rather than at the end of each full scan), and features have to be discretised because splits are
determined by either noting similarities of features between positive exemplars, similarities
of features between negative exemplars, or splits that can be made based on the feature “most
shared” between the two.

By far the most well known work on decision trees is that done by Quinlan (1986),
introducing ID3 (the ID stands for Interactive Dichotimizer), and by the authors of CART
(Classification and Regression Trees, Breiman et al., 1984) during a similar period. Quinlan’s
work takes a machine learning approach, with ID3 being used to learn six simple rules for
playing an end-game in chess. These rules are induced from a few pages worth of examples
of rook and king vs. king and knight endgame situations. In contrast, CART is firmly rooted
in statistical prediction, and essentially breaks all classification problems down to the feature-
space model explained in Chapter 2 of this thesis. CART also spends a lot of time examining
the question of pruning decision trees to avoid overfitting the training data, and proposes
v-fold cross validation to get an unbiased estimate of the error of a tree. As interest grew
in using decision trees for group prediction (i.e. classification), Quinlan (1993) developed
C4.5, a decision tree program that took into account pruning, validation sets, and test sets. It
remains very widely used, and is now (with the commercial release of its successor, SeeS)
free for public use, with source code available.

In keeping with applied (rather than experimental) use, CART, ID3, and C4.5 are char-
acterised by attempts to improve the efficiency of the splitting of data. Intuitively, a good
split is one that gets lots of one class into one partition, and hardly any into the other; i.e., it
reduces the diversity of class labels in any given branch or leaf. Now, any split (for instance,
arbitrarily cutting off just one easily identifiable object) will reduce diversity, so the trick is to
find a split that minimises the diversity of the partitions created. To this end, Quinlin used a
splitting criterion based on Claude Shannon’s Information Theory called “Gain,” while CART
used a criterion called the “Gini” coefficient (named after Italian economist Corrado Gini,
and commonly used in Economics as a measure of demographic diversity). Recent work by
Raileanu and Stoffel (2004) suggests that both criteria will choose the same feature/value pair
on which to split in all but 2% of possible distributions, explaining the strong similarity of
trees grown using the two different methods.

A major variation in standard decision tree building is the idea of multivariate rather than
univariate splitting; i.e., using more than one feature to make a decision at any one node.
Finding linear discriminant functions at each node is discussed in the 1973 edition of Duda

et al. (2001), with many authors subsequently describing trees that form “tilted” hyperplanes

34

using some form of linear discriminant; for a comprehensive list, see Murthy (1998). CART
uses a hill-climbing algorithm to find parameters for good linear combinations of features for
non-axis-parallel splits, and significant extensions and improvements were made to this idea
to yield the oblique decision trees of OC1 (Murthy et al., 1994).

With the increase in the ability to generate and store vast quantities of data came the
rise of data mining: a discipline that combines statistics, exploratory data analysis, machine
learning, and database theory with the expectation of being able to scale knowledge discovery
to massive numbers of objects of high dimensionality. With description and prediction
as data mining’s major goals (Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy, 1996),
association mining (that is, finding items in transactions that occur more often together than
apart) and classification are both considered fundamental techniques. The SPRINT (Scalable,
PaRallelisable INduction of Trees) decision tree system, implemented in IBM’s Intelligent
Miner software, was introduced by Shafer ef al. (1996). As the name suggests, scalability is
the primary concern: SPRINT scales almost linearly with the number of training objects and
the number of features. Furthermore, SPRINT does not require that the training data can fit
into memory; it builds disk-based attribute lists kept in sorted order to facilitate the finding of
split points using the Gini coefficient. Since split points are then found by way of a single
sequential scan of the data, it is possible to parallelise the operation, with only a small amount
of communication between independent CPUs/core memories/disks.

There are a number of subsequent methods for providing scalable classification. BOAT
(Bootstrapped Optimistic Algorithm for Tree Construction) tries to build several layers of the
tree in one pass through the data (Gehrke, Ganti, Ramakrishnan, and Loh, 1999). PUBLIC
(PrUning and Buil.ding Integrated in Classification) avoids building subtrees that are likely to
be pruned (Rastogi and Shim, 1998). RainForest (Gehrke, Ramakrishnan, and Ganti, 2000)
suggests a unifying framework for differing methods of building and a speed improvement

over SPRINT, but at the cost of memory bounded by the sizes of the domains of features.

3.1.2 Splitting

A decision tree classifier is formed by the procedure BUILD-DECISION-TREE, presented as
Algorithm 3.1. Assuming that constructors and database operators do what one might expect
from the pseudocode, the construction of the tree is fully determined by how FIND-SPLIT
works. This section explains briefly some techniques for finding splits that minimise diversity
locally, in an attempt to build a reasonably compact decision tree.

Suppose we have a database consisting of six objects labelled good and six labelled bad.

We wish to separate them in some way so as to get, intuitively speaking, as many good things

35

Algorithm 3.1 BUILD-DECISION-TREE(D): Build a decision tree given a database

BUILD-DECISION-TREE(D)

1 if D contains only objects of one class

2 then return TREE-NEW (class-label, nil, nil)

3 condition < FIND-SPLIT(D)

4 return TREE-NEW (condition, BUILD-DECISION-TREE(RESTRICT(D, condition)),
BUILD-DECISION-TREE(RESTRICT(D, = condition)))

on one side as we can and as many bad things on the other. We might also prefer that we do a
bit better than just taking the first item that can be cleanly discriminated and putting it in a
group on its own; such a group is indeed pure in one class (and the rest of the collection is
now less diverse in its classes) but repeated application of this technique will result in a list
rather than a tree.

To make the example concrete, let us take the following as the set of objects:

row—ID | x | v | label
1111 good
2121 good
3122 bad
412 |2 good
51212 good
6|23 bad
7133 good
813]|3 bad
91313 bad
10| 3| 4 bad
11134 good
12 14| 4 bad

This data only allows us six possible splits: at x < 2, x < 3, x < 4 and the equivalent
splits for y. Each split can be represented as four numbers (g;, b;)(g,, b,) where g; is the
number of good items that ended up on the left, b; the number of bad items on the left,
etc. The six possible new distributions for (g;, b;) (g, br) are therefore x < 2 : [(1,0)(5, 6)],
r<3:[(4,2)(2,4)], x<4:[(6,5)(0,1)], y<2:[(2,0)0(4,6)], y<3:[(4,1)(2,5)],
and y <4:[(5,4)(1,2)]. Which of these is to be preferred? This is the question that must
be answered at each node of a decision tree.

Intuitively, [(5,4)(1,2)] looks like a bad split; on one side the ratio of labels is nearly one
half (almost perfect diversity, when diversity should be being reduced), and on the other a

third. Whatever measure we use had therefore best avoid splitting on y < 4. On the other

36

hand, [(1,0)(5, 6)] also looks bad: if a tree-induction process continued to make such splits
on the basis that one side is pure in one label, we would end up with a list instead of a tree.

In ID3 and C4.5, Claude Shannon’s idea of information entropy is used to define how
much information is gained by making a particular split. The information of a probability
distribution P = pq, po, ..., p, is defined as:

n

I(P) == (pi x logy p;)
i=1
Thus, a distribution of (0.5,0.5) (the worst situation we can be in, perfect diversity) has
1(0.5,0.5) = 1.0 and a distribution of (0, 1.0) (purity) has /(0, 1.0) = 0.0.
Weighting for the sizes of the two partitions that we create when we make a split, the
information after splitting P into () and R is:

1(Q,R) = “21(Q) + “21(R)

np np

The “information gain” that is achieved by splitting P into () and R is:

Plugging our example into the equation, we get “gain” values of x < 2 : 0.08881,
x < 3:0.08170, z < 4:0.08881,y < 2:0.19087,y < 3:0.19571,and y < 4 : 0.02712.
We would choose the split which led to the highest information gain: that is, y < 3.

As an alternative, the Gini index measures the diversity rather than the information/entropy

of a probability distribution. Using the same P, (), R:
Gini(P) =10 =) p!
i=1

so a distribution of (0.5,0.5) has Gini(0.5,0.5) = 0.5 and a distribution of (0.0, 1.0) has
Gini(0.0,1.0) = 0.0.
Again, weighting for the sizes of the partitions:

Gini(Q, R) = “2 Gini(Q) + " Gini(R)

np np

Since making any split at all will improve diversity, we do not bother to calculate a “Gini
gain”’; we just look for the smallest possible value of Gini(Q, R).

Following our example, the Gini measures are * < 2 : 0.45455, © < 3 : 0.44444,
x < 4:045455, y < 2 :0.40000, y < 3 : 0.37143, and y < 4 : 0.48148. Note that this

method would also choose to split on y < 3. However, it is interesting to note that, if only the

37

x feature were available, the Gini coefficient would have chosen to split on x < 3 and Gain
would have chosen either z < 2 or x < 4.

In both cases, categorical features may be treated the same way, but with a subset test
rather than a threshold test producing the probability distribution of class labels. If there are
too many subsets to test all of them due to there being too many possible categories, then the
possible splits may be tested in a greedy manner, finding the subset of size 1 that produces
the best split for that feature, then attempting to add a category that improves the split until
no more can be found (the authors imply that this is what is done in SPRINT). Alternatively,
we can do what ID3 does, which is to calculate splits as if they were multiway splits on
each category. Under this scheme, the Gain criterion favours features with many categories.
Quinlan (1993) suggests in this case the use of Gain Ratio, i.e., that a split is evaluated as
Gain(P)/1(S) where S is the probability distribution of the categories of the splitting feature.

In order to test every possible split in a reasonably efficient manner, SPRINT first pre-
processes the database into list of sorted feature values, each carrying its class label and row

identifier. Thus the example above would be converted to:

row—-ID x label row—-ID vy label
1 1 good 1 1 good
2 2 good 2 1 good
3 2 bad 3 2 bad
4 2 good 4 2 good
5 2 good 5 2 good
6 2 bad 6 3 bad
7 3 good 7 3 good
8 3 bad 8 3 bad
9 3 bad 9 3 bad
10 3 bad 10 4 bad
11 3 good 11 4 good
12 4 bad 12 4 bad

All possible split points can now be calculated in a single scan of the attribute lists. Once
the split point is found, SPRINT forms a hash table (on disk, if necessary) of the row-IDs of
all the attribute-values that meet the split condition; all of the attribute list portions can now
be sent to the correct node of the decision tree by querying whether each row-ID is in the
table. If the tree is grown breadth-first, only four files of attribute lists need to be maintained
at any one time; one each for those items that are currently placed in a left subtree and in a
right subtree, and one each for those that are about to be placed in a left or right subtree.

It should be noted that this basic outline of decision tree induction is inherently greedy.
The “best” tree is searched for by finding the one feature/split-point (or feature/subset) pair

that improves diversity the most, making that split, then doing the same with the resulting two

38

partitions. It is entirely possible that a combination of features would produce a better split,
but the problem quite quickly becomes intractable. To a certain extent, multivariate decision
trees such as OCI1 and those described by Utgoff and Brodley (1990) alleviate this problem,
but at the expense of not being nearly as scalable as SPRINT.

3.1.3 Pruning

Having induced a decision tree, it is necessary to ensure that it is likely to generalise well.
Heuristically, we use the principle of Occam’s Razor: a small tree is likely to be better than
a large tree, which is most likely fitting the noise in the training data. Too small, however,
and the model will have too much bias. For a comprehensive survey of pruning methods and
comparative analysis, see Esposito, Malerba, and Semeraro (1997). Here, we will just present
the basic principles and representative methods.

One can grow a decision tree until it classifies the training data as perfectly as possible,
then prune. Or, one can merely employ a stopping rule that halts growth when a certain
accuracy has been reached or when the data at a node become too few. It is widely accepted
that the former strategy produces superior trees. This accords with the intuition that, since a
decision tree is grown greedily, lower branches may contain decisions that swiftly discriminate
between objects that may look inseparable at upper branches, or whose proportion of any one
class may appear insignificant. Such branches are less likely to be removed under pruning
schemes than subtrees that contain as many leaves as there are data examples; those subtrees
are probably just fitting the data rather than patterns in the data.

The CART method of Minimal Cost Complexity (MCC) pruning involves taking a fully-
grown tree and finding the branch that has the worst trade-off of size (i.e. number of terminal
nodes hanging off it) against the improvement in accuracy on the training set gained by
keeping the branch. This branch is then converted to a leaf that will predict the majority label
at that node. This process is repeated until only the root node remains, converted to a leaf.
The sequence of trees has progressively worse accuracy on the training data as the trees get
smaller, but grows progressively better on unseen data drawn from the same population—until
some point at which the trees become too small, at which point the error begins to rise again.

So, three data sets are required: one to grow the tree in the first place, one to pick the tree
in the sequence of pruned trees that has the best trade-off of size against accuracy, and one to
make a final estimate of accuracy after pruning. (The second set cannot be used to estimate
overall accuracy, as it has already been used in model selection and is thus biased in favour of

the pruned tree.)

39

While the MCC method of pruning is noted to produce rather small trees, it does require
splitting the data into three pieces, though they need not be of equal size. Choosing the
appropriate tree from the sequence is also tricky, since the error curve against the hold-out set
is usually bowl-shaped, so picking the lowest point of the bowl may produce a tree that is still
too large. To get a tree closer to the “elbow” of the bowl, the CART authors suggest choosing
a tree within one standard error of accuracy of the tree that minimises the error.

Prior to C4.5, Quinlan advocated the use of “reduced-error pruning.” This involves
presenting a hold-out set to the fully grown tree and examining each node from the leaves
upward to see whether it would reduce the misclassification rate if pruned. If it would, it is
pruned, unless there is a subtree whose existence reduces error more than pruning would.
This method of pruning finds the smallest partial tree with the best error rate on the hold-out
set, but also quite strongly overfits the hold-out set, throwing away “pattern” that might have
been hard-won during the growing phase.

As a compromise, C4.5 uses “error-based pruning” (EBP). Each branch of the tree is
treated as a set of trials with binomial outcomes. A confidence interval is constructed (using
the Wilson estimate for standard error rather than the usual Wald estimate taught in first year
statistics courses) and the upper limit of the proportion of errors contrasted with the number of
errors expected from keeping the subtree in question, or with replacing it by the most accurate
branch. Half of one error is added to every leaf to account for the fact that subtrees at first
make no errors at all on the training data. The default confidence interval on C4.5 is very
narrow (only 75%) so this method is often reported as being quite prone to underpruning, but
Hall, Bowyer, Banfield, Eschrich, and Collins (2003) make a strong case for users choosing
wider confidence intervals and thus harsher pruning. The advantage, of course, is being able
to prune without using a hold-out set.

The versions of decision trees used in IBM’s Intelligent Miner (SPRINT, for example)
use the Minimum Description Length (MDL) principle for pruning (Mehta, Rissanen, and
Agrawal, 1995). The MDL principle involves finding a suitable and compact encoding for
a prediction model combined with the instances in the training set that it gets wrong (the
authors go to some trouble to show that the encoding they choose places a sensible weighting
on these exceptions with respect to the model). The best model is then assumed to be the
one that can be described with the minimum number of bits; it is assumed to have the best
trade-off between model complexity and model accuracy. The authors compare their pruning
method to that of C4.5 and CART. Clearly it is quicker than MCC to perform (although in
both cases pruning takes a tiny fraction of the time taken to build the tree) since it requires

only one pass through the tree and no checking against a validation set. However, according

40

to the same results, MCC seems to produce much smaller trees that are just as accurate on a
test set. The comparison against C4.5 seems to have been done using the default confidence
level of 75%, which allows EBP to underprune, potentially producing over-large trees that
do not perform well on new data. At present, there appears to be no published evidence that
MDL pruning produces better-pruned trees than MCC or EBP.

For the purposes of experiments reported in Chapters 4 and 6, we use MCC when we
wish to see if MLP initialisation is strongly affected by pruning, since it seems consistently to
produce the most “harshly” pruned trees; we can expect that there is a reasonable difference

between the size of an unpruned tree and the size of a pruned tree.

3.2 Multilayer Perceptron Background

3.2.1 Notation

Before discussing the details of MLPs that shall concern us for this thesis, it is convenient
to introduce some notation and terminology that will allow us to avoid presenting too many
network diagrams.

In general, an MLP is considered to be a piece of machinery such as that described near the
end of Section 2.4.2; an array of arrays of neural units, where each unit is fully connected to
all of the units in the following layer. Each connection has a real-valued “weight” associated
with it (either positive or negative). When data are presented at the “sensory” end of the
network, they are fed forward through the weighted connections. The unit at the far end of
each connection “activates” (or not) according to the sum of the weighted inputs from its
incoming connections, added to that unit’s “bias” value (a signed real value that indicates the
unit’s tendency to be on or off). In order to activate smoothly between 0.0 and 1.0, the sum of

weighted inputs and bias is put through an s-shaped activation function, usually the logistic

a(x) = 1 +i,z. The activation pattern in the MLPs last layer is considered its “output,” to be
interpreted in whatever way suits the designer.

The term layer is used in the MLP literature to mean both “a layer of neural units” and
“a layer of connection weights”; here we shall use it only in the first sense. Therefore, a
“three-layer” network is one that has a layer of sensory units, a single “hidden” layer of units,
and a layer of output units. A “four-layer” network has two hidden layers between sensory
and output layers. Unless stated otherwise, each layer is assumed to be fully connected to the

one after it and all weights are adaptable (i.e. none are assumed to be frozen by default). We

41

use the term epoch to denote one complete presentation of the training data to the network
followed by an update of the connection weights.

In the following material, we need to distinguish between matrices (as traditionally
presented in linear algebra) and lists of matrices (ordered lists as one finds in programming
languages such as Lisp, Scheme, Python, etc.). In a break with mathematical tradition, lower-
case bold letters (e.g. «) will represent matrices, while upper-case bold letters (e.g. X') will
represent lists. Square brackets imply list construction, with [] indicating an empty list. The
+ operator indicates the appending of either a list or an item to another list; the operation is
assumed to have no side-effects, so that if X = [a, b] then X + c returns [a, b,], with X
remaining unchanged.

Suppose we represent an MLP as a list of matrices of weights and biases. Denote each
matrix in the list as w;, representing the set of weights connecting layer : — 1 with layer
1. If the sensory layer is numbered as layer zero, then in a four layer MLP we will have
[wy, wsy, ws]. The (j, k) element of w; is the strength of the connection between the ;"
unit in layer 7 — 1 and the k" unit in layer . For the moment, assume that biases are not
represented in the weight matrix, but that the bias on the &' unit in layer i is denoted b;;, and

that the biases for a whole layer are collected in a row vector b;.

1

Let the “activation” function a(z) = =

be an element-wise function that may be
applied to a matrix «, such that a(x) = [a(x11),...a(x,,,)]. Matrix multiplication will
always be represented with an x; ab refers to the element-wise multiplication of matrices a
and b, and a + b represents element-wise addition.

If D constitutes a training set, then let d be a matrix where each row maps to an object’s
features (neglecting the class label). Let ¢ be a matrix of values representing the target values
according to D; perhaps a simple vector of ones and zeroes for a two class problem, or a
matrix representing the output activations of multiple nodes for multiple-class problems. Let
o be a matrix of output values, where each row represents the output corresponding to the
input on the same row of d. The purpose of training the network is to bring o as close as
possible to ¢ without overfitting the training data.

With a four layer MLP, then, one obtains predicted classification values thus:
o = a(a(a(d X wy + bl) X wq + bg) X w3 + b3)

The use of matrices reduces notation considerably, compared to the formula for calculating
output given in Section 2.4.2 on page 30. However, it it possible to go a little further,
eliminating the need for explicit bias terms. First, we add a “zeroth” row to each connection

weight matrix. To represent biases, we suppose that the zeroth row of w; is the strength of

42

the bias on each node in the i*" layer; conceptually this equates to a connection to a node in
the previous layer whose “activation” is always one. This can be simulated by adding a first
column to d and to each x; whose elements are all 1.0. The feedforward equation is then
altered so as to keep these “bias nodes” frozen (that is, set to 1.0 and allowed no input so they

can never be re-calculated). Explicitly, feedforward becomes
o = a(l]a(1l]a(1|a(l|d x w;) X wy) X w;)

Where 1|z represents adding a column of 1s to the left hand side of a matrix. This is beginning
to look like a recurrence, if we allow ourselves to substitute d for . We can, in fact, represent
a feed-forward operation through any number of layers, assuming we keep each weight matrix

in a Lisp-like list W that has operations first and rest:

if W is empty,
feedforward(a(1|d x first(W)),rest(W')) otherwise.

feedforward(d, W) =

with the number of layers in the MLP being length(W') + 1. This allows us to say:
o = feedforward(d, W)

where feedforward is the recurrence as stated. Since matrix multiplication allows us to have
as many “rows” of input as we like, we can treat each iteration through the recurrence as if it
were producing a new “database” d to be pushed through the next layer of weights. Each new
d is the pattern of activations of each layer of units, given the “original” d. Once there are no
more layers (i.e. rest(W) is empty), the “result” is just the activation of the last set of units
(which, by this stage, is d). The number of layers is arbitrary; it is just one more than the
number of weight matrices stored in W. Although matrix notation is used in Bishop (1995),
we believe that this is the first publication of a simple recurrence to represent the feedforward
function.

During weight optimisation, it is necessary to know the activation state of each and every
unit in the network. Implemented naively, the recurrence above will only provide the state of
the output units. To get the whole activation state, use:

state(d, W, M) — rest(M + d) if W is empty,

state(a(1|d x first(W)), rest(W), M + d) otherwise.
The first member of M is the original database, so we only need return the subsequent

activations. The state of an MLP after a feedforward is thus exposed by:

S = state(d, W, [])

43

3.2.2 History

Two problems will occupy the analyst who decides to use MLPs as prediction models. The first
is the problem of representation, which concerns whether and how a network can represent
the task at hand. The second is training, which concerns how to optimise the connection and
bias weights so as to achieve the best possible predictions.

It is a pair of popular misconceptions that Rosenblatt’s perceptron and Widrow’s adaline
were networks containing no hidden layer, and that Minsky and Papert (1969) showed that
such networks could not correctly classify all objects in a linearly inseparable feature space.
In fact, the perceptron consisted of a set of fixed functions transforming and thresholding the
inputs, which were then transferred through a set of adaptive connection weights to the output
layer. It is thus a three layer network, but with only the second matrix of weights available for
“learning.” With a judicious choice of the fixed weights, a perceptron can therefore transform
a linearly inseparable problem into a linearly separable one, which may then be solved by
adaptation of the the weights leading to the output layer.

Those weights between (transformed) inputs and outputs may be set first with small

random values, and then updated by the perceptron learning rule:
w' = w' 4+ n(c - o)d

where 7 is a constant that constrains the growth of |w|. If the mapping of the transformed
inputs to desired outputs is linearly separable, then the perceptron learning rule will guarantee
convergence (i.e. making no errors on the training data) after some finite number of epochs.

What Minsky and Papert established in Perceptrons was that, if functions connecting
inputs to the adaptive weights remain fixed, then the number of them must grow exponentially
with the dimensions and complexity of the problem. They experimented with different
methods of limiting the first layer of perceptrons—for instance, by limiting that part of the
feature space that each could perceive, and limiting the number (but not scope) of inputs that
each could perceive—but showed in each case the the resulting network could not classify all
instances correctly. The response to this challenge was to develop networks with adaptable
connection weights between at least two layers, so that the functions that transform the input
can be chosen by whatever learning process is used. These are referred to as multilayer
perceptrons, or MLPs. (Minsky and Papert remark in the second edition of Perceptrons that
this does not eliminate the problems they noted; the number of functions needed to transform
the inputs still grows too fast with the dimensionality of the problem. Furthermore, the
techniques usually proposed to allow the first set of weights to be adaptive amount to greedy

hill-climbing algorithms, prone to getting stuck on local maxima in “goodness” space.)

44

The problem of allowing multiple layers of weights to be adaptable is one of credit
assignment. When only the weights between the output layer and the previous layer are
adaptable, one can change each weight in proportion to the activation of the unit from whence
it comes, since that is how much “blame” to assign to that end of the connection. This is
possible because we know exactly what we would have liked the result at the output end of
the connection to be: we have the matrix c to tell us that. Transferring the problem to the
weights between the previous two sets of units presents a puzzle: what can we say the “output”
values should have been?

The solution, due to Werbos (1974) and Rumelhart et al. (1986) is error backpropagation,
often referred to as “backprop.” If we assume that the activation function of each unit is
differentiable, then the output of each unit is a differentiable function of the input variables,
weights, and biases. Similarly, if the error function is a differentiable function of the outputs,
then it is a differentiable function of the weights. We can therefore work out the derivatives
of the error with respect to the weights and work out the direction (if not the magnitude)
of change. For this to work, we must have differentiable activation functions, so linear
thresholding will not work: its slope is infinite at the point of the threshold. Fortunately, the

1

logistic function a(x) = 17 = has a rather convenient derivative a’(z) = a(z)(1 — a()).

To collect the set of “error signals” &, the procedure is slightly different for the weights
leading to output nodes compared to weights leading to hidden nodes. For the final layer in
an n-layer network:

4, = (c—o)(o(1l —0))

Whereas for the previous layers:
9; = (di41 X w[j;:}i—l-l)(mi(l'o —x;))

The wy;; is “slice” notation, borrowed from the Python programming language. It
indicates “all the rows from one onward”; i.e., not including row zero, which holds the biases.
The slice is performed before the matrix transpose.

Updating the weights can be a simple matter of steepest descent. For each weight matrix:
wi ™ = wj +n(l]z;)" x 81

where 7) is, as before, a constant that scales the distance a weight will shift in any direction.

Steepest descent is often referred to simply “gradient descent” or just plain “backprop.”
Suppose we were to plot the values of connection weights against the total error of the

MLP: we would get a curve in two dimensions, a contour in three, etc. A space consisting

of weights in n — 1 dimensions and error in the n'" is often referred to as an error-surface

45

in weight-space. Typically, such a surface will consist of steep valleys, long plateaux, and
“knees” and “elbows” of varying “suddenness.” The purpose of any weight updating algorithm
is to (attempt to) find the lowest point in this space—the global minimum. It is easy to see

that the technique of steepest descent suffers from two major problems:

1. It is slow. If 1 is too large, the steps in the weight-space will be too large and may
overshoot the minimum. Correcting itself in the next epoch, it overshoots in the other
direction, and may oscillate, perhaps converging eventually or perhaps not. If 7 is small
enough to avoid oscillation, then small updates on valley-sides will improve error a

lot—but similar steps on long plateaux will not.

2. It is prone to getting stuck in local minima on the error surface. If 7 is small enough
to guarantee smooth gradient descent, then the weights may converge to a spot where
neither increasing nor decreasing any weight will improve the error; however, this may

not in fact be lowest point on the error surface.

The speed (or lack thereof) of steepest descent is of great concern if the MLP is to be used in
a data mining situation. If the training data have many features and there are many objects,
then the MLP is going to be large (it will consist of many units with many connections) and
each epoch will take a long time. If the mapping from features to classes is complex, then
many epochs may be required; typically hundreds or thousands. Since there are at best a few
rules of thumb for finding good architectures, initial weights, and learning parameters such as
7, it may be necessary to go though several iterations of initialisation and training to make a
good model: all very time-consuming, ad hoc, and reminiscent of a “black art.”

The standard method for initialising the connection weights and biases is to set them to
small random numbers. Here is a typical statement of how to set up an MLP, paraphrased from
(Le Cun, Bottou, Orr, and Mueller, 1998): Assuming that inputs are normally distributed with
a standard deviation of 1.0, and that the sigmoidal activation function is hyperbolic tangent
rather than logistic, the weights should be drawn from a uniform distribution with mean zero
and standard deviation o, = m /2 where m is the fan-in, or number of connections feeding
into the node.

The purpose of such rules is to do little more than ensure that the sigmoids are not
saturated (i.e. that their input does not place their output in the flat region at top and bottom)
when training begins. Nevertheless, this can still place the weights a good distance from
their ideal position. It is just as common to see suggestions such as initialising with random
weights between —0.3 and 0.3, and there is no good evidence to suggest that any random

initialisation is much better than any other.

46

Finding good architectures (in terms of the number and size of hidden layers) is even more
of an ad hoc process. Le Cun et al. (1998) do not address the issue at all, but there is a general
sense that each input should have at least one hidden node to allow a hyperplane decision to
be developed for it. Techniques for searching for a good architecture include starting with a
network that is likely to be far too small and growing it (Fahlman and Lebiere, 1990; Frean,
1990); or starting with a network that is likely to be far too large and shrinking it (Mozer and
Smolensky, 1985; Le Cun, Denker, and Solla, 1990).

3.2.3 Modifying MLP Weight Update

The most well-known augmentation of steepest descent backprop is the idea of momentum,
introduced by Plaut, Nowlan, and Hinton (1986). Rather than simply changing each weight in
the direction determined by backprop multiplied by the learning constant 7, a proportion of

the amount the weight moved in the previous epoch is also added. Thus, the update becomes

t+1
%

wit = pw; ™!+ wp —n(1z)" X i

with p a parameter chosen by the user; usually around 0.9. Movement across plateaux will
speed up, since a step of size s in one direction will result in the next step consisting of at
least ;s movement in the same direction. Momentum does no damage in situations where
the minimum is overshot, since p is usually set to some value less than 1.0; the oscillations
generally converge on the minimum. Although momentum is virtually considered part of
standard backprop, it is still rather inefficient (still requiring hundreds of epochs for simple
problems) and results in yet another parameter, u, to be searched for and set by the user.

To address the issue of reaching an optimum error in weight space more quickly, Fahlman
(1989) investigated the use of momentum, alternative activation and error functions, and the
use of an offset to avoid activation function saturation. However, the most effective speed
increase in his study was due to the introduction of a new weight-update technique that he
called “Quickprop.” The idea is that the error-curve of each weight be treated as if it were
parabolic. Given the gradient before a round of regular backprop and the gradient after (both
given by error backpropagation), and working on the assumption that the error due to each
connection is independent of the rest, it is possible to calculate the minimum of the parabola
and jump there. Although that jump probably does not minimise the error (because the
weights are not independent and the shape not actually parabolic), repeated application of
the procedure seems to work very well. The process is not terribly sensitive to the 1 value
for backprop, because it is only used once to determine the two gradients necessary on the

surface to calculate the minimum, and again if the the process needs to be “restarted” due to a

47

change of direction. Empirically, Quickprop seems to perform an order of magnitude faster
than backprop, and is widely used.

In order to push weights more rapidly to their destination, Riedmiller and Braun (1993)
proposed the RPROP algorithm. Rather than depending on the amount of slope of the error
term, RPROP checks only that the sign of the slope remains unchanged. If it is the same as
the previous epoch, the weight is pushed in the same direction by a greater distance. If it
differs, then the previous change is undone and the step-size decreased. The only parameters
set by the user are a maximum and minimum possible step size, and an initial change size.
RPROP is believed to require around five to ten times fewer epochs than plain backprop,
and has the advantage that each connection weight may develop its own distinct 1 value.
According to the article that introduces RPROP, there is not enough empirical evidence to
distinguish between Quickprop and RPROP on the basis of speed. It is also not entirely clear
that retracting changes and ignoring rise/fall in error are the best ideas, with improvements
suggested by Igel and Husken (2000) and by Anastasiadis, Magoulas, and Vrahatis (2003).

Another technique widely used to improve the speed of convergence is Levenberg-

Marquadt optimisation (Bishop, 1995, Chapter 7). The update is given by:
w'tt = w' — (676 + \diag(676))'s

This works due to 878 being an approximation to the Hessian, so the process is relying on
second-order (i.e. curvature) information. In approximate terms, it is willing to take big steps
along flat plains and small steps on steep valley sides. The A term controls just how much the
process is doing plain gradient descent versus relying on the Hessian; when A is large, the
process approaches plain gradient descent, and when it is small the process is relying strongly
on the Hessian. Thus, if the error drops, it is assumed that the approximation to the Hessian is
good, and the A term is decreased (perhaps by a factor of 10). Conversely, if the error rises,
the approximation is considered bad, and the A term is increased.

While both Levenberg-Marquadt and Quickprop make use of second-order approximation,
Quickprop has one major advantage: although it makes a potentially dangerous assumption,
it does not have to calculate a matrix inverse at every epoch. While Levenberg-Marquadt
is considered very effective for small problems, converging in a remarkably small number
of epochs, it has difficulty scaling to larger problems due to having to perform that inver-
sion. Thus, for the purposes of testing the interaction of fast training methods with weight

initialisation methods, we have tended to use Quickprop.

48

3.3 Transformational Perceptrons

In a large article surveying hybrid neuro-symbolic techniques, McGarry, Wermter, and
Maclntyre (1999) state:

The experimental work carried out by a number of researchers on different
knowledge-based neural network architectures has produced some impressive
results. They show good performance in terms of classification accuracy, speed of
training, reasoning with noisy and missing data and good generalization capability

with small training sets.

They are referring specifically to what they call transformational hybrid systems, which are
those that take symbolic knowledge and transform it into a neural network architecture, and
possibly back again.

The expected benefits of initialising MLPs with prior knowledge are the following:

e The size and architecture of the the network is suggested by the prior knowledge;
e The initial weights of the network are determined by the prior knowledge;

e The network already classifies approximately as well as would rules based on the prior
knowledge; thus it is close(er) to an error minimum and should require fewer epochs to

converge.

The following sections present a selection of those transformational systems that have had
a strong influence on the field of initialising neural networks with prior knowledge, and in

particular, with knowledge gained from decision trees.

3.3.1 EBL Networks and KBANN

Perhaps the best known system for transforming propositional knowledge into an MLP is that
proposed by researchers at the University of Wisconsin-Madison. Shavlik and Towell (1989)
present a hybrid system that encodes rules in “Explanation Based Learning” (EBL) format
into an MLP architecture. An EBL system contains a rule base that breaks down higher level
rules into lower level rules until atomic comparisons may be made. An example rule base for
determining whether the item in question is a cup is shown in Table 3.1

The rule base in Table 3.1 is only partial—a system which classifies cups solely on that

basis will get some wrong (e.g. a plastic bucket will be wrongly classified as a cup). The

49

Table 3.1: EBL Rule Base for Recognising Cups

cup :— stable, liftable, open-vessel
stable :— bottom-is-flat
liftable :— graspable, light
open-vessel :— has-concavity, concavity-points-up
P \
Open Vessel

Stable / Liftable
Graspable ‘ \
>

it

flat DOHON ——

has handle /

made of ceramic
made of paper
made of styrofoam
handle on top
handle on side
expensive

has concavi
concavity points up

light
fragile

Figure 3.1: An MLP initialised from the EBL rule base — the network is

fully feed-forward connected but only strong connections are shown

authors suggest that we can do better with an MLP, arranged in the fashion shown in Figure 3.1.

The weights in this system are set so that items which do not correspond to rules in the
rule base have a weak initial effect on the decision Cup, while items which appear in the rule
base have strong initial connections. After training, the weights have altered so as to have
adapted/refined the initial rules, providing a more accurate classification. Results across many
experiments (summarised in Shavlik (1994)) suggest that classification performance is indeed
enhanced in a wide range of domains after conversion to MLP and backprop training.

Their manner of rule embedding makes rule extraction fairly easy; Towell and Shavlik
(1993) presented their method for converting an MLP back to rules, based on normalisation and
rearrangement of the biases and weights so that it is possible to work out which intermediate
rules will be supported by various combinations of “leaf” rules. Their updated system was
renamed KBANN (for Knowledge Based Artificial Neural Network) and is considered one

of the most successful studies of transformational networks. It has generated a great deal of

50

interest in the symbolic interpretation of MLPs, notably by researchers such as Setiono and
Lu (1996) and Taha and Ghosh (1999).

KBANN depends on a human expert to provide an initial set of rules, and these rules
must be in a form that supports intermediate rules (to make up the hidden layer). This is
crucial, since without at least one hidden layer, an MLP is unable to represent a linearly
inseparable set of objects. Therefore, even if the initial knowledge base for KBANN were
to be formed automatically, intermediate rules would still be required. This requires domain
knowledge: to say that “open” means “has concavity” and “concavity points up” requires
a level of conceptual modelling not typically available from a database of observations; a
human being must add hierarchical information to the system to categorise groups of features.
Furthermore, any decisions based on continuous attributes must be determined by the user,
for all inputs to KBANN are categorical; thus, if the MLP wishes to shift, tilt, sharpen, or

fuzzify a continuous boundary, it is unable to do so.

3.3.2 Entropy Nets

The work of Shavlik and Towell (1989) quite clearly supports the use of error backpropagation
to refine an incomplete rule set. However at about the same time, other researchers were
looking for ways to avoid backprop training. A technique for embedding decision-tree rules
into an MLP architecture was first suggested by Sethi (1990). Training (in the sense of
improving the initial set of rules) is never undertaken under this scheme. First a mapping
1s made between the architecture of the tree and that of the MLP. Then, connections are set
layer by layer, “training” each unit to make the same threshold decision that was made by the
equivalent node in the tree (using a variant of the Widrow-Hoff rule). Since trees perform
hyperplane splits, each layer’s task is linearly separable—we are essentially training each unit
to partition the dataset in much the same way as a decision tree behaves.

It is significant that connections which are not deemed important by the decision-tree are
never created by the mapping or weight-setting process. This implies that if the decision-tree
classifier made an error in determining the significance of an attribute, then this error would
never be rectified by the MLP during the weight setting process. Figure 3.2 sums up the

mapping between decision-tree and MLP. Formally, the method proceeds thus:

1. For every input to the classifier, create a neuron in layer one, to be connected to every

neuron in layer two.

2. For every decision node in the tree, create one neuron in layer two.

51

Output Class 1

Output Class 2

Figure 3.2: Sethi’s translation from decision tree to MLP — decisions 1 to
4 in the tree become nodes D1 to D4 in the MLP

3. For every leaf node in the tree, create one neuron in layer three. Connect the neurons in
layer two to the neurons in layer three such that the hierarchy of the tree is maintained;
e.g., the neuron representing the root of the tree will be connected to every neuron in
the next layer. Neurons representing subsequent nodes will only be connected to those

units which they could reach by a downward traversal of the decision tree.

4. For every class, create one output node, connected to each node in layer three which

represents that class.

5. Using the Widrow-Hoff rule, train each unit in layer two to make the same threshold
decision that the equivalent node in the decision tree would make. Train each unit in
layer three to activate only when all of the required “decision” nodes for each class are
active (creating an AND layer). Train each unit in the output layer to activate when any

of the appropriate nodes in the AND layer are active (creating an OR layer).

52

We can see that the resulting MLP behaves exactly as the decision tree from which it was
created. Replacing the threshold activation functions in all units is claimed to improve the
generalisation capability of the network. Overall network training is never undertaken—and
may do little good anyway, given that the network is only connected according to the branches
of the original decision tree.

Brent (1991) and Chabanon, Lechevallier, and Milleman (1992) present Sethi’s method
as a “fast alternative” to backprop training. However the strength of MLPs as compared to
decision trees—the ability to model curves as fuzzy tilted hyperplane combinations—seems
to have been relinquished. Since each node is trained to be a symbolic decision-maker, we
gain only an alternative representation to a decision tree. Units in the end are stuck with the
symbolic representation they are forced into, even though a better classifier may be possible.

Sethi’s method points to a particularly useful idea—that a four layer MLP can operate in
the following way: the first hidden layer acts as a set of hyperplane tests for the propositions
tested by the decision tree. The second hidden layer does an ANDing of the first according to
the rules of the tree and the output layer does an ORing of those rules. This relationship of

node-layers to decision-making is the focus of the following section.

3.3.3 Initialisation of MLPs by Decision Tree

Banerjee (1997) proposes a similar mapping to that suggested by Sethi, but with three very

important differences:

1. Instead of each unit in the first hidden layer representing an internal node of the decision
tree, it represents a proposition concerning the input attached to it. Thus, each input
can represent an attribute, and pairs of units in the first hidden layer act as “switches”

indicating the level of that attribute.

2. The biases are used to control the level at which the aforementioned switches will
activate, with the incoming connection weights being set to sum to a value equal
but opposite to the bias. Thus we have a complete weight and bias setting regime
upon which it is appropriate to perform backprop training. Further, each layer is fully
connected to the previous one with small connection weights so that if a more complex

mapping needs to form during training, it can.

3. Since the MLP is set up specifically with backprop training in mind, it can be shown to
improve the knowledge with which it was initialised. Banerjee makes the point that this
technique is not merely designed to produce an MLP with accuracy equal to a decision

tree, but one which outperforms the tree.

53

Initial knowledge is provided solely by decision tree induction, the decision tree maps directly
into an MLP, and Banerjee established that an improvement on initial conditions can be made.
Although the method is only described in the context of continuous variables—no attempt has
been made to incorporate categorical variables into the model—we shall see in the following
chapter that this is a weakness that may be easily rectified.

Banerjee’s method depends on each node performing a hyperplane test of the form

b—l—ija:j > 07

j=1
where b is the bias of the node, w; is the incoming weight from unit j and z; is the activation
of unit j. If the test succeeds, the result is one, otherwise zero. Of course, the threshold nature
of this test is replaced with a sigmoidal activation function to facilitate backprop training.

Informally, the network is set up like this:

1. Let o and 3 represent a general weight magnitude and a “perturbation” magnitude,
respectively. Set 0 = 5.0 and 3 = 0.025 (These values were determined empirically,
but are reasonable in the sense that a value of 5.0/2 will not unduly saturate a sigmoidal

activation function, while still producing a clear result close to 1.0.)

2. Create a descriptive statement Disjunctive Normal Form (DNF) for each class in the

decision tree.
3. Create an input node for each database attribute.

4. For each literal in the DNF of the form attrib < value create two hidden units. One
shall represent the test succeeding, the other failing. Connect the “success” node to the
relevant input unit with weight —o and bias o * value. Connect the other node the same
way, but with the signs reversed. We have thus created a switch where the “success”

node will stay active as long as the input remains under a certain value, but will be

inhibited as it rises above that value. The second node will be inhibited by its bias as
long as the input remains under the critical value, but will begin to activate as it rises

above it. For a critical threshold of 3 and o = 5, the result looks like this:

?
-5
while A < 3, B will
have output = 1
g
\
¢

while A>3, C will
have output = 1

54

5. For each disjunct in a class, create a new hidden unit in the third layer. These nodes

represent the leaves of the decision tree in much the same way that those in the previous
layer represent decisions made on the inputs. As such, each one needs to activate only
if all of the relevant decision nodes are activated—we are creating AND nodes. To do
this, we connect each AND unit to the relevant decision units with weights o and set

the bias to —o(2n — 1)/2, where n is the number of relevant units in the decision layer.

For each class, create an output unit and connect it to the AND units representing the
appropriate class with weight o. Set the bias to ¢/2. Now if any of the AND units

activate, so will the appropriate output unit.

. Fully connect the rest of the MLP with weights 3 and —(, with equal probability.

Figure 3.3 summarises the complete transformation from tree to network.

The main strength of Banerjee’s method is that, although we assign a symbolic interpreta-

tion to internal units initially, those interpretations may change during training. Thus we truly

have the chance of refining the initial knowledge, whereas entropy nets and KBANNs bind a

symbolic test to a unit and only allow feed-forward connections to strengthen or weaken the

effect that this has on the classification result.

It is interesting to contrast Banerjee’s technique with two others published at almost the
same time: Ivanova and Kubat (1995) and Park (1994). The Tree Based Neural Net (TBNN)

system (Ivanova and Kubat, 1995) is regarded as a highly successful transformational system.

The critical differences from Banerjee’s technique are:

1.

Only three layers of units are used.

2. Only one neural unit per decision node in the tree is used.

3. The input layer represents membership within decision boundaries.

The system operates in the following way:

1.

Re-describe the decision tree as a set of DNF rules, but simplified so that each attribute
tested by the tree falls within an interval. For instance, taking the tree in Figure 3.3,
instead of describing attribute X as being either < 2.5 or > 2.5 we form intervals such
asmin < X <25and 2.5 < X < maz.

. Create an input node for each interval created in the previous step. These units do not

take items from the database as inputs—tuples are pre-processed through the fuzzy

membership functions to determine the extent of each input unit’s activation.

55

-,

x<25 x=>25
Decision Tree

-

class 1 class 2

(x<25)0(x=25)0(y<1.3) - class 1
DNF Rules
(x=2.5)0(y=1.3) - class 2

x<25
x>25 \

/ class 1
MLP

(Weak initial weights not shown) @
—>. class 2

y<l3

Y>13/5,

Figure 3.3: Banerjee’s translation from decision tree to MLP

3. Create an AND layer similarly to Banerjee. Connect each node to input units in such a
way that all of the relevant inputs must be active for the AND node to activate. Each

AND node effectively represents a leaf on the decision tree.

4. Create an OR layer, again similarly to Banerjee, whose units are connected to the AND
units in such a way that an output unit designated class = will activate if any of the

AND units of class z are active.

Unlike Sethi’s entropy nets, it is the intention that a TBNN should be trained (by backprop
or some variant) in order to improve its classification accuracy. However, the three-layer
architecture is achieved at the cost of turning the sensory layer into a set of propositions
(similar to KBANN). Thus, during training, the TBNN cannot alter the critical thresholds of

continuous variables, and therefore cannot re-orient class-separating hyperplanes.

56

Another mapping due to Park (1994) is very similar to Sethi’s, consisting of a four-
layer network with the first hidden layer performing hyperplane decisions on the sensory
layer, the next performing an ANDing function, and the last performing an ORing on nodes
corresponding to tree leaves. The mapping is of particular interest because each node of
Park’s decision trees is a linear discriminant function rather than a simple hyperplane split, so
the network can in fact start off with oblique hyperplanes. The bulk of the article is devoted to
attempting a mapping with just one hidden layer; unfortunately later work (Bioch, Carsouw,
and Potharst, 1997) showed that the theorem on which the mapping depended (that each
decision region could be mapped onto a particular neural unit) was incorrect. At best, the

regions can be approximated.

3.4 Comments

Tree-structured knowledge has been used by several researchers to initialise MLPs. All claim
that the MLPs behave at least as well as the decision trees on which they were based, and

sometimes better. However, we make the following observations:

e No tree-to-network mapping thus far presented has been designed to allow for objects

with arbitrary mixtures of continuous and categorical features.

e None of the literature establishes that a tree-initialised MLP might generalise any better

than the tree that initialised it.

e [t remains unknown whether a tree-based neural network is likely to generalise any
better than one that is randomly initialised, or whether it is likely to converge to local

minima on an error surface.

e The interaction of fast training methods such as Quickprop with MLP initialisation is

unknown.

e All extant tree-to-network mappings attempt to model all classes in one network; none
take advantage of the parallelism inherent in networks that just try to recognise one

class.

The most critical unanswered question is this: given a mapping from decision tree to
neural network, does there even exist a state for that network that is more accurate than the
decision tree that created it? In the next chapter, we present a pilot study to try to answer this

question.

57

Chapter 4

A Pilot Study

4.1 Introduction

In this chapter, we present an investigation of the questions posed at the end of Chapter 3.
First, we propose an extension to the initialisation of MLPs described by Banerjee (1997),
one that allows us to initialise nominal as well as continuous and ordinal feature detectors.
This, in principle, allows us to examine MLP initialisation techniques using databases that
consist entirely of continuous features, entirely of nominal features, or a combination of the
two. We then try to see if there is any reason to expect that MLPs can be made more accurate
with less training by using this initialisation method. Prior work in this area has tended to
focus on whether MLPs reach the desired “convergence” state in fewer epochs. However, this
is only a first step. For the method to be generally useful, we need some reason to expect that
the generalisation of the MLP is improved, and that the resulting classifier does a better job
than the tree that bootstrapped the process.

Furthermore, we need some reason to expect:

e that initialisation techniques will do better than simply improving the weight optimisa-

tion procedure using, say, quickprop;

e that initialisation techniques do not interact in some deleterious way with smarter

weight optimisation techniques;

e that, in examining these questions, neither tree nor MLP is compromised in some way
by being anything less than “best-of-breed.” For example, decision trees should not

have their ability to generalise reduced by choosing a poor pruning method.

It is tempting, in setting up an experiment to compare several machine learning algorithms,

to use the “default settings,” which is to say, to use the originally published version of the

58

classifier with no tuning for the data on which it is being currently used. The effect of such a
decision may be seen, for instance, in Lim, Loh, and Shih (2000), where the authors compare
33 classifiers with each other and come to the conclusion that linear discriminant analysis has
a mean error rate “close to the best.” Considering that the databases used in the comparison
contained mixtures of feature types and non linearly-separable classes, this is a very surprising
claim indeed. All classifiers were essentially run “out of the box,” meaning, for instance, that
C4.5 was run with a pruning confidence of 25% (the default value). This means that none
of the classifiers was observed at its best and few conclusions may drawn regarding their
suitability for or sensitivity to differing types of data.

Our approach is to ask how well a really well-tuned decision tree would be expected to
work on a few databases that exemplify the conditions in which we are interested. Should
a really well-tuned MLP be able to do any better? And should an MLP initialised with a
decision tree be able to do any better than that? Note, the question is not will each version
typically do better, but should it or can it? This is, in fact, an easier question to answer, because
we can cheat. We defer the more difficult question of whether initialised MLPs typically
behave better, and why, to Chapter 6. For now, we are just asking: is there an MLP state,
somewhere during its weight optimisation phase, that generalises better than the decision tree
that initialised it; and does that state arrive earlier than it would for an uninitialised network?
This enables us to cheat by ignoring the fact that it is difficult to know when to stop training
an MLP. We simply train for a fixed number of epochs, then examine each MLP state to see
how early in the optimisation process the best generalisation state was reached.

If no such state exists (that is, if there is no state of the initialised MLP that is more
accurate than the decision tree that initialised it), or if that state is only reached after it would
be reached by a regular well tuned MLP (i.e. one utilising quickprop or something similar),
then we should have no reason to expect that this line of investigation would ever yield
anything useful. However, as we shall see, six data sets provide sufficient evidence to suggest
that MLPs behave very well under initialisation methods, even when compared to their own
“best-of-breed,” and that further development of the theory and evaluation of initialisation is

warranted.

4.2 Experimental Tools

The purpose of the following experiments is to compare decision trees, MLPs, and initialised
MLPs to each other and determine if initialised MLPs are ever more accurate than decision

trees, and, if so, whether they can reach that state sooner than a regular MLP. To that end,

59

several programs were developed so as to compare the best versions of these methods that
can be reasonably expected, rather than 20-year-old versions with none of the well-known
recent enhancements. We should like to be able to process data that may or may not fit into
main memory as well; but currently, all publicly available software (e.g. C4.5, R, and Weka
among others) is limited to in-memory datasets. Thus, we present as an appendix to this
document two distinct sets of software: procedures in R for manipulating R’s decision trees
to convert them to MLPs (for memory-resident datasets); and programs in C and C++ for

creating decision trees and converting them to MLPs for disk-resident datasets.

4.2.1 Decision Tree Software

There are two desirable traits for decision tree software to be used in the following experiments:
some reasonable expectation that the best split has been found in each sweep of the data, and
a pruning mechanism that produces the smallest possible tree that still has good generalisation
accuracy. The first feature is exhibited by SPRINT (Shafer et al., 1996) as a by-product of its
scalability enhancements; no “windowing” is used regardless of data size, and all possible
split points are evaluated, even for disk-resident data. The second feature is usually regarded
as being provided by minimum cost complexity pruning (Breiman et al., 1984), which is
often described as being particularly “aggressive.” Even the article proposing the use of
MDL pruning for SPRINT (Mehta et al., 1995) notes that minimal cost complexity pruning
produced trees of similar accuracy that were significantly smaller.

The programs developed for these experiments take the form of Unix command-line

utilities. They are:

1. race: RACE is A Classification Engine. This program induces a decision tree from
data. Input consists of a data file and a metadata file. Output consists of a decision
tree, in text format. Each line of the output is a node of the tree, in pre-order traversal,
with leaves distinguished from branches. The tree can thus be built up again by any

subsequent program.

2. pruner: a pruning program for race. This is a Unix filter; input is a decision tree
induced by race (the race format includes the misclassification cost of each node),
and output consists of the set of subtrees pruned by the minimal cost complexity method

described in Breiman et al. (1984).

3. tester: another Unix filter. Input is a list of trees and a data file; output is the accuracy
and standard error of each tree. This program may be used to select the best-pruned

subtree, using hold-out data.

60

4. rules: a Unix filter which takes a tree as input and generates either a) an MLP

architecture according to Banerjee (1997), or b) a set of DNF rules.

The source-code of all programs is included as Appendix A.

4.2.2 General Description of the race Program

The race program is an implementation of the SPRINT decision tree induction algorithm
outlined in Shafer ef al. (1996) and Zaki, Ho, and Agrawal (1998). SPRINT itself is an
improvement on SLIQ (Mehta et al., 1996), the motivation for which was to build a classifier
that handled disk-resident data gracefully. Previous methods for dealing with large datasets
(such as ID3) used sampling methods to build their decision trees, but SLIQ uses every piece
of data in the database to build its trees, gaining somewhat greater accuracy. However SLIQ
still depends on a memory-resident data structure proportional to the size of the database,
albeit one which uses very little memory per item. SPRINT, on the other hand, utilises
memory-resident data structures that remain constant in size throughout the building of the
tree, and thus scales rather well. SPRINT was also designed with easy parallelisation in mind.

The key to both SLIQ and SPRINT is the pre-processing of the database. Conceptually,

the following steps occur:
1. Each tuple in the database is assigned a unique identifier (an integer suffices).

2. Each column of attribute instances is separated into its own file, together with its unique

identifier and the class label associated with each row.
3. Each file is sorted according to attribute value.

An example which follows these steps is provided in Figure 4.1. If the resultant attribute lists
are too large to fit into memory, they may be kept on disk (essential, if the original dataset is

too big to fit into memory).

a b | class | row_id a | class | row_id b | class | row_id
100 | 20 1 1 100 1 1 10| 2 3
150 | 30| 2 2 = | 120 1 4 + 120 1 1
200 | 10| 2 3 150 | 2 2 30| 2 2
120 | 40 1 4 200 | 2 3 40 1 4

Figure 4.1: Pre-processing a database for SPRINT

61

Now instead of processing the database table, we process the concatenated set of attribute
lists. The next task is to calculate the best point on which to split the data—this can be done
in one pass over the sorted and concatenated attribute lists, given that we have counted the
number of times each class appears. We proceed as follows (let us for the moment assume a

continuous attribute):

1. We set x to be the value of the first attribute in the list. We hold a table like this for each

attribute:

‘ class 1 ‘ class 2
above 2 2
below 0 0

It is essentially a frequency distribution; it tells us how many of each class is currently
above value x, and how many are below. Since we are pointing at the first element
of the list, nothing is below it, and everything is above it. The initial values for the

distribution may be gathered during the pre-processing phase.

2. We now step along the attribute list. At each point, we set the new value of z to the
current attribute value. Whatever class we see, we increment in the below part of the
distribution and decrement in the above part. The distribution therefore is the one we
would get should we choose x as our split point and the current attribute as the attribute
on which to partition the data. This information is all we need to calculate the Gini

index of diversity (see Section 3.1.2).

3. We continue stepping along the list, calculating the Gini index for each new (attribute,
x) pair. We want a splitting point with the lowest diversity possible, so we are looking
for the smallest Gini value. Each time the Gini lowers, we save the current split point.
Each time we are finished with an attribute list we reset the frequency distribution and
move on to the next attribute list. Thus we find the smallest Gini value with respect to

a) which attribute is best to split on, and b) the critical value at which to split the data.

If an attribute is categorical rather than continuous, we proceed a little differently for that
attribute list. First, the list does not need to be sorted by value. Second, instead of setting up a
frequency distribution of above and below values, we set up a count matrix with rows labelled
by category and columns labelled by class. In the creation of the attribute list, we note in the
matrix how many times each class appears for each category. We get something which looks

like the following:

62

class 1 | class 2
gnus 1 3
gnats 0 2
penguins 4 |

Once again, we now have all the class distribution information we need to calculate the Gini
index. What we want to do now is generate the subset of categories which gives us the
smallest Gini value; we can either do this exhaustively (calculating a Gini index for every
possible subset) or greedily (choosing the single best category, then adding one category at a
time as long as the Gini value drops).

Having decided on the best split point (either attribute x < y or attribute w € {a,b,c...})
it remains to partition the data. It is easy to partition the attribute list which “won” the split
point: simply test each attribute instance to see whether it should be sent right or left. How
does one partition the rest of the attribute lists? That is why we hold the row IDs for each
attribute instance. While we split the data for the winning attribute, we create a hash table of
row IDs for whichever rows should go left. Then we simply go back to the beginning of the
concatenated attribute list and partition according to whether each instance’s row ID is in the
hash table or not.

The attractive aspect of this sort of partitioning is that it may also be done in a single pass
through the attribute list. Moreover, the order of the attributes is maintained (so we do not
have to re-sort them) and we can create our new frequency distributions/count matrices on the
fly as we partition.

A concatenated attribute list, once partitioned, forms two new concatenated attribute
lists. Since order has been maintained and we have our new distributions, we can begin the
process all over again—finding new split points and partitioning the list—until every new
distribution produced is pure or meets some other stopping criterion (e.g. there are no more
than m tuples in the list, where m is some suitable minimum). Each splitting point is saved in
a tree structure; once the process has terminated, this structure is the unpruned decision tree.

Since we tend to build trees recursively, an immediate criticism of this method is that it
will create as many open files as there are nodes in the tree, assuming the process is being run
on enough data to require remaining disk-resident. Zaki et al. (1998) presents a solution to
this problem by growing the tree breadth-first. Thus, we only have to have four files open
at any time: a “left” and “right” file for the current layer of the tree, and the same for the
next layer of the tree. We now not only concatenate attribute lists for each partition, we also

concatenate the partitions themselves.

63

One final thing remains to be said about this tree induction technique. During the
partitioning phase, we can collect another crucial piece of information. Suppose that a
decision was going to be a leaf node even though it may not have met a stopping criterion; i.e.
suppose it is about to be pruned. Instead of holding a decision, it would have to hold a class
label; the obvious one to choose would be whichever was highest represented in the current
histogram. However there would be an associated cost; the misclassification rate of that leaf
would be the proportion of items which were being tested by that node but did not belong to
the highest represented class. This information is useful at pruning time, and is stored at each

node of the decision tree during partitioning.

4.2.3 General Description of the pruner Program

The pruner program implements minimal cost complexity pruning (MCC) as described
in Breiman et al. (1984). MCC works on the basis that each internal node in the tree could
either remain a branching node, or be “snipped” and become a leaf. As a leaf, it will have
a misclassification cost: these are gathered by the race program as the tree is built. The
principle behind MCC is that there exists a sequence of nested subtrees, each of which has the
next least overall misclassification cost on the original dataset.

The following description of MCC pruning is paraphrased from Breiman et al. (1984,
Chapter 3). Consider a parameter o € R, > 0. We call this the “cost complexity parameter”
and define the cost complexity of decision tree 7" as R, (1) = R(T) + «|T'|, where |T| is the
number of terminal nodes in tree 7'. If R(T") is the misclassification cost of tree T, R, (T') is
therefore that cost plus a penalty for every terminal node.

Now, for each value of o from 0 < o < o0, find the subtree of 7" which minimises R, (7).
While « is small, that subtree may be large, since the penalty for having a lot of terminal
nodes is small. As « increases, the penalty for being large also increases, so at some value
of v it is suddenly going to be cheaper to drop a branch (and accept the concomitant rise in
misclassification cost against the original data set) than it will be to retain both the branch
and the cost of all of that branch’s terminal nodes. As we slowly increase o, more and more
branches “fall off” as the accuracy they offer is outweighed by the cost of their complexity.
Eventually, we are left with only the root node.

Obviously, we do not wish to set a variable like a radio dial and slowly increase it,
calculating R, (T") for each possible subtree at each value of «. For one thing, it would be
dangerous to choose an increment value for « that would not result in more than one prune
occurring at an iteration; for another, even modest trees have so many possible subtrees that

a search through all of them is too computationally expensive. Instead, we calculate which

64

branch should be the one to be snipped next in such a process, and snip that one to produce
the next tree in the sequence of pruned subtrees.

First, we prune branches of 7" so that we start with 77, a tree which has the same misclas-
sification cost as 7" but is the smallest possible. We can do this by checking every branch: if
R(branch) = R(branch,e) + R(branchyep) then there is no advantage to “branching” at all
and the left and right branches may be taken off. If we check every node in the tree this way,
the resulting tree is 77.

Next, we note that at some point as « increases, a branch will become too “costly.” What
point is that? Let’s say that B represents a branch and b represents just the node at the top
of the branch, acting as a leaf. While R,(B) < R,(b), the branch B has a smaller cost
complexity than the single node b. At the critical value of «, the two cost complexities
become equal; i.e. R,(B) = R,(b). To work out that value of «, all we have to do is solve
the inequality R, (B) < R,(b), getting:

Ra(b) — Ra(B)

<
“ B[1

Now, obviously we do not want to prune leaves, so we define a function that tags each
internal node with the value R, (b) — R,(B)/|B| — 1. The branch with the smallest tagged
value is the weakest link, in the sense that it is the first that would be turned into a leaf if we
did slowly increase « through a continuous range.

The pruning process therefore involves calculating the tagging function for each internal
node of 77, turning the node with the smallest value into a leaf, and setting the resultant tree
as T,. We then recalculate complexity values (since all branches above the pruned branch
now have fewer terminal nodes), and go through the same process to create 75. We continue

until we have a tree with only the root and two leaves.

4.2.4 General Description of the tester Program

Once we have a sequence of pruned trees, which one do we choose as the best? The tester
program provides a means of judging the generality of a sequence of trees by testing them
against a data set different from the training set but drawn from the same population.

If we graphed the output of the tester program using the initial data set, we would see
something like the first graph in Figure 4.2. Since the tree is grown to be perfectly accurate
on this data, the misclassification rate steadily rises as the size of the tree decreases. However,
in the second graph, we see what happens when we test the same set of trees on a new data

set from the same population. Our largest tree (on the right-hand end of the graph) has a

65

Example 1: Sequence of trees tested Example 2: Sequence of trees tested
against original data. against new data from the same population

A A

Misclassification Misclassification
Cost Cost

Number of nodesin tree Number of nodesin tree

Figure 4.2: Idealised error rates of a sequence of pruned trees against 1)

the original data set, and 2) a new data set from the same population

high error, since it is overfitted to the original data. As the size of the tree decreases, the
misclassification rate also decreases—for a while. Eventually, as the tree gets too small, it
suffers from having too much bias, and the error rate starts to rise again.

This visualisation suggests that we should choose the tree that corresponds to the minimum
point on the second graph. However, Breiman ef al. (1984) established that the surface of
the valley in this graph is “bumpy”; what we really want is the left-most point of the valley
before the error starts to rise again. This will correspond to the smallest possible tree that has
a misclassification cost within about one standard error (1SE) of the tree corresponding to the
minimum. Of course, if 1SE does not get a tree small enough (or there exists a smaller tree in
the sequence with an acceptable error rate) the user should be free to select that tree instead.

The 1SE heuristic merely provides a potential method of automating the process.

4.2.5 General Description of the rules Program

The rules program provides two facilities—first, it converts a decision tree representation
of knowledge to DNF rules; this is a fairly trivial task. Secondly, it can use that set of rules
to produce an initial MLP architecture by applying Banerjee’s technique as described in the
following pages. Recall that we can fully specify an initial MLP as a list W, where each
member of the list is a matrix containing the weights and biases connecting each layer to the
one before it.

The output of the rules program is just such a list, with the weights set according to

the extension of Banerjee’s method outlined in the next section. For the convenience of the

66

program reading in the matrix list, the list is preceded by integers specifying the size of each

layer.

4.2.6 Extension to Banerjee’s Method

In the context of data mining, we expect classifiers to deal with both categorical and continuous
attributes. Banerjee’s technique is only defined for database tuples consisting of continuous
attributes; moreover, the core of the method requires continuous attributes, since the first
hidden layer is designed to act as a set of hyperplane tests on the input.

If we wish to maintain the basic essence of Banerjee’s idea, we should stick with each
pair of first hidden layer units representing the truth or falsehood of a proposition concerning
the inputs. This way, no change is required in the method to set up the second hidden layer or
the output layer. Let us imagine that we have some nominal input 7 and two units in the first
hidden layer (say, h; and hy) which will perform the test on ¢. Given a proposition such as

i € {a,b,c...} we want the following to occur:
e When z is one of {a,b,c...}, hy must be active and h, must be inactive.
e When z is not one of {a, b, c...}, h; must be inactive and h, must be active.

e The activity of h; and hs will be conveyed to the rest of the network in the manner
described by Banerjee—units in the second hidden layer will check for an AND of
these units with the other propositions which form a conjunct in the DNF; units in the
output layer will perform the OR of the ANDs to determine which class should be

indicated.

This reduces the problem to one of representation: how do we represent the nominal attribute
1? Continuous and ordinal variables are easy; the activation value of input units can be set to
the real-number value of the attribute, since the biases of the units in the first hidden layer
will scale them back. To what do we set the input unit for a nominal attribute?

If there are, say, seven categories and our predicate is i € {1, 3,5, 7}, we clearly cannot
have a single unit representing the attribute. Why not? Because when that unit’s value is 1,
h; will have to be active. As it rises to 2, hy will have to become active and h; will have to
deactivate—but as 7 gets to 3, h; will have to be stimulated again and h, must be inhibited.
This is the situation we see in Figure 4.3: there are clearly no values we can give the biases
and weights which will have the desired effect.

What if we gave the nominal attribute a coded representation? For instance, we could

binary encode seven categories in three units and specify that for patterns 001, 011, 101, and

67

Desired output
1.0if Ain{1,35,7}
0.0 otherwise

Desired output
1.0if Ain{24,6}
0.0 otherwise

Figure 4.3: An ineffective way to represent nominal attributes

111 (1,3,5 and 7) that unit &, be active, while 010, 100, 110 would cause h, to become active.
This is indeed possible, since the example pattern could be learned by the hidden units as
a function of whether that last of the three units is on or off! However, we run into more
difficulty if, instead of trying to detect the last bit, we try to detect the parity of units. Take a
simpler example: categories 1 to 4 represented by two units, with the predicate i € {1,4}.
This would give us a situation that is essentially the XOR problem, but only two layers (one
set of adaptable weights) to do it—and we know that one cannot represent XOR with only
two layers of units and one layer of weights.

“Spread encoding” (Swingler, 1996), where the units activate cumulatively to represent
each subsequent numbered category, is also not a good option. It would imply that the
categories were ordered; i.e., that category 5 should be “more active” than category 4, and so
on. This is not the case, so to impose ordering on the categories presents false structure to the
MLP.

This leads us to the only conclusion that we can make: that each category has to be
represented by a single input unit. We use unit 1 to represent category 1, unit 2 to represent
category 2, and so on. It is now quite easy to set up units in the first hidden layer to represent
predicates, since only one input unit will ever be activated upon presentation of a tuple of data;
all we have to do is connect the units which meet the predicate strongly to the “is in” unit,
and weakly to the “is not in” unit and vice versa. Figure 4.4 shows an input of five categories,
with units to detect a) i € {1,3} and b)i € {4,5}.

All we need to do now is decide what values the weights and biases should be set at so as
to a) fall in line with the rest of Banerjee’s method, and b) not grow too large, saturating the
activation function (and thus inhibiting any further backprop learning). We want the output

of the predicate nodes to be fairly close to 1.0 when a predicate is met, so if we stick with

68

Connection weights = 5.0

Biases (not shown) =-2.5

Activatesif i in{1,3}

Only 1 unit

actwame_s; Activatesif i notin {1,3}
each unit

represents

one . PP

category Activatesif i in{4,5}

Activatesif i notin {4,5}

Only strong links are shown

Figure 4.4: A working representation of a categorical attribute — layer 2

detects categories {1,3} and {4,5}

a “strong” weight being 5.0 (the o value in Banerjee’s original algorithm), we can treat the
“subset” node roughly the same way as an OR node. Banerjee chooses —o /2 as the bias for
his OR units, so we shall do the same; the summed weighted input to the activation function
will thus never rise above 2.5 (nor drop below —2.5), which is a reasonable value to avoid
saturation, given a logistic activation function.

The new tree-to-MLP conversion now proceeds as follows (changes from Banerjee’s

original version are in bold):

1. Let 0 and 3 represent a general weight magnitude and a “perturbation” magnitude,

respectively. Set 0 = 5.0 and 3 = 0.025.
2. Create a Disjunctive Normal Form for each class in the decision tree.

3. Create an input node for each continuous/ordinal attribute and multiple input nodes

for each nominal attribute, one node for each category.

4. For each literal in the DNF of the form attrib < value and each literal of the form
attrib in {a,b,c} create two hidden units. One represents the test succeeding, the other
failing. We refer to this layer as the “decision” layer, since its units encode tests in the

decision tree.

5. For the continuous attributes, connect the “success” node to the relevant input unit with
weight —o and bias o * value. Connect the other node the same way, but with the signs

reversed.

69

6. For the nominal attributes, connect the ‘“success” node to the input units repre-
senting categories “in” the desired set, and “failure” nodes to the other input units

of the same category. Set all the connection weights to o and biases to —o /2.

7. For each disjunct in a class, create a new hidden unit in the third layer. These are AND
units. Connect each AND unit to the relevant decision units with weights ¢ and set the

bias to —o(2n — 1)/2, where n is the number of relevant units in the decision layer.

8. For each class, create an output unit and connect it to the AND units representing the

appropriate class with weight . Set the bias to /2.
9. Fully connect the rest of the MLP with weights 3 and — (3, with equal probability.

The empirical results that follow show that this extended version of Banerjee’s technique
behaves as well as the original method.

One other limitation to the original technique was noted; attributes which have very
different ranges will have different influences on the initial network due to the bias term in
the first hidden layer (this is the value at which an input will cause a “switch” to another
disjunction). This is very easily dealt with by normalising all inputs to the network to a
standard deviation of one and a mean of zero; it is easy to convert back to original values after
processing. This method of normalisation preserves the spread and outlier characteristics of
the data. We treat it as an optional method that an analyst might use to make an MLP behave

decently; it probably has little effect on a well-initialised MLP.

4.2.7 MLP Tools

The requirements for MLP programs for the following experiments are:

1. The ability to participate in a Unix shell script, to facilitate the running of multiple

cross validation experiments.
2. The ability to provide output that may be easily graphed by programs such as gnuplot.
3. The ability to specify four-layer architectures, initial weights and initial biases.

4. The ability to specify alternative learning procedures such as quickprop (Fahlman, 1989),
alternative activation functions and means of avoiding the “flat spots” in activation

functions.

70

An MLP toolkit (named m1p) has been written as part of this project. The following sections
describe the enhancements made to traditional gradient descent learning, and the behaviour of

the actual program.

4.2.8 Gradient Descent Enhancements

Fahlman (1989) firmly established what had been largely accepted earlier: that the error-
surface gradient descent method of backprop learning typically took an unreasonable number
of epochs to complete. His article systematically catalogued the efficiency of backprop
for certain tasks, and recorded results of hundreds or thousands of epochs for even simple
problems such as XOR and a 10-5-10 encoder. (A 10-5-10 encoder is a three-layer MLP with
10 inputs, 5 hidden units and 10 outputs, trained to map all possible values of 10 bits onto
themselves; i.e. the output of each training example is the same as its input. The network is
therefore creating an encoding for the input, reducing 10 bits to 5.) Subsequently, quite a lot
of research has been performed on speeding up the process of backprop learning. (We will use
the common abbreviation “backprop” to refer to “gradient descent with error backpropagation,”
although strictly speaking it is only a way of establishing the relative extent to which each
connection is responsible for the MLP’s errors).

There are two broad approaches to making backprop faster. The first is concerned with
the algorithm itself, and involves finding ways to make the weight-updating process converge
more quickly. The second is to use the standard gradient descent algorithm (with whatever
optimisations are appropriate) but to develop an architecture optimised for the problem at
hand. A useful summary of these techniques can be found in Hassoun (1995, pp. 210-234).

Obviously the main thrust of this study is in the direction of the second idea: architectural
manipulation of the MLP to provide a network which is “suited” to the problem domain.
However, a secondary aim is to see how well a particular type of architecture modification
(i.e. the modified Banerjee method) interacts with faster variants of the backprop learning
algorithm. To test this, the m1p program incorporates the following theory.

We can state the backprop learning rule as defined by Rumelhart et al. (1986) thus:
prji = 776pj0pi (41)

where A,w;; = the change to be made to the weight from the ith to the jth unit following
presentation of pattern p; o, is the output and 7 is the learning constant. The ¢,,; term is the
amount by which we wish to change the weight: it determines how much each activation is

blamed for the current error. Rumelhart et al. (1986) gives the calculations for d,;; firstly for

71

output nodes (where a target is specified):

Opj = (tpj — Opj)a;j 4.2)

where o is the derivative of the activation function. If we use a sigmoidal activation function

it is easily differentiable, the result being o0,;(1 — 0,;). Then for hidden nodes:
5pj = a;)j Z (Spkwkj (43)
k

where 0y, is the § of each neuron £ to which j connects, and wy; is the weight from neuron j
to neuron k.
There are three parts of the algorithm that may be attacked in order to speed up backprop

learning:

1. Learning Rate:
The learning constant (the 7 term in Equation 4.1) has the most obvious and direct
bearing on how quickly backprop converges: if it is too low, then the weight changes
will be too small and convergence will require more epochs. If too large, the weight
changes calculated will over-correct each other too strongly, and the total error will
begin to oscillate. Many heuristics have been developed to calculate appropriate learning
constants from prior information, but there is as yet little strong theory to back them up.
During simulations, we can see empirically if the learning constant is set too high or

too low and adjust it accordingly.

The most popular heuristic for calculating/adjusting learning constants was proposed
by Plaut et al. (1986), and has seen several variants. The basic idea is to set a learning
constant, but to then divide it by the ‘fan-in’ for each neuron (i.e. the number of synapses
coming in to the neuron). This technique seems to work particularly well when the

difference between fan-in from layer to layer is very large (Fahlman, 1989).

2. Activation Function:
Some units in backprop will inevitably train faster than others, resulting in outputs
close to the saturation level of the activation function. The weights and biases of these
neurons will then change very slowly, despite the fact that they may require dramatic
changes before training will cease. Several methods have been suggested to counteract
this problem, including the use of non-linear error functions which push the weight

change higher as the 9,; approaches zero.

By far the simplest (and easiest to implement) method of avoiding this so-called “flat-

spot” problem is to bias the derivative of the activation by adding a small number to it

72

(typically 0.1). Thus the result of calculating the derivative with respect to the neuron’s
output (the A’ term in Equations 4.2 and 4.3) ranges from 0.1-0.35, instead of 0.0-0.25.
This is the method settled upon by Fahlman (1989) as being the most effective, as well

as the most simple.

. Momentum:

Originally proposed by Plaut e al. (1986), this extension to backprop has become almost
ubiquitous. It is an elegant idea: simply to add a term to each weight change based
on the previous weight change. This cancels out random fluctuations and enhances
systematic gradient descent. If we call our momentum term «, then the generalised

delta rule (Equation 4.1 above) becomes:
Awﬂ(t) = n(Sijpi —+ OéAU)ji (t — 1)

The weight change is the usual one plus « times the previous weight change. The «

term is set typically to about 0.8 or 0.9.

Several different versions of momentum have been proposed, the most radical being

termed the quickprop algorithm by its creator, Scott Fahlman.

Quickprop makes two risky assumptions about the gradient that the algorithm is trying
to descend—firstly, that the error slope roughly resembles a parabola; and secondly, that
the change in the slope of the error curve as seen by a particular neuron at update-time
is not affected by all the other weights being updated. Quickprop then calculates the
minimum point of the parabola, and jumps straight there. The equation for weight
updating becomes:
Aw(t) = — 28 A1
(it —1)—o(t)

where 0(t) and 6(¢f — 1) are the present and previous values of the § term from Equa-

tion 4.1.

Normal gradient descent is calculated when the previous error slope is zero (for instance
at the beginning of training) and a ‘shrink factor’ is added to stop weight steps becoming

too large.

Of course, it is not safe to assume a parabolic error curve, but when applied iteratively,
Fahlman (1989) claims some fairly impressive speed improvements. A quickprop
network also uses the enhancements described in (1) and (2) above to get its best

results.

73

In the light of the theory outlined above, the m1p program provides the following func-

tionality:

e The network may be initialised by a configuration file which specifies not only parame-

ters such as learning constant and momentum, but also initial weight/bias matrices.

e A momentum term has become ubiquitous in MLP simulators; it is assumed that
momentum will be used. If the user specifies a momentum term of 0.0, this has the

same effect as using no momentum term.

e The user may optionally specify the use of quickprop gradient descent and flatspot

offset.

e Error may be reported as the sum of squared error or as the current misclassification

cost. Command line options control error reporting frequency.

4.3 Pilot Study Questions

The experiments presented in this chapter are designed to answer these questions:

1. Does embedding prior knowledge in an MLP using Banerjee’s technique reduce the

number of training epochs required?

2. How does that reduction compare to that gained by using Fahlman’s quickprop tech-

nique?
3. How does Banerjee’s technique interact with quickprop? With pruned trees?

4. Does the extension to Banerjee’s technique to include nominal attributes produce similar

behaviour?
5. Is any accuracy gained in the conversion from tree to MLP and subsequent training?

Some of these questions have been answered before, and some are new. Banerjee (1997)
presents evidence to show that training speed is improved by his technique, but includes no
databases with nominal attributes (since his technique is only defined for continuous attributes).
His method is only tested against standard backprop; here we compare to quickprop as well.
Banerjee points out that only unpruned decision trees were used to initialise his networks;
here we examine the results of using Minimal Cost Complexity to produce smaller trees

which in turn produce smaller MLPs. Finally we examine a completely new situation, where

74

a pruned decision tree is used to create an MLP which is then trained using quickprop on a
database containing a mixture of categorical and continuous attributes. To reiterate: we are
only concerned with whether a more accurate state exists for initialised MLPs, and whether it
exists earlier in the training sequence than for regular MLPs. We do not concern ourselves
with recognising that the MLP should stop training there—for treatments of such problems,
see Prechelt (1996) or Prechelt (1998).

4.4 The Databases

Six databases were used as test cases. The first four were used to observe the speed of training
of initialised MLPs against uninitialised MLPs, and also to compare the error rates of decision
trees, MLPs, and tree-initialised MLPs. Having established similar patterns in the speed tests
for the first four databases, the final two were used only to discover if an initialised MLP
might sometimes beat a decision tree for pure accuracy. In all tests, we used the percentage of
correct classifications as an accuracy measure, since the purpose was only to see if MLPs had
a better chance of being correct more often. For a characterisation separating false positives
and false negatives, see the experiments in Chapter 6.

Four databases were initially used for both speed and accuracy tests. The three “real”
databases are freely obtainable from the UCI Machine Learning Repository, while the “syn-

thetic” database was generated by a short program written in C.

The Iris Database

Perhaps this is the most famous machine learning database of all. The “Iris” set was introduced
by Fisher (1936). Since then it has been used too many times to mention, and has become a
de facto calibration benchmark for machine learning and statistical classification methods.
The database consists of 150 records, 50 each of three different kinds of iris: setosa,
versicolor, and virginica. Each record consists of four measurements: sepal width, sepal
length, petal width and petal length. The fifth attribute in each row is the class label. The
setosa records are linearly separable from the other two, but the latter are not linearly separable

from each other.

75

The Glass Identification Database

The motivation for this dataset was forensic—glass collected from crime scenes may be used
as evidence, if correctly identified. In particular, it is of interest as to whether the glass has
been “float” processed, and whether it is building glass or vehicular glass.

The database consists of 10 attributes: a row number, refractive index, sodium, aluminium,
silicon, potassium, calcium, barium and iron content. All attributes are continuous. The class
labels consist of building windows (float processed and non-float processed), vehicle windows
(float processed and non-float processed), container, tableware and headlamps. There are 214
rows in the database, with 87 float-processed, 76 non-float processed and 51 non-window
glass instances. There are no instances of non-float processed vehicle windows (class label 4).

Both the Iris and Glass databases featured in Banerjee (1997). The experiments described
here do not exactly replicate the results, since a different tree-growing and pruning algorithm
is used (race, based on SPRINT rather than C4.5). Added to those findings is the interaction

with quickprop training.

A Synthetic Mixed-Attribute Database

One of the goals of this project is to extend Banerjee’s method to include categorical (specif-
ically nominal) attributes. In order to verify that the extended method behaves similarly
to its predecessor, we need a tractable database with categorical attributes. This database
consists of two categorical attributes (one with six categories, the other with fourteen) and
three continuous attributes. The program which generates the data does so randomly, but also

applies the following rule:

> numeric attributes are a, ¢, €

> categorical attributes are b, d

> class label = has levels 1, 2, 3

ifa <33andb € {1,3,4,6}
then xr — 1

elseif « > 33 and b € {5,6}
then x — 1

elseif c > 7and d € {2,4,6,8,10}
then z «— 2

else if ¢ > 900
then x — 2

elsez — 3

Any number of rows may be generated. The application of the rule gives a distribution
of the class labels of P(1) = 46%, P(2) = 9.7% and P(3) = 44.3%. There is no “noise” in

76

the database, because every row obeys the rule. Here we are interested in seeing how long a
normal MLP takes to learn the rule, versus how precisely an initialised MLP “knows” the rule

to begin with.

The Australian Credit Database

This database is included to provide a “real world” dataset consisting of both categorical
and continuous attributes. It has been used by Quinlan (1987), and is part of the standard
STATLOG dataset used to assess the behaviour of decision tree pruning procedures in Mehta
et al. (1995). It is interesting here because it provides a good mix of attributes—continuous,
categorical with small numbers of values, and categorical with large numbers of values.
The dataset consists of credit card applications. All attribute names have been changed to
meaningless values to protect confidentiality, including the class labels; however we can
assume that they indicate good and bad credit risks, or possibly “approve” and “decline” the
application.

The database contains 690 rows with 15 attributes including the class label. The categorical
attributes include 2-value, 3-value, 9-value and 14-value fields. The classes have 44.5% and

55.5% representation.

Surgical Audit

The Surgical Training Unit at the School of Medicine, University of Otago records every
operation performed in a database (Pettigrew, McDonald, and van Rij, 1991). Recently there
has been interest in the automatic prognosis of patients—not for use as a prognostic tool, but
as a method of risk-adjustment when calculating league tables of mortality and morbidity.
Twelve prognostic variables were identified; their names and possible values are listed as
Table 4.1.

Class labels are 1 (minimal or no complications) and 2 (intermediate and severe complica-

tions). There are 2996 cases in the subset of data under scrutiny, with 302 in Class 2.

German Credit

This database is similar in nature to the Australian Credit dataset, except this time we know
exactly what each attribute represents. This database forms part of the STATLOG system
(used to calibrate MDL pruning in Mehta et al. (1995)).

There are 1000 instances in the database; 700 of them are “bad”, and the other 300 are

“good.” The attributes and their possible values as listed as Table 4.2.

7

Table 4.1: Attributes Contained in the Surgical Audit Database

attribute | possible values
age | continuous in years
sex | male, female
timing | arranged, urgent, emergency
admission | acute, not acute

wound category
duration of operation
operation category
operation number
operator

contaminated, not contaminated
continuous in minutes

intermediate, minor, major 2, major 1
continuous

consultant, registrar

pre-operative stay
inpatient status
organ system

continuous in days
inpatient, day-case
urology, gastro, renal, breast/endocrine, vascular, gyn/orth/misc

Table 4.2: Attributes Contained in the German Credit Database

attribute

possible values

status of existing cheque account
duration of account
credit history

purpose

credit amount
present employment since

installment rate
personal status and sex

other debtors/guarantors

present residence since

property

age

other installment plans

housing

number of existing credits at this bank
job

dependents
telephone
foreign worker

< 0 DM, < 200 DM, > 200 DM, no a/c
continuous in months

none/all paid, all here paid back,

paid back till now, delay in past,

critical account/others existing (not at this bank)
new car, used car, furniture/equipment,

radio/tv, domestic appliances, repairs, education,
vacation, retraining, business, others

continuous in DM

unemployed, < 1 year, < 4 years,

< 7 years, > 7 years

continuous in percentage of disposable income
male+divorced/separated,
female+divorced/separated/married, male+single,
male+married/widowed, female+single

none, co-applicant, guarantor

continuous in years

real estate, life insurance, car or other, unknown/none
continuous in years

bank, stores, none

rent, own, for free

integer

unemployed/unskilled+non-resident,
unskilled+resident, skilled/official,
management/self/highly qualified/officer

integer

none, registered under customer’s name

boolean

78

4.5 First Four Experiments

Each of the first four databases was subjected to training speed tests and generalisation

accuracy tests.

Training speed tests

1. Log the sum of squared error of an MLP over v random-start runs for a) 3-layer
backprop, b) 4-layer backprop, c) 3-layer quickprop and d) 4-layer quickprop. Empiri-
cally determine a good architecture and learning constant (i.e. the experimenter must

“guess-and-check™).

2. Build a decision tree on the data. Derive two trees: one unpruned and one pruned to an

arbitrary level (close to the size of the “good” MLP above).

3. Log the sum of squared error of an MLP a) initialised with the unpruned tree and b)

initialised with the pruned tree. Train with both backprop and quickprop.

Step 1 allows us to calibrate how effectively the m1p program behaves on the current
dataset, under ideal conditions (meaning that the experimenter quite quickly determines a
reasonable architecture). We can average the training error of the network at each epoch over
the v runs to produce a “typical” graph of how quickly the error reduces during training. To
produce conservative results, we ignore all the false-starts the experimenter must engage in;
error logging only occurs once an architecture has been found that seems to suit the problem.

Step 2 requires a sensible choice of pruned decision tree; some human intervention is
required, since we are not using a test set to determine which is the best pruned tree. Choosing
a tree which, using Banerjee’s technique, will produce an MLP of similar size to the optimal
4-layer MLP seems sensible, as long as that tree is not so large that it is obviously overfitted.
This also tends to bias the experiment on the conservative side; the uninitialised MLP has the
best possible chance of doing well compared to the initialised one.

Step 3 allows us to graph the speed of error reduction during training of 3 and 4-layer
MLPs with the MLPs produced by the tree-embedding technique. Both pruned and unpruned
trees are used; MLP training is undertaken with both backprop and quickprop.

All of the tests up until this point are concerned only with the speed of error reduction
on the original training set, not with the generalisation accuracy or the optimum training
time. The following cross validation tests indicate how many epochs are required before the

network has reached an optimal state and what level of accuracy it can achieve.

79

Generalisation accuracy tests

1. Log the classification accuracy and optimum training time over v-fold cross validation
for a) 3-layer backprop, b) 4-layer backprop, c) 3-layer quickprop and d) 4-layer
quickprop.

2. Create a sequence of unpruned trees for each subset over v-fold cross validation. Create

a further sequence of pruned trees, cut to optimum performance on the v test sets.

3. Log the classification accuracy and optimum training time over v-fold cross validation
for an MLP a) initialised with the unpruned tree and b) initialised with the pruned tree.
Train with both backprop and quickprop. For tree initialisation use the tree grown on

the same subset to provide paired comparison.

Since we do not care at this stage how to stop training the MLP, only whether a better
MLP may exist while training on the same data, we can use the same hold-out set in v-fold
cross validation to choose the best-pruned subtree and to assess the accuracy of the MLP after
each training epoch. In fact, this test will be a little biased in favour of the decision tree, since
the hold-out will over-estimate the accuracy of the tree (having been used as “model-selection”
data). Thus the MLP will have to improve significantly if it is to do better than the decision
tree from which it was created.

Step 1 is a calibration similar to Step 1 in the training speed tests, indicating a baseline
performance on accuracy and stopping time for 3 and 4-layer backprop together with 3 and
4-layer quickprop.

Step 2 creates a pruned and unpruned decision tree for each training set and logs its
accuracy on the corresponding test set.

Step 3 uses the trees created in Step 2 to initialise MLPs which are then trained with
backprop and quickprop. Their accuracy is tested every epoch against the corresponding test
set, and the best accuracy is logged, along with the number of epochs required to achieve
it. Thus we can compare how effectively MLPs can scale up in with respect to both speed
(in terms of how soon the MLP reaches its “most accurate” state) and accuracy (in terms of
classification error). Finally we can compare the accuracy of the pruned trees under cross
validation with the accuracy of the MLPs on the same training/test sets.

To avoid confusion when referring to differing configurations of MLPs, a network ini-

tialised with Banerjee’s technique will be referred to as a “BMLP.”

80

4.5.1 Iris

The experiments were run on the Iris database so as to provide an illustrative example, and
to see how the technique behaves on a low-dimensional, well-behaved training set. As such,
some extra explanation is provided as we go through this example. Figure 4.5 shows us the
typical behaviour of 3 and 4-layer MLPS on the database across 10 random-start trials. All
connection weights and biases were set to an arbitrary value between —0.3 and +0.3 and the
learning constant was set to 0.005. For each start v, the random number generator seed was
set to v, so that backprop had the same start condition as quickprop at each run. The sum of
squared error for the network was logged at the end of each epoch in a separate file for each
run; the average error at each epoch over the 10 runs was then plotted on the graph. Had every
run been graphed, each type of network would produce a range of error values for each epoch
whereas this graphing technique gives us a “mean line” over the trials.

We can see from Figure 4.5 that error drops off far more sharply for quickprop than for
backprop, reaching a point where little more improvement on the training set is possible
somewhat before 100 epochs. By contrast, the backprop networks are only beginning to

flatten out after 500 epochs.

MLP Speed Comparision: Iris Dataset

120
3-layer-bp —
3-layer-qp

4-layer-bp ——
4-layer-qgp ———

Sum of Squared Error

50 100 150 200 250 300 350 400 450 500
Number of Epochs

Figure 4.5: Average error-reduction rates for 3 and 4-layer backprop and

quickprop on the Iris database

81

Speed Trial with Unpruned Tree: Iris Dataset

120
3-layer-bp —
3-layer-qp
I bp-with-tree
| qp-with-tree
100 |
. 804\
&
m \
=} \
) \
§ \
s 60 \
5 AN
IS .
3 S
@ 40 +
20 -
0 77:7777 77; T T T T T T T
50 100 150 200 250 300 350 400 450 500
Number of Epochs
(a) 4-layer backprop and quickprop with unpruned tree initialisation.
Speed Trial with Pruned Tree: Iris Dataset
120
3-layer-bp ——
3-layer-qp
I bp-with-tree
\ qp-with-tree
100 |

Sum of Squared Error
(2]
o
1

20 H .

50 100 150 200 250 300 350 400 450 500
Number of Epochs

(b) 4-layer backprop and quickprop with pruned tree initialisation.

Figure 4.6: A comparison of MLP learning speeds on the Iris database

82

Using race to induce a decision tree on the Iris data and running rules to generate an
initial network architecture produces the result seen in Figure 4.6a. The results from the 3-layer
networks are included to aid comparison—clearly, these BMLPs “know” something already,
starting their training from a point far lower on the error gradient. It is interesting to note that
the quickprop BMLP has a sharper drop-off in error than the backprop BMLP, and that the
quickprop BMLP is the only network to reduce training set error to zero misclassifications,
which automatically halts training. Also note that this occurs shortly after 100 epochs.
Although interesting, it is unlikely to be significant since any perceptron which actually
reached zero error on the training set is almost certainly overtrained and will therefore
generalise poorly. The network produced by the unpruned tree has layer sizes 4, 16, 9, and 3.

Figure 4.6b shows the results of pruning the tree so that it is reduced from 100% accuracy
on the training set to 97% accuracy (a reduction from 17 nodes to 7, using Minimal Cost
Complexity pruning). The resulting tree produces a BMLP with hidden layers of sizes 6 and
4 (rather than 16 and 9) but we can see that the error drop-off is very similar, with quickprop
once again interacting well with the tree embedding technique. On the surface this may
indicate that pruning the tree before embedding it in a BMLP is not important, until one
considers that the smaller network has a much faster training time since each epoch is faster.

These graphs certainly indicate that training speed is strongly affected by a knowledge
embedding technique, but what about reaching the point of best generalisation? If, for
instance, the MLP ought not to be trained past a total sum of squared error rate of 10 for
optimal generalisation, then the technique is a complete waste of time, since 3-layer quickprop
reaches this value in around 75 epochs.

The numbers in Table 4.3 paint a reasonably optimistic picture of this, though. What we
see here are the best error percentages achieved on test sets through cross validation, and the
number of epochs required to achieve them.

Table 4.3 gives the mean value of this accuracy over 10 cross validations and the mean
number of epochs taken to reach this value. We can see from this table that the accuracy
achieved by the tree embedding method is close to all the other methods; this suggests that
at least we are not setting the network up in such a way that it is poorly equipped to deal
with the domain. We also note that the BMLPs have performed particularly well with respect
to how many epochs it takes to reach best generalisation; two orders of magnitude better
than a 3-layer MLP trained with backprop. This is particularly interesting considering that
Figure 4.5 implies that 4-layer backprop is normally the slowest to train; for this database, the

tree-embedded knowledge can barely be improved upon.

83

Table 4.3: Iris Database: Generalisation Accuracy and Best Stopping Points
over 10-fold Cross Validation

Mean Best Error (%) | Mean Epochs
on test sample

Unpruned Tree 4.7 (not trained)
Pruned Tree 4.0 (not trained)
3-layer standard backprop MLP 33 497.3
4-layer standard backprop MLP 2.7 488.3
3-layer standard quickprop MLP 1.3 206.1
4-layer standard quickprop MLP 1.3 192.1
Backprop BMLP with unpruned tree 3.3 33
Quickprop BMLP with unpruned tree 2.0 7.6
Backprop BMLP with pruned tree 33 3.1
Quickprop BMLP with pruned tree 2.0 7.4

Note that the best generalisation accuracy of all MLPs appears to be better than the
generalisation accuracy of pruned trees; however a 2-way analysis of variance (ANOVA)
shows that there is not enough evidence to suggest a difference between the 9 methods of
generating a classifier (unpruned trees were not included in the test since they are always
assumed to be overfitted). The F-value for difference in method was 1.88 (2.097 required for
95% confidence). There is strong evidence of a difference between sets in cross validation
(F-value of 15.44), suggesting that for all methods, some training/test combinations were

harder to learn than others.

4.5.2 Glass

The standard behaviour of MLPs for 3 and 4-layer backprop and quickprop is given in
Figure 4.7. Once again, 10 random starts were used. We can see that this classification is
significantly harder to learn, with the backprop MLPs not reaching anywhere near a decent
error rate after 500 epochs, but with quickprop once again showing a much sharper error
gradient descent. Reference to Table 4.4 shows that quickprop MLPs take about 0.6—0.7 times
as long to reach the optimum training point.

In Figure 4.8 we see the effect of embedding unpruned and pruned trees on the training

speeds. As with the Iris database, we see a marked difference in start point (the error starts

84

MLP Speed Comparision: Glass Dataset
350

3-layer-bp —
3-layer-qp

4-layer-bp ——
300 4-layer-gp ———

250 4
200 |

150 40\

Sum of Squared Error

100 -

50 o

O T T T T
50 100 150 200 250 300 350 400 450 500
Number of Epochs

Figure 4.7: Average error-reduction rates for 3 and 4-layer backprop and

quickprop on the Glass database

already low because of the embedded knowledge, but higher than the tree used to embed it due
to logistic activation functions). Furthermore, we see that the interaction between quickprop
and the embedding method is favourable—once again this combination is the only one to
reach a zero error on training set.

Once again we can see that pruning the tree makes only a small difference on how quickly
the error reduces. However, difference in network size is quite significant this time: 9-36-19-7
as opposed to 9-96-50-7. Since the time to complete an epoch scales to the order of O(n?),
being one third of the size means that each epoch takes a great deal less time.

The results for 10-fold cross validation on the glass database is presented in Table 4.4.
The quickprop BMLP is the clear winner here, approaching a 5-fold speed-up. If we consider
the fact that the two backprop MLPs really required longer training (indicated by their poor
error rates) then it is not much of a stretch to assume an order of magnitude improvement.
(Backprop MLPs which are allowed to run for 1000 epochs on this database still only reach an
error rate of around 30%—still worse than the BMLP achieving 22% at around 100 epochs.)
Note that a 4-layer network seems to be a good architecture for this domain, since the 4-layer
quickprop MLP has produced results close to the accuracy and speed of the BMLPs.

In this case a 2-way ANOVA provides us with strong evidence of both a difference in

accuracy (F-value of 14.57) and a difference in the difficulty of training sets (F-value of 7.01).

85

Speed Trial with Unpruned Tree: Glass Dataset

350
3-layer-bp ——
3-layer-qp
bp-with-tree
300 4 qp-with-tree
I
\
250 —“
5 \
i
8 200 1!
I \
=] \
jo \
] \
5 150 4|
c
>
(7]
0 T T 7;7 77777I — T T T T T
50 100 150 200 250 300 350 400 450 500
Number of Epochs
(a) 4-layer backprop and quickprop with unpruned tree initialisation.
Speed Trial with Pruned Tree: Glass Dataset
350
3-layer-bp ——
3-layer-qp
bp-with-tree
300 - gp-with-tree
I
\
250 —“
5 \
.
@ 200 |
3 \
=] \
o
2]
S
IS
>
7]
0 T T T —— T T T

50 100 150 200 250 300 350 400 450 500
Number of Epochs

(b) 4-layer backprop and quickprop with pruned tree initialisation.

Figure 4.8: A comparison of MLP learning speeds on the Glass database

86

Table 4.4: Glass Database: Generalisation Accuracy and Best Stopping

Points over 10-fold Cross Validation

Mean Best Error (%) | Mean Epochs
on test sample

Unpruned Tree 32.7 (not trained)
Pruned Tree 24.2 (not trained)
3-layer standard backprop MLP 35.0 482.2
4-layer standard backprop MLP 37.4 435.3
3-layer standard quickprop MLP 29.5 3244
4-layer standard quickprop MLP 23.3 267.8
Backprop BMLP with unpruned tree 21.1 120.9
Quickprop BMLP with unpruned tree 18.2 74.2
Backprop BMLP with pruned tree 20.5 127.5
Quickprop BMLP with pruned tree 16.8 919

Since the pruned quickprop BMLP appears to achieve the best accuracy, we can test whether
it is improving on that of pruned trees; we see an average paired difference of 7.45 percentage
points between the two methods, generating a t-value of 5.73. We therefore conclude that
there is very strong evidence of an improvement in generalisation accuracy between pruned

trees and quickprop pruned BMLPs (t-value of 3.250 required for 99.5% confidence).

4.5.3 Synthetic Database with Categorical Attributes

This experiment is designed to display the behaviour of a BMLP with the extension to
Banerjee’s technique introduced earlier in this chapter. (Recall that the purpose of the
extension is to deal with categorical attributes.) As usual, we check the expected behaviour of
3 and 4-layer MLPs in Figure 4.9. Also as usual, we see quickprop significantly outperforming
backprop. As with the Glass database, we can see that a 4-layer architecture seems to be
particularly good for this domain, at least when combined with the quickprop algorithm.
With the addition of tree-embedding in Figure 4.10 we see the pattern we have come to
expect: the network starts with a lower error and progresses to a minimum error level very
quickly. This provides some empirical evidence that the extended knowledge embedding

actually works—the technique is now usable with categorical attributes. A marked difference

87

MLP Speed Comparision: Synthetic Dataset
800

3-layer-bp ——
3-layer-qp

4-layer-bp ——
700 1 4-layer-gp ———

500 o

400

300 o

Sum of Squared Error

200 o

100 -

0 T T T T T T T T T

50 100 150 200 250 300 350 400 450 500
Number of Epochs

Figure 4.9: Average error-reduction rates for 3 and 4-layer backprop and

quickprop on the Synthetic database.

is that this time pruning the tree has had a noticeably adverse effect on the gradient descent
for both quickprop and backprop BMLPs. This is to be expected, since the database has no
“noise”’; every tuple follows the artificial set of rules which were used to create the database.
Thus pruning a tree created on the complete set can only reduce its accuracy.

Table 4.5 confirms that the tree method, even on cross validation (where the tree is built on
part of the data and then tested for accuracy on the rest) performs unusually well on noise-less
data. Also, we see that 500 epochs is once again not enough to get the standard MLPs to an
optimum training level. In contrast, the quickprop BMLPs reach their optimum states after
about 20 epochs. If we assume that a 3-layer MLP will take perhaps 1000 epochs to reach a
similar error level, then we see almost two orders of magnitude increase in speed. (Training
runs for this problem which are allowed to reach 1000 epochs produce errors of around 12%,
so this is a conservative assumption.) On noiseless data, however, it seems that we cannot
expect MLPs of any type to compete with decision trees for either speed or accuracy. Indeed,
a 2-way ANOVA gives strong evidence of a difference in methods (F-value of 58.98) but this
time we can clearly see that the winning method is pruned trees. There is also strong evidence

of a difference in difficulty of training/test subsets (F-value of 4.76).

88

Speed Trial with Unpruned Tree: Synthetic Dataset

800
3-layer-bp ——
3-layer-qp
bp-with-tree
700 4 qp-with-tree
|
600 \
2 500 A
|
=}
o
]
S 400
)
G
§ 300
)
200
100
0
50 100 150 200 250 300 350 400 450 500
Number of Epochs
(a) 4-layer backprop and quickprop with unpruned tree initialisation.
Speed Trial with Pruned Tree: Synthetic Dataset
800
3-layer-bp ——
3-layer-qp
bp-with-tree
700 qp-with-tree
|
600 |
2 500
w
=}
o
]
3 400
)
G
§ 300
)
200
100
0 T T T T 77777 li T T T —

50 100 150 200 250 300 350 400 450 500
Number of Epochs

(b) 4-layer backprop and quickprop with pruned tree initialisation.

Figure 4.10: A comparison of MLP learning speeds on the Synthetic

database

89

Table 4.5: Synthetic Database: Generalisation Accuracy and Best Stopping

Points over 10-fold Cross Validation

Mean Best Error (%) | Mean Epochs
on test sample

Unpruned Tree 1.0 (not trained)
Pruned Tree 0.7 (not trained)
3-layer standard backprop MLP 14.9 500.0
4-layer standard backprop MLP 15.9 500.0
3-layer standard quickprop MLP 10.2 461.4
4-layer standard quickprop MLP 5.5 493.5
Backprop BMLP with unpruned tree 1.9 80.3
Quickprop BMLP with unpruned tree 2.0 20.2
Backprop BMLP with pruned tree 1.7 66.1
Quickprop BMLP with pruned tree 1.7 19.0

4.5.4 Australian Credit Database

Now that we have some evidence that the extended embedding technique works well for
databases with both categorical and continuous attributes, we can test its effectiveness on
real data. Figure 4.11 shows the behaviour we have come to expect from standard 3 and
4-layer networks. As with the Glass database, a 4-layer quickprop network seems to be
particularly suited to this domain. Figure 4.12 also shows the results we have come to expect
from embedding decision tree knowledge into backprop and quickprop MLPs. As usual,
both BMLPs start with a much lower global error. Here we begin to see quickprop really
interacting well with the embedding technique—for both pruned and unpruned trees, the
quickprop learning algorithm shows a vast improvement in error reduction when started with
“preconceived ideas.” Note also the oscillation in the BMLPs when the initialising tree is not
pruned—the result of a learning constant which is slightly too high.

Does this training behaviour translate into good generalisation and early stopping? Ta-
ble 4.6 presents the usual 10-fold cross validation results for trees and MLPs. This time,
we can see that pruning the tree before embedding it in the MLP has produced the best
generalisation accuracy. A 2-way ANOVA suggests strong evidence of a difference in classifi-
cation methods (F-value of 4.82) and very strong evidence of a difference in training/test set

difficulty (F-value of 32.74). A paired t-test on pruned trees vs. pruned quickprop BMLPs

90

MLP Speed Comparision: Australian Credit Dataset
400

3-layer-bp ——
3-layer-qp

| 4-layer-bp ——
350 1 4-layer-gp ———

300 |
250 -

200 o

Sum of Squared Error

150 -

100 -

50 o

0 T T T T T T T T T

50 100 150 200 250 300 350 400 450 500
Number of Epochs

Figure 4.11: Average error-reduction rates for 3 and 4-layer backprop and

quickprop on the Australian database

shows an average difference of 1.45 percentage points, with t-value of 4.74 (3.250 required
for 99.5% confidence). We can therefore confirm that there is very strong evidence of an

improvement on test set scores for quickprop pruned BMLPs over pruned trees.

4.6 Interpretation and Implications
At this point, we pause to ask a few questions regarding the results we have seen so far.

1. Does embedding prior knowledge in an MLP using Banerjee’s technique appear to

reduce the number of training epochs required?

These experiments certainly lend support to the idea that an MLP initialised with
Banerjee’s technique will not need as many epochs to train. Not only does the global
error of the network reduce faster (according to the graphs of training error) but the
MLP will reach a point of optimal generalisation much sooner. Over the four databases
presented so far, a quickprop BMLP initialised with a well-pruned tree seems to reach
optimal accuracy with at least an order of magnitude fewer training epochs than a
standard 3 or 4-layer MLP.

91

Speed Trial with Unpruned Tree: Australian Credit Dataset

700
3-layer-bp ——
3-layer-qp
bp-with-tree
600 qp-with-tree
500
g
T
@ 400
©
=)
jo
2]
S 300
IS
>
7]
200
100
0 T T —— T T T T T
50 100 150 200 250 300 350 400 450 500
Number of Epochs
(a) 4-layer backprop and quickprop with unpruned tree initialisation.
Speed Trial with Pruned Tree: Australian Credit Dataset
400
3-layer-bp ——
3-layer-qp
a50 4 bp-with-tree
‘w\ qp-with-tree
300 4|\
\\
5
5 250 A \
o \
o \
[\
=)
jo
2]
S
€
>
7]
O T T T T — 77777 7I T T T

50 100 150 200 250 300 350 400 450 500
Number of Epochs

(b) 4-layer backprop and quickprop with pruned tree initialisation.

Figure 4.12: A comparison of MLP learning speeds on the Australian

database

92

Table 4.6: Australian Database: Generalisation Accuracy and Best Stop-

ping Points over 10-fold Cross Validation

Mean Best Error (%) | Mean Epochs
on test sample

Unpruned Tree 19.1 (not trained)
Pruned Tree 12.2 (not trained)
3-layer standard backprop MLP 14.3 405.1
4-layer standard backprop MLP 13.9 228.7
3-layer standard quickprop MLP 12.5 204.7
4-layer standard quickprop MLP 12.6 68.6
Backprop BMLP with unpruned tree 15.2 143.9
Quickprop BMLP with unpruned tree 14.9 58.1
Backprop BMLP with pruned tree 11.7 87.6
Quickprop BMLP with pruned tree 114 479

2. How does that reduction compare to that gained by using non-standard weight update

methods?

We occasionally see 4-layer quickprop doing as well as a BMLP; for instance in the
Australian Credit database experiment we see only a slight difference in performance
between 4-layer standard quickprop and a quickprop BMLP. What is not apparent from
the experiments is the amount of work that went into finding a good 4-layer architecture
that could allow standard quickprop to work that well; by contrast, Banerjee’s algorithm

provides an architecture which seems to work well every time.

3. How does Banerjee’s technique interact with faster weight optimisation schemes, such

as quickprop? What about with pruned trees?

The tree embedding technique seems to work very well indeed with quickprop. In
domains where we see a fast initial drop in error and then a long plateau (such as the
Glass and Australian databases) a backprop BMLP seems to start with lower error, but
that error then reduces at a similar rate to the plateau of a standard backprop MLP. By
contrast, a quickprop BMLP has an immediate and dramatic error reduction. In every

experiment the quickprop BMLP requires about half the number of epochs to reach

93

optimal accuracy when the initialising tree is pruned and a quarter when the initialising

tree is unpruned.

This sheds some light on the second question, regarding pruning. The trees produced
by race for the Iris database are already quite small, so pruning seems to have little
effect on the embedding technique except to increase the number of epochs required to
reach best accuracy. Furthermore, quickprop seems to work better without pruning the
tree first. However when we look at the results from a database which produces a large
decision tree (such as the Australian data, on which race induces a tree of 165 nodes)
pruning is essential. Without pruning, a BMLP of size 43-154-83-2 is created: clearly
too big, when a BMLP of 43-30-16-2 can learn the classification more accurately!
Under cross validation on the Australian Credit data we see that pruning the test-set
tree and selecting the best-pruned tree to initialise the BMLP produces classifiers with

an error rate 3 percentage points smaller.

. Does the extension to Banerjee’s technique to include categorical attributes produce the

desired behaviour?

The extended technique introduced in this chapter does indeed exhibit the same be-
haviour as the original technique. The benefit of this is that we can now use the BMLP
method on a much wider range of databases. Also, it brings the technique into the field
of data mining and knowledge discovery where we would expect it to be able to cope
with categorical as well as continuous data. The improvement in training time seen
in the original technique is also seen in the extended method; a quickprop BMLP is
usually at least an order of magnitude faster to reach optimum accuracy than a 3 or
4-layer MLP.

. Is any accuracy gained in the conversion from tree to MLP and subsequent training?

We have seen two databases where accuracy is gained by the conversion and subsequent
training; in particular, BMLPs for the glass database have an error rate 7.4 percentage
points lower than the best pruned tree available. Since the trees have an error rate of
around 24%, this represents a drop of about 30% of the original error. BMLPs for the
Australian Credit database also outperform the best pruned trees, although only by
about (.8 percentage points. This means that there exist databases where MLPs could
outperform trees for classification accuracy, assuming we could recognise the right
time to stop training. We can also suggest that, on these databases, a tree-embedding
technique is likely to work well in reducing the number of epochs required to train the

network.

94

On the other hand, we also saw no evidence of a difference in classification accuracy
in the Iris dataset, and strong evidence that trees were better for the Synthetic dataset.
This suggests that there exist databases where training an MLP at all is a waste of effort,

since a pruned decision tree will always produce a better classification faster.

4.7 Final Two Experiments

The Surgical Audit and German Credit databases were used to focus on the question of
whether we might expect a BMLP to end up producing a more accurate model than the
decision tree that was used to create it.

One cross validation experiment was run on each database, to determine whether or not
quickprop pruned BMLPs performed better on generalisation accuracy than pruned trees.
Once again, we are only concerned with whether a more accurate BMLP exists in the sequence
of training states, and how early that state appeared in the sequence. The results are presented
in Table 4.7. This time, we present every run over cross validation. Due to the low incidence
of the class of interest in the Surgical Audit database, only five rather than ten cross validations
were run. Note the consistency of results—the BMLP shows equal or better accuracy than the
best pruned tree for every randomly generated subset of data. Recall that the BMLP never
gets to observe the test set for the purposes of training; its parameters are only ever adjusted
according to the signals provided by the original training set. Nevertheless, it seems capable
of reaching a state where it will generalise better than a tree that the test set actually favours
most strongly.

We see an average difference of only 0.17 of a percentage point in BMLP vs. pruned
trees on the Surgical Audit database. Without performing an ANOVA, we can observe that
every training set/test set combination has a different “difficulty,” but that the tree and BMLP
models find them similarly difficult. However, on each run, the BMLP finds a representation
that is just slightly more accurate than the tree’s. Although the improvement is very small,
it is consistent across all training/test subsets. However, this may be a case of a statistically
significant difference being a practically insignificant difference: it depends on what that fifth
of a percent is worth in real terms.

On the German Credit database, we see an average difference of 3.1 percentage points.
Once again, there seems to be variation in training set/test difficulty (F-value of 28.42), and
once again the BMLP finds a more accurate representation every time—although in this case,

one that is almost certainly large enough to be of practical use.

95

(a) Surgical Audit: 5-fold cross validation (b) German Credit: 10-fold cross validation

run | tree error (%) | BMLP error (%) run | tree error (%) | BMLP error (%)

1 11.5 11.5 1 23 19
2 8.85 8.68 2 30 27
3 8.51 8.35 3 20 17
4 9.68 9.52 4 16 15
5 10.18 9.85 5 22 16
mean 9.75 9.58 6 22 19
7 28 26

8 25 22

9 20 19

10 29 24

mean 23.5 20.4

Table 4.7: Results of cross validation tests on the Surgical Audit and

German Credit Databases

Both databases contain real-life data, both are noisy and “hard” to generate classifiers for
(the average size of the unpruned trees for Surgical Audit is 521 nodes, which gets pruned
down to an average of 18.6 nodes). Interestingly, BMLP classification seems to work better
for both of them, but to quite different degrees; a 1.7% improvement in accuracy for Surgical
Audit (from 9.75% to 9.58% error) and a 13.2% improvement for the German Credit dataset
(from 23.5% to 20.4% error rate).

This method of tree embedding seems to be giving us what we want—an improvement
on decision tree classifier accuracy. But when will it be enough? Is a reduction of 0.17 of a
percent error enough to justify the effort of the technique? Perhaps, if it means we correctly
classify 17 more patients out of a database of 10 000. Perhaps not, if we only operate on 1000
patients a year. On the other hand, a 3.1 percentage point drop in error could save a credit
firm millions of dollars per year; but it could also result in some expensive litigation.

In the next chapter, we shall attempt to explain what we should or should not expect an
initialised MLP to be able to do, and set the scene for an alternative method of initialisation

that produces rather smaller MLPs than have yet been proposed in the literature.

96

Chapter 5

A General Method of Transfer from
Decision Trees to MLPs

From the results of the experiments in the previous chapter, we have some empirical reason
to believe that MLPs can be more accurate classifiers than decision trees. But why? What
exactly is an MLP doing that is different from a decision tree? And why should an MLP
that is initialised by way of a decision tree have any chance of outperforming the tree? An
exploration of these questions will lead to a method of initialising MLPs that produces smaller
MLPs than all prior methods. We examine the changes that an MLP undergoes when a
training algorithm adjusts connection weights and biases, and show precisely how the internal
nodes of an MLP may be used to set up arbitrary decision boundaries in the feature space.
To keep matters simple, we shall at first examine decision trees and MLPs that operate
on a feature space consisting of two continuous dimensions, with one output representing a
probability of class membership. Without loss of generality, the ideas presented here extend
to any number of dimensions (with straight-line boundaries becoming planar or hyperplanar).
We will explicitly examine feature spaces containing categorical inputs, and output spaces

containing multiple classes.

5.1 The Knowledge of Decision Trees and MLPs

To link the “knowledge” stored in decision trees and MLPs, we shall utilise a simple transpar-
ent propositional logic language that allows us to talk about objects in a database. Statements
in this language can then be shown to map to decision trees (of a particular architecture) and
to MLPs (also of a particular architecture). Propositions in this language consist of statements

about objects, such as x < 3 (meaning “the value of feature z is less than 3”) or z € {2,3,5}

97

Database with One Axis—Parallel Decision Boundary

Y value
6 8
| |
>
>
D>
>
D >
o
o
o
o
o
o

iy
class = good class = bad

X value

(a) A simple database (b) Decision tree derived from (a)

Figure 5.1: A database that follows a simple classification rule

(meaning ‘“‘the value of feature z is one of 2, 3, or 5). This language contains all the usual
modifiers and connectives that one expects to find in a propositional language: — (negation),
— (implication), A (conjunction; i.e. AND), V (disjunction; i.e. OR) and is read left-to-right
unless parenthesised. When we find the language inadequate to our needs, we shall extend it

as and when necessary.

5.1.1 A Simple Database with One Hyperplanar Decision Boundary

To take a simple example, imagine a database in which all of the objects whose z-value is less
than 6 belong to the class good, and the rest belong to the class bad. A decision tree induced
on this database should have one branch containing the decision z < 6 and two leaves, the left
leaf labelled good and the right labelled bad. The database and the resulting decision tree are
depicted in Figure 5.1. Note that the y-values have no association at all with the class label.

Our simple language allows us to say, regarding the database, that “x < 6 — class =
good”, or “if the x-value of an object from this database is less than 6, then the class of that
object will be good.” Note that the implication is only one way, so we are not saying that if the
class is not good, then x is not less than 6. Nor does the statement suggest that if the z-value
is greater than 6, that the class is anything other than good. To tighten up the circumstances in

which we would deduce that a class label should be good, we could use
x <6 — class = good N\ —(z < 6) — —(class = good)
Alternatively, we could reverse the sense of the less-than operator:

x <6 — class = good Nz > 6 — —(class = good)

98

Output of a One-node MLP

act(inputs + 30)

Y value
6
1

X value

Figure 5.2: An MLP with a single axis-parallel soft hyperplane

Far more succinctly, we can add an “if and only if”” form of implication, with “«—” being the
appropriate connective. Then “x < 6 < class = good” says that we should only classify an
item as good if x < 6, which requires that we have established what the default class should
be. The “if and only if” gives us a crude form of “default rule”; it suggests that, in the absence
of any other knowledge, we should not classify an item as good. In all further examples, we
assume a default class of bad.

So if a single-branch decision tree can represent a piece of knowledge such as “z < 6 «
class = good”, what form of MLP could do the same? The answer is a very simple MLP;
one that has a single feature detector to observe feature x, and a single output node biased in
such a way as to be strongly “on” when x is below 6, and strongly “off” when x is above 6 as
in Figure 5.2, where beige represents an output close to 1.0, and blue represents an output
close to 0.0.

Note that, in order to treat some value ¢ as a threshold value, the bias on the output node
must be ¢ times the value of the weight on the connection between the output node and
the z-value sensory node. But what of the strength of the connection? Assuming that the
activation function of the output node is the standard a(x) = Hﬁ, adjusting the strength of
the connection weight has the effect seen in Figure 5.3.

As the magnitude of the weight becomes larger, the transition from “on” to “off”” becomes
sharper, less “fuzzy.” This is the main point of difference between the one-branch decision
tree and the one-node MLP: the decision tree makes (and always makes) a sharp decision, so
that x = 5.999 will result in “class = good” and z = 6.001 will result in “class = bad.” In
contrast, the output of an MLP may be interpreted as a “probability that the output should be
good.” Whatever the weight magnitude, = 6 will produce a probability of 0.5. If the weight

99

Output of a One-node MLP

act(inputs + 60)

Y value
6
1

X value

Figure 5.3: An MLP with a sharper soft hyperplane.

magnitude is quite high, then z = 5.999 may produce a probability close to 1.0; but if the
weight magnitude is not very high, then = 5.999 may only result in a probability of, say,
0.7.

This behaviour allows us to make two statements regarding MLP training algorithms,
which adjust connection weights and biases. They may seem trivial, but they are of utmost
importance in understanding why MLPs should outperform decision trees on certain tasks.
They are, Principle 1: MLP training adjusts the threshold value of each decision boundary by
changing the ratio of bias to connection weight; and Principle 2: MLP training adjusts the
sharpness of each decision boundary by changing the magnitudes of connection weight and
bias.

Note that no alteration of the activation function is necessary in order to affect the
sharpness of a decision boundary; the magnitudes of bias and connection weight are sufficient.
Increasing the steepness of the sigmoid activation function will make the node more sensitive
to small changes in weight magnitude, but this can be achieved just as well by standardising
features to, for instance, a zero mean and unit standard deviation. Accordingly, we shall refrain
from examining activation functions while considering knowledge encoding or refinement.

To what extent does “connectedness” affect the representational power of even a simple
MLP such as this? The decision tree only “observes” feature =, because that is all it “knows”
about, but an MLP (at least, one that is fully connected) observes all the features available.
A zeroed connection weight to the y-value sensory node is essentially saying “ignore this
feature,” but a training algorithm may change that weight—so what effect will this have on the

decision boundary? Since this one-node MLP adds all of its inputs together before sending

100

Output of a One-node MLP

act(inputs + 20)

Y value

X value

Figure 5.4: An MLP with a single oblique soft hyperplane

the results to the activation function, the output becomes a linear combination of the input:
1.e. the decision boundary filts, as in Figure 5.4.

Some simple mathematics shows that, in n dimensions, the decision line will intersect
each axis at the ratio of that feature’s connection weight to the bias. Once again, the sharpness
of the transition depends on the magnitude of the bias and weights. With one output node, the
decision boundary is represented by an isosurface where the output of the node is 0.5; this
surface is perfectly flat, and can intersect the axes at arbitrary points. This is in stark contrast
to the usual conformation of a decision tree, where decision boundaries are hyperplanar
but only axis-parallel. This leads us to Principle 3: MLP training adjusts the orientation
of decision boundaries by treating them as linear combinations of features, altering their
gradient as necessary. However, a single node can produce no curvature in a boundary; the
isosurface produced by a single node with a sigmoidal activation function is perfectly flat.
To represent the isosurface in our logic language (ignoring the issue of the sharpness of the
boundary) we would need to add multiplication and addition to the propositions, like this:
—4x+—2.5y < 20 < class = good would correspond to a single-node MLP with connection
weights —4 and —2.5 and bias 20. It would represent a line passing through x = 5 and y = §,
below which one could expect items to be of class good, and above which one should see a
class other than good. Decision trees such as ID3, C4.5, CART, and SPRINT have no way
of representing such a boundary, and therefore no way of discovering it. Instead, they will
approximate an oblique surface by a sequence of corners made up of axis-parallel splits. All is
not lost for decision trees, though: oblique decision trees such as OC1 may generate arbitrarily

tilted boundaries, but do not treat the boundary as even potentially soft. Unfortunately, there

101

Figure 5.5: A one-node MLP acting as a logistic regression model

is no reliable way of incorporating categorical attributes into the hyperplanes generated by
OC1; something that regular decision trees and MLPs do quite easily.

It is worth pausing at this point to draw attention to a link between a single-unit MLP and
a logistic regression model. They are in fact precisely the same thing. Observe the form of a

logistic regression:

In() = B0+ Bix1 + foxa + ... + Bray

I—=p
where p is the probability of the predicted variable being equal to 1, 3, represents an intercept
term, x1, T9, ... are the individual features, and 31, 55, . . . are coefficients that indicate an
increase or decrease in the log odds of the output variable.

Rearranging to isolate p, we get:

1

P een

where 3 is a vector consisting of 3y, 41, . . ., and x is a row vector of features augmented by a
1 on the left end, to provide a match against the /3 term.

In comparison, observe the one-node MLP in Figure 5.5. In a break from the representation
used so far, the bias is explicitly represented as a weight on a connection from a node that is
always fully activated.

If we take the features and the bias node as a row vector, we end up with x, a row vector
with a one on the left end. If we take the weights on each connection as a column vector, we
end up with 3, a column vector equivalent to the coefficients in a logistic regression. If we

follow the pattern of activation through the network, we see that the input to the output node

102

Output of a Two-node MLP

10

Y value
6

X value

Figure 5.6: An MLP with two soft hyperplanes

is the sum of each weight multiplied by its corresponding activation, which is 3. Finally,
the input is transformed into output via the activation function, which is 1+e+mﬁ'

The point of interest is that every theory pertaining to logistic regression pertains also to
a one-node MLP. As a simple example, it is easy to see what happens to the 0.5-isosurface
in the MLP if we do not use a bias: by analogy with a logistic regression model, it will be
forced to pass through the origin of coordinates. It is also possible to state why categorical
attributes work so easily as clusters of sensory nodes with one node per category: as with
logistic regression, the presence or absence of a particular category has a weighted effect on

the log-odds of the outcome (or in the MLP’s case, of the node activating).

5.1.2 Simple Databases with Two Hyperplanar Decision Boundaries

Having exhausted the possibilities of single-branch decision trees and single-node MLPs,
we move on to more complicated models. Let us give the decision tree the ability to decide
the class based on two boundaries. For instance, suppose our database followed this rule:
x> 3Nx <7« class = good. This is just a decision tree with two branches, both
examining feature x. The region corresponding to class good is that strip between x = 3 and
x = T; everything else is not of class good. The simplest MLP to represent this knowledge is
depicted in Figure 5.6.

Note that we have to have two “threshold detector” nodes. Since a sigmoidal activation
function is monotonically increasing, it can only detect one threshold at a time. Note too that
the node performing the AND function must be off if the lower threshold detector is on, on if

the lower detector is off and the upper one on, then off again if the upper detector is off. We

103

Output of a Two-node MLP

Y value

X value

Figure 5.7: An MLP with two soft interacting hyperplanes

shall see in a moment that it is possible to set an AND node to be on for an arbitrary pattern
of threshold detectors and off for all others. Unfortunately, Minsky and Papert (1969) show
that we cannot guarantee our node to be on for an arbitrary set of combinations of threshold
detectors; for that, we shall require another layer of nodes. Note also that the “overlaying” of
strongly “on” regions pushes the thresholds somewhat past 3 and 7; this can be corrected by
making the weights and biases in the latter part of the MLP weaker, but is seldom a problem
for all practical purposes.

What if we were to perform an AND operation on more than one feature? For a decision
tree, this would involve two branches; one that tested the x-value and one that tested the
y-value. Our logic language might say something like x < 5 Ay < 6 < class = good. An
MLP could be set up as in Figure 5.7, in which we see something commonly claimed for
MLPs: the ability to model curved decision boundaries. Specifically, the curved boundary is
a result of creating an isosurface from two perfectly flat-but-soft boundaries. The softer the
two boundaries, the gentler the curve. The more acute the angle between the two boundaries,
the stronger the curvature; that is, a “hairpin” bend can be created by two boundaries that are
nearly but not quite parallel.

This allows us to present Principle 4: MLPs represent curves in the decision boundaries
by isosurfaces on soft, intersecting flat boundaries. There are three corollaries: that curves
are only possible if two or more nodes are allowed to interact; that MLP training adjusts the
curves only by altering the softness and tilt of the interacting flat boundaries; and that the
regions representable by a single AND node are necessarily convex, since the extent of each
hyperplane is infinite. Therefore, to get “recurved” shapes, or two separate convex regions,

another layer of nodes is necessary.

104

12

10

Output of a Four-node MLP
\5\ w

)

/ N
0 2 4 6 8 10 12

X value

Y value

0

Figure 5.8: An MLP with four soft hyperplanes modelling a convex region

To return for a moment to the relationship between MLPs and logistic regression; here
we have a logistic regression with more than one output. This is achieved by making 3 a
matrix instead of a column vector, each column of the matrix being functionally equivalent
to a one-node MLP. The result of matrix-multiplying and applying the activation function to
each element is a transformed row of the database—which of course may then be augmented
with a one on the left end, and then used as the input for a one-node MLP that determines the
final output. A three layer network is therefore a logistic regression on the output of a logistic

regression.

5.1.3 Convex Regions

If each threshold node represents a proposition concerning a feature being less than a certain
value, then in order to represent the simplest fully-enclosed convex region (a rectangle) we
must combine propositions on one feature with propositions on another. A decision tree
represents this by a path to one leaf: for instance, x > 3N x <8Ny >4 Ay <7« class =
good. To achieve this effect with an MLP, we require four threshold-detecting nodes and an
AND node that will come on only if x < 8 and y < 7, but will turn back off if either z < 3 or
y < 4. The network depicted in Figure 5.8 does the job.

This example is indicative of a broader theory that we can state regarding convex regions
in the decision space: that it is possible to build an arbitrary convex region by assigning
one hyperplane to each flat surface and two hyperplanes to each curve. We can then model
that region with an MLP by assigning a threshold node to each hyperplane, calculating the

intersections of the hyperplanes with each axis, and setting the ratio of weights and biases to

105

those intersections. An AND node completes the model, with its bias set just low enough to
come on if the correct threshold nodes are active, but turn off again if any of the incorrect
nodes become active. If the general connection weight is w (chosen to make thresholds
sufficiently soft), and the number of “true” nodes (i.e. the number of nodes in the previous
layer that must be active for the AND node to be active) is n, then the correct bias weight is
—nw + 1w, or —w(2n — 1)/2.

A decision tree is, in effect, calculating the critical thresholds for us, but approximating
the convex decision region by axis-parallel hyperplanes. Thus, we can easily model any
path to a leaf (i.e. a conjunction of propositions in our logic language) as a three-layer MLP
with one hidden node per hyperplane and one output node. By this method of construction,
such a network is also the smallest that can model the decision tree’s boundaries. While it
is true that it only requires n + 1 nodes to produce a convex region in n dimensions, it will
require 2n nodes to model the hyper-cuboids produced by a decision tree. This opens up a
question concerning redundancy in the MLP: is it possible that the n — 1 “extra” nodes in the

“threshold” layer provide sufficient flexibility during training?

5.1.4 Multiple Convex Regions

Decision trees are capable of recognising many regions of the decision space as containing
items of the desired class; in fact, each path to a leaf containing the class of interest represents
a non-overlapping region. If each region is a conjunction in our logic language (i.e. a sequence
of ANDs), then a set of regions is a disjunction (i.e. a sequence of ORs). Each class of interest
can therefore be represented as a sentence where the clause before the implication symbol
is in disjunctive normal form. For instance, suppose our database contained two completely
separate regions of good items; one bounded by 1 < x < 4 A 2 < y < 4, and the other by
7<x <11AN6 <y < 10. Plotting the elements of such a database could produce the regions
in Figure 5.9, and the corresponding decision tree.

We already know how to model each region: with a three layer network that detects the
appropriate thresholds and provides an AND node to combine them properly. All that remains
is to connect the AND nodes representing a single class into a single OR node that will
activate if either of the AND nodes is active, but remains off otherwise. Since any one of the
AND nodes can activate the OR node, each may be connected with a weight w, and the bias
can be set to —w /2. The MLP in Figure 5.10 solves the problem of two convex regions, each

region having four hyperplanes.

106

2 convex regions

N o
A ° o o
(o)
(o] ° °
o _]
— ° o 2 VNN
(o) o A
o [e} AA A & AA
o — o AN
o N
o A
5 @ A A
£ o4 5 o0 o 2
(o)
|>‘ o o o
& o °
< o A °
A O
A ﬁ& Mmoo)
A
o~ - ° A o
[0 A d
o ° goo
o g o C)00 o o o bad
o - o °
T T T T T
2 4 6 8 10 12
x-value
(a) A database with two convex regions

bad

good

i

b

AN
/

bad bad

/6

bad

/6

e

good

bad

(b) Decision tree derived from (a)

Figure 5.9: A database that requires the modelling of two convex regions

107

As a matter of interest, it is simple to extend this network to represent a boundary that
is “re-curved”; just move two or more convex boundaries together so that they overlap, as in
Figure 5.11. Of course, that network represents no possible decision tree, since the leaves of
a decision tree never “overlap” (i.e. no item in the database belongs in more than one leaf).
However, it does show how arbitrary curves may be explicitly modelled in an MLP: by the
overlapping of soft convex regions.

To maintain the pattern of comparing MLPs to logistic regression models, we should note
that a four-layer MLP is a logistic regression on the output of a three-layer MLP (augmented
by a left-hand column of ones); a three-layer MLP is a logistic regression on the output of a
two-layer MLP (augmented by a left-hand column of ones); and a two-layer MLP is a logistic
regression on the original database (augmented by a left-hand column of ones). This provides
us with two things: a simple recurrence representing feedforward (as previously stated in
Chapter 3) and a simple representation of an MLP of four layers (a list of three matrices

representing the MLP’s connection and bias weights).

5.2 Knowledge Transfer

It is now possible to state an algorithm for translating a decision tree model into an MLP
model, by applying the piecemeal methods outlined in the previous sections. It is possible to

do this as:

1. an MLP that recognises just one class of interest. That is, it has one output node that

activates when the sensory nodes see a member of that class and remains off otherwise.

2. an MLP that recognises multiple classes. That is, it has one output node per class, and
the most active output node is taken to be the class prediction after the sensory nodes

have fed an object’s features through the network.

The second algorithm is a generalisation of the first, which we shall concentrate on initially.
The advantage of the single-class version is that it determines an MLP architecture that is the
minimum necessary to recognise one particular class using the hyperplanes built by a decision
tree. To recognise several classes, we can simply build more single-output MLPs and train
them in parallel. Or, we can build a multiple-class MLP, which may have advantages in its
architectural redundancy during weight optimisation.

First, let us state the idea of the algorithm at a high level of abstraction. The basic idea
is to set up one fuzzy boundary for each hyperplane in the decision tree—that is, for each

branching node in the tree. Each of these is represented by a node in the first hidden layer of

108

act(inputs + 10)

act(inputs + 50)

(a) An MLP with eight decision boundaries

Output of a Four-layer MLP

12

10

Y value
6

0 2 4 6 8 10 12

X value

(b) Output from (a)

Figure 5.10: An MLP capable of distinguishing two convex regions

109

act(inputs + 20)

act(inputs + 10)

act(inputs + 20)

(a) Another MLP with eight decision boundaries

Output of a Four-layer MLP

1z

10

Y walue
fi

0 Z 4 G i 10 12

® walue

(b) Output from (a)

Figure 5.11: An MLP with one re-curved soft boundary

110

the MLP, connected to its appropriate sensory node with a strong weight, and to all others
with small random weights. The algorithm will then place one node in the second hidden
layer for each convex region containing objects of the target class—that is, for each leaf of
the decision tree. Each “leaf” node is connected to its appropriate “boundary” nodes with a
strong weight (as in Figure 5.10: the sign on the weight determines whether the test on the
boundary is “less than” or “greater than”), and to all other nodes in the previous layer weakly.
Finally, an output node is connected to the leaf nodes, so that any one leaf node will “trigger”
the output node.

The algorithm thus produces MLPs with an architecture completely specified and bounded
by the number of nodes in the decision tree—there will be as many nodes in the first hidden
layer as there are branching nodes in the tree, and as many nodes in the second hidden layer as
there are leaves. Since we are processing a tree to create an MLP, the natural statement of the
algorithm is as a recursive tree traversal, with the connection weights of the MLP available as
global variables. Assuming that we know the size of the tree beforehand, it is possible to set
the MLP architecture up front, then set every connection weight in a single depth-first traversal
of the tree. The trick that allows this is to maintain two stacks of visited tree nodes; pushing’
onto the first stack when we enter a node (via a left branch) gives us a list of boundary nodes
for our “less-than” conditions. The “greater-than” conditions are maintained by popping from
the first stack and pushing immediately onto the second stack each time we leave a node (via a
right branch). This form of processing is not new—it is identical to the well-known algorithm

for turning an expression-tree into reverse Polish notation.

Specifying an MLP

First, specify the class that the MLP will attempt to predict, and identify in the decision tree
those leaves that predict that class. Then, set up three matrices. The following notation uses
the convention that array indices are numbered from zero; hence A is the top-left entry of
matrix A. Initially, we will only deal with the case where the database consists entirely of
continuous attributes.

The architecture of a four-layer fully-connected feed-forward MLP is completely specified
by three matrices, which we shall call A, B, and C. (With some regret, we cannot call them

w1, we, and ws in keeping with the notation in Chapter 3, as they are frequently subscripted.)

A has m + 1 rows and b columns, where m is the number of feature-detectors necessary to

observe one object, and b is the number of non-leaf nodes in a decision tree induced on

111

the training data. The extra (zeroth) row stores the bias weights; each column represents

the weights feeding into a node in the first “hidden” layer.

B has b+ 1 rows and ¢ columns, where b is as above, and ¢ is the number of leaf nodes that

predict the class of interest. Again, the extra row is for the bias weights.

C has ¢+ 1 rows and 1 column. It represents the connections feeding into the single output
node of the MLP.

To begin with, suppose we set all entries in A, B, and C' to small random values.

Suppose further that we keep A, B, and C in a Lisp-like list called W; the database of
features in a matrix d; and that we have a logistic activation function a(x) = H% that may
be applied to every entry in any matrix (that is, a(x) = [a(xop), a(xo1), - .., a(Tr—1,c1)]
where @ has r rows and ¢ columns). Recall from Chapter 3 that a complete feedforward of
the database of features d through MLP W may be defined thus:

if W is empty,
feedforward(a(1|d x first(W)),rest(W')) otherwise.

feedforward(d, W) =

With all entries in W set to small random weights, feedforward(d, W) will produce a vector
of outputs (one per row of d) all around 0.5. However, the architecture is now specified; all
that remains is to set individual weights in such a way that the MLP behaves just like the

decision tree.

Weight Setting

To have the MLP respecting the same decision boundaries as the decision tree, we need
a common “strong” weight value, w, such that a(=*) is close to 0.0, and a(%) is close to
1.0. For these purposes, some value between 2 and 5 will suffice, though it might need to
be changed for databases with many close boundaries along one axis. We assume that w is
specified as a variable at the highest level of scope, available to all procedures described here.

The matrix C—really a vector in the single output case—is easy to set up: simply set the
first entry to == and every other weight to w. This has the effect that any active node in the
preceding layer will cause the output node to fire.

To set the weights of A and B, we define a recursive algorithm SET-WEIGHTS, which
treats the two matrices as variables at a higher level of scope. We also require higher-
scoped variables leafnum and branchnum, initially set to —1. SET-WEIGHTS is presented as
Algorithm 5.1.

112

Algorithm 5.1 SET-WEIGHTS (tree, class, truelist, falselist): Set the weights of an MLP

with all continuous inputs and one output

SET-WEIGHTS (tree, class, truelist, falselist)

1 if isleaf(tree) and class|tree] = class

2 then

3 leafnum «— leafnum +1

4 By jcafrum — —w x length[truelist] + 3

5 for each 7 in truelist

6 do B, 1 jcafnum < W

7 for each 7 in falselist

8 do B i1 jeafnum — —w

9 else
10 branchnum «— branchnum +1
11 A branchnum — W X threshold|decision[tree]]
12 Afeature[decision[treeﬂ,bmnchnum — —w
13 SET-WEIGHTS (left[tree], class, truelist + branchnum, falselist)
14 SET-WEIGHTS (right[tree], class, truelist, falselist + branchnum)

So, assuming the existence of a decision tree called tree, and a class-of-interest good, we

can set A and B with the following call:
SET-WEIGHTS(tree, gOOd, EMPTY-LIST, EMPTY-LIST)

The conventions used in the pseudocode for SET-WEIGHTS are those followed in Cormen,
Leiserson, Rivest, and Stein (2001). The “b[a]” notation refers to the field of object a named
b (equivalent to a.b in object oriented notation), so if ¢ree is a decision node rather than a leaf
node, it is possible to access the decision with decision[t] and the threshold value that the
decision is made upon with threshold|decision[tree]|. Similarly, feature|[decision|[tree]] will
return the column number of the database feature referred to by the decision node, starting
from 1. The + operator on lists concatenates the right-hand-side to the list on the left and
returns a new list, leaving the old one available as the recursion unwinds.

For a database with only continuous attributes, we now have a complete procedure for
initialising an MLP, INIT-MLP, presented as Algorithm 5.2. The return value of INIT-MLP is
a list of weight matrices that fully specifies a four-layer MLP. The returned MLP will make
the same decisions as the tree used to initialise it, because it is setting up the same hyperplane
decision boundaries. The only thing that has the potential to cause any variation is the fact
that the decisions are soft, according to the value chosen for w; thus, any errors made by the

MLP but not the decision tree can be eliminated by choosing a higher value of w. Since w

113

Algorithm 5.2 INIT-MLP(tree, database, class): Initialise an MLP with continuous inputs

to recognise one output class

INIT-MLP(tree, database, class)

branchnum « —1

leafnum +— —1

A — new-matrix(numfeatures|database] + 1, numbranches|tree])
B — new-matrix(numbranches[tree| + 1, numpositiveleaves|tree])
C — new-matrix(numpositiveleaves|tree] + 1,1)

set C to =* and every other entry in C to w

SET-WEIGHTS(tree, class, EMPTY-LIST, EMPTY-LIST)

return make-list(A, B, C)

o1\ Nk W -

is specified as a variable of global scope, the caller can decide what strength of connection

weight is appropriate.

5.2.1 An Example

Take the decision tree depicted in Figure 5.9 as input to INIT-MLP. Three matrices A, B, and
C will be set up, with dimensions 3 x 8,9 x 2, and 3 x 1. Line 6 of Algorithm 5.2 will set
the entries of C to —2.5, 5, 5, then the recursive function SET-WEIGHTS will be called.

At each branching node of the tree, lines 10 to 14 of Algorithm 5.1 will be called, whereas
at each good leaf, lines 3 to 8 will be triggered. The tree will be traversed in pre-order, so
the “decision” nodes will be visitedinthe order z < 1,z <4,y < 2,y <4,z < 7,x < 11,
y < 6,y < 10. As each branching node is visited, branchnum is incremented, allowing us
to set the appropriate column of matrix A on lines 11 and 12. Line 11 sets the bias value
A0 branchnum to w multiplied by the threshold value of the branching node’s decision, whereas
Line 12 is responsible for setting the connection weight leading into the appropriately biased
MLP unit.

Lines 13 and 14 of Algorithm 5.1 provide the recursive calls that traverse the decision
tree. As the left branch is traversed, the current branch number is added to the list of branches
that must be “true.” As the recursion unwinds and the right branch is followed, the current
branch number is lost from the “true” list and added to the “false” list instead; thus when we
reach a leaf we know which numbered decisions must be true for the unit representing the
leaf to activate, and which must be false.

At each leaf (but only those that are of the class specified) lines 3 to 8 are run. Line 4 is

able to set a bias to be strong enough so that the “true” nodes will be able to activate it, but

114

weak enough so that any “false” node will deactivate it. Lines 6 and 8 ensure that there is a
strong connection from nodes that represent decisions relevant to the leaf in question. In our
example, the first good leaf encountered will have 1, 3 in truelist and 0, 2 in falselist. Thus,
forw = 5, By will be set to —7.5, By and By to 5, with B; g and B3 to —5. When the
next good leaf is encountered, truelist will contain 5,7 and falselist will contain 0, 1, 4, 6.
Thus B, ; will also be set to —7.5, Bg; and Bg to 5, and B, 1, By 1, Bs 1, and By all to
—5.

The final states of the matrices will be (with weak random weights not shown):

A: 5 20 10 20 35 55 30 50
-5 -5 -5 -5
-5 =5 -5 -5

B: -7.5 -7.5

-5 -5
5 -5

-5

5
-5
5
-5
5

C: -2.5

Note that the MLP represented by these matrices is the same as that in Figure 5.10, with the
addition of two strong negative weights coming from the z < 1 and = < 4 decisions. A small
adjustment to the algorithm can remove these by ignoring any decision that is superseded by

a more restrictive decision lower down the tree.

5.2.2 Categorical Attributes

Decision trees make splits on categorical attributes by specifying a subset of categories. If
and only if the observed value is a member of the subset, the splitting predicate evaluates to
true. This is easily replicated in MLPs as described in the previous chapter: by making one
feature detector per category, and connecting to a “subset” node with strong positive weights.
Given that the categories are mutually exclusive, it suffices to detect if any of them are active;
thus, a negative bias of half the connection weight will do the job. An example of an MLP set
to represent the rule « € {1,3,4} Ay < 3 is shown in Figure 5.12.

At face value, it may appear that the problem is dealt with by re-coding the database
so that all categorical attributes are represented as a vector of ones and zeroes, each with a

new attribute name. An attribute X that could take on values {red,green,blue} would thus

115

Figure 5.12: An MLP that deals with a mixture of continuous and categori-

cal input

be re-coded into three columns X=red, X=green, X=blue with 1 representing true and 0
representing false. Then a decision tree could be grown and INIT-MLP run with no changes at
all.

Unfortunately, that scheme loses information concerning the structure of the data; namely,
that X=red, X=green, and X=blue are mutually exclusive possibilities. A Sprint-style decision
tree maintains this information, by having tests on X in the form X € {red.,... }, obviating the
need for the data to be re-coded at all.

Now, we must re-code the input data before presenting it to an MLP, at least in the sense
that a value of category i should stimulate the 7** node of the vector of nodes for that category.
So, in order to set the appropriate weights, the INIT-MLP-MIXED algorithm must know
how to translate numfeatures[D] to the right size to incorporate categorical features, and
SET-WEIGHTS-MIXED will need to know how to translate a (feature, value) pair into a
(sensory node, value) pair. Furthermore, SET-WEIGHTS-MIXED must be able to interrogate
the tree as to whether a splitting predicate is based on a threshold or on a subset.

Given those capabilities, the SET-WEIGHTS-MIXED algorithm is presented as Algo-
rithm 5.3, with the associated INIT-MLP-MIXED algorithm presented as Algorithm 5.4.

The pseudocode now assumes the existence of to-sensory-node, a function that requires
either one or two positive natural numbers as arguments. Given one argument, it returns the
number of the node that corresponds to the (continuous) feature that has the same column
number in the database. Given two arguments = and vy, it returns the number of the node that
should be active when an object in the database has category y for feature x. In INIT-MLP-

MIXED, we now also have to use to-sensory-input to convert the database from a collection

116

Algorithm 5.3 SET-WEIGHTS-MIXED(tree, class, truelist, falselist): Set the weights of an

MLP with mixed continuous and categorical inputs and one output

SET-WEIGHTS-MIXED(tree, class, truelist, falselist)

1 if isleaf(tree) and class|[tree] = class

2 then
3 leafnum < leafnum +1
4 By tcafnum — —w X length(truelist] + %
5 for each 7 in truelist
6 do BiJrl,leafnum —w
7 for each ¢ in falselist
8 do B jcafrum — —W
9 else
10 branchnum <« branchnum +1
11 if is-categorical(decision[tree])
12 then
13 AO,bmznchnum — _Tw
14 for each ¢ € values[decision[tree]]
15 do Ato-sensory-node(feature[decision[treeﬂ,c),bmnchnum —w
16 else
17 A0 branchnum “— W X threshold[decision[tree]]
18 Ato—sensory—node(feature[decision[tree]]),bmnchnum W
19 SET-WEIGHTS-MIXED(left[tree], class, truelist + branchnum, falselist)
20 SET-WEIGHTSMIXED(right [tree], class, truelist, falselist + branchnum)

Algorithm 5.4 INIT-MLP-MIXED(tree, database, class): Initialise an MLP with mixed

continuous and categorical inputs to recognise one output class

INIT-MLP-MIXED(tree, database, class)

branchnum «— —1

leafnum «— —1

A — new-matrix(numfeatures[to-sensory-input(database)] + 1, numbranches|tree])
B «— new-matrix(numbranches|tree] + 1, numpositiveleaves|tree])

C — new-matrix(numpositiveleaves|tree] + 1, 1)

set Cy to = and every other entry in C' to w

SET-WEIGHTS-MIXED(tree, class, EMPTY-LIST, EMPTY-LIST)

return make-list(A, B, C)

0NN LN AW

117

of vectors where each vector has one element per feature, to having possibly many elements

per feature.

5.2.3 Multiple Output Classes

A call to INIT-MLP-MIXED with three arguments will produce an MLP that “recognises” the
class stated by the last actual parameter. However, it is common enough to create MLPs that
recognise multiple output classes. For n classes, the MLP has n outputs, and a classification is
made by determining the output node that has the maximum level of activation. One possible
advantage of such networks is that architecture devoted to recognising one particular class
might be “shared” with some other part of the architecture during weight optimisation.

The change to be made to INIT-MLP-MIXED is reasonably simple: one only has to
provide enough nodes. To recognise every class (with no class taking on the role of default),
we present INIT-MLP-MIXED-MULTI as Algorithm 5.6, and the associated SET-WEIGHTS-
MIXED-MULTI as Algorithm 5.5.

5.2.4 A Multiple Output Example

Suppose we had a database whose objects followed, more or less, the following rules:

1. (1.b <z < 4.5 ANy € {orange, blue, indigo} N1.5 < z < 3.5) V
(5.5 < x < 85 Ay € {orange, blue}) «— class = good

2. z> 45Ny € {red, orange} < class = bad

3. The default rule is class = indifferent

A decision tree induced on the data might have something like the structure depicted in
Figure 5.13.

A call to INIT-MLP-MIXED-MULTI first sets up a list of three weight matrices A, B, and
C and sets all the elements to small random values. Every element in the first row of C' is set
to —~. Assuming that feature y has the colours of the rainbow as categories, A is set to 10
rows and 10 columns; B to 11 rows and 11 columns; and C to 12 rows and 3 columns.

Line 7 of INIT-MLP-MIXED-MULTI calls SET-WEIGHTS-MIXED-MULTI to set up the
elements of the matrices to act as the weights and biases of an MLP. Suppose the recursion in
SET-WEIGHTS-MIXED-MULTTI has reached leaf L7. Lines 3 and 11 will have set leafnum to
7 and branchnum to 9. Lines 5 to 8 connect the neural unit in the second hidden layer that

represents L7 to all of the hyperplane units in the first hidden layer, Line 4 having already

118

Algorithm 5.5 SET-WEIGHTS-MIXED-MULTI(tree, truelist, falselist): Set the weights of

an MLP with mixed continuous and categorical inputs and multiple outputs

SET-WEIGHTS-MIXED-MULTI(tree, truelist, falselist)
if isleaf (tree)

1

e < BN Ee) NV, N NS I 9]

11
12
13
14
15
16
17
18
19
20
21

then

else

leafnum < leafnum +1
By icafnum — —w x length|truelist] + %
for each ¢ in truelist
do Bi+1,leafnum —w
for each ¢ in falselist
do B jcafnum — —W

Cleafnum +1,class[tree]—1 < W

branchnum <« branchnum +1
if is-categorical(decision|[tree])
then
—w

AO,branchnum o
for each ¢ € values[decision[tree]]
do Ato—sensory—node(feature[decision[treeﬂ,c),bmnchnum —w
else
A0 branchnum — W X threshold[decision[tree]]
Ato—sensory—node(feature[decision[tree]]),bmnchnum A

SET-WEIGHTS-MIXED-MULTI(left[tree], truelist + branchnum, falselist)
SET-WEIGHTS-MIXED-MULTI(right[tree], truelist, falselist + branchnum)

Algorithm 5.6 INIT-MLP-MIXED-MULTI({ree, database): Initialise an MLP with mixed

continuous and categorical inputs to recognise multiple output classes

INIT-MLP-MIXED-MULTI(tree, database)

003N N BN

branchnum «— —1

leafnum «— —1

A — new-matrix(numfeatures[to-sensory-input(database)] + 1, numbranches|tree])
B «— new-matrix(numbranches|tree] + 1, numleaves[tree))

C — new-matrix(numleaves|tree] + 1, numclasses|database])

Set every element in row Cy to =*

SET-WEIGHTS-MIXED-MULTI({ree, EMPTY-LIST, EMPTY-LIST)

return make-list(A, B, C)

119

set the bias. At this point, truelist will consist of [1,2, 8] and falselist of [3,4,5,9]. As the
recursion unwinds back to D8, 9 is lost from falselist and 8 from truelist; 8 will be added to
falselist as the recursion proceeds to LS.

At the end of the process, the network will have layers of size 9-10-11-3, will represent
the same boundaries as the decision tree, and will classify items in the same way. If, instead,
INIT-MLP-MIXED had been used, with class good as the third argument, only the good leaves

of the tree would have been used to construct the MLP. As a result, it would have had a 9-9-9-1

.

D2: y O {orange,blue,indigo} D10: y O {red,orange}

L9: indifferent L10: bad L11: indifferent

architecture instead.

N

L1: indifferent

N s

L2: indifferent L5: indifferent D8:x< 8.5

L3: good L4: indifferent D9: y O {indigo} L8: indifferent

s

L6: indifferent L7: good

./

.\

s

Figure 5.13: A decision tree corresponding to a particular set of rules

120

5.3 Points of Difference

A little has been taken from Sethi, a little from Banerjee, a little from Ivanova, and a little
from the pilot study in the previous chapter to create these MLP initialisation procedures.
Perhaps it is necessary to point out the similarities and differences.

To begin with, four layer MLPs are always created, providing a point of difference from
Park (always three layers), Ivanova (always three layers) and Shavlik (however many layers
of hierarchy there are in the explanation base). The node layout is identical to Sethi’s in the
multiple-output case, although the connection layout differs: Sethi placed no connections
at all between nodes that were not connected in the decision tree. Of course, we provide a
weight-setting algorithm, while Sethi trained each hyperplane using the Widrow-Hoff rule.

The layout of nodes in the third and fourth layers is identical to Ivanova’s, and the weight
setting between the last three layers is very similar. However, Ivanova’s MLP has only interval
inputs, and no continuous sensory detectors at all. Our MLPs have a sensory layer inspired
by Banerjee’s, with the next layer providing threshold detection: but with half the nodes of
Banerjee’s “switching” layer (an innovation suggested by Ivanova).

To our knowledge, this is the first proposal of a tree-initialised MLP that explicitly
handles categorical as well as continuous data. Also, this is the first proposal of methods that
work equally well for multiple outputs as well as single outputs. While the multiple output
network is smaller than the equivalent BMLP (but the same size as Sethi’s), we believe that
the single-output version is the smallest possible network that can model the hyperplanes
of a decision tree precisely. Of course, this does not make it the smallest possible MLP
to represent the problem, since the decision tree might be expending a lot of structure on
modelling oblique hyperplanes. However, it is the most compact method of modelling the
axis-parallel hyperplanes of decision tree knowledge yet devised. The single-output version
has the advantage that each class-recogniser can be trained on a separate machine, reducing

the total cost of training epochs to that of the most difficult class to model.

5.4 Knowledge Refinement

Transferring knowledge from a decision tree to a neural network produces an MLP that should
classify training and test data in precisely the same way. But why should the MLP do any
better after training? The simple answer is that the MLP provides a more complex model
than the decision tree, and therefore models the decision space more precisely. A more subtle

answer rests on the principles of MLP modelling described earlier in this chapter:

121

1. MLP training adjusts the threshold value of each decision boundary by changing the

ratio of bias weights to connection weights.

2. MLP training adjusts the sharpness of each decision boundary by changing the magni-

tudes of connection weights and bias weights.

3. MLP training adjusts the orientation of decision boundaries by treating them as linear
combinations of features, and alters the gradient by changing the relative weights on

the connections feeding forward from the sensory nodes.

4. MLPs represent curves in the decision boundaries by isosurfaces on soft, intersecting
flat boundaries; curvature is altered during MLP training by changing hyperplanar

orientation.

These principles tell us exactly how an MLP might improve on a decision tree, and the
extent beyond which it will not do any better. Having set up boundaries equivalent to a
decision tree’s, it may sharpen or soften them; it may move them about; it may change their
orientation; and it may exploit the curved surfaces available at the intersections of hyperplanes.
And that is all. Unless a constructive or destructive training algorithm is used such as Cascade
Correlation (Fahlman and Lebiere, 1990) or Optimal Brain Damage (Le Cun et al., 1990) ,
the MLP will not introduce new boundaries nor remove any; although weights and biases that
drop to near zero have the effect of removing a threshold. And as with any model described in
Chapter 2, an MLP will not suddenly be able to classify correctly an item located in a region
that is densely populated by items of another class. The principle of avoiding overfitting will
prohibit boundaries being formed around “noise” objects in most prediction models; in MLPs,
the existing boundaries are probably already too busy bounding large clusters of objects to
bother trying to isolate one-off items.

However, this also tells us something about the relationship of overfitting and redundancy.
In a decision tree, there is no redundancy—extra tree structure is either necessary to express
the patterns in the data, or else it is overfitting the data. Hence, extra nodes are pruned away. If
a pruned decision tree is used to initialise the MLP, then we are restricting the neural network
in a very particular way: we are refusing to allow it to add another hyperplane. If, on the other
hand, we initialise with an unpruned tree, we are giving the MLP more redundancy (more
neural architecture to play with), but we are also setting hyperplanes in places that model
noise, not pattern.

One solution could be to initialise the network to the architecture suggested by the

unpruned tree—or, indeed, to any architecture larger than the pruned tree would suggest—but

122

to the hyperplanes suggested by the pruned tree. Then, if the weight optimisation process
wishes to develop further hyperplanes, it can.
In Chapter 6, the performance of tree-initialised MLPs is demonstrated in a series of

experiments.

123

Chapter 6

Experiments

6.1 Preliminaries

Running experiments on classification algorithms is not a straightforward matter. There are
two questions that must be answered: whether the method works, and how well it works.
There are also questions of broader interest, such as which variant is preferable, and under
what conditions. Sometimes it is necessary to compare the method to a previous version, in
order to establish an improvement. To answer all of these questions, one must specify an
appropriate metric to record and a method of generating results that is fair (i.e. not biased in
favour of any of the methods under consideration).

Consider the pilot study presented in Chapter 4. Its purpose was to establish whether we
should expect tree-based initialisation techniques to be useful. To that end, we were interested
in whether a more accurate state existed for an initialised MLP than the best state achievable
by a decision tree. To see even one database where this was the case was sufficient to prove
that existence. Despite the fact that the results were biased in favour of decision trees (since
the set used to select the best pruned tree was also used to evaluate the MLP) a better MLP
existed in all non-synthetic cases. Whether we could find that state in a normal training run
was not under consideration.

In this chapter, we place a higher requirement on initialised MLPs. A typical experiment
will involve splitting data into two sets: one for training and one for validation. Whatever
classifiers are to be evaluated are built entirely on the training set, even if that means further
splitting the training set to provide a pruning set or an early-stopping set. Only after the
procedure is completely finished for all classifiers are they evaluated on the validation set.

This is a particularly harsh test. On data sets where no MLP can model the structure

any better than a decision tree, we should expect any MLP (whether initialised by decision

124

tree or not) to fail. Furthermore, it is likely that we will have to train the MLPs for more
epochs than we really need to, in order to recognise when they have stopped improving on the
early-stopping set. Thus, we may find no improvement in training times at all.

The basic structure of each experiment is as follows:

1. Let T be a randomly chosen stratified subset of the database D. Typically, |T'| will be
0.25|D|. The subset is stratified so that the class distribution of the items in T is the

same as that in D.

2. For each classifier under consideration, build an instance of it using only the data in
D-T.

3. Test each classifier’s accuracy using the data in 7'

4. Repeat n times, each time choosing a different T', with n large enough to give reasonable
estimates of the mean and variation of all metrics of interest. In these experiments,
n = 30.

For both decision trees and MLPs, different training data will result in a different classifier.
In the case of decision trees, each tree can have a different structure, while in the case of plain
MLPs, the structure will remain the same but the final state of the weights (after training) will
be different from run to run. Of course, tree-initialised MLPs will have differing architectures
depending on the final state of the tree used to initialised them. Thus, each randomly chosen
training/test set pair will produce classifiers of varying quality. If one runs too few tests,
one or other classifier may simply get “lucky,” hitting a test set upon which it performs
particularly well. Repeating the train-test sequence 30 times gives us some sense of a “typical”
performance.

What metrics are of interest? If a classifier is to be of any use, it must generalise well. If
an MLP is to be of more use than a decision tree, it must generalise better than the tree on
the database under consideration. However, an initialised MLP (to be worth the trouble of
initialising it) should be no less accurate than a plain MLP (initialised with small random
values) on the same database, and must reach such a state in fewer epochs of training. Of
course, we may be willing to train for more epochs if each epoch is quicker, as it will be if
the MLP contains fewer nodes. Accordingly, there are three metrics of interest for an MLP:
accuracy on the test set, the number of epochs to train, and the cost of training, calculated as
function of the MLP’s size and the number of epochs required. For a decision tree, we care
only about accuracy on the test set, since the cost of building it is negligible compared to the

cost of training an MLP.

125

What classifiers must be compared? For convenience, an MLP initialised using the
methods described in Chapter 5 will be referred to as an RMLP (where the R stands for
“Rountree,” not “recurrent”). It is tempting to set up a comparison between RMLPs and the
techniques developed by Sethi, Ivanova, and Banerjee. However, the methods are not really
comparable. Sethi’s entropy nets are not trained (except to ensure that each node acts the same
as its counterpart in the decision tree) and is not fully feed-forward connected. Thus, it is clear
that it cannot generalise better than the tree that initialised it. Ivanova’s TBANN has inputs
restricted to intervals on the data; thus a TBANN never attempts to optimise its connection
weights against the original data. Although Banerjee’s MLPs do observe the original data,
methods for integrating mixed continuous and categorical attributes were only introduced in
Chapter 4. More pertinently, Banerjee’s method always results in second layers double the
size of the equivalent RMLP, guaranteeing that the training cost metric will always be higher.

The RMLP is the only method yet described that gracefully deals with mixed attributes,
minimises internal structure, and trains against the original dataset. Accordingly, the following
experiments pit RMLPs against the decision trees that initialised them, and against plain
MLPs of reasonable size for the database. There is also interest in the comparison of tree to
plain MLP, since it gives us some evidence as to whether MLPs can be expected to do any
better than decision trees on each database.

Until the pilot study performed in Chapter 4, it had never been established that initialised
MLPs have any likelihood of performing better on generalisation tasks. In fact, it could be
argued that initialised MLPs have a strong likelihood of generalising poorly, by getting stuck
in a local minimum on the error surface. Thus we have little reason to expect that any method
of initialisation will be better than any other. Here, we try to establish how well initialised
MLPs perform against the trees that initialised them, and against similar MLPs that were

initialised randomly.

6.2 Experimental Environment and Databases

All experiments reported in this chapter were performed in the R Environment for Statistical
Computing (R Development Core Team, 2005). There are a number of reasons for this choice,

but three stand out:

1. R provides a unified framework for data typing and data import-export. If you can get
your data into R, statistical tests on the data and models built using the data all work

the same way.

126

2. R contains an implementation of CART-like decision trees, called rpart (Therneau
and Atkinson, 2005). This would offer no advantage over the race toolset used
in Chapter 4, except that they implement a particularly interesting form of pruning,
allowing trees to be pruned using only the original training set. This fits our train-and-

test experimentation method very well.

3. R supports Lisp-like lists, matrices, matrix multiplication, and recursion as part of the
base language. Thus, the feedforward pass of MLPs as described in Chapter 3 can be
implemented as stated by the feedforward recurrence, in three lines of code, and the

backprop pass in about six.

For the purposes of demonstrating initialised networks, R serves our purpose very well.
However, it should be noted that R’s operations are entirely carried out in memory, so there is
a restriction on the amount of data that can be processed. In instances where data will not fit
into core memory, the use of programs such as those described in Chapter 4 is recommended.
For the purposes of this project, R’s decision trees are used unmodified. However, none of the
various MLP packages available for R were appropriate; hence MLP classifiers were created
for these experiments, along with R programs to traverse a decision tree and generate an MLP.
The R code for MLPs, MLP initialisation, and the running of train-and-test experiments is
presented in Appendix B.

To demonstrate the typical behaviour of RMLPs, we have chosen just six databases
from the UCI Machine Learning Repository. Recently, there has been a worrying trend
of publishing the results of machine learning algorithms using 30 or 40 publicly available
databases. The results are meaningless, as it is well established that there is no machine
learning algorithm that will be optimal for all (or even a majority) of situations. Since many of
the databases are small, sparse, and above all easily represented using simple linear decision
boundaries, the end result is that linear discriminant analysis appears to perform best on
average.

We are concerned only with databases where MLPs are likely to perform more effectively
than decision trees; those that contain non-linearly separable clusters of classes, complex
decision boundaries, and plenty of noise. We also need to demonstrate behaviour on multiple
output classes, and on mixed continuous and categorical features. The six databases chosen
give us a reasonable range of these qualities, and in our experiments are all modelled at least
a little better by plain MLPs than by decision trees. The “typical” error rates stated for each
database are taken from the STATLOG project (Michie, Spiegelhalter, Taylor, and Campbell,
1994), from David Hand’s text on Data Mining (Hand et al., 2001), from the classification

127

methods comparison article by Lim et al. (2000), and usually from a consensus of all three

sources. The chosen databases are:

Iris The classic database from Fisher (1936). The task is to discriminate between three
species of iris based on four continuous measurements: length and width of petals and
of sepals. There are only 150 instances, but two of the output classes (virginica and
versicolor) are non-linearly separable and overlapping. There are 50 examples of each

species. Most classifiers can achieve around 5% error on cross validation.

Pima The database consists of 768 diagnoses of diabetes in female Native Americans. The
task is to discriminate a positive or negative diabetes result based on eight continuous
clinical measurements, including age, body-mass-index, blood pressure, etc. There are
500 negative results and 268 positive results. Previously published results suggest that

typical error rates on this database are around 25%.

Segment This problem is drawn from computer vision. Seven outdoor images were broken
into three by three pixel blocks, and 19 continuous features calculated for each block.
There are 2310 instances, 330 each of brickface, sky, foliage, cement, window, path,
and grass. Generally, classifiers do quite well on this database, typically achieving 5
or 6% error rates. However, it is interesting for our purposes because gradient descent
MLPs exhibit extremely slow training, requiring a high number of epochs to reach a

minimum. It is also common for MLPs to stop too early, resulting in high error rates.

Heart This is a small database containing a mixture of seven continuous and six categorical
attributes, representing clinical presentations of patients being examined for chest pain.
The task is to predict which patients have heart disease. The class distribution is 150

negative and 120 positive for heart disease. Typical error rates are around 20%.

Australian The same credit application database from Chapter 4, with eight categorical and
six continuous features, and 690 instances; 307 are positive and 383 negative (but we
do not know what those classes mean). There are several interesting features of this
database: a good mix of categorical and continuous attributes, and a reasonable amount
of noise—15% error is typical. This database has been extensively used in machine

learning literature, especially by Quinlan (1993).

German Another credit application database, principally for foreign workers in Germany
for small-to-medium amounts of money to pay for such things as electronic goods or

cars. It contains seven continuous and thirteen categorical features for 1000 instances.

128

The class distribution is 300 bad and 700 good, although we do not know how these
labels were determined. Classifiers typically have an error rate of about 25 or 26% on

this database.

These databases are very heavily used in the machine learning literature. With the
exception of the Pima database, all were studied extensively as part of the STATLOG project
(Michie et al., 1994); the Pima database is used as a running example in Hand ef al. (2001).
To get a general idea of the performance of various classifiers, we will just examine error
rates at first (so lower numbers are better), but later we will look at the performance of

one-output-class RMLPs, so shall examine false-positive and false-negative rates.

6.3 Building Trees

The rpart library in R builds and prunes trees as follows. First, the tree is grown in the normal
way, by default using the Gini criterion as the objective function for splitting. The rpart
object stores not only its leaves and branches, but also a list of all the database entries that
was used to grow it. Three fields per record are of interest: the original row number of the
record, the class membership, and a field added by the tree growing process that says which
leaf the record belongs to (the “where” field). A new item can be classified by dropping it
through to a leaf, then retrieving all records that have that leaf number as their “where” field.

The set of minimal cost complexity trees is then generated. Now, the usual problem of
cross-validation is that if you drop records of training data down all the pruned trees, the best
one is the original (most complex) one: it classifies all the data perfectly. The rpart tree solves
this problem by splitting the data into v subsets, then for each subset, setting all of the “where”
fields for those records to zero, effectively changing the densities of the class distributions
without affecting the structure of the tree. Each tree in the pruning sequence is evaluated with
each of the v subsets, and the accuracy stored. It is then possible to examine the tree and find
the a-value that corresponds to the best accuracy, or the one that is one standard error smaller.

For these experiments, we are interested in the tree with the lowest cross validation error
and the smallest tree within one standard error of it. However, we use its performance on
the set T' as the estimate of its accuracy rather than its performance on cross validation. Its
accuracy on a completely unseen test set is taken as a fair comparison of the accuracy of an

MLP on the same previously unseen test set.

129

6.4 Building MLPs

What constitutes realistic use of an MLP? As with the decision trees, our goal is to initialise
and train the MLP as best we can, then do a one-off test of its accuracy on a previously unseen
set of data (specifically, the same set used to test the accuracy of the corresponding decision
tree). This requires that we a) can propose some sort of reasonable architecture for the MLP,
and that b) we can make a reasonable decision as to when to stop training the MLP.

For the architecture, we take the simple expedient of creating four-layer MLPs with m
units in the first hidden layer and m + 1 in the second, where m is the number of attributes in
the original database. When the original database has all continuous attributes, this will result
in the sensory and first hidden layers being the same size. However, when the database has
categorical attributes, the sensory layer will be bigger then the first hidden layer, due to the
extra units needed to represent each category. The result is an MLP that is able to place as
many hyperplanes as there are attributes, and can represent m + 1 convex clusters. On the six
databases used for these experiments, several larger and smaller networks were tested, but
none did any better in terms of accuracy or training cost.

For both plain MLPs and RMLPs, a learning constant of approximately % was used.
For quickprop, all networks used a maximum shrink factor of 1.75 if quickprop appeared
stable for the database, or 0.99 otherwise. For plain MLPs, initial weights were set uniformly
randomly between —0.3 and 0.3. No variation on range or distribution of weights seemed to
improve accuracy or training time.

Choosing when to stop training can be quite a challenge. The MLPs used in these
experiments use a variation of the early stopping methods examined by Prechelt (1998).
Before training begins, we select a stratified random sample of the training data, typically
of 25%, as the early-stopping set. This set is then ignored during each epoch of weight
optimisation. However, at the end of each epoch, the error of the network is estimated as the
sum of squared error on the early-stopping set. As the network trains, it is possible to see the
error on the training set decrease after every epoch. However, the error on the early-stopping
set decreases for a while, then begins to increase. For gradient descent, training is halted
when the error on the early stopping set has increased for ten epochs in a row, or when some
maximum number of epochs has been reached.

For quickprop, another stopping criterion must be added. Due to its update consisting
of leaps toward a minimum, quickprop’s error on the early-stopping set tends to be quite

unstable. Thus, we halt quickprop training when error on the early-stopping set climbs to 30%

130

higher than the best error seen so far, or when early-stopping error has risen for ten epochs in
a row, or when a maximum number of epochs has been reached.

For both methods, there is no point in continuing training once all of the training examples
have been learned correctly. Following Fahlman (1989), we consider “correct” to be a value
above 0.6 when the output should be 1.0, and a value below 0.4 if the output is supposed to be
0.0. (In contrast, during prediction, 0.5 is used as a threshold to determine whether an output
node is “on.” For multiple outputs, the “winning” node is the one considered “on,” even if it
below 0.5.)

These early stopping criteria are quite rough, and are no more than heuristics; but they
seem to work fairly well. For either gradient descent or quickprop, each time a lower error
rate on the early-stopping set is observed, those weights are saved, along with the epoch
number. Clearly, the final set of weights we should assign to the MLP is the set that performed
the best on the early-stopping set.

In both forms of training, an unlucky start or an unlucky choice of early-stopping set
can result in an MLP with truly terrible performance. Usually we can observe when this has
occurred by noting that the MLP always predicts the same class (its weights are said to have
got “stuck”). When this occurs, we perturb the weights by uniform random values between
—0.3 and 0.3, and restart training. The epochs already run are counted as part of the final
result.

Finally, we need a slightly more sophisticated cost model than just the number of epochs
taken to train. Bigger MLPs have more connection weights, so take longer to train even
if they take the same number of epochs. In the interests of machine-independent results,
we take the “cost” of back-propagating one error signal through one connection as a unit
cost. Thus, for an MLP of architecture (a, b, ¢, d), the cost of an entire training session
can be treated as the number of connections and biases times the number of epochs, or

e((a+1)xb+ (b+1)*c+ (c+ 1) *d) where e is the number of epochs.

6.5 A Walk-Through

Let us begin where we left off in Chapter 4, with the German Credit Application database.
Recall that it consists of 1000 records, 7 continuous features, 13 categorical features, 700
good labels and 300 bad. The R command:

> atree <- rpart(label ° ., data=german, minsplit=1l, cp=0)

produces a tree that has 192 leaves, and classifies the database perfectly. The first argument to

rpart is an R formula. The tilde in the formula means “using,” and the dot refers to “all

131

other features.” The cptable field of at ree contains estimates of cross-validation error
indicating that the pruned tree with 12 leaves should generalise the best. Applying the 1SE
rule prunes more harshly still, resulting in a tree with only 5 leaves.

So, to answer the first and most important question: does the RMLP method work at
all? Since we are going to be dealing with MLPs, we begin by standardising all continuous

attributes to zero mean and unit standard deviation. Next, we generate:

> aptree <- prune(atree, 0.0117)

to get a pruned tree that classifies 73 good items as bad, and 130 bad items as good. The
value 0.0117 is drawn from atree’s cptable. Now, we can generate an MLP using INIT-
MLP-MIXED-MULTI, with a general weight strength of 5.0, and compare it with the tree that

it was initialised from like this:

> anmlp <- treetomlp (aptree, data=german, w=5)
> table (predict (anmlp), predict (aptree, type="class"))

aptree
anmlp bad good
bad 228 3

good 15 754

which says that the MLP is calling 15 things good that the tree calls bad, and 3 things bad
that the tree calls good. Note that at this point we do not care which classifier is correct, just
that the MLP and the tree are behaving the same way.

But they are not. They are in disagreement. Why? The w value is too weak to make
hyperplanes that separate data exactly as the tree does. It is quite likely that we do not want to
do exactly as the tree does in the long run, but here we can demonstrate that the algorithm

works as desired:

> anmlp <- treetomlp (aptree, data=german, w=5)
> table (predict (anmlp), predict (aptree, type="class"))

aptree
anmlp bad good
bad 228 3

good 15 754

> anmlp <- treetomlp (aptree, data=german, w=10)
> table (predict (anmlp), predict (aptree, type="class"))

aptree
anmlp bad good

132

bad 238 1
good 5 756

> anmlp <- treetomlp (aptree, data=german, w=50)
> table (predict (anmlp), predict (aptree, type="class"))

aptree
anmlp bad good
bad 243 0
good 0 757

So with sufficiently sharp hyperplanes, the RMLP can behave exactly as the pruned tree
does.
The RMLP has 62 sensory nodes, 12 nodes in the second layer, 13 in the third layer, and 2

in the output layer. If we instead used:

> anmlp <- treetomlp (aptree, data=german, w=5, classlabel="bad")

then the INIT-MLP-MIXED algorithm is invoked, and the resulting RMLP has 62 sensory
nodes, 12 nodes in the second layer, 7 in the third layer, and 1 in the output layer. (In contrast,
Banerjee’s method would produce 62, 24, 13, and 2.) It behaves in much the same way,
replicating exactly the behaviour of the tree at w = 60.

This basic pattern remains the same for all databases; the “strong” weight on connections
has to be very strong to mimic perfectly a decision tree’s hard splits. This poses a question:
what level of weight strength should we use in the experiments? If it is too low, the RMLP
will not “know” much to begin with, and may take as long to train as a plain MLP. If it is too
high, it will “know” too much and probably get “stuck’ in whatever state it was initialised to.

We can take an empirical approach to this issue. Figure 6.1 shows plots of the error and
cost of an RMLP trained on the German Credit database. The z-axes represent the w-value
used to initialise the network from a pruned decision tree. Each point represents the mean
error/cost in a 30-fold train-and-test run after training has ceased according to our usual
stopping rules. The pattern for error in Figure 6.1 (a) is quite clear: as the weight strength
increases, so does the final error on an unseen test set; after a w-value of about 10, the error
is fairly constant around 0.263. Below a w-value of 5, the results are comparable to the
performance of a plain MLP. With respect to the cost of training, the plot in Figure 6.1 (b)
shows a sort of vee-formation, with cost steadily decreasing until w ~ 9, then steadily
increasing after.

Interestingly, after standardisation to 0 mean and unit standard deviation, all six databases

display this pattern—a linear increase in error against w, and a vee-shaped pattern for cost

133

Relationship of Weight Strength to Error Relationship of Weight Strength to Cost

German Database German Database
o
g - g -
o ©
-
o
g g
o S
N
-
5 7 il
= o]
0 0 o
n
[=}
o o
S |
o
@
o
o
S |
2 3
g |
o o
o
S |
o
<
T T T T T T
5 10 15 5 10 15
Weight Strength Weight Strength
(a) Effect of weight strength on error rate (b) Effect of weight strength on cost of training

Figure 6.1: Effects of weight strength on MLP training

with the point of the vee sitting at about 9 or 10. At around w = 2.5 we get an acceptable
trade-off of accuracy (after training) against training time, so that was the value chosen for all
of the tests that follow.

How can we normally expect an MLP to behave on this database? We generate an accuracy
estimate by creating two “plain” MLPs to be trained by gradient descent and by quickprop.
Using the plan of having as many hidden nodes in the first layer as there are features, both
have architecture 62, 20, 21, 2, and are initialised using random weights between —0.3 and 0.3.
Using the 30-fold train-and-test procedure described above, we discover that gradient descent
MLPs have, on average, an error rate of 0.251 and took 294 epochs to train. Quickprop
MLPs have 0.253 error, and took 86 epochs to train. Are these better than the pruned trees?
Those pruned to the best cross-validation error achieved 0.272 error, as with those using the
ISE pruning rule getting 0.274. On the surface it would appear that the MLPs are doing
about 2 percentage points better, and a t-test confirms it. Since we are dealing with the same
training and test sets for all classifiers, we can perform paired t-tests, where each MLP is
compared with the tree that was grown on the same training data and tested on the same test
data. Examining the gradient descent MLP against the non-1SE trees, we get a p-value of
0.000012 for an average difference of 0.021. Even though the difference is very small, it is
consistent: we can usually expect the MLP to do this much better than the best pruned tree
(on this database).

134

As for the various flavours of RMLP, we are interested at first in two: initialised by the
pruned tree, and initialised by the 1SE pruned tree. All tests are done for both gradient descent
and quickprop. At this point, we are concerned with both accuracy (which needs to be as
good as plain MLPs) and with training cost (which should be considerably better than MLPs).

The complete set of results for all six databases is presented in the following section.

6.6 Results

This section is broken into three parts, corresponding to the three different families of RMLP
tested. The first subsection deals with a comparison of RMLPs to “plain” MLPs and decision
trees. To reflect the fact that errors are backpropagated in all MLPs, we will use the term
gradient descent to refer to “typical” backprop, and quickprop to refer to the parabolic
estimation introduced by Fahlman (1989). The second section presents a comparison of false
positive and false negative rates of one-output RMLPs with the trees that initialised them. The

third examines the efficacy of providing an RMLP with excess architecture.

6.6.1 Error Rates of Trees and MLPs

The results of 30-fold train-and-test runs on the Iris database are presented in Table 6.1. Error
rates are reported as the proportion of test data misclassified. There is little difference between
the error rates of those decision trees pruned by choosing the minimum error rate on R’s
method of cross-validation, or those pruned using the 1SE rule (which are always either the

same size or smaller).

Table 6.1: RMLP Results for the Iris Database

Method Error % Epochs Cost
Decision Tree (pruned) 6.6 0 0
Decision Tree (pruned, 1SE) 6.0 0 0
MLP (gradient descent) 4.3 632 39789
RMLP (gradient descent) 4.4 350 25076
RMLP (gradient descent, 1SE) 4.4 356 15405
MLP (quickprop) 5.6 170 10700
RMLP (quickprop) 4.2 45 3063
RMLP (quickprop, 1SE) 4.4 47 1859

Observe, however, the difference in accuracy between MLPs (trained either by gradient

descent or by quickprop) and pruned decision trees. MLP seem to be performing two

135

percentage points better regardless of how they are trained. However, the difference is
statistically significant for the gradient descent MLP (paired t-test p-value = 0.000683) but
not for quickprop MLPs. Quickprop seems to be quite unstable on this database for an MLP
of this architecture, with about 10% of all runs having a high finishing error, no matter what
“maximum shrink” setting is used.

Note that we could potentially perform 28 paired t-tests for all possible pairs of 8 classifiers.
To reduce the possibility of claiming something to be significant when it is not, we make a
nod in the direction of the Bonferroni adjustment (Bland and Altman, 1995). To be considered
significant for our purposes at the 95% level of confidence, a p-value in a t-test must be lower
than 0.05/28, or about 0.0018.

As for our main question—how RMLPs perform when initialised with pruned trees and
1SE pruned tree—we see that they both achieve a similar error rate, and a similar number of
epochs. However, the RMLP initialised with the 1SE tree is, on average, smaller, so the cost
of training it is somewhat lower (by about 60%). This result is even stronger in the RMLPs
trained with quickprop; the instability goes away, and the number of epochs of training drops
to about 5% of the original training time, or a speedup of 20 times for the same level of
accuracy. (The quickprop 1SE RMLPs have about 1.6 percentage points lower error than the
I1SE trees that initialised them, with a p-value of 0.00048).

The results for the Pima database are presented in Table 6.2. Here, we see once again
that plain MLPs do better than decision trees in terms of error rate, although in this case
gradient descent performs rather weakly and quickprop rather more strongly. Once again, the
RMLPs initialised with 1SE trees and trained with quickprop perform the best, both in terms
of accuracy and in terms of training cost, being about five times faster than a gradient descent

MLP and three times faster than a quickprop MLP.

Table 6.2: RMLP Results for the Pima Database

Method Error % Epochs Cost
Decision Tree (pruned) 25.5 0 0
Decision Tree (pruned, 1SE) 25.1 0 0
MLP (gradient descent) 24 .4 84 14469
RMLP (gradient descent) 23.8 57 13977
RMLP (gradient descent, 1SE) 23.8 43 3349
MLP (quickprop) 23.8 61 10559
RMLP (quickprop) 23.9 32 7419
RMLP (quickprop, 1SE) 23.7 40 3272

136

The Segment database, presented in Table 6.3 provides an example of plain MLPs behaving
rather badly. In fact, they are able to find a good stopping point; but not in the 2000 epochs
allowed. In most cases, gradient descent was still reducing error on the early stopping set
when 2000 epochs was reached. In contrast, quickprop MLPs require on average only 302
epochs, and get to a reasonable error rate. In this case, gradient descent 1SE RMLPs reach
the best state (1.4 points better than 1SE trees, with p-value 0.000000009) but the cost is
very high. In this case, the MLPs created by INIT-MLP-MIXED-MULTI are /arger than the
standard MLP. The initialisation process is resulting in a tree where each epoch will take
longer, and many epochs are needed, but at the end of training the error rate should be very

low.

Table 6.3: RMLP Results for the Segment Database

Method Error Epochs Cost
Decision Tree (pruned) 4.1 0 0
Decision Tree (pruned, 1SE) 4.3 0 0
MLP (gradient descent) 15.8 1891 1594506
RMLP (gradient descent) 3.1 1735 8061361
RMLP (gradient descent, 1SE) 2.9 1822 5793770
MLP (quickprop) 3.6 302 254895
RMLP (quickprop) 3.7 180 857422
RMLP (quickprop, 1SE) 3.7 193 580859

The Heart database, whose results are presented in Table 6.4, is particularly interesting, in
that it represents a set of data where MLPs outperform decision trees by quite a lot. The best
result is for MLPs trained by quickprop, at nearly 6.5 percentage points better than pruned
trees (representing a 28% reduction in error). Although there is almost a percentage point
difference between best and worst MLP, it just about within the bounds of chance (p-value of
0.049), so we conclude that all MLPs are about as accurate as each other. However, their cost
of training is not at all similar: the quickprop 1SE RMLP requires only 13% of the training
time of the plain MLP, and 22% of the time of the quickprop MLP.

The Australian Credit database, presented in Table 6.5 is interesting for the opposite
reason to the Heart database. In this case, we have a database where the MLPs just barely do
better than the decision trees; in fact, if we stick to our multiple testing principles and require
a Bonferroni adjustment, only one of the classifiers performs better than any other. In this
case, the gradient descent 1SE RMLPs just squeak in at 1.3 percentage points lower than the
ISE trees, with a p-value of 0.0015. Note that they have approximately 9% of the training
cost of the plain gradient descent MLP.

137

Table 6.4: RMLP Results for the Heart Database

Method Error % Epochs Cost
Decision Tree (pruned) 22.9 0 0
Decision Tree (pruned, 1SE) 23.1 0 0
MLP (gradient descent) 17.0 60 32441
RMLP (gradient descent) 17.7 47 15820
RMLP (gradient descent, 1SE) 17.2 39 6746
MLP (quickprop) 16.6 37 19942
RMLP (quickprop) 17.7 22 7479
RMLP (quickprop, 1SE) 17.6 30 4292

Table 6.5: RMLP Results for the Australian Credit Database

Method Error % Epochs Cost
Decision Tree (pruned) 14.9 0 0
Decision Tree (pruned, 1SE) 14.5 0 0
MLP (gradient descent) 13.6 211 180905
RMLP (gradient descent) 13.5 102 31913
RMLP (gradient descent, 1SE) 13.2 110 12935
MLP (quickprop) 13.2 83 71440
RMLP (quickprop) 13.9 54 11604
RMLP (quickprop, 1SE) 13.6 58 6772

Coming back to where we began, the results for the German Credit database are presented
in Table 6.6. Once again, we see that we can expect an MLP to do about 2.1 percentage points
better than a decision tree (p-value = 0.000012). Between the best and worst MLPs there is
no statistically significant difference in error, but the quickprop RMLP takes a mere 4% of the
training time of the plain MLP, and 12% of the training time of the quickprop MLP.

Let us consider for a moment the possibility that the cost function is unfair, since it
depends strongly on the size of the MLP; that is, a smaller MLP that takes the same number
of epochs as a larger MLP will have a lower cost. Is it fair to compare the (obviously rather
small) RMLPs with the arbitrarily determined architecture of the plain MLPs? There are two
responses to this, both of which apply here. On the one hand: which trick should one use to
decide upon an MLP architecture? In all cases, the time taken to search through the possible
architectures must be taken into account when establishing the training cost of the method.
On the other hand: suppose we had some prior knowledge that a good architecture for the
MLP was the same as the one a tree would produce. This would allow us to ignore the cost

function, and concentrate purely on number of epochs, as we did in the pilot study. However,

138

Table 6.6: RMLP Results for the German Credit Database

Method Error Epochs Cost
Decision Tree (pruned) 27.2 0 0
Decision Tree (pruned, 1SE) 27.2 0 0
MLP (gradient descent) 25.1 294 507725
RMLP (gradient descent) 24.5 123 140867
RMLP (gradient descent, ISE) 25.3 108 46354
MLP (quickprop) 25.3 86 148695
RMLP (quickprop) 25.1 40 49171
RMLP (quickprop, 1SE) 24.8 41 18519

trying this on the Pima, Segment, Heart, and German Credit databases quickly establishes
that this is not a good strategy; the number of epochs required to train is far higher than for
the architecture proposed here, and the MLPs almost never reach a reasonably accurate state.

Without a weight-initialisation scheme, these small MLPs are doomed.

6.6.2 False Positive and False Negative Rates

Do we gain any advantage by making RMLPs as small as possible? The one-output version of
the RMLP that is produced by INIT-MLP-MIXED contains just enough structure to recognise
one class (usually encoded as output 1), and relies on a default output (of 0) to specify
“everything else.” If these RMLPs have a lower training cost than their equivalent multiple-
output RMLPs, then they could be built in parallel on absolutely separate machines. The
total cost of training would be the cost of the second most expensive class, since it would be
sensible to make the most expensive the default.

In this experiment, we build one RMLP per class in the database, train it, and test it in the
same 30-fold train-and-test sequence as before. We then compare its false positive and false
negative rate to the decision tree that created it, which ensures that we are not mistaking a
lowering of sensitivity for an improvement in accuracy.

The results are presented for all databases in Table 6.7. Each class label represents a set of
30 RMLPs with just one output, with the false positive and false negative rate reported for the
pruned tree, the RMLP trained by gradient descent, and the RMLP trained by quickprop.

With only a few exceptions, the false positive and false negative rates are improved upon
by the one-output RMLPs. In those cases where an increase in error is seen (in the Australian

and Segment databases) there is enough of a lowering in the other false positive/negative rate

139

to get an overall increase in accuracy. Whether or not it is preferable to use the RMLP rather
than decision tree depends on whether it is more desirable to have a sensitive or selective test.

Comparing the costs of training to those in the previous experiment suggests that there
is little to be gained by making such small RMLPs, as they tend to have higher (or at least
equal) training costs than their equivalent multiple-output RMLPs. This would be worth it
for a gain in overall accuracy, but only the Segment database ends up with a lower overall
error when one-output RMLPs are used. Perhaps the multiple-output MLPs are able to share
structure between classes just enough to facilitate a better model, but not so much as to stop

training too early.

140

Table 6.7: False Positive and False Negative Rates for All Databases

Label Type Tree RMLP Cost QRMLP Cost
setosa ~ fp 0.0000 0.0000 621 0.0000 320
fn 0.0000 0.0000 0.0000
.4 | versicolor fp 0.0542 0.0222 12448 0.0333 2044
= fn 0.0889 0.0750 0.0639
virginica ~ fp 0.0444 0.0333 11576 0.0444 2055
fn 0.1083 0.0556 0.0500
negative fp 0.4448 0.3950 7549 0.4000 7156
g fn 0.1525 0.1531 0.1504
& | positive fp 0.1525 0.1416 11990 0.1301 4746
fn 0.4448 0.3970 0.4363
brickface ~ fp 0.0038 0.0014 1916553 0.0011 113322
fn 0.0211 0.0081 0.0138
cement fp 0.0078 0.0054 2421039 0.0064 187019
fn 0.0663 0.1118 0.1520
foliage ~ fp 0.0147 0.0089 3256623 0.0117 393238
. fn 0.0821 0.0675 0.1102
2 grass fp 0.0010 0.0000 960475 0.0001 54658
20 fn 0.0073 0.0098 0.0098
i path fp 0.0016 0.0009 191142 0.0012 46896
fn 0.0045 0.0000 0.0012
sky fp 0.0004 0.0000 71078 0.0009 66854
fn 0.0000 0.0004 0.0000
window fp 0.0186 0.0152 3843922 0.0175 576297
fn 0.1057 0.1057 0.1508
negative fp 0.3056 0.2400 13598 02244 9326
g fn 0.1693 0.1272 0.1474
T | positive fp 0.1693 0.1316 11379 0.1175 8410
fn 0.3056 0.2311 0.2433
S| negative fp 0.1156 0.1411 36961 0.1364 13006
E fn 0.1750 0.1260 0.1330
2 | positive fp 0.1750 0.1283 32948 0.1316 14594
< fn 0.1156 0.1424 0.1433
B bad fp 0.1421 0.1152 124615 0.1229 46584
= fn 0.5760 0.5791 0.5649
g good fp 05760 0.5462 222130 0.5156 53568
fn 0.1421 0.1312 0.1518

141

6.6.3 Partial Initialisation

Suppose we have an MLP that is almost certainly too big for the job. If we run INIT-MLP-
MIXED-MULTI for the weight setting but not the structure setting, we are initialising part of
the network and leaving the rest in a random state. In effect, we are giving the MLP “more
neurons” to play about with, but not specifying what should be done with them until the
weight-optimisation scheme runs.

The results of initialising MLPs with pruned 1SE trees in just this fashion are presented
in Tables 6.8 and 6.9. In each case, the same structure as the plain MLP from the first set of
experiments was used, but weights were set using INIT-MLP-MIXED-MULTI. The exception
is the Segment database, whose RMLPs were actually bigger than the plain MLPs. For
the Segment database, the sizes of the two hidden layers were set to 70 and 71, ensuring
that they were bigger than any decision tree would suggest. The MLP and QMLP columns
of the tables are the same results from the standard error rate experiments; the RMLP and
QRMLP columns represent a partial initialisation trained with gradient descent and quickprop,

respectively.

Table 6.8: Partial Initialisation Error Rates

Database Tree MLP QMLP RMLP QRMLP

Iris 6.0 4.3 5.6 4.4 4.5

Pima 25.1 244 23.8 23.5 23.7

Segment 4.3 15.8 3.6 3.0 3.3

Heart 23.1 17.0 16.6 17.2 17.8

Australian Credit 14.5 13.6 13.2 13.5 13.6

German Credit 274 25.1 25.3 254 25.2

Table 6.9: Partial Initialisation Costs

Database MLP QMLP RMLP QRMLP

Iris 39789 10700 26499 3418

Pima 14469 10559 8886 7277

Segment 1594506 254895 12995354 1494625

Heart 32441 19941 25611 15214

Australian Credit 180905 71440 106916 47388
German Credit 507725 148695 190445 75463

Again, we see the pattern of RMLPs reaching as good an error rate as the MLPs, which

are in turn better than the decision trees. Also, the cost of training is lower than the plain

142

MLPs, so the method is basically sound; there is some use to starting an MLP with partial
knowledge. The apparent exception to this is the Segment database, where the RMLPs are
more expensive to train than the plain MLPs. (Note that the plain MLPs trained with gradient
descent rarely reach a reasonable error rate, although those trained with quickprop do.)

A comparison with the tables in the first experiment shows quite clearly that the “extra”
structure in the network gives no real advantage in accuracy or in training cost. The error
rate remains about the same, and the training cost is somewhat more expensive due to the
higher size. There is no concomitant reduction in the number of epochs to compensate for
the increased MLP size. Thus we conclude that, while it may occasionally be effective to
“partially” initialise an MLP, it is no substitute for initialising both architecture and initial

connection weights.

6.7 Summary

On the harshest test possible, RMLPs generally outperform trees in terms of accuracy and
MLPs in terms of training cost. However, the training cost for quickprop MLPs is very low,
and it is not always the case that RMLPs trained by gradient descent do any better than those
trained by quickprop. Fortunately, the initialisation process seems to interact happily with
quickprop weight optimisation, resulting in RMLPs that are as accurate as any MLP, but
require about an order of magnitude less time to train.

While it is possible to show that single-output RMLPs improve upon the false-positive
and false-negative rates of the trees that initialised them, there is no great advantage to their
small size; multiple-output RMLPs seem to behave just as well, if not better. The possible
exception is the Segment database, where the overall misclassification cost is very low for the
one-output RMLPs; it is possible that this is a good strategy to pursue when there are rather
more than two output classes.

Finally, larger RMLPs whose connection weights are initialised with decision trees display
similar tendencies to “pure” RMLPs; training time is lowered, typically without sacrificing
accuracy. However, there seems to be no real advantage to doing this, at least on the databases
tested here. It is, of course, possible that a database exists where it is better to give the RMLP
more units than the decision tree would warrant. Perhaps, though, the weight optimisation
strategy will necessarily assign the wrong amount of “blame” to units that are relatively
inactive at the time training starts. A possible avenue of future research is to see what happens
if units are added or removed systematically at various points during training. Various other

avenues of future research are outlined in the following chapter.

143

Chapter 7

Future Work and Conclusion

7.1 Research Contributions

Throughout this thesis, we have explored the theme of 7ow one should initialise MLPs with
decision trees, and how useful that might be. We have taken a gently sceptical approach, not
necessarily assuming that MLPs will train more quickly when initialised in this manner, nor
that they will necessarily end up as more accurate classifiers. Happily, we have found that
there exist at least some databases where this is the case, and reasonably suspect that there are

more. The following contributions and conclusions may therefore be put forward:

e There often exists an MLP whose state is more accurate on a validation set than
the decision tree used to initialise it (the general result induced from Chapter 4).
Furthermore, such a state can exist in the state-space searched by standard MLP training

algorithms such as gradient descent and quickprop.

e Previous algorithms to initialise MLPs from decision trees have tended either to be too
small (having insufficient architecture to respond properly to changes in stimuli) or too
large (containing more nodes in the hidden layers than necessary). An MLP can be built
with just one node in the first hidden layer for each branching node in the tree, and one
node for each of the tree’s leaf nodes. The algorithms that achieve this are developed

and presented in Chapter 5.

e Until now, there has been no “fair” test of tree-initialised MLPs against the trees that
were used to create them. The fairest possible test is to train and prune on one data set,
then test both of the classifiers on previously unseen data. Crucially, such a test will

show if the initialised MLP is unable to improve on the decision tree, or if improvements

144

are inconsistent or random. Happily, some improvement in size, training time, and

accuracy was seen in nearly all of the MLPs tested in Chapter 6.

7.2 Summary of Material

There is a huge variety of tools available for classification, and this thesis has focused on
just two: decision trees and MLPs. However, to some extent, all classification methods are
related by their treatment of the training data as n-dimensional points in a feature space. This
relationship is explored in Chapter 2, in order to express the capabilities and limitations of
various classifier families. All of the classifiers mentioned work by placing hyperplanes in the
feature space, thereby creating boundaries of various shapes. Those boundaries may be sharp
(as in the case of linear discriminant analysis and decision trees) or fuzzy (as in the case of
logistic regression and perceptrons). If categorical attributes are catered for at all, they are
dealt with by expressing a probability of class membership contingent upon their categorical
features, or possibly on some interaction between categorical features and numerical features.

Decision trees and MLPs are particularly interesting because they allow the modelling
of almost arbitrary regions of the feature space. In the case of decision trees, the regions
are expressed by fitting axis-parallel hypercuboids around clusters of one class or another.
In the case of MLPs, the regions are expressed by fitting logistic regression models around
clusters, allowing fuzzy boundaries and curved isosurfaces. As a result, both forms of model
are inherently more powerful than linear discriminant analysis, logistic regression, or Naive
Bayes classifiers, and are to be preferred in situations where the classes are non-linearly
separable. K-Nearest-Neighbour classifiers are also able to distinguish between complex
groupings of classes, but are not “models” in the true sense, since the data and the model are
the same thing. Nevertheless, the relationship still holds, since the hypersphere containing the
k nearest neighbours acts as the decision boundary.

From this brief survey of classification methods, one thing becomes clear. If “knowledge”
is to be transferred from one classification method to another, it will be in one of two forms:
either decision boundaries in the feature space, or probability adjustments based on the
presence, absence, or magnitude of particular features. Throughout this thesis, we have
concentrated on the first form, but really the two are one and the same. Sharp decisions
are just zero/one probabilities, and probability distributions may become sharp decisions
simply by stating a “discrimination” value. Treating that value as an isosurface in feature
space allows us to bring MLPs close enough to decision trees to express an algorithm for

transferring knowledge from one to the other.

145

Chapter 3 contains a review of three fields of literature: decision trees, MLPs, and attempts
to transfer knowledge from the first to the second. The sections on decision trees and MLPs
are necessary background for the rest of the thesis, but they have another purpose. They make
the point that both methods are subtle and complex, and should not be applied “out-of-the-box.”
Decision trees require conscious thought regarding the splitting method used, when to stop
growing, and how to prune. For instance, it is simply not fair to decision trees to include
them in a comparison when the default pruning method of C4.5 has been used. MLPs require
even more consideration: representation of the database, MLP architecture, choice of learning
constant, choice of weight optimisation method; all must be tuned to the database, not held
constant across experiments.

In particular, it is not sufficient to test methods of hybridisation using the default settings
of decision trees and MLPs, whatever they may be. If it is to be rigorously established
that hybridisation is useful, then it must be more useful than using the individual techniques
properly. To be precise, a hybrid method must allow training to be cheaper than that achievable
by using a fast training method (e.g. quickprop, RPROP, or Levenberg-Marquadt) and it must
have an error rate no worse than a carefully crafted MLP.

In anticipation of needing a compact notation for MLPs, we suggest a Lisp-like list of
matrices, where each matrix stores the connection weights between two layers of units. The
first row of each matrix stores bias weights, allowing us to specify the feedforward function
in a two-line recurrence. While elegant, the real gain from this notation is that it allows us
to specify a particular weight or bias with three numbers: one to specify the matrix, one to
specify the row, and one to specify the column. Thus it will be possible later to specify a
weight-setting algorithm formally, independently of whatever representation is used for an
MLP in an actual programming language. (Of course, R allows us to use precisely the same
representation, since it supports lists, matrices, matrix multiplication, element-wise function
application, and recursion.)

In Chapter 4, the results of a pilot study are presented. The purpose of the study is to get
a broad sense of how Banerjee’s approach to hybridisation behaves on a range of databases.
We present a modest change to his method to deal with categorical attributes, allowing us
to process a larger class of training sets. All data sets were split into two parts for v-fold
cross validation, with trees pruned on the validation set. The interesting result is that, even
though the trees are biased in favour of the validation set, a more accurate state existed on the
validation set for MLPs in almost every case. Further, it became clear that training error began
low and decreased quickly, suggesting that the MLPs did indeed “know” something by having

been initialised. It was not clear that an initialised MLP trained by plain gradient descent

146

finished a lot sooner than a plain MLP trained by quickprop, but fortunately quickprop and
initialisation by decision tree seemed to interact well, resulting in MLPs that train quickly
and at least have a state where they are more accurate than decision trees.

We pause for a moment in Chapter 5 to reflect on what MLPs actually do. In the simplest
case (one logistic activation node) an MLP is a logistic regression, placing a single soft
boundary at an arbitrary orientation through the feature space. This is in contrast to the
simplest possible decision tree, which places a sharp boundary parallel to all axes but one.
However, we can use a simple logic language to connect the two forms of knowledge,
specifying what kind of tree or MLP is needed for gradually more complex expressions in the
language. Following through the possible boundaries for MLPs, we see that by connecting
several single-node MLPs to a single output unit, we can express an arbitrary convex boundary
in a continuous feature space. To get multiple convex regions, or re-curved regions, we need
one more layer of hidden nodes. Thus we can derive a four-layer MLP that has just enough
nodes to represent the boundaries of a decision tree, and no more. This exposition also sheds
light on why MLPs might be expected to perform better than decision trees. During weight
optimisation, MLPs have the chance to re-orient separating hyperplanes, and to change the
softness of each boundary.

Using the MLP notation developed in Chapter 3, it is possible to generate an “RMLP”
that has one node per branch in the first hidden layer, and one node per leaf in the second.
Adjustments are suggested for dealing with categorical attributes, resulting in INIT-MLP-
MIXED for the one-output case, and INIT-MLP-MIXED-MULTI for the multiple-output
case. Rather than using the intermediate format of DNF rules as suggested by Banerjee, the
initialisation is achieved directly by traversal of the decision tree. By using a double-stack
method (similar to algorithms used to process Reverse-Polish expressions), it is possible to
keep just enough state information at each node of the tree to be able to set a connection
weight precisely according to what conditions must be true, and what conditions must be
false.

Chapter 6 contains a set of experiments designed to assess the utility of RMLPs. Rather
than seek a proof of the possibility of usefulness, as in Chapter 4, we perform a comparison of
decision trees, MLPs, and RMLPs trained on one set, tested on a completely independent set,
repeated 30 times with a random selection of test set each time. Databases were deliberately
chosen to provide situations where MLPs were at least likely to perform better than decision
trees, and this was established to be the case. We saw RMLPs trained with quickprop produce
misclassification rates equivalent to plain MLPs, but usually at a cost of an order of magnitude

less training time. However, this performance is quite sensitive to the “strong weight” value

147

chosen during the initialisation process; too weak, and the RMLP does not “know” enough,
too strong, and the RMLP is unable to break out of what it “knows.”

One-output RMLPs were shown to improve upon the false positive and false negative
rates of the decision trees that initialised them. However, it seems to be the case that there is
little advantage in terms of the cost of training. Finally, the results of initialising “oversized”
RMLPs with decision trees were presented. While there was certainly some positive effect in
terms of training cost, there seemed to be no advantage over a “right-sized” RMLP.

The results presented in Chapter 6 suggest that there is indeed little to separate an RMLP
trained by gradient descent from an MLP trained by quickprop. They are similarly accurate,
and cost a similar amount to train. However, an RMLP trained by quickprop is sufficiently
cheaper than one trained by gradient descent that we can safely make the following statement:

Suppose you have a wish to build a multilayer perceptron model of a database, for the
purposes of class prediction. If the dimensionality of the database is high, and the classes are
not easily separable, then it will be difficult to determine an MLP architecture, difficult to
determine a good learning constant, and training is likely to take a long time. These problems
may be solved by growing and pruning a decision tree on the training data, then using it to
initialise an RMLP, then training the RMLP with quickprop. The RMLP will probably be at
least as accurate as any other MLP trained on the data; the architecture will be determined
immediately, and the cost of training will be low, due to a combination of small size and fewer
epochs. Since quickprop is rather insensitive to the learning constant, an arbitrary value of %
should suffice.

7.3 Future Work

There are many opportunities to apply the ideas in this thesis to new situations. Perhaps the
most obvious is a favourite of neuro-symbolic researchers: extracting the refined knowledge
from an RMLP. However, this line of inquiry is not something we will pursue. The reason
is simple. The knowledge contained in an MLP is encoded as a set of fuzzy convex regions
in a feature space. To state explicitly those regions is to start reducing the power of the
representation. Stating the regions as hyperplane boundaries means losing the softness of the
regions, and stating the boundaries as predicates on single features loses their orientation. The
best we could hope for is that the “refined” knowledge may correct some misfortune suffered
by the tree in the application of the greedy heuristic, but this seems unlikely, since the weight

optimisation algorithms are themselves greedy. Instead, we prefer to view MLPs as just what

148

they are: recursive multiple logistic regressions. They are the simplest representation of their

form of knowledge; “extraction” is at best a rough approximation of that knowledge.

7.3.1 Arbitrary Statements of Knowledge

Another obvious extension of this work is to be able to take any statement of symbolic
knowledge and encode it in an MLP. For instance, it should be possible to say, “we know
that the class is good if x < y, but in all other situations we are at sea.” An appropriately
initialised MLP should therefore have an output of 1 when z is less than y, an output of
around 0.5 in all other cases (reflecting the “‘don’t know” situation), and still be free to learn
new representations as new data is presented.

Further, it should be possible to take any group of statements in any modal logic and
encode it as an MLP, so that an agent applying entailment rules and an agent using the MLP
behave in the same manner. While that is interesting in and of itself, it is perhaps even more
interesting to ask if there is any improvement in the MLP that might make the agent using it
behave more effectively than the one using an entailment relation. This would constitute a

rather long-term research programme.

7.3.2 Initialisation by Oblique Decision Trees

Oblique decision trees such as OC1 (Murthy et al., 1994) separate regions in the feature
space using arbitrarily oriented hyperplanes. Rather than axis-parallel splits, a hyperplane is
greedily induced as an inequality on a linear combination of features. The greedy heuristic
seems to be quite effective in the case of OCl, typically producing rather more compact trees
than C4.5. What if we were to initialise an MLP with the hyperplanes from OC1? The MLPs
would be typically even smaller than those initialised from CART or rpart or C4.5, and would
have separating planes almost certainly closer to a final “good” orientation. Is is possible that
an MLP could do any better than OC1 in choosing a new orientation, and by adding “softness”
to the boundary?

To answer this question, we would first need to extend OC1’s concept of “hyperplane”
to include categorical attributes. Our work to date with RMLPs gives us some insight into
how to do this, so we do not expect this to be an insurmountable challenge. OC1 attempts to
optimise hyperplanes by a combination of greedy induction and random restart, so there is
some reason to expect that an MLP might be able to do better in terms of misclassification

rate. This line of inquiry constitutes a fairly near-term research programme.

149

7.3.3 Tree Structured Logistic Regression

The relationship between MLPs and logistic regression is striking. The optimisation methods
for logistic regression are suitable for no-hidden-layer MLPs, but do something quite different
from gradient descent methods. Instead of gradually sliding a fuzzy hyperplane across the
data until a class cluster is just inside a class boundary, the Newton-Raphson method places
the isosurface in the space in between two clusters.

However, it has been noted that logistic regression cannot solve the problem where one
class is flanked by two clusters of another class, as in the BGB database presented in Chapter 2.
One very promising approach is to use decision tree methods to partition the data into regions
that can be solved by logistic regression. To achieve this, the objective function of the decision
tree (some sort of diversity metric) must be replaced by an objective function that attempts to
get a good logistic regression on both sides of the split. The LOTUS logistic regression tree
(Chan and Loh, 2004) takes exactly this approach.

Logistic regressions are arbitrarily oriented, so it seems natural that the splits that are used
to build tree structured versions should be too. Thus, we are currently investigating the use
of OC1’s hyperplane induction method as a replacement for LOTUS’s splitting procedure.
Eventually, it may be possible to use fuzzy splits for both the partitioning and the regression, in
which case the tree structured logistic regression would become an MLP but trained piecewise
rather than globally. It will be interesting to find out whether any form of globally trained

MLP can perform better than a tree structured logistic regression.

7.4 A Final Note

It is very well known that there is no “ultimate classifier” that is optimal for all problems. In
some cases, linear discriminant analysis is sufficient. In others, a decision tree will outperform
an MLP simply because the MLP cannot find a good representation during training. This
thesis does not advocate the blind use of MLPs over decision trees or any other type of
model; it is always necessary to explore a database thoroughly in order to get a sense of what
modelling techniques are likely to produce useful results. If description is as important as
prediction, then decision trees are very likely to be the way to go, as most human beings can
understand the simple restrictions they place on a feature space. MLPs may squeeze out a few
extra percentage points of accuracy, but a “fuzzy convex region bounded in n dimensions” is
unlikely to be acceptable as an “explanation.”

Sometimes, though, prediction is more important. Sometimes, each improvement in

accuracy of 0.1% is worth a great deal. Sometimes, an MLP can provide that improvement

150

where no other classifier is able to. When all three of these things are true, then the methods
developed in this thesis can be used to produce an accurate MLP that has a well-specified

architecture and requires few training epochs.

151

References

Agrawal, R., Imielinski, T., and Swami, A. (1993). Database Mining: A Performance
Perspective. IEEE Transactions on Knowledge and Data Engineering, 5(6), 914-925.

Special Issue on Learning and Discovery in Knowledge-Based Databases.

Al-Harbi, S., McKeown, G., and Rayward-Smith, V. (2004). A New Metric for Categorical
Data. In H. Bozdogan (Ed.), Statistical Data Mining and Knowledge Discovery, Chapter 20,
339-351. Chapman & Hall/CRC.

Anastasiadis, A., Magoulas, G., and Vrahatis, M. (2003). An Efficient Improvement of the
RPROP Algorithm. In Proceedings of the First International Workshop on Artificial Neural
Networks in Pattern Recognition (ANNPR-03), 197-201.

Banerjee, A. (1997). Initializing Neural Networks Using Decision Trees. In Computational

Learning Theory and Natural Learning Systems, Volume 4, Chapter 1, 3—15. MIT Press.

Bioch, J., Carsouw, R., and Potharst, R. (1997). On the use of Simple Classifiers for the
Initialisation of One-hidden-layer Neural Nets. In S. Ellacott, J. Mason, and I. Anderson
(Eds.), Mathematics of Neural Network Models, Algorithms and Applications, 113—-117.

Kluwer Academic Publishers.
Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.

Bland, J. M. and Altman, D. G. (1995). Multiple Significance Tests: the Bonferroni Method.
British Medical Journal, 310, 170.

Boser, B., Guyon, 1., and Vapnik, V. (1992). A Training Algorithm for Optimal Margin
Classifiers. In Fifth Annual Conference on Computational Learning Theory, 144—152.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and

Regression Trees. Wadsworth International Group.

152

Brent, R. P. (1991). Fast Training Algorithms for Multilayer Neural Nets. /EEE Transactions
on Neural Networks, 2(3), 346-354.

Burges, C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data
Mining and Knowledge Discovery, 2(2), 121-167.

Chabanon, C., Lechevallier, Y., and Milleman, S. (1992). An Efficient Neural Network by a
Classification Tree. In Proceedings of the 10th Symposium on Computational Statistics
COMPSTAT, Volume 1, 227-232. Physica-Verlag.

Chan, K.-Y. and Loh, W.-Y. (2004). LOTUS: An Algorithm for Building Accurate and
Comprehensible Logistic Regression Trees. Journal of Computational and Graphical
Statistics, 13(4), 826-852.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to Algorithms.
MIT Press and McGraw-Hill.

Cortes, C. and Vapnik, V. (1995). Support Vector Networks. Machine Learning, 20, 273-2977.

Crevier, D. (1993). Al: the Tumultuous History of the Search for Artificial Intelligence. Basic
Books.

Dasarathy, B. V. (Ed.) (1990). Nearest Neighbour (NN) Norms: NN Pattern Classification
Techniques. IEEE Computer Society Press.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. Wiley.
Dunham, M. H. (2003). Data Mining: Introductory and Advanced Topics. Prentice Hall.

Esposito, F., Malerba, D., and Semeraro, G. (1997). A Comparitive Analysis of Meth-
ods for Pruning Decision Trees. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(5), 476-491.

Fahlman, S. (1989). Fast Learning Variations on Back-propagation: An Empirical Study. In

Proceedings of the 1988 Connectionist Models Summer School. Morgan Kaufmann.

Fahlman, S. and Lebiere, C. (1990). The Cascade-Correlation Learning Architecture. In D. S.
Touretzky (Ed.), Advances in Neural Information Processing Systems, Volume 2, 525-532.

Morgan Kaufmann.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (Eds.) (1996). Advances
in Knowledge Discovery & Data Mining. AAAI Press/MIT Press.

153

Fisher, R. A. (1936). The use of Multiple Measurements in Taxonomic Problems. Annals of
Eugenics, 7(2), 179-188.

Fix, E. and Hodges, Jr., J. (1951). Discriminatory Analysis: Nonparametric Discrimination:
Consistency Properties. Technical Report Project 21-49-004, Report No. 4, USAF School

of Aviation Medecine.

Frean, M. (1990). The Upstart Algorithm: a Method for Constructing and Training Feedfor-
ward Neural Networks. Neural Computation, 2(2), 198-209.

Gehrke, J., Ganti, V., Ramakrishnan, R., and Loh, W.-Y. (1999). BOAT—Optimistic Decision
Tree Construction. In Proceedings of the 1999 ACM SIGMOD Conference, 169-181.

Gehrke, J., Ramakrishnan, R., and Ganti, V. (2000). RainForest—A Framework for Fast
Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2-
3), 127-162.

Hall, L. O., Bowyer, K. W., Banfield, R. E., Eschrich, S., and Collins, R. (2003). Is Error-
Based Pruning Redeemable? International Journal on Artificial Intelligence Tools, 12(3),
249-264.

Hand, D., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. MIT Press.
Hassoun, M. H. (1995). Fundamentals of Artificial Neural Networks. MIT Press.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer.
Hebb, D. O. (1949). The Organization of Behaviour. Wiley.
Hosmer, Jr., D. W. and Lemeshow, S. (1989). Applied Logistic Regression. Wiley.
Hunt, E. B., Marin, J., and Stone, P. (1966). Experiments in Induction. Academic Press.

Igel, C. and Hisken, M. (2000). Improving the RPROP Learning Algorithm. In Proceedings
of the Second International Symposium on Neural Computation (NC2000), 115-121.

Ivanova, I. and Kubat, M. (1995). Initialization of Neural Networks by Means of Decision
Trees. Knowledge Based Systems, 8, 333-344.

Kass, G. (1980). An Exploratory Technique for Investigating Large Quantities of Categorical
Data. Applied Statistics, 29(2), 119-127.

154

Le Cun, Y., Bottou, L., Orr, G. B., and Mueller, K.-R. (1998). Efficient BackProp, Volume
1524, 9-50. Springer.

Le Cun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal Brain Damage. In D. S. Touretzky
(Ed.), Advances in Neural Information Processing Systems 2, 598—605. Morgan Kaufmann.

Lewis, D. (1998). Naive (Bayes) at Forty: The Independence Assumption in Information
Retrieval. In C. Nedellec and C. Rouveirol (Eds.), ECML-98: 10th European Conference

on Machine Learning, Volume 1398 of Lecture Notes in Computer Science, 4—15. Springer.

Lim, T.-S., Loh, W.-Y., and Shih, Y.-S. (2000). A Comparison of Prediction Accuracy,
Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms.
Machine Learning, 40, 203-228.

Little, R. and Rubin, D. (1987). Statistical Analysis with Missing Data. Wiley.

McCulloch, W. S. and Pitts, W. H. (1943). A Logical Calculus of the Ideas Immanent in
Nervous Activity. Bulletin of Mathematical Biophysics, 5, 115-33.

McGarry, K., Wermter, S., and Maclntyre, J. (1999). Hybrid Neural Systems: from Simple
Coupling to Fully Integrated Neural Networks. Neural Computing Surveys, 2, 62-93.

Mehta, M., Agrawal, R., and Rissanen, J. (1996). SLIQ: A Fast Scalable Classifier for Data
Mining. In P. M. G. Apers, M. Bouzeghoub, and G. Gardarin (Eds.), EDBT, Volume 1057

of Lecture Notes in Computer Science, 18-32. Springer.

Mehta, M., Rissanen, J., and Agrawal, R. (1995). MDL-based Decision Tree Pruning. In
Proceedings of the First International Conference on Knowledge Discovery in Databases

and Data Mining.

Michie, D., Spiegelhalter, D. J., Taylor, C. C., and Campbell, J. (Eds.) (1994). Machine

Learning, Neural and Statistical Classification. Ellis Horwood.
Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press.
Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Morgan, J. N. and Messenger, R. C. (1973). THAID: A sequential analysis program for the
analysis of nominal scale dependent variables. Technical report, Survey Research Center,

Institute for Social Research, University of Michigan.

155

Morgan, J. N. and Sonquist, J. A. (1963). Problems in the Analysis of Survey Data, and a
Proposal. Journal of the American Statistical Association, 58(302), 415-434.

Mozer, M. and Smolensky, P. (1985). Skeletonization: a Technique for Trimming the Fat
from a Neural Network via Relevance Assessment. In D. S. Touretzky (Ed.), Advances in

Neural Information Processing Systems 4, 107-115. Morgan Kaufmann.

Murthy, S. K. (1998). Automatic Construction of Decision Trees from Data: A Multi-
Disciplinary Survey. Data Mining and Knowledge Discovery, 2, 345-389.

Murthy, S. K., Kasif, S., and Salzberg, S. (1994). A System for Induction of Oblique Decision
Trees. Journal of Artificial Intelligence Research, 2, 1-32.

Park, Y. (1994). A Mapping from linear Tree Classifiers to Neural Network Classifiers. In
Proceedings of the IEEE International Conference on Neural Networks, 94—100.

Pettigrew, R. A., McDonald, J. R., and van Rij, A. M. (1991). Developing a System for
Surgical Audit. Australian and New Zealand Surgery, 61, 563-9.

Plaut, D., Nowlan, S., and Hinton, G. (1986). Experiments on Learning by Backpropaga-
tion. Technical Report CMU-CS-86-126, Carnegie-Mellon University, Computer Science

Department.

Prechelt, L. (1996). Early Stopping—But When?, Volume 1524 of Lecture Notes in Computer
Science, 55-69. Springer.

Prechelt, L. (1998). Automatic Early Stopping Using Cross Validation: Quantifying the
Criteria. Neural Networks, 11(4), 761-767.

Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, I, 81-106.

Quinlan, J. R. (1987). Simplifying Decision Trees. International Journal of Man-Machine
Studies, 27, 221-234.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

R Development Core Team (2005). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. ISBN 3-900051-07-0.

Raileanu, L. E. and Stoffel, K. (2004). Theoretical Comparison between the Gini Index and
Information Gain Critera. Annals of Mathematics and Artificial Intelligence, 41, 77-93.

156

Rastogi, R. and Shim, K. (1998). PUBLIC: A Decision Tree Classifier that Integrates Building
and Pruning. In A. Gupta, O. Shmueli, and J. Widom (Eds.), Proceedings of the 24th VLDB
Conference, 404—415.

Reed, R. D. and Marks, R. J. (1999). Neural Smithing: Supervised Learning in Feedforward
Artificial Neural Networks. MIT Press.

Riedmiller, M. and Braun, H. (1993). A Direct Adaptive Method fo Faster Backpropagation
Learning: The RPROP Algorithm. In Proceedings of the IEEE International Conference
on Neural Networks, 586-591. IEEE Press.

Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain. Psychological Review, 65, 386—408.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning Internal Representations
by Error Propagation. In D. Rumelhart and J. McClelland (Eds.), Parallel Distributed

Processing: Explorations in the Microstructures of Cognition, Volume 1. MIT Press.

Sethi, I. K. (1990). Entropy Nets: From Decision Trees to Neural Networks. Proceedings of
the IEEE, 78(10), 1605-1613.

Setiono, R. and Lu, H. (1996). Symbolic Representation of Neural Networks. IEEE Com-
puter, 29(3), 71-77.

Shafer, J., Agrawal, R., and Mehta, M. (1996). SPRINT: A Scalable Parallel Classifier for
Data Mining. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda (Eds.),
Proceedings of the 22nd VLDB Conference, 544-555.

Shavlik, J. (1994). A Framework for Combining Symbolic and Neural Learning. Machine
Learning, 14, 321-331.

Shavlik, J. and Towell, G. (1989). An Approach to Combining Explanation-based and Neural
Learning Algorithms. Connection Science, 1(3), 231-254. Special Issue: Hybrid Systems

(Symbolic/Connectionist).

Shavlik, J. W. and Dietterich, T. G. (1990). Readings in Machine Learning. Morgan

Kaufmann.
Swingler, K. (1996). Applying Neural Networks: A Practical Guide. Academic Press.

Taha, I. and Ghosh, J. (1999). Symbolic Interpreation of Artificial Neural Networks. /EEE
Transactions on Knowledge and Data Engineering, 11(3), 448—463.

157

Therneau, T. M. and Atkinson, B. (2005). rpart: Recursive Partitioning. R package version
3.1-27.

Towell, G. and Shavlik, J. (1993). Extracting Refined Rules from Knowledge-based Neural
Networks. Machine Learning, 13, 71-101.

Utgoft, P. E. and Brodley, C. (1990). An Incremental Method for Finding Multivariate Splits
for Decision Trees. In Proceedings of the Seventh International Conference on Machine
Learning, 58—65.

Vapnik, V. (1979). Estimation of Dependencies Based on Empirical Data. Moscow: Nauka.
Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag.

Weiss, S. M. and Indurkhya, N. (1997). Predictive Data Mining : A Practical Guide. Morgan

Kaufmann.

Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. Ph. D. thesis, Harvard University.

Widrow, B. and Hoff, M. E. (1960). Adaptive Switching Circuits. In /960 IRE WESCON

Convention Record.

Witten, 1. H. and Frank, E. (1999). Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann.

Yang, Y. and Webb, G. I. (2002). A Comparative Study of Discretization Methods for
Naive-Bayes Classifiers. In Proceedings of PKAW 2002, the 2002 Pacific Rim Knowledge
Acquisition Workshop, 159—-173.

Zaki, M., Ho, C., and Agrawal, R. (1998). Parallel Classification for Data Mining on
Shared-Memory Multiprocessors. Technical report, IBM Almaden Reseach Center.

Zhou, X., Wang, X., Dougherty, E., Russ, D., and Suh, E. (2004). Gene Clustering based on
Clusterwide Mutual Information. Journal of Computational Biology, 11(1), 147-61.

158

Appendix A

C++ and C Source Code

159

(dTTIUT{) 3T
! (SWPUSTTF)STTIUT WeaI3sIT
}
(SwWeusTTJIx IBUD JSUOD)EIepe]sw: :ejepelsu
/*
%
rszo0309a o3eTadoadde syjl o3juT x
UOTJRWIOJUT SWEU 93ngTIlje pue [agel buroeld ‘oTTI 9yl ybnoiyj pesy x
roweusTTI Aq patTyTtoeds oTTJ oyl uado :I03DONIJSUOD *
*/

<Y qrIp3s> Spniout#
<U'OTpP3IS> SPnTOuTH
<y-odA3o> Spniout#
<WesaI3sSI> SPNTOUTH
WU e3epelsu, SpnIouTH
WU-bTyuUOD, SpnToUTH

uonejudwduwy

ITPUSH

¢seanqraile Auew moy //
{ !()ezTs‘ ssweu =21nqTI33e uIniaI } ()s=3INgTIll3e JO ISqunNU MOYS IJUT

isTeqeT ssero Auew moy //
{ !()°zTs ssweu [SgepT UINlSI } ()SSSSLTO JO ISqunu MOYS 3JuT

sweu s3T USATH ‘Isqunu s,T9gel © uInisi //
! (sweu TegeT RHUTIIS)ISqUNU [=2geT MOUS IJUT

sweu s3T USATH ‘Isqunu s,93NQTIIIB U UINISIT //
! (sweu 93ngTIl3e RPUTIIS) ISqUNU 21NQTIJIE MOYS JUT

Isqunu S3T USATH ‘sweu s,Taqel 8yl uinisi //
{(TegeT YDTUM JUT)oweu [agel Moys buTtils

Isqunu S3T USATH ‘sweu s,93IngTIiIER SY] UINILI //
{(23NnqTI33 YOTYM JUT)SWeU 23NgTILIe Moys DbuTtiis

* (oTI9UMU IOI (‘soTI0HSIED //

Auew moy °o°T) ,I9PIO, SIT UINISI ‘ISqWNU SINJTIIIL UBR USATD //
! (sureu” ®3NQTI3IE HUTIIS) ISPIO” MOYS JUT

{(93INQTIIFILTYDTYUM JUT) ISPIO MOUS 3UT

*YrHTIJUOD UT SUTINOI TYIVI SU3 TTed TTTM STUL -sbuex jo 3no //
Isqunu Syl IO ISTXS JOU S90p Suweu oyl JT I0IIS [ejej e //
9STEI UELD SISqUNU/SSWeu SSeTd/93ngTIlje uo saTisnb TTe :HION //

*1 woIl paIaqunu ATTeOTHOT oI S9SSeTD pue s93Inqrille :HION //

*109(qo ejepejaw e uInlal pue //
,ouUeuUSTTI, se passed o713 oyl usdo TTTM :I03DNIJSUOD //
! (oweusTTIx IeYd 3ISUOD)ejepeiau

:otTgnd

ssweu 83nqTIlIe 9yl JO uoTjejussaidsr HuTils Lyl //
{seweu 23nqTI13e <HUTIIS>I0308A

sTaqeT sseTo syl Jo uoTjejussaadsi butiis syl //
!seweu TeqeT <bPUTIIS>I0308A

(oTIsWNU I0J () 93INQTIIIe Yoes UT soTIoHaled Auew moy //
{SI8PIO <JUT>I0F08A

:pa3joejoad
} ejepejsuw SseTd

!{p3s ooedssweu bHursn
<I0308A> epnIOUT#
<buTIlS> SpPNTOUTH

VIVAYLIEN SUTISp#
VIVAYIHEN FOPUITH#

—%—44D-x— //

uonedynddg
sse[) edepelaw Y], TI'V

JTpuSH

{ !{Tpus >> (=besssw) >> 1120 } (=besssw HUTIIS)HNINYYM PTOA SUTTUT
{ {(1)3TX® !Tpue >> (°bessauw) >> 1190 } (°bhessaw HUTIIS)TYIVA PTOA SUTITUT
butTpuey xoxay //

T ILTIOW ION SUTIop#

0 ILTIAW SUTIop#

*®TTF 3O pue 8yl I0J 0ol //

TTTM ®M ©Sed YoTym uTr) auo 3Isnl J10 (se911 931eaedes 03 si9ldoeIRYUD //
w#u TOT DPUTYOOT oI OM 9SO UYDTUYM UT) S9911 JO SIOT peax o1 butob //
oI ,9M I9Ulaym MOUY O PodU oM ‘STTI B WOIJ S99I] UT peaI am uaym //

T IIVOEN SUTIop#
*beTF STU3 3Inoge mouy O3 pesu yjzoq //
SUOTSTOSP PU®B S83I13 UOTSOSP *psjebsu ssTna 3Ino utad 03 JUEM SM SSWTISWOS //

957 ONTYISXVYW SUTIop#

“9UTT PUBWWOD //

9yl uo 138s aq 03 o[qeTIes TeqoTh B Sse sTyjl 38sex TT,I Aep suo //
“y3Tm Tesp 031 butob Ieas o1 ,9M 3IX®3 JO SUTT 13Is=bHTq =yl //

!{p3s eoedssweu Hursn
<Ue9IJSOT> SPNTOUTH

<bPuTIlS> epnIoUTH

H DIJANOD SUTISpP#
H OIJNOD FopuIT#

—¥—4+D—x— //

3y uoneIn3yuod [eqo[) IV
weIdord °oeI Yyl IV

160

*3JouU IO 9IN3ESJ UTe3ISd B sey o7dny e IT 31s91 03 //
LUOTATPUOD s393W, UOTIUNJ ISqUSW © pPosu sAeme om ‘9sed Isyits ul //
sTeoTIOPS3ED IO OTISWNU ISYTe BuTsg se s9IngTIIIe SUTISp ‘3IsITd //

<buTals> SpniouT#
<I03D2A> SPNTOUT#
wU’elepelsw, SpniouT#
uU UOTSTOSpP, SpnTduTH#

H @TdNL SUTI=ap#
H @TdNl JopuIT#

—¥—4+D—x— //

uonedyddg
sse[) eTdn31 YL €TV

f(1-)uanisx
! (,3STX® 20U S90pP SWeU [age] :Iaqunu [age] MOYsS::elepeiau,) TVIVd
(T + T)uinisx
(sweu TeqeT == [T]soweu Taqer) IT
(++T f()ezTs'ssweu Tagel > T {0 = T 3JUT) IOT
}
(sweu TageT 3DUTIIS)ISqUNU T[ogeT MOUS: :eIPpelaW JuT
/*
soweu ST USATH ‘TSgeT © JO ISqunu Syl TI23 :WOSSHIIVY *
*/

!(1-)uxnisx
! (,1STX® 30U S9O0p BWRU 21NgTIJIe :ISqUNU =23NgTIJIL” MOYS::elepeisu,) TYVIVd
(1 + T)uanjzax
(sweuTe3inqrilie == [T]ssweu 93nqriliie) It
(++T ! ()®zTs ssweu @3nqrilie > T {0 = T 3JUT) I03
}
(sweu e3ngTI33e 3OUTIIAS) IDqUNU 23NQTIIAIL MOYS: :eIepeiaw JuT

/*
‘oweu S1T USATH ‘83nqTIlie Ue JO ISqUNU SYl TT93 MOSSTIDV *
*/
{
([T - To9eT yoTym]ssweu [ageT)uinisx
! (,9buex Jo 3Ino TSgeET YOTYM :SWeu [ageT MOUS::elepelaw,) TYIVd
((T > TegeT yoTUM) || (()ozTs' soweu Teqel < Togel yoTum)) IT

}
(To2geT yoTym 2UT)Sweu [oge] MOYS::ejepelsu HuTils

/*

Iaqunu X9PUT SIT USATH ‘ToqeT e JO Sweu 8yl [[9] :IO0SSI0DY x
*/

([T - °23InQTIl3IR YOTYyM]sSaweu o3ngrilie)uinisi
!{(,9buer JOo 3InO 23INQTIIIE YOTUM :dWEU 93NQTIFIE MOYS: :elepelsau,) TYIVI

((T > @3anqralze yotuym) || (()22TS"SI9PIO < 23INQTIIIL UYD2TyM)) JIT
}
(23NQTI33e YOTYM JUT)SWeU =23NQTIIIe” MOYS: iejepeiaw butils

/*

Isqunu X9puT SIT USATH ‘93nqTille ue JO SWeU 8yl T[98 :IOSSSDOY x
*/

([T - 23INQTIIIL YOTYM]SISPIO) uIniax
!(,3STXS 30U S90P SWeU =23NJTIIIR :ISPIO MOYS::eIepelau,) TYIVd
((T > 23nqTa33e~uoTum) || (()SZTS'SISPIO < 23INATIIFR UDOTUM)) IT
! (sweu e3ngTIl3e) ISqWNU 23NQTIIIL MOUYS = 23NQTIIIE YDTUyMm JUT
}

(sweu e3ngTIl3e BUTIIS) ISPIO MOYS: :ejepelsw JuT

([T - ®InqTI33E YOTYM]SISpIo)uIinisx
! (,9buer Jo N0 °23INQTIIILT YOTUM :I9PIO MOYS::elepelau,) TVIVd
((T > @3nqra3ize yotum) || (()92TS"SISPIO < 2INATIIIL YDTUM)) IT

}
(@3nQTI212e UyOTUYM JUT) ISPIO” MOYS::eJepelsw JUuT
/*
joTISWNU JO TeDTI0H9ILD ST 9INQTIIIL U I9YISUM SUTWISISP 01 pasn g ued «
x
s (enTea uIN3aI) ISPIO JO TEDTIOHSILD ST T 3IBUJ 0IDZ
SAOQE I9qUNU B ‘OTISWNU ST 9INJTI1Ie SY] S93LOTPUT UINISI 0ISZ Y *
ISquNu XSPUT SIAT USATH ‘93IngTI1Ie Ue JO ISPIO SYl T[S] :IOSSSD0Y *
*/

{(,OTTJ BTJUOD B 5q 03 WSSS 70U S90p STTI :elepelsw,) TYIVd
(e3jepelsw sTi) IT

{

!4++ejepelaw ST
! (eweu) 3oeq ysnd-saweu TageT

{(y,poWIOI TTeM 30U ®TTF HTIUOD :elepelauw,) TYIVI
(z =i (Pweu ‘dump butils ‘,sg sg, ‘OUTT)Juedss) IT

‘oweu Togel ©B 8ARY oM //
(4%, == [0]3uTT) 3T °osT®

! (z9pI0) oeq ysnd:sIispIo
! (swreu) yoeq ysnd- ssweu S3nqrIlle
{ (4 powWIoy TToM 30U STTI BTIUOD :ejepelaw,) TYIVI
(¢ =i (a°paon ‘sweu ‘dunp JuT® ‘,P% S§ P, ‘SUTT)JuedSs) IT
*I9pI0 ST pIom //
PIE ‘Sweu ST PIOM Pugz °sI03d09A 0o3uT odeTd ‘HuTiis dn yesig //

sweu a3ngralje ue aaey am // (([p]auTT)3ThTPST) IT
}
((ONIMISXYW ‘SUTT)SUTTISH STTIUT) STTYM
sTeqeT pue se3ngqrijje Auew Moy 3Ino 3IioMm //

{0 = elepelaw ST JUT

03UT SUTT peaI 01 buTals// ![HNIMISXYW]SUTT Ieyd
{ [ONI¥ISXVA]dunp HbuTils ‘/[ONIYISXVW]Sweu Ieyod
!{79pr0 ‘dump JuUT JUT

{(4oTT3 PTJUOD PUTJ 3,UPTNOD :eIEPERISW,) VIV

161

10 = TegeT
!{TsgeT sseTd syl I0J SI0W U0 //
{
! (s3angTa3je oTISWNU Mau) ¥oeq ysnd-ejep
23nQqTI33e OTISUNU // SSTD
! (@3ngTa33e TedoTI0be3eD Mau) yoeq ysnd-ejep
@Ianqrajje Teortaobsied // ((T)ISpao moys- pu) IT
}
(++T {()se3Inqral3ze” yo Iequnu mMOYs puw => T fT = T 3uT)I103
}
(pw seiEpelsw)aTdni::aTdnl
/*
*3109fqgo eijepeisw a2yl Aq perjyroeds se «
Ispio pue 2zTs 3ybTI 2yl Jo sisjurtod 23ngTille JO I0309a B dn 39S «
¥OLONYLSNOD *
*/

{3sTeJ uaniax
osTo
fonx3 uanisax
(z % 3°@sqns) JIT
!z =/ 3esqns
(++T fe3ep > T {1 = T 3JuTr) 07

!()3esgnsT mMoys'p = 19sgns JuT
}
(P BUOTSTOSP)UOTITPUOD SI8W: :9INQTIIIE [DTI0HS3eD TOOq
/*
*309[go uUOTISTIOSP 8yl AQ *
paTIyToads 39sgns oyl NI ST AT J4I ©9I1 UOTSTOSP 98Ul U0 «
uoTsTosp © Aq pssodwT UOTITPUOD oYl SI98W 9INQTIIIL [eDTIO0DS]eD ¥ *
(P BUOTSTOSP)UOTFTPUOD SISSU: :93NQTIFIE [ROTIOHSIED TOOq *
*/

{asTeJ uaniax
osTo
fonx3 uaniax
(()pToyseayi moys-'p > ejep) 3t
}
(P RUOTSTOSP)UOTITPUOD S388UW: :9INQTIIIL OTISWNU T[OOq
/*
©309[go0 UOTSTO®P 8yl UT x
pPoI03s PTOYsSLaIYyl 9yl ueyl S$SOT ST 2T 44T 99I1 UOTSTOSP 9YJ UO *
uoTsTO®p © Ag pesodwT UOTITPUOD SYJ SI9dW 9INQTIIIL OTILUWNU Y *
(P BUOTSTOSP) UOTATPUOD SI83W: :23NCTIIIL OTI|WNU TOOJ *
*/
<dTueWOT> SPNTOUTH
<WEeSI3SIYS> SPNTOUT#H

WU oTdn3, SpnIouT#

uonejuwRduwy

ITPUSH

AT3091100 1T POTITSSeTD //
9913 9yl JT 99s 03 TageT SsSeTd s,o7dnl 8yl XO9Ud 03 S[ge aq 03 pasdu //
{ fTeqe1 uaniax } () TeqeT MOUS 3uT

seTdnl 107 aIndano //
{(3 327dn3 3suod ‘O RWE8I3SO) >>I03eiado FWESIFSO PUSTIT

*(3ubtx 10 3397 °b pTnoOyUs //

SM I89y3laym *©°T) SpOU YOS 1B UOTSTOSP 8Y3 S21LTOTA IO S38aw //

3T IT TT®3 03 o[ge =g 03 peau am ‘ssa13 ybnoiyz sordni doap am se //
! (P RUOTSTOSP) UOTATPUOD S383W 10O

o7dny ® 03UT 3T PeOT ‘STTJ ®© JO SUTT © 2ABY SM 3eYU]} UaATL //
! (pw ®elEpPElaW ‘SUTT 3OUTIIS)PEOT PTOA

jeoeTd syl punoxe sxsjurod 23ngTIlle anbor saey 3 ,Ued {I030NIISSP //
f{()erdna_

$93NQTI31e JO uoT3Tsodwod Jeym JO PUB 3ONIISUCD 03 ardny //
® HTQ MOy sMmouy 13T Jeyl os 3o0s[qo ejepejsw e saxtnbax {1030NI3SU0D //
{ (pw ®sejepelsw)ardnly

rotTgnd

I9bHb9quT ue oq ued oT1dny 8yl IOI TogeT SSBTO 9yl //
{TaqeT jut

SUOTIOUNT TEN3ITA ITSY] SSSD0E URD SM OS ‘sa3nqrije o3l sisjutod a103ls //
feqep <x 9INQTIIIL>I0]03A

:pajosjoad

}o1dny sse1o

fejep 3ut

:po3oajoad

{ feaep(3eo13) uinlax } ()elep Moys eoT]
! (P RUOTSTOOP)UOTATPUOD s18@8W [OOQ
{ !‘enTea = e3ep } (ONTRA 1UT)eIEP 18S PIOA

rotTgnd

}eanqraiae oTrand : 83nqTIIeT [EOTIO0HSIBD SSBTO

{ejep 3eOTT

:paj3osjoad

{ ‘fejep uanisx } ()ealep MOUs 3eOTJT
! (P RUOTSTOSP)UOTITPUOD™ s3I88W TOOQ
{ !‘snTea = e3lep } (SnTea 1LOTJ)eIRP 1I8S PTOA

:otTand

}oangralze oTTgnd : 23ngTIIJe OTISWNU SSBTD

{ } ()e3lep moys 1eOTI TenilaTa

{ } (enTea 3e0TJ)e3EP 189S PTOA TENAITA

{ } (enTea 3uT)elEP 189S PTOA T[BNIITA

!0 = (P BUOTSTIOSP)UOTITPUOD SIA93W TOOC TeNIITA

rotTgnd

}o3Inqrajae ssefo

162

{ fenTea = 219sgns } (SnTea 1UT)19Sqns 39S PTOA
{ fentea = sand } (entea 3jut)sand 39S pTOA

sand jou 103 (f°and ST 3T UYDTYM UT SSeTO oYyl g TTTM ‘Isyzang //

{,91nd, se psI91sSTHDI Ssey UOTSTOSP oYl JT onTea oaaTiTsod © oq TITM //

{ fsand uinisx } ()sand ST JuT

uorjejussaider HBUTIIS © 03 UOTSTOSP 8Yl JISAUCD //
{(0 = berz e3ebau uT ‘pw sejepelsw)buriis ol buTtils

0 021 39S buTylAI9A® YITM UOTSTOSP B SUINISI {I03DONIJSUCD //
! ()uotsTOoep

: otTand

¢om axe aand moy //
!sand uotyzodoad 3eOTT

isnorsumu 3souw ST SseTd yoTym ‘sand jou IT //
!fuoTyejussardsa 3saybTy JuUT

pbutunazd z03J Tnyesn {ea131 a2yl ybnoayl paddoip sa1e //
Asyay swtl 8yl Aq ,99s, TTTM UOTSTO®P STY3l sordwexs Auew moy //

!seTdwexs” Aueu Moy JUT

jI9pun oq 3snw 3T Jeyl snfea //

pToyseIyl oy3l ST JeyMm ‘93ngrIlle SNonuTjuod e U0 ST UOTSTOLP 8yl JIT //

{pToyseIy3 3e0TI

10309A-3Tq I9H93UT UBR SEB POIOIS JUT OQ 2IngTIiIe 8yl //

pPINoYs 38sqns Jeym ‘93nqrijle [eOTI0HSIedD B UO ST UOTSTOSP 2yl IT //

fqesqns utT

¢uo ,BUTPTOSP, 0 oM PTNOYS 23INQTIIIR UoTuM //
/23nQqTI33RT YO TYM JUT

*puUoODSS Yl UT TSgeT Syjl JO ISqunu Syjl IO ‘SSed IsITI Syl //
UT (0 03 38s ST I9bHs3juT STyl ‘eand sT spou syl 3eyl burizeoIputr //
TSqeT © IO ‘UOTSTOSP © ¢ ISY31TS ULD SPOU 9913 B UO UOTSTOSp e //
!fsand jut

: pe3joe3joad

}JUOTSTOSp SSBTD

LU'elepelau, opnouT#
<buTtays>epnTouTH

NOISIDHEQ SUTISp#

NOISIDEA FoPuIT#
—¥—440-x—//

uonedynddg

SSB[) UOTSTOSP AL, P'I'V

{0 uaniax
!TeqeT 3 >> O
Y. o >> ()eaep Moys<-[Tle3lep 1l >> (p)M18S >> O
(++T f()@zTs-ejep 31 > T {0 = T 3UT) IOJ

}
(3 ®27dn3 3suod ‘O BWELaI}SO) >>I103e19do RWEDIISO

/*

*so1dni z03 3ndino »
*/

{((P)UOTATPUOD S3IBBW<—[T — ()S3INTIIFL MOUS ‘' P]elep)uiniad
}
(P RUOTSTOSP)UOTITPUOD s3saw: :a7dn3 Tooq
/*
{UOTATPUOD S ,UOTSTOSP *
oYl s3edw YOTym oInjesl e aary o7dN] oYyl S90p ‘UOTSTOSP © USATH *
"dOSSHDIY *
*/

{T9qeT << I9IINQ
!{TsgeT sseTO 8yl I0J oI0W BUO [/
{

{(enTea jeoT3) B3RP 3I8S<-[T - Tle3ep
!snTeaT3eOTI << I=IIng

EERE]

{(snTeaT3uT) e3ep 38S<- [T - T]e3Ep
fenTeAT QUT << I@IIng

°3nqrajje Teortaobsied // ((T)ISpao” moys- pu) IT
}

(++T {()se3nqTalle” JO I9qunu moys* pw => T {7 = T 3JUT) IOT

fenTeaT qUT 1UT

fenTea” 1eOTI 2IBOTI

{(()y3busT aUTT ‘()BIRP SUTT)IS2IING WeSIISIIST
}
(pw mejEpEISaW ‘SUTT 3OUTIIS)peoT::aT7dnl proa

/¥
o7dny e dn peoT ‘STTI B WOIJ SUTT © USATD =+
YOLYIAW *
*/
{
{[T]e3ep e3eTep
(++T f()®zTs e3ep > T {0 = T 3UT)I0JF

}
()o1dn3_::o1dn2
/*
03 butjutod =«
@12 10309A 9yl uT sisjurtod 9yl 3BYJ S9INQTIIIL Yl [Te JO PTI 32b «
FOLONYLSHA *
*/

163

! (sesseTd JO Iaqunu JUT)weIbolsTy !(pTOoys=sayl g =< 4 ‘ONIMISXVW ‘I=33ing)jjutadus
(beT3 °3eboU) IT
J030onI3suocd // }
! ()uwexbolsTy oTxsumu sT adA]l // ((23NgTI33e UYOTYM) ISPIO MOUS "puj) IT
!(, (uoTsTtoSp NueIQ),) UINlaI
:oTTand (23InqTI330 YD TUM|) IT
! (2and) sweu” TegeT” MOYS "pPW UINISDI
{swe3T Te303 3UT (eand) 3T
{moTaq Te3031 Ut
fspogeT Te301 JUT !fonTea butils
{ [ODNIMISXVW] 19330 IeYd
anTes JusIINd 9yl MOTHE USSS 9A,0M SwelT Auew MOH // }
!MOT®Q <3UT>I0308A (beTy e3eboau JuT ‘pw seIEpEISW)HBUTIIST O0L::UOTSTOSP DHuTils
/*
onTeA JUSIIND 9Y1 FAOLY USSS 94 ,0mM swelT Auew MOH // ‘UOTSTO9pP 9si9as1 9yl 9onpord 01 poylsw oyl ST HeTI 93ebou oyl »
fsnoge <3juT>I02309A *019 ‘ssweu 93NQTIAIB 01 SS900B sey 1T eyl os 3o09lqo «
©lPpEISW B 03 I9I9I 01 SPISN SOTNI JO 189S © UT IO 99I1 UOTSTOSP SY3I UT *
:pajosjoad Teadde pTnom 3T se UOTSTOSpP =2yl burjusssidsa HuTtals e sonpoad :YOSSHAIIV *
*/
jwezho3sSTY SSeTO
<I03D2A> SPNTOUT# {
{0 = saTdwexs Aueu Moy
WYYD0LSIH SUTIop# {0°0 = sand uot3zodoxad
WYYDOLSIH JFOPuIT# {0 = uoriejusssadsa 3saUbTY
—%—+4D-x— // {0 = @IangTra3le yoTym

‘070 = pToysaayl
=°_H&°umuwam 0 = uwmnzw
0 = @an
}
ww.ﬂ—o E@H.@Opm Hg O:H m-ﬁoéﬂ :COﬂmH.o@ﬁnn:OHmﬂwwv
FOLONYLSNOD *
*/

{ <Y'OTP3IS> SPNTOUTH
WU UOTSTOSP, SPNTOUTH

fsnTea uanisx
WU-bTyuUOD, SpnToUTH

f,{, = [T - ()yabusT-entealantea

{
1z =/ UMOp~ 3unoo =¢MH“”-=QEQ—AHEH
{dnT3unoo++
asT9
{
!{(7933Inq) PUTIIS =+ enTes JTpuS#
{(dnT3unodo++ ‘, ‘Pg. ‘ONIMISXYW ‘I233Inq)Fjutadus

(z % umop 3unod) 3T

} UOTSTOSP © BUTUTWEXS IOJ SSUTIN0I //
(0 < UMOP™ 3UNOD) STTUM { feand uot3zodoxd uanisx } ()sand uorizodoad moys 3JeoTT
{0 = dnT3unoo jut { {prToys=sayl uinisax } ()prToysaayl moys 1IeoTT
!{3esgns = uUMOpP~ 3UNOD JUT { fuoTjejusssadsa 3ssybTy uanisx } ()uoTjejusssardsr 3saybTy MOYS JUT
f,} ut ,, =+ entea { !seTdwexs Auew moy uiniax } ()sesrdwexs Aueuw MOy MOUS 3JUT
asT® { ‘3ssgns uanisx } ()31Ssqns” MOys 3JuT
{4} UT jou , =+ °ntea { ‘°3nqrilie T yYoTym uanjex } ()e3IngraljeTmoys 3Iut
(ber13 @3ebouU) JT

! ((23nQTI23210 UOTUM) SWRU 21NQTI1IR” MOYS puw ‘() 1I9SUT " anfesn UOTSTO®P 8yl UTYITM PTaY senfea 8yl buriliss I0J saurinox //
} { fenTea = a2and uotiaodoid } (enTea 3eoT3)aind uoriiodoad 39S PTOA

Teotaobeied sT adhky // osTe { fenTea = uotrjejusasaidex 3saybry }
{ (enTea jutr)uotiejussaidei 1saybTy 39S prOoA
{(7193Inq)bUTIIS + (23INQTIFIL YO TYM) WU 93INQTIFIE” MOYS 'PW UINIDI { fonTea = sardwexs Auew Moy } (onTea 3JuT)ssrdwexs Aueu Moy 39S PTOA
{(pTouseIyl “,3G°% > . ‘ONIMISXVW ‘I9F3Inq) Fjutadus { fentea = 23nqra33e UYOTYM } (SnTeA JUT)SINQTIIIE 33S PTOA

ssTe { fenfea = proyssiyl } (SnTea 3eOTF)PTOUSSIYF 39S PToa

164

(0 =i [T]enoqe) T
(++T f()ezTs'enoqe > T {0 = T) I0F
}
(0 =i @A0qe Te303) IT
{
10°1 = duen

!moTeq Te303 » dwel =+ 3TNSOI

131 % JI =- dwe?]
{moTeq Te303(3R0TI) / [TIMOTeq(3BOTI) = II

(0 =i [TlmoTeq) 3T
(++T {()szTs'moT=q > T {0 = T) I03F
}
(0 =i moTaq Te303) IT
{1 3ut

070 = 3T ‘0°0 = 3Tnsax ‘01 = dwsl jeoTs
}
() Tutb: :weabolsty eOTIT
/*
*G'0 pue (u®eMIDQ ©C PTNOYS SITNSDY *
*sTeqeT sseTd JO Iaqunu Aue IO OS Op TITM 1I °SI0109A MOTSQ pue x
oa0Qe 9yl JO 91BAS QUSIIND SYJ UO POSE] XSPUT TuTH 8yl suiniax () Tuth »
*/

‘0 = moTeq TE303

!mOTSq TeB303 = SA0QE TB303

! (moTaq) dems " anroqe
}
()dems: :wexbolsTy proa

/*

*SI0309A MOTSQ pue 8A0ge 8Yy3l UT x

usas aney oM jeym dems oM ‘uedS 93NQTIJIL UYDEd JO puS BYL Je :1I0JRINK *
*/

!4++[T - sseld yoTym]anoqge
!44+swe3T TR0
!{++9n0qeT TR0

}

1wexbolsTY pTOA
/¥
©99s oM SSEeTD Yoes JO «x
Auew moy dn ppe oM ‘weIbolsTy MaU B HPUTPTTING SIL SM USUM :IOJBINN *

*/

(SSeTO UyoTyMm 3JUT)SAOQER JUSWSIDUT

! (0) yoeq ysnd-moTaq
!(0) ¥oeq ysnd-snroge
}
(++T {seosseTo Auew Moy > T {0 = T 3JuT) I07
(0 ‘sesseTd AurwW MOY)<3UT>I03O8A = MOTa]//
(0 ‘sessel0 AuBW MOY)<3UT>I0308A = aaoqe//

= SWe3T [e3031
MoT=aq Te301
= aA0Qqe Tej301

o oo
I

}
(sesseTo Auew MOY 3JUT)weIbolsTy: :weIbolsTy
/*
TOZTS uMouy JO wWeibOISTY I0F YOLDNELSNOD *
*/

0 = swe3lT Te30]
0 = moT3q Te301
= 8aoQqeT Tel02

o
I

}

()wexbolsTy: :wexbolsTty
/*
FOLONYILSNOD *

*/

WU werbolsTy, SpnTouT#
WU-bTyUOD, SpnTOUTH

uoneymduR[dury

JTpUSH
sesodand buthbbngsp 103 //
{()3utad proa

iawT3 Aue je sm axe sand moy //
! ()eand uotiaodoad 3eoTI

£31s9bbTq ST sseTd UdTUM //
! ()uotyejussaidal” 1saybTy MOUS JUT

cwexbolsTy @yl ut Isyleboire swelr Auew moy //
{ fswe3T 12303 uIniax } ()sSwelT [P3I03F MOYUS Ul

0 ©sT® ‘utr sand ST 23T 92INgTIIIe YOTym uaniax ‘sind st uoratixed 8yl IT //

f(uotatiyaed utw jut ‘A3Tand 3eory)sand ST JUT

4MOTSQ, PUE ,5A0CE, JO UOTINQTIISTP IUSIIND Y3 I03 TUTH U3 23eTNOTEdD //

() Tuth 3e0TI

©I03109A ,9A00€, SU3} JUSWSIOSP Pue SSerd //
Jeyl I0J I0309A ,MOTS], SY} JUSUWSIOUT SM ‘SSBTD © 995 oM SWTJ yYoes //
! (sseTo yoTym 3uT)a3epdn pTOA

93NQTI33e MOU UydeS I0J SNTeA ,MOTSq, Y3ITM anfea ,9A0qe, UDITMS //
! ()dems pToa

*39K s3STT @21ngrilje oy3l ur buryjlhAue ,us9s, I ,USABRY OM 9DUTS //
I0309A ,9A0q0®, 9Y3} O03UT O0b TTe Aoyl {sosseTd JO Iaqunu a9yl Junod 03 //

uoT1OUNI STY]} SN oM ‘BWT] 3ISITF oYyl I0J weibolsTy Y3l 93eaId oM usaym //

! (sseT0 UOTUM 3JUT)DAO0QER JUSWSIDUT PTIOA

9zTs umouy JO weiboISTY © I0J T0IONIISUOD //

165

uoTjejusssadel SSETD WNWTXeW 8yl PUTI ‘9STMILaYl0 //
}XTIjew 3unod sseTo

{(, wWeIbolsTY UT SWSIT OU :uoTFejussardei 31soUbTY MOYS: :weibolisTy,) TVIVA

<I030SA>SPNTOUTH (0 == swe3T Te303) IT
werbol1sSTY UT SweIT Oou IT IoIxs Telied //
XIYIVW INQOD SUTIop# }
XTYIVYW INNOD JFSpuIT# ()uoTaejussaider 3saybTy MOUSs: :weIboISTY UT
—%—44D—x— [/ /%

ronTea aaT3Tsod e uanjisx sAemTe TTTM 3Ing ‘eand ST 03 IBTTWIS AIap *

AHAHMH~NnVMHManwA~mW ‘wexbolsTy 9yl uT pojusssaadex ATHuoIls Isow ST SSBTO YOTUYM TT91 :¥OSSHIDV *

*/
SSB[) XTIJ3ew Junod YL, 9TV
{
{0 uanijsx
{ osTa
{y4moTaq TR0 !T + YyoTym uanisx
!4+4[1T - sseldo yoTym]lmoTaq (A3tand =< 3Tnsax) IT
{--8noqeTTe307] fswe3T TR303(3eO0TF) / [UDTUM]SAOQE (IBOTI) = ITNSSI
!——[1 - sseldo yorTym]anoge
} !T + yoTym uaniax
(sseTo yoTym 3uT)olepdn: :werbolsTy pToOA (uotaTized uTw => swelT Te3ol) IT
/*
‘peluswaIduT [TegeT]mOoTag pue mMOTaq TRI0] ‘poljusweidsp 2Ir [[9CgRT]2A00R pPuUB * {
onoge Tejol -weibasTy oyl o3epdn oM ‘MOI B 995 OM SWTI AI9AE YOIVIAW * {
x/ ![T]9n0qe = 3sou
‘T = UyoTum
{ }
{Swe3T Te3I03 (IBOTF) / 3ISOW(3ILOTF) UIN3ISI (3sou < [T]snoqge) IT
} \O
![T]mOoTeq + [T]saoge = 3sow (++T !()®zTs*sa0Qe > T {p = T 3JuT) I03F Vo)
(3sow < [T]moTeq + [T]enoqe) IT —
(++T f()szTs'saoge > T fQ = T 3UuT) IOJ {3Tnsax 3e0T3I
{0 = 3Isow ‘yoTym Ut
{0 = 3sow 3uT uoTjejuessrdel SSETD WNWTXeW oYl PUTI ‘9STMISYI0 //
uorjejuessiadel SSETD WNUWTXPW 8yl PUTI ‘9STMISYI0 //
!(, bursseooad mox z93Je parTed :aiand ST::wexbolsTy,) ONINIYM
‘070 uinlax (0 < moTeq Te303) IT
(0 == swe3T Te303) IT smox Aue bursseooad is3Ie paTTed IT butuiey //
}
()eand uor3azodoad: :weibo3sTy 3ILOTI H weibolsTy ut swelt ou :oind sT::weaboISTY,) TYIVA
/* (0 == swe3T Te303) 3T
‘X enTea oyl x werboISTY UT SwWeIT Ou JT I0IIS Teled //
SuUIN19I UOTIOUNT STYL ‘uoTjejussardel 1SOULBTY oY} Sey SSeTd ISASIeUM UT » }
w2Ind g ¥, 89 03 PIES g Ued WeIbolsTY =Yyl ‘swTy usaTb Aue Y :1¥OSSITDOV * (uotaTaxed utw Jut ‘A3tand jeor3)eand sT::weibolsTy uT

x/ /*
‘werbolsTY Syl UT sweIT OU Y3ITM 3T TTeO nok JT TYIVA © s90Q *
smox butrsseooxd Is3Je AT TTeD 03 AI13 NoA JT ONINJIYM © Sss0Qq *

{ soxsz I0 ‘oand ST eyl 2INGTIIIR SY3 JO XSPUT SYJ suIniIay »
{7 + YOTyM uaniax -wexbolsTy e Aq psjusssadex uotTiTiaed e Jo A3Tand syl 93eTNOTED :¥OSSHIOVY *
*/
{
{
‘lTlmoTaeq + [T]enoqe = 3sow {
T = yotTym !{(swe3T Te101 / 2ATNSSI)UuIniax
}
(Isow < [T]moTaq + [T]enoqe) JIT {
} fonoqeT Te303 x dwel =4 3Tnsax
(++T f()9zTs"@noqe > T !0 = T 3JuTr) I07 {
131 % J1 =- dwe?]

{0 = 3sow ‘UydTUM JUT ‘snoqeTTe3031(300T3) / [T]Snoge(31eo1]) = JI

flT][C]sTTe39p =+ 3Jubra dwel
asT®

{lT] [C]sTTel9p =+ 1I9T7 dwel
(1 == [[]3esans™ayl) IT

(++C f()ezTs-sTTR3®pP > [0 = [3uT) I0%
}
(++T f()9zTs"[0]sTTe3®pP > T {0 = T 3uT) I0%
{33977 T®303 - Swe3lT Te303 = YLBTI Te30]
!{44xOpUT

!z =/ 39sqns

f[T] [®*epuT]sSTTEISP =+ 3IST T[e3I03

(++T f()@zTs-[p]sTTe3sp > T {0 = T 3JuUT) 103
‘T = [xepur]issans eyl
}
(0 =i z % 39sans) IT

}
(0 < 39sqns) oTTym

] 3esansTou3

‘0= [t
‘0 = T 3uT) I0%

(++T f()@zTs sTre3ep > T

f3Tnsax 3eOT3J
{31 ‘0°T = 2ybTa TUTH ‘0°T = 1IST TUTH jJeOTI
{0 = 3FST Te3I03 ‘Q = 3ybTa TE303 JUT
‘0 = 3797 dwel ‘Q = JubraTdwsl ‘p = XSpUuT JuUT
f[()ezTs sTTRISP]ASSQns” 8yl uT
}
(29sgns JUT) TUTH: :XTIJew JUnoo 3eoTF
/%
%
‘pessed ST 3T 3@sqns JO xopul TuTth oyj sojernoTed () TuTh :WOSSHODVY *
*/

{++swelT Te303
{44 ([T - 1°9eT] [T - Axobsjed]sTrelep)

{(,spunoq JO 3INO TSCgBT :3JUSWSIDUT: :XTIJeu JUnod,) TYIVd
(T > Te9eT || ()°zTs"[0]lsTTe3asp < Teqel) 3T

!(,"spunoq Jo 3Ino A10HS3ED :]QUSWSIDUT: :XTIJBW JUNOD,) TYIVI
(T > Axobsjed || ()szTs sTTe3®pP < Ax0bHojed) IT
SUOT]TPUOD IOIIS IO0J O9UYD //

}
(TeqeT 3uT ‘AI0HS3ED JUT) JUSWSIOUT: :XTIJEW JUNOd PTOA
/*
*XTIjew oyl uT AIoHs3ed eyl JUSWSIOUT oM x
‘93nqTa3le TeoTIoHo1ed B 03 HuTHUOTSQ TogeT e ©9Ss oM SWTl Ydes :YOIVIAW *

*/

{0 = swelT Tel01

{((I9STTRTATUT) <IUT>T03084) ¥orq ysnd sTTeIap
(++T f79pI1o > T {0 = T 3JuT) I0T
{((0 ‘sesseIO JO WNU)<3UT>I03024)30eq ysnd:sTTeIep //

(++1 fI8pIo > T {0 = T 3UT) I03 //
$8SsSPTO JO wWnu Yy3zbusT JO SI0ID8A pPs0I8zZ YITM I0309A Y3l peol //

£(0)yoeq ysnd- 18STTLTITUT
(++T fsesseld Jo wnu > T f{Q = T 3JUT) I0J
{I9STTRTATUT <3UT>I0308A

{(()pus-sTtelsp ‘()urbeq-s[TelSp)Sses sTTelap

I03109A IESTD B SARY OM SINSs oyew //
}
(sesseT0” JO wnu JUT ‘ISPIO JUT)ISSSI: :XTIJRW JUNOD PTOA

/*

*9ZTS JUSI8IITP B O3 XTIJBW JUNOD © SSTTRTATUT-3I 1YOIVIAW *
*/

‘0 Swe3T Te303

}

() XTI3ew 3UnoD: :XTIJeWw 3unod
/*
FOIONEISNOD *

*/

<Y yjew> LSpnTOUTH
WU XTI3ew 3unod, opniouT#
WU bTIUOD, SpNTOUTH

uonejuuwRduy
JTPUSH

Jesqns oyl uo burllTTdds Aq peonpoxad AITSISATP 8yl suinisx Tutb //
10T 39sans = G Hha f10308A Aieutq e ST 38sqns //

{(39sqns juT) Tuth jJeOTI

XTIJeWw Junod 8yl Jo 31xed eyl jJusweiduT ‘Axobsjed //

zeTnoT3zed B YiTm poleTOOsSse TageT JelnTiied e 99s om swTl AIsas //
! (TegeT JUT ‘AI0HS3ED QUT) JUSWSIDUT PTOA

A3TsIoATP 3saTTeWS oyl s2onpoid YSTyUM 13SQNS BYI UINISI //
! (TuTh ®3epTPURD %3LOTF) TUTH 3saq JuT

sI9pI0 DBUTISIITP JO S°9INQTIFIe I0J XTIJPUW JUNOD SWes Syl 9sn ued M 0s //
!(s9sseTO” JO Wnu 3JUT ‘ISPIO JUT) ISSSI PTOA

1030NI3SUOD //
! ()XTajew 3unoo

:otTond
fswelT Te301 2UT

*STOouU (seosseld u) AQ SMOI (I9pI0) JO XTIjew e //
!sSTTRI8P < <IUT>I0JDDA>I0JODA

:paj3oajoad

167

!/ (20IN0S 9213 UOTSTOSP) 8313 UOTSTOIP

isT 3T 123uTod jo adA3 jeym uo Hutpusadep JueM SM IsasIRUM //

‘se91] oTqeunid ‘s99131 TEWIOU 3ONIFSUOD UeLd oM ‘sisjutod 9913 JO ISTT //
® saeY SM JT 21PUY]} OS ‘I03DNIISUOD ,TeNn3ITa, e Sn saATb sTyl //

{ !8I3 UOTSTOSP M3U uUIN3IaIl } ()9S8I3 M3Ux 2311 UOTSTOSP TeniITA

I03onI3suod //
{ %0 = 3ubTa = 3797 } ()®913 UOTSTOSP

:o1Tgnd

seTni 031 I0J uoTldoUNy AxeTTIIXNe //
!{(pu mejeEpElLW ‘189S oTna RPUTIIS ‘O©TnI 3<PUTIIS>ISTIT)XNE SOTNI 03 PIOA

{uybTI* 99137 UOTSTOSP

{1IJ9T+ 9913 UOTSTOSP

{UOTSTOSP 22Ul UOTSTOSP
:paj3osjoad

!zsmoxbh yadep sseTd pusTIT

!{Ism0IH YIpeSIq SSETO PUSTIT

*s9913 MoIb 03 //

yotym ut ,s3od, SYTT JO 3I0S 21e sIismoxb yidep pue sasmoib yjpesiaq //

} ®2137UOTSTOSpP SSEBTO

<19Ss> opnIOUT#
<weaIlsI> SPNTOUTH
<butiys> epniouTk
<3ISTT> opnTouTH

WU oTdny, opnIouT#
WU’ e3epelsu, SpnIouTH
WU UOTSTOSpP, SpnTouT#

WU bTJUOD, SpnIouTH

FIYL NOISIDEA SUTISP#
IEIITNOISIDHEA FoPUITH
—%x—++0-x%—//

uonedynddg

SSB[) 9913 UOTSTOSP YL LTV

!qesgnsT3issq uanisx
! (penoaduT) STTYM

!{++ponoadut
!Tuth 3usaaINd = TUTH ©3epTpuerd
{T =+ 38sqns 3saq

(Tuth @3epTpued > TUTH JuaIIND) IT
/(T + 21°9sqgns” 3saq) TUTH = TUTH Jusxano

((T ®» 39sqns™1saq) i) IT
}
(z =+ T !s8T131 > T ‘T = T 3uT) I0%
{0 = paasoxdut

op
fpenozdwut JUT
{1 =+ S°TI
{0 = 19sqnsT3saq
}
jwsyy Jo u gz buriernored //
A13 031 juem 3,uop em asnedaq TUuTbh 3seq oyl sonpuTl ATTpesib o3l A1l aM //

EEE
{
{39sgnsT 1saq uanial
{
{
fTuTbhT3usIInd = TUuTb °jepTpued
!T = 23esqgns” 3seq

}
(Tuthb e3epTpued > TUTH ULIIND) IT
(1) TUTh = TUTH JULIINO

(++T fs®T13 > T {1 = T 3uT) 107
sonTea TuTtbh STqrssod //
Ai1aas 35973 ued oM eyl ybnous TTeWS ST SINQTIIFe SY3l JO I8PI0 BYUL //
}
(zT > ()°zTs sTTe3isp) JIT

168

£0°0000T = Tutb e3epTpued
{0 = 38sgns” 3seq JuT
{Tutbhb jusxano eoTI
(1 - ()ezTs'sTTe3sp ‘g)mod(3uT) = S9TII UT
}
(Tutb e3epTpuerd %3L0TJ) TUTH 3S8Q::XTIJPW JUNOD JUT
/*
*uoT193Tad 3TTds 3seq oyl se pajdope oq PTNOYS 39sgns oyl x
Jeyl [Tews ATIUSTOTIINS ST SNTEA SILPTPUERD BY} I2Yldym 1s93 Arjusnbasqns x
ued I9TTED 9YL 2T 01 uT pessed snfea TUTH 931ePTPUERD BY]1 SIS pue *
‘X9puT TUTH 3saTTews a9yl Sey YDTUM 23I9sSQNs oYyl suIniax () TUTH 31so9q :YOSSHIIVY *
*/

! (swe3T Te303 / 3[NSSI)uInisx
{((qubTa Tuth x ybTA TE3O3

+ (3397 TuTth » 3397 T®303)) = 3Tnsex

{0 = ybta dwel
{0 = 1397 dwel

{31 =— uybta TUTH

111 =+ JI

fqybTaTTE201(2ROTI) / ybTI dwel (1eOTI) = II
{11 =- 23797 TUID

131 =+ I

{33977 Te303(380TF) / 3FoT dwe3l (3e0TF) = 31

{(snTea qybTI + SnTeA 3IST + SNTEA) UINISI
! (pw) bUTIIST03<-3ybTI = anTea Jybta

(3ybtx) 3T
! (pw) buTI3ST03I<-3IST = enTea 3IeT
(3397) 3T

!{(1933INnq)buTtals +
(()uoT3zejussaxdea 3soybTyY MOYUS UOTSTOSP oY3J)dWeu [o20eT MOUS pul +
w uw + (PuU)PUTIIST O] UOTSTOSOP 9YJ =+ oNTeA
! (()soTdwexs Aueu MOY MOUS UOTSTOSP oyl
‘()oand uotjzodoad MOYS UOTSTOSP 9yl
‘WU\P$ JG°$ u ‘ONIMISXVW ‘I93Ing)Fjutadus

‘onTea qybTa ‘enTea” 1797 ‘entea butils
{ [ONIMISXVW] I1933I0q IBYD
}
(pw ®ElEPPRISW) HUTIIST 0]::9911 UOTSTOSP buTils

/%
*Ssisa®I] I9pio-=1d B ST STUL -HUTIIS B se 9913 UOTSTOsp =y3 dunp x
*/
{
£ (3ybTI-90IN0OS*) 9917 UOTSTOLP MaU = JybTtx
(ybTa-90IN0S) IT
! (177 20aN0S*) 8813 UOTSTOSP Mau = 3I8T
(3397 -92ano0s) 3t
{UOTSTOSP ©9U3°90IN0S = UOTSTO9pP oyl

}
(90IN0S 399117 UOTSTOOP)=103e19d0: :9913 UOTSTOSP PIOA

/¥

M

iT030on13s5U0d Adod 2yl 03 IRTTWTS AJISA SYOOT :INAWANDISSY :OIVEHAIO *
*/

£ (qybTI-90IN0OS*) 9913 UOTSTOSP Mau = JubTa
(3ybTa-80IN0S) IT
! (337 20IN0S*) 8313 UOTSTOSP M3U = 3IST
(3Fs790an0s) IT
{UOTSTOSP 98Ul 20IN0S = UOTSTOSpP oyl
}
(90IN0S 398137 UOTSTOSP) @913 UOTSTOSP: 19813 UOTSTOLpP
/*
sI9yloue 03 (8DIN0S) 8913 UOTSTOBP B *

so1dod ATSATSINOSI YOTym ‘1030Nn13sucd Adod 8yl ST STYL "Y' 9913 UOTSTOSD »

UT Quop ST pue ‘Ases ST 1030NI1SU0D 9yl ATTENIAOY :YOIDNYISNOD *
*/

<y yjews SpnIouTH
<uylTIobTe> SPNTOUTH
<WESIISIIS> SPNTOUTH

<Y OTpP3IS> SpnIouT#

WU 8213 UOTSTOSpP, SpPNIouT#

uonejudwduwy

ITPUSH

{(I1TNW ION

= beTI JuUT ‘pu sejEpERISBW ‘S0INOS BWESIJST)S[TI WOIJ 2I03S8I PTOA
! (p uoTsTO®pP)MOID pPTOA

{} (3)x9m0ab : (3 %9213 UOTSTOopP)Iamoib yidep
{} ()xemozb : ()aemoab yidep
:o1Tond

} zemoab otTqnd : zomoab yidep sseTO

i
Rt
!(p uoTsTOSpP)MOIb pTOA

{} (3)7I9m0OIb : (3 9313 UOTSTOSP) IaMOIL yipesIq
{} ()xsmozb : ()I=omoab yjzpesiq
:otTand

} zemoxab oTTqnd : ISMOIL YjpesIq SSETO

sSaWT1 Yyloq 3T SPTIISA0 03 HAVH oM ‘Teniata sand sT ()moxb souTs //
*IsM0ID JO ssesseroqns aIe Ismoxb yidsp pue Iemoab yipesiq //

{3STT @Yl <x 2213 UOTSTO®P>3STT

{99177 9Ulx 9913 UOTSTO9pP
:po3osjoad

!0 = (p uoTsTO®pP)MOIDL PTOA TenlITA

(3 %9913 UOTSTOSP) 3IL3IS PTOA

! (3 %9213 UOTSTOSP) I9MOID

{} ()asmozb
cotTand
} IomoIb sseT0
*(e3eP WOIJ WSU3 SONPUT SM USUYM STT) 3ISITI Y3lpesaIq SswIiswos //
‘SSTTJ WOIJ UT WaYl peaI oM Uaym o3TT) 3ISITI yadep weyl moib //
oM sawTjlawWos {s92131 MoIb oM yYoTym uTr 3od © SYTIT ST ,Iamoib, e //

98913 89Uyl UuT suoTsToep enbrtun 8yl TTe JO 3sTT e seonpoxad Arduts //
!(39sTUOTSTO®P %< <buTxas>ssal ‘buriis>ies
‘pu melepelaw) 3STT UOTSTOSP oew pPTIoA

¢ST 1T Aes @911 9yl soop sseTo jeym ‘a1dni e usatb //
(3 mo1dna)AJTSseTo uT

¢9911 2yl st brq Moy //
!()sTeutwaal uT

Spou 9911 SIHI 1© UOTSTOSP SIHL ©I03s //
{ !p = UOTSTOSpP =yl } (P UOTSTOSP)aI03S PTOA

ysTThuxg uT uoTlejusssider HUTIIS B 03 9917 SYJ JISAUOD //
! (pw sejEpelsw)ssTna ol butils

uoTjejuasaider HUTIFS B 03 9913 oYl JISAUOD //
! (pw sejPpElLW)HuUTIIST 0] HuTIls

iAzowsw dn buryel sasjutod 9211 ATbuep saey 3,ued f1030NI3ISSP //
{ ‘3ubta 9319T°p ‘33IST 938T9P } ()9913 UOTSTOSP

1030n13SU0D Jusuubrsse //
{(20IN0S ¥89313 UOTSTOSP)=103818d0 PTOA

I030nI3suocd Adoo //

169

}

(2 32T7dn3) AJTSsSeTO: 9213 UOTSTOSP 2JUT
/*
sTeqer x

UOTIEOTITSSETO B 3T 9ATH 03 9913 9yl spusdsap pue o7dnl e sayel ()AJTSSeTd »

*/

{
{()yoeq dod-3sTT °Ul
asTo

{(339T<-dwe3l) yoeq ysnd 3ISTT oyl
{(3ubta<—dwel) xoeq ysnd-3sTT oyl

! ()osx3 mou<-dwel = JybTa<-dwsl

! ()o213 Mau<—dwel = 33oT<-dwal
{()xoeqdod-3sT1 9ya

f()3oeq-3sTT @2yl = dwelx 9913 UOTSTOSpP

(()@andsT pi) IT
!(p)eI03s<— () %0Bq ISTT 2Ud
}

asTe

f(,¥oe3s Ajdwe yaTm 9913 MOIb 03 paTily : ()moib::iemoxb yadep,) TVIVd

(()A3dws-3sTT 2U3) IT

}

(p uoTsTOo®p)mMoab::I89MO0Ib yrdep pTOA
/%

"3ISTT TIS UB 3DBJ UT ST OB3s SUL “sspou PUTWOD-Y3IO0J SI0]S *
03 oe3s B HuTsn 8313 8yl smoib 3oslgo ,rsmoxb yadsp, syl »

*/

{()3uoaz dod-3sTT 9yl

{(3ubTI<- () JUOTF - ISTT 2U3) yoeq ysnd- 3sTToU
£(338T<— () 3U0I3*3STT 2y3)¥oeq ysnd 3sTT oyl

£() 99137 MaUL~ () JUOTF ISTT OUI = FUOTI<- () IUCTF*3STT 2U3

()

99137 MdU<— () JUOIT"AISTT U3 = 3IST<-()IUOII " ISTT =Yl

(()2and7st pPj) IT
{(p)2103s<— () JUOAF ISTT 2u3
}
osTa

!(,onenb Ajdws yaTtm S913 MoIbH 03 PaTIY : ()mMoxH::xsmMOIbL yipesid,) TVIVI

(()A3dwe-3sTT 2U3) IT

}

(p UOTsSTO®pP)MOIH: :I8MOIL YjpeaIq pToA
/*

“3STT TIIS ue 30eJ UT ST onanb 8yl °SSPOU HUTWOD-YII0J SI0IS x
03 anenb e bursn 8213 2yl smoab 3oslgo ,19mMmoIb yjapesiq, =Yl *

*/

{(®21372y3) yoeq ysnd- 3sTT =yl
113 = 9913 9U2
}

(1 399137 UOTSTOSP) I9MOIH: : ToMOIH

/¥

19STTETITUT ,3Iels, oyl dT¥s 03 Juem om JT Pasn o9 03 IMOIDNYISNOD *

*/

{(®21372y3) yoeq ysnd 3T =2yl
113 = 9913 9U2
}
(3 399137 UOTSTOSP) 3IL]S: :I9MOID pTOA

/*
sseTd Ismoib oyl I03 ¥ASITYILINI *
*/
{
{
! ()yoeq dod-sTnx
f(pw ‘39sTeTNI ‘oTNI)XNE SoTnNI 03<-3ybTI
{((ZLYDEN ‘pw)buUTIISTO3 UOTSTOSP oY1) 3oeq ysnd-aTna
! ()yoeq dod-aTnx
f(pw ‘aesTeTna ‘eTnIi)xne ssIni 03<-1I9T
! ((pw)butais ol uoTsTOL9P 2y3l) yoeq ysnd-ani
}
asTo

{

fLU\U\, + (PW)BUTIISTOI UOTSTOSP Y3 + , ST TOeT UdYl, =+ Jos oTnx

‘19sToTna RPuUTIIS

LU\, + I3Tx + , PUB, =+ 39S oTnI

(()pus STInI =i I3T++) STTum
faU\u + I3AT* 4+ 4 FTa =+ IS 2INI
{(()utbeq eTnI) I3T I0IRISIT: :<OUTIIS>ISTT

}
(339Ti) 37

(pu sE3PpRilaW

‘oTnx 3<BUTIIS>ISTT) XNE SSTNI 073::98I3 UOTSTOSP PTOA
/*
SOTNIT 03 I0J UOTIOUNI AJIRTTTIXNE x

*/

f39sToTna1 uiniax

{(pw ‘38sTeoTnI ‘oTNI)Xne SSTNI 03<-3ybTI
{((FIYDEN ‘pw) bUuTI]S 03 UOTSTOSP 9Yl) ¥oeq ysnd-sTna

! (()uthsqg-aTni)ssers-sTna

f(pw ‘39sToTnI ‘STni)xne ssTnI 03<-1IST
! ((pw)HbuTIISTO3 UOTSTOSP 9y3l) ¥oeq ysnd-sTna

{319sTeTna butrags
faTn1 <buTa3ls>3sSTT
}
(pw zElPpElDU) SOTNI 03::921]1 UOTSTOLapP buTils
/*
©SoTNI JO 189S B SEe 9913 UOTSTOSpP oyl dwnp «
*/

170

YATIAISSYID SUTISP#
YATAISSYID ISPUITH#
—%—++D-x—//

uonedynddg

Sse[) I9TJTsseIo Y], STV

£(()STRUTWISI<-IYLTI + () STEUTWISI<-3IST) UINISIL
osTo
{17 uanasx
(339Ti) 3I°7
}

() sTeuTwIsl: 19913 UOTSTOSP 3JUT

/¥
(9913 Ino ST BT MOY :1MOSSHIOV *
*/
7/
{ //
{(3STT TeISITT ‘PW) ISTT UOTSTOSP oyeuw<-3ybTa //
{(3ASTT TBI9ATT ‘pw) ISTT UOTSTOSP o3PW<-13I9T //
£ ((ZIYDEN ‘ (pw)PUTIISTOF UOTSTOSP 2U3 //
‘ (pw) BUTIISTOI UOTSTOSP ©Y3) TRISITT MdU) YOeq ysnd-3sTT TRISITT //
} //
(3g°1) IT //
Yo/
(3STT TRIL®ITT //
B<x [RISITT>ISTT //

‘pw sejepelaw) ISTT [ISITT OBW: 9913 UOTSTO3P pToa //

{(39STUOTSTO®P ‘pw)ISTT UOTSTIOOP oyew<-3ybta

1 (19STUOTSTO®9P ‘pw) ISTT UOTSTOSP oFRU<-3IST

L ((IIVDIN ‘pw)PUTIFIST 03 UOTISTOSP oY) 3I9SUT*19S UOTSTOLOP
! ((pw)PUTIFIST O UOTSTOSP ©U3J) 3I2SUT " 19S UOTSTOS9P

(3391) 37T

(19sTuoTsTOSpP
3< <HbuTIIS>SSST ‘HPuTIIS>IASS
‘pPw 3EIEPRISW) ISTT UOTSTOSP o3eu: :9913 UOTSTOSP PTOoA
/¥
(19sTUOTSTO®P < <PUTIIS>SSST ‘HUTIIS>]SS) ISTT UOTSTOSP oW PTOA *
(3o 23I0S) YOSSHEIIV *
*/

{(p)oand 38s°p

andut Jo SUTT 23Ixau 8yl I0J Apeeax berr A3tand syl 18sex //
! (p)moIb<-STUI

UOTSTO®pP 9yl buTrsn o913 8yl moab mou //

! (seTdwexa” 70 xaqunu) seaTdwexs Aueu MOy 39S P

! (Aoeanooe)sand uoTrixodoad 38s p

! ((TogeT) I9qunu_TogeT MOys - pu)uoTjiejuasaidea 1saybIiy 38s°p
9pOU UOTSTOOP oYl JO 3sal a2yl dn 39S 03 pasu oam usyl //
!seTdwexs™ JOT I8quUNnU << AdRINOOR << I2IINg

soTdwexa JO Iaqunu pue AdeIndde oyl pasu om ‘osed Aue ut //

{(19sgnsTT) 19sqnsT19s P

{((pIOM 1SITT) I9qUNU” 9INGTIIJFIL MOYS *pW) 93NTIIIL 39S P
(1 - zoquew ‘z)mod(3UT) =+ 3Bsqns” T

(Toquaw << 32sgns” ST) STTUM

{(()yabusT-3esqns™s ‘()elep-19sqns”S)19SANS ST WesIISIAST

f(, , *,{, *Opusrissqns_s ‘()urhaqg-issqns”s)soerdsa

(, + “,}, “()pus-3ssgns™s ‘()utbsq-issqns” s)soerdsa

(, + “,*, “()pus-3ssqgns™s ‘()utbsq-issqns” s)soeTdsaa

{TageT << 19sgns”s << I97Ing

!{3esqns”s buTags

!Isquew ‘Q = 39sgns” T 3JUT

’
i

asT®
1esqns Iebe3uT 03 {z‘A‘x} 3I9AU0D :TEOTIOHSIRD §,31T SSTMILY30 //

f(PTOUS®IYl) PTOYSSIYI 38s P
{TeqeT << PTOUSDIUL << I9IINng
f((pIoMTISITT) I92qunU 231NgTIIFL” MOUS *puw) 21ngTII3e 38s p

(u>u == ubTs) 3T osT®
23INngTIl3e OTILSWNU B SARY SM ,>, ST ubTts 8yl JT //

fubTts = Taqet
! ((pIOMTISITT) Iaqunu TageT moys - pu)sand 33s°p

(UubTs == pIOM 3SITI) IT
SpoOU TeuTWIS] B SARY SM ‘UBTS == PIOM 3SITI IT //
{ubTS << PIOMTIASITI << IoFInqg

£(()u3bueT oUTT ‘()e3ep’ouTl)I9FING WeSIISIIST
furniex (L4, == [0]9UTT %% ILTOW == HeT3) 3T
}

((2uTT ‘e0anos)ourTiob) STTUM

foangrajje ‘seTdwexs JO ILaqunu JUT

!{Aoeanooe ‘pToysaiyl ILOTI

!p uoTsTOSpP

!dex3ssybty ‘Teogel ‘ubTs ‘paom 3sITI ‘SuUTT buTtils
{ [ODNIMISXVYW] I9330q IBYD

(beT7 JUT ‘pw 3EIEPPEISW ‘SOINOS BWESIIST)STTI WOIJ =I03sa1::I19M0Ib yidsp pron

/*

"STTJ 9yl JO pus 8yl TTIun 9913 3Yy3 moxb o3 HuTAzl dssy =
TTTM I9MOIH SUl °STTJ oYyl woIJ ps3oadxs ST 9913 auo ATuQ x
*9TTJ wolJ 9313 © MoIb 03 Ismoib yidsp Syl osn :MOLYVIAW *

}

*/

£((2)AITsseT0o<-2ybTI) UINIBI

osTa
{((3) A3TSseTo<-339T) uaniax

1797 0ob // ((UOTSTO®P ©Yl)UOTITPUOD s3sdw'3) JT OSTS
{(()oand ST UOTSTOSP °Y3l)uIniax

TI0U oq osTe TTTM 3UPTI // (0 == 3FST) 3T

‘TogeT SSeTO 9Yl uINiSI ‘JesT © paydoesI saey oM JT //

171

{(TeqeTs ‘entea’ ‘,pg Jsu ‘ISIFIN) JUeOSS
} :o1Tgnd
(.4, =i [0]719330nq 3% ,9, =i [0]I°3Ing) STTUM
{ (DNTYISXVW ‘I9IInq)SuUTT3I86°03IST
{ (DNTYISXYW ‘I9IInq)suTT3I8b 03IaT
ToqeT sSseTo yoea Jo Auew MOY 3Ino IIOM pue 031IaT ybnoiyjz ob //

©T0AD uoT3lT3Ied/MOIL/23RTNOTRD B Op //
! (Toa®T @213 UT)SaTTI ssoooxad proa

SuoTSTO®p 2yl //
01 buTpzoooe s3STT @23ngrilzle oyl dn 1T17ds ‘e@s13 8yl umoab butaey //
{(3ybtai 03 BWesI3SI ‘IS 03 RWESIJST

{ [ONIYISXVW] I933nq TeYd ‘3yBTIWOIF BWESIIST ‘3IST WOIJ RWeSI3sI)seTT3 uoritiaed proa
! (()sosseTo JO Iaqunu MOUS pu)y weibolsTty

!0 = TeaeT e813 2JuT

‘TeqeT 3uT
fenTen eOTI

way3l YiTtm 9913 9yl moib //
_ } ‘SuoTsTosp JO 3ISTT 2yl dn pepeorl pue sajutod 3TTds syl peieInoled butaey //
() ISTITSSETO PITNQ: :ISTITSSBTO PIOA {() ToAST ®217 MOIH pTOA
/*
+,2and, aI1e 9313 2yl JO saaeaT TTe uaym suaddey ATuo »
yotym ‘Ajdwe sre sensnb wezbolsTy 9yl TTIUN ()SSTTI sso00ad TTeD oM USYL
*13ybTx pue 13IST
03uT 03F°T uoT3iTixed pue ‘esx3 2Y3 FO TSAST 3ISIATI 2yl MoIb ‘03FeT
uo uTod-1TTds ®B 23eTNOTED oM ‘sss00ad Syl SSTIRTITUT OL
s19TJTSseTo oyl Jo ,dooT uTeuw, a8yl ST ()ISJTSSeTO PTINg

suot3tized Texsass 103 ATqrssod //
‘qutod 3TTds 3seq @yl PUTI pue 3ISTT 23IngTI33ze ue ybnoiyi unx //
! (SUOTSTOSP B<UOTSTOSP>3STT
‘sweabolsTY I<wWeIDOISTY>3ISTT ‘WoII Rwearlsy)sijutod 3TTds @3e[nOTed PTOoA

R

/ S3ISTT @3ngralle oyl ybnoiyl uni 3sef ayj butanp //
youeiq YHTI/IIST © UO ©I9M UYODTYM SUOTSTOSP JO 19S JUSIIND ¥yl //
!{SUOTSTO®P 3YDBTI <UOTSTIOSP>3ISTT
!SUOTSTOSP 39T <UOTSTOOP>ISTT

! (@213 2y2l)1Ie]1S " I9MOIDL OY]
S3ISTT @3ngTI3zje syl ybnoiyy uni 3sel ay3j butinp //
youeiq JybTI/IAIST © UO SI9M UYOTYMm suwerbolsTy JO 19S QUSIIND Byl //
fsureabolsTY ULTI <werbolsTY>ASTT
fsurexbo]sSTY 3IST <werbolsTy>3ISTT

(3n0::s0T|UT::sOT ‘,T3YbTL,)usdo TIYOTI
(3n0::s0T|UT::sOT ‘,03UbTI,)usdo 0IUOTI
£(300::S0T|UT::SOT ‘,T3F0T,) uado’ 13397
£(300::S0T|UT::SOT ‘,03F0T,) uado’ 03391

} UT 8I® $3STT 93IngrIlje Ino saTT1JF usado p =yl //

{73ybTI wesIilsy

{131J9T weaxlsy

/* f03ubTI wesrlsT

MOLONMISNOD * 103307 wesrasy
*/

(uot3Taaed utw)uoritired ozTs wnuwtutw ‘(A3Tand)A3tand paiTssp ‘(u)pu :
(uot3T3zed uTw UT ‘A3Tand JeOTI ‘W PEJEPRISW) ISTITSSETO::ISTITSSETO

ut 1T moxab em jod a8yl //

!{z9mo0Ib @yl I9MOIDL ypeaIq
WU°XTIJeW JUnod, SpnTouT#

<319S> SpnIoUT#
<(-pasTun> SpnIoUT#

<Y OTp3sS> SpPNTOUTH

wU ISTITSSETD, SPNTouTH#

uonejuuwRduwy

butprTng 81 ,8M 9913 Byl //
{99117 09Uyl 99131 UOTSTOSpP

{9q 01 sepou oi1Tnbsi em op TTeWS MOY //
fuoTyT3raed ©ZTS WNWTUTW JUT

;g 03 sepou a1tnbax am op =and moy //
{R3Tand paITSSp 3LOTT

JTpuSH 19TITsseTo 1ad 309(qo elepejlsw suo ‘sseqelep Iad 309[go ISTITSSETD SUO //
!pu ejepelau

:pa3joejoad
ATINg ST 81813 //

9yl TT3un ()saTTI ssedoxod HUTTTED ‘SISTT @3ngrilze oyl ybnoiyji unx // } I9TJTSSETD Ssefod
‘() I9TITSSLTO PITINQ PTOA

WUrbutais, epniout#

9911 9yl 3e 00T s3doalqo 18ylo 38T // WU WweIbo3sSTy, SPNTOUT#

{ !{e®1737°y3l uInlax } ()°©9I1 MOYS 39911 UOTSTOSP WU elepelsw, SpniouT#
WU 99137 UOTSTOSpP, SPNTOUTH

1030NI3SU0CD // WU DTIUOD, SpPNTOUTH

{(7 = uoTtataaed utw UT ‘Q°T = A3Tand JeOTJI ‘w 3EIEPERISW) ISTITSSETO < wesIlsI> SPNTOUTH

172

uo

{(1eqeTs ‘Azobo3ledy ‘,pg P3, ‘I9FFINQ) JUROSS

asTa
{
{(19qeTs ‘enteas ‘,ps I%, ‘I9IINQ)Juedss
!onTea = onyTea snotasad
}

93ngrIlije orIswnu// (ISPIO JUSIIND|) IT

£,I\, >> JUNOO++ >> ,, 4, >> 23NQTIIIR UYOTUM >> IISD

uoTaTaxed jo suTll aeinbax // @sTe

{0 = 3unoo

! (()sesseTd JO Iaqunu MOUS pul ‘ISpI0” JUSIIND) I8SDI " WD

(19pao~ jusxand) IT

! (23nQqTI33RT YOTYM) ISPIO MOUS "pPUl = ISPIO JUSIIND

f21nqTI33e UYOTUM++

! ()dems* () quoaj - sweabolsTy
(@3InqTI33e yoTyM) IT
‘e@3nqrilie 3saty e8yix //

@9s 03 Jnoge 1,usxe em IT ,dems, © op ATuo am //

e3nqralje meu yo 3xe3s // (,9, == [0]reIInq) IT

}
(.4, =i [0]7=°33Inq) =TTum

{ (DNIYISXVW ‘I®FFng)outrisb-wory
pesx 3sIT3 \\

asTe
f(u#, =i [0]a933Inq) STTUM
{(ONIYISXVI ‘I@23Ing)autTisb woxl
op
{(A3aTand)sand 3es-p
!Tpus >> , epou aand :3T17ds ou, >> II80
(AZatand) 77T

f(uoT3Taaed ©zTS WNWTUTW

‘Ratand paatsap)aand ST* ()3juoaj - swerbolisty = Ajtand

SAOW pue UOTSTOSP UT {IBu

‘uot3tized 3Ixsu o3 //
‘eand 31 -A3tand 103 weabolisTy o=UD //
}
(() Kydws - swexbolsTyj) STTYM

!Tpus >> ,sautod 3717ds HuTrjernoreo, >> IS0

fwo XTIjew 3unod

fqunoo aut

!{I9paoT jusIINd JUT

{Tuthb jusIIND JLOTJ

{0°00T = TUTH 3seTTewWs 3e0TJ
{K10bo3eD ‘TogeT 3JuT
!fonTea”snotaaid ‘enyes 3e0TI
‘0 = 231NqTIIIE YDTUM QUT
!{R3Tand qut

!p uoTSTOSpP

! [DNIMISXVW]I9F3Inq Ieyd

(SUOTSTO®P B<UOTSTOSP>ISTT
‘sweabolsTy R<weIPOISTY>ISTT
‘woxy sweailsy)siutod 3TTdsTe3eTNOTRO: 1ISTITSSRID PTOoA

/*
“3STT SUOTSTO®P U3 uT 3T sooeTd pue uorsToop o3ertadoadde oyl »
swIoJ 3T ‘esed I8y3zTe ul -aind sT uoritaied oyl eyl si93sTbax 3T 10 ‘jurtod x

217ds 3seq oyl so31eTnoIed I9YyjlTe 3T uoTitixed yoes 104 -iao93swered e se x

2T 03 peossed sweibolsTy JO ISTT 9yl UT swerbolsTy o1k 219yl se suortitired »

Aueuw se ssszed 3T ‘suoriTized Jo ©TTJF e saoszed ()sjurtod ATTdsS 93BTNOTEO *
*/

f()zeaT0"uybTa 01 ! (baq::soT)bysss-qubta o3 ! (bsq::soT)dysss aybTti 01
f()xesT0"23I9T 01 ! (baq::soT)byses-1yaT 03 ! (baqg::soT)dysss-3IsT 01
‘punoma ApesiTe sie suoriTired pro syl //

- suoT3Tized MAN SY3 PuUTMdT //

£(()drTe3 3ubta o3 ‘()pI<-()Ingpa-3ybTa 03)sjeouniiy//
£(()drT1237 3397 03 ‘()PF<— () INgpa-3IaT 03)83eduniiy//
s@10w Aue STUYl Op sn 18T 3 ,Uo0M ++D {I93eT U8yl 3oadsur //
ATTensTa pTnoo aM Os so[TJ @Yyl 231eounil o031 dEsn =M //

{(aybtaTol ‘3797 03 ‘IybTIWOIF ‘3IST WOIF)SSTTI uoriTixed

! () TonaeT 2213 mMOID

!{(suotsToop 3ybTta ‘sweabolsTy IUybTI ‘ubTi woij)sijutod 3TTds 23BTNOTED
!{(suoTsTOSp 19T ‘swexbolsTy 1JoT ‘2797 woxJ)sijutod 3TTds ©3eTNOTROD
27040 uotatized/moab/oTed =2yl ybnoayy ob //

{T3UBTIT @ 03IUDTI ¢ (Z $ TeAST ©933) = 3IYPTI 03 3WesIlsy
{13397 : 0339T ¢ (Z % T9AST ©8I3) = 3JST 03 sWesaIlsy
{03ybTI : TIUYBTI ¢ (7 % TOAST 99I3) = IYBTI WOIJ SWesIlsJ
f0339T : T33I9T ¢ (7 % ToAST 9813) = 13IST WOIJ 3WesIIsT

butuoTratized Jo uoT1O=8ATP ubTsse //
}

(ToA®T @211 JUT)SSTTI ss200ad::I8TITSSBTO PTOA

{(ToAdT ©9I3++) SOTTI ssado0ad
() &3dwe-swexbolsty JubTaj %3 ()A3dws: swexbolsTy IS) STTUM
Kydwe o1e senenb werbolsTy INO TTIun SoTTI ssoooxd [TeO @M Mou //

f()xeaT0 TAYLTI ! (baq::soT)byess 13ybTa! (baq::soT)dyses 13ubTa
!{()xesT0 " T2F9T ! (baq::soT)byess T3IoT ! (bag::soT)dyess T3IST

poylsw ssTTy uotitiaed //

SYl UT punomai ApesITe ST SU0 PTO Syl - SuoT3TiIed MOU 2Ul PUTMSI //

{(13ubTx ‘13FST ‘03ubTI ‘03FST)SSTTI uoriTixed

!(()3UOIF " SUOTSTOSP 1JST)MoIb - I9MOIH Y2

! (suoTsTOSp 3JST ‘swerbolsTy 1FST ‘p3FeT)siutod 3TTds o3eTnoTed
972040 uotatixed/morb/oTed 9yl ybnoayl unx STHPUTS e op mou //

! (y) yoeq ysnd-sweibolsTty 3IoT
enanb swexbolsTy IS8T @Yyl uo weabolsTy pesiersusb syl nd //

f()aeaTo 03397 ! (baq::soT)byess (izaT

putmez //

{(ONIMISXVW ‘I933ng)sutrisb-o3izsT
! (TeqeT) °2A0ge” JUSWSIDUT " |

173

((()23InqTa33ae mMoys - () JUOIT " (SUOTSTOSP«)) ISPIO~ MOYS "pPW) IT
{(()utbeg-suoTsToopP YbTI) IYDTI I03LISAT: :<UOTSTOSP>ISTT

! (ONTMISXYA ‘19330q)oUTT306" (WOTFx) (()utbeq SUOTSTOPP 339T) 3327 I03BISIT: 1<UOTSTOBP>3STT

elep JO MOI ® 03 138b 03 aI0W BUO // }
() ToA®T 2912 MOIDH::I9TITSSLTO pPTOA
{ /*
(.9, =i [0]x233InQ) STTUM *()serT3 uoT3tiaed pue ()sjurod 3TTds ejernored x
L (ONTYISXVI ‘I9I3Ing)outT3sb: (WwoxIx) 01 STTeD uU88mMlaq UT Pa[[eD o pTnoys 1I *senenb 9yl 031 HuTpPIOODE BBIY x
op UOTSTOSP B SPIINg pue ananb uoTtsTosp yoes ybnoayl sysad () [9A2T 9913 MOID *

}
(++T ¢()23NqTIIFLTMOYS* () JUOAT * (SUOTSTOSP*) > T {0 = T 3IUT) I0F

() s®sseTO” JO Iaqunu MOYS *pur) YT werbolsTy
() S®sseTO™ JO ISquNU_ MOYS *pur) yI werbolsTy
fsqoad eyl < <3UT>SSST ‘JUT>3ISS
sswexbolsTy //

Mau oM} oyl pue sqoxd e pTTng ‘@3ingrajje s3erxdoxdde syl purty //

{Tpus >> (pw)butals o3 ()3uoII- (SUOTSTO®P*) >> , U0 HurllTTds, >> II90

(
(

*/

!()aesTo woxgy ! (bsq::soT)bysss-wory ‘(bsq::soT)dysss wor
STTF 3Indut putmax //
() Aadwe - sweabolsTy =TTUM // |
{0 = 3unoo
00T = TUTH 3ssTTews
! ()3uoxy dod-sweibolsTy

esTe f(p)oand 39S p
{ ‘0 = 231NqTIIIE UDTUM
Y. =i [0]ae3I0q) oTTUM ! (p)xoeq ysnd- suoTsTO9p
{(ONIMISXVW ‘I92IIng)outrieb: (woxIx) !Tpus >> (pw)buTtais o3'p >> , :pejernoreo autod, >> II90
op ! (()2and uotaxzodoad: () juoxl sweabolsty)sind uortirodoid 38s°p
!Tpus >> , @pou aiand :uot3iriaed ou, >> IISD f(()swe3T Te3103 MOUS"® () Juoa] swerbolsTy) soTdwexs Aueur MOY 38S°p
} ! (()uoT3ejussardai 3saybTy MOYS"® () Juoi] - sweibolsTy)uoTiejusasardal 21saybIy 39S P
(()2and ST () 3UOIT* (SUOTSTOSP*)) IT dnipT3 uorjyTtized-Jo-pus ue op //
{0 = ssaaboad {
{()bTT®3" (woxFzx) = sod { (ONIYISXVW ‘IeFFng)outrish-wory
} pesa1 puodss //
op

{Tpus >> ,soTTJ burtuorartized, >> 1190

{qUPTI WOIIR = WOIJ IXSUx WeaIIsT

{197 WOIIR = WOITx WeaI3ST

{SUOTSTOSP JYDBTIR = SUOTSTOSP 1XSU+ <UOTSTOSP>IASTT
{SUOTSTOOP 1JOTR® = SUOTSTOOP* <UOTSTOOP>ISTT

!19pao Jut

{Rk10bo3e0 JUT

{mox ‘Teqerl 3uT

fonten 3eOTT

! [DNIMISXVW] I9FInq Ieyd
{0 = ssaxboad 3ut

!sod sodwesiis

(3UPTI 03 sWeeI3sF ‘3FST O3 SWESIIST
‘QUBTI WO BWesIIsT ‘3IST WOIJ JWeSI]JST)SSTTI uoT3TIAed: :ISTITSSETO PTOA
/*
-Io3owexed e se x
possed suoTsTOoop JO onenb oyl uo paseq soTTJ s3TTds ()soTTy uoTirtired x

! (++23ybTax)MOIb TOMOID T BYT
! (++3397*) MOIb " I09MOIO BYT
}
(()pue SUOTSTOSP 3327 =i 33I°T) °TTuM

*/

! (TeqeT)a3epdn- () 3uoxJ - sweIbolsTy
werbolsTy 2yl o3epdn //
{

! (1esqgns” @3epIpued) 18@sqns” 388 'p
f(23NqTIIILTYDTYM) 23INqTIIIRT IS P
{TuTh jusIINO = TUTH 3saTTews
}
(Tuth 3seTTeWS > TUuTbh JuUeIINd) IT
{(TUuTb 3ueIaInO) TUTH IS8 WO = 239SONs 231ePIPURD JUT

(.8, == ()yeed-woxg || .4, == ()xoed wory) 3T
!(TegeT ‘Az0H23PD) JUSWSIDOUT “WO
}
(I9pI0~ 3UuSIIND) JT SSTS
TuTh 3saq SIT 93eTNOTED ‘9INgTIIJe TedTIoHS3ed © ST STyUl //
aNY ,d, UB IO %, © ST I930BIRYD 1XSU oYl JT SSTS //

{

! (snTea)pToyssiyly 1e8s-°p
{(23INqTIIILTYDTYM) 23INqTIIILTISS P
fTuTtbh jusrInd = TUuTb JsaTTRWS

(Tuth 3seTTeWS > TUTH JuaIIND) IT
() TuTh* () quoaz - sweibolsTy = TUTH JULIIND
}
(enTena =i onTea snotasid ®% T =] JUNOD %% IBPIO JUSIIND;) IT
*TUTH ST ©1eTNOTED OS JT pue ‘SU0 1SeT Y3 90UTS //
pebueyo sey 3T 9INs Sew ‘9INgTIIIe OTISUNU B ST STYI IT //

174

T$. { w1I9P3s/A8P/, < U\, 3uTad } ANz
{
{Tu33e, < WU\, 4N W\ ANS 43\ T$ 3uTad

(++T ‘AN > T ‘T = T) I0%F

WIIBPIS/ASD/y < wI\w ¥N 3uTad
}
WIIBPIS/A9P/,y < ,U\:MoX Bursssooxd, 3utad {,,=590 } NIDIL

, me

!¥33e II- wx

{0=saNO0DIS

#

‘uw#u B UITM POPUS ST STTF BYL “ISqWNU °3IngTIIIe 8yl ST U #

sx9ym ,u3lley, Aq pejeredss ST 2INQTIFIR Yo '2INQTIIIR AQ POIIOS #
ISqunu- MOI TSgeT SSeTD 23nqrIlie #

WIOJ SYJ UT MOI Ydes fsSISTT =93nNqTI33de Jo 233s ' :3ndang 4

“TSgeT SSBID B ST X 2I3Um #

X "t p O ge #

WIOJ SY3 UT MOI UYdes ‘so3ngrille ubTsSsSTw ou yiTm sseqejep e :indul #
-90eI 103 IJOseooxdead 8Yl ST STUL #

#

us/uta/i#

J10ss3d0adaad aseqejep 1diids HSVI
201 @IV

f()aea10 ybTa wWoxy { (bag::soT)byess-aybra woay ‘(Heg::soTr)dyses ybTai woxl
{()aesT0 3IT woag ! (beg::soT)byess-1IaT woay ‘(beqg::sor)dyess IS woil
$9TTI 3Indut syjl putmsi//

{(()Ardws-suoTsToopTAYLTI|) STTUM
{37dwel = woxJ 3xau
fwoxyTaA¥9U = woiJ

fwoxy = 3 duelx wesaIlsy

{pTdwe] = SUOTISTOSP 3XaU

{SUOTSTOSP 3X3U = SUOTSTOSP

{SUOTSTOSP = P dwelx <UOTSTOSP>ISTT

uni 1xau syl 107 snsnb suoTsTOsSp pue STTI =yl dems //
! ()3uoxg dod* (SUOTSTOSP*)

snsnb suoTrsTtosp =y3 dod //

f(u4, =i [0]723Inq) oTTUM
{

!{Tpus >> 1933N >> UbTI 03

asT®
!Tpus >> I1971I0q >> 13I8 03
(()pus-sqoid oyl =i (mox)putr‘sqoad syl) IT

{(moxy ‘TeqeT® ‘enTeA’ ‘,P% P$ I, ‘I9IINQ) JURDSS
}
asT®

{Tpus >> 9330 >> IULTI 03
!Tpus >> I93INng >> 3IST 03

(., == [0]x233n@) || (,9, == [0]a=F3nq)) 3T
! (ONTYLSXYW ‘I93I0q)SUTTI8b" (Woagx
f4I\4 >> ssoaboadi4 >> 1190
}
op
oqoxd @yl o3 burproooe uoraTized mou //

! (sod) byoes* (WOIIx)
uoTt3itazed ay3 Jo 3aeIS BY3 03 oeq 0b //

! (yx)yoeq ysnd-swerbolsTy ybTI
(Y1) yoeq ysnd-swerbolsTy 3IST

! (moam ‘TeogeTr® ‘snTea®n ‘,p% P% I3, ‘ISIIng) Jueoss
! (ONTYISXYW ‘I233ng)auTTisb: (woxgx)
{

! (TegeT)ea0Qe™ JUSWSIOUT " yIx

osTa

{

! (TogeT) @A0QrR™ JUSWSIDUT " YT

! (mox)3aesutagoad oyl
(()PTOYS®IY3 MOYS* () JUOIF* (SUOTSTOSP¥) > onTea) IT

(.9, =i [0]xe33nq 33 .4, =i [0]3=FIng) oTTUM
f(moxm ‘TeqgeT® ‘snTeA® ‘,P% P% J%. ‘ISIINQ) Juedss
}

°3ngTIlje TeoTIswnu e SARY SM // 3STS

175

!{(moxn ‘TeqeTs ‘Axobsieds ‘,ps P% P3. ‘ISIINQ) Juedss
{ (DNIMISXYW ‘I9330q)ouTT3ab (woxg«
{A10b93ed = Axobejeo snotasad
{

! (TegeT)@A0QrR™ JUSWSIOUT " YI

asTo
{
! (TeqeT)2A0qe” JUSWSIDUT " YT
! (mox)3aesutaqoad oyl
}
(T ==z % 38sqns) 3T

{
!z =/ 21esqns

(++T {Ax0P®3€d > T {1 = T 3JUT) I03F
!()3esgnsTMOUS - () JUOIF " (SUOTSTOSP*) = 3ISsns
}
(Azobsjeo snotasad =i Azobs3ed) IT

cwexbolsTy 3ybTI Syl usweIouT 3snl //
9STMI®U30 ‘wexbolsTy 13I8 oYl JusweIdouT pue aqoiad //
2yl ut 3T 3Ind ‘38sqns 8yl ,uT, ST Axobejed ayjy 3T //

(.9, =i [0]x233nq) 3% (,#, =i [0]i9F3nq)) STTUM

! (moxn ‘Teqers ‘Axobeledon ‘,p% P P%. ‘ISIINQ) JUeDSS

!0 = Azobsjeo snotasid ‘38sqns utT
}
231nQTI33e TEOTIONSIRD B SRy BM //

3T 30 330 //
95173 srqeunid B 10NIISUOCD UED oM ‘I9juTod S9I] UOTSTOSP B USATD //
{ fes137oTgPUNId MBU UINISI } ()S9I] MBUx 9913 UOTSTOSP TeNIITA

99171 UOTSTOSP TewIou © JO ssefoqns e sT 9911 o[qeunad e //
{} ()®®a37uoTSTO®pP : ()°213 oTgeunad

:o1TOnd

I¥VYD UT paqraossp enfea ,eydre, 2yl ST STyl //
{A3TxoTdwoo 3S00 3POTI

:ojeatad
}o213 uoTsToop oTTqnd : 2213 oTgeunad SSeTO
uU’28I37UOTSTO®pP, SPNTOUTH

H 9INN¥d SuTIop#
H 9INN¥d FopuIT#

—%—44D-x—//

uonedyddg

weadord rounaday] TV

! (pw)buTa3sT 03" ()9@213 MOUYS D >> 3INOD

f()aeTITSSRIO PIING D

f(uotatyaed ozTs wnwrtutw ‘A3Tand peaITsep ‘pw)d ISTITSSETD

Jnopas 01 9913 9yl puss pue 3T uni ‘109(go ISTITSSETO © SSTIETITUT MOu //

! ([putado]abie)pu ejepelswu
SUTT pueuWOD 3y} uo paTiroads ejepelsw ayjl dn yotd //

{(()ejep-s)walshs

![1 + putado]abie =+ s

!, Jutadssad, = s buTaas
*3dtaos jurtadseaad 8yl uni //

{(4®TT3 oseqelep + oTTJF HBTJUOO---soTTI g AFToads 3snw :90e1,) TYLIVA
(z =i putado - obae) JIT
SUTT PUPWWOD 92Uyl UO SSTTI OM3 3 ,Uusie 8I=ayl JIT JI0I1I= Tejel \\

f(,:diuy, ‘abxe ‘obae)adolsb = uotido
{

Iyeaaq
(s0°T pue Q0 uSsMISq Sq Isnuw A3TIng,) TYIVA
(T < A3tand pesatsep || o > A3tand psatsep) It

! (bxeado) yoae = A3tand paaTssp

,d, ssed
Iyesaq
1 > 3q jouued suoT3tired JO 92TS WNWTUTKH,) TYIVI
(T > uoT3Taxed @zTs wnwiuTw) JIT
! (baeado) Toje = uoTiTixed SzZTS WNWTUTU

:o,u, oseo
‘(0)3Txe
‘() dtey
! ()sbesn
: ,y, eseo

} (uotado) yo3TmMs
}
(303 =i uotado) oTTyMm

‘abie ‘obae)adorsb = uotido IeUD

{1 = uoT3yTared ©ZTS WNWTUTW JUT
10°T = Aatand psaTssp 3eOTT
putsssooad uotido //

}

([1abxex zeyo ‘obxe jJuT)uTew UT

!Tpus >>

w<0°T => A3tand > Q-Q) sselo , >>

. UTelI8d B JO u\aIe sisquaw S3IT JO , >>
w<Kitand> usym sand st uotrjitiaed e :(3eoT3) Ajtand d- w >>
Tpu® >> ,<®2TS UTw> UeYl ISTTRWS , >>

.219b suotatized 3197 3,uop : (19H9UT) SZTS UTW U-— w >>

Tpue >> ,di9y sTyl :y- :suorido, >> 1180
}
()d1ey ptoa

{Tpue >> ,<TTJ °seqejep> <oTTF DBTIuU0D>, >>
w [<A3Tand> d-][<®zTs uoT3Tired wnwruTws> uw-] [y-] =soeI1 :8besn, >> II80
}

()ebesn prton

<Y pPaSTun> SPNTOUT#
WU ISTITSSRTO, °pniouT#
WUrBTFUOD, epnTouTH
<WEeSI1SOT> SPNTOUT#

weagoad soex Y],

{x33e JI- wx

I1I19p3S/A8pP/ <,pasdeTs spuodas , SANODASS . :2uop buTrsssooxadsad, oyos
aispis/asp/ < ,u\, SU- oyd>d

03F9T << u#u OUYO®

!fsuop

{03397 << @3Inqraljes u- 3I0S

f0339T << 23INATIIIRE,Pu OUD®

II9p1AS/ASP/ < ,I\, 23nqriiies , buriros, Lau- OyYdLD
op {,€£°0+ U- 2I0S | x33e ST/UTQ/, UT 23INQTIIIL I0I

{13ubTx 03ubTI T3IFST 03FST yono3l
{13ubTx 03UbTI T3IFST 03FST FI- WX

176

! () seTdwexa Aupw MOY MOUS UOTSTO9p 2yl = sa7dwexs [e303
(9213730 do3) IT
*UOTSTOSP 22Ul Uut ww.ﬁnwmew JO Isqunu =yl yitm sniea \\
:ww.ﬁEnmem®|Hmv#Ou: aTneysp =yl wUMHQw.H ‘9917 231 Jo QOU 2yl 3e aie aMm JI \\
}
(seTdwexa” Te1031 JUT ‘®813 J0 do3l T0oOoQ) [03 20onpai::o913 orgeunid pToa

/*

© () senTea”A3TxSTdwWOD T3S0 3TUT HYOJHD POTTRO 9 ISAW 3T *
*701S90UR 91BTPSUMIT ITSYJ JO 1S00 8Y] == SISOO JEST 9yl JO wns oyl
oI19ymM sspou JeaT Aue HUTISTSP 03 UMOP STTOQ STUL *I¥YVD JO 89 =bed uo
PSqTIOSSpP Se wIoJ ,TL, O3 9913 8yl 196 01 saey am ‘santea A3TxsTdwod 3s0D
01 PUTPIOOO® JUTT 3soyesM Syl DBuTIeTNOTeD 1IP3S UBD SM 9I0J9] :WOIVINW

PR

! (seTdwexs” Te303 / (()serdwexs Auew MOY MOUS UOTSTOSP oYl
* (()@and uoT3zodoad MOUS UOTSTOSP 8yl - (' T)))uanisax
}
(seTdwexa” Te303 JUT) IS0D::9211 aTqeunad JeoTJ]
/*
*39s oyl utr sardwexe JO Iaqunu oyl Aq x
peTeds ST 1S00 9yl 'Jes] B 9I9m 1T J4I SY 9POU 8yl JO 100 9yl ST IT *
‘seae®T-UOU IOJ *,1SOD ydueiq, Tensn 8yl ST STYl ‘seaesl 104 3T JIO »
seoueIq OU peY 3T IT ©C PTNOM 3T SB 9POU B JO IS0D BY2L UINISI :¥OSSHIIV *

*/
{
{
!()senTea A3TxsTdwoD 3500 3TUT<- ((IYDTI) <x 9913 oTqeunad>31sed 0T3e]s)
! ()senTea A3TxsTdwoD 3S00 3TUT<- ((3IST) <x 9913 oTqeunad>31sed OT3e]s)
(T - ()sTeutwIal)
/ (()3soo youeaq - ()ssTdwexs Aueuw MOY MOUS UOTSTOSP oyl
* (()@and uotr3zodoad MOUS- UOTSTIOSP oYyl - Q")) = A3TxoTdwod 3sod
}
EE
07000000007 = A23Tx2Tdwod™ 3500
(3391i) 31

}
() senTea” A1TxoTdWOD 3800 ATUT: 19911 oT7qeunid pToA

/¥

sdrus 03 3UTT 3SITF Y3 *

ano yiom 03 sentea eyd{e JO 318S TeTITUT UR PI3U SM :MOILVIAW *
*/

! (()3soo youeag<— ((IYLTI) <» ®913 oTgrUNIdA>]SLD OTIeIS) +
() 3sod youeag<- ((3IJST) <¥ 9913 oTgeuUnId>3Sed OT3e]s))uInisl
osTo
! (()soTdwexs Aueuw MOY MOUS UOTSTOSpP oyl
* (()@2and uor3azodoad MOYS UOTSTOSP oYyl - (°T))uInisax
(33914§) I°7
}
() 3soo youeaq: 19913 oTqeunid 30T
/*
* (eouewzozaed uTl jJusweAroidwT «
TTews e I037) @911 9yl Aq paTIyTsselo sordwexs JO Iaqunu Te3l0} oyl
Aq peTeos ION ST 3I '9pou 3usIInd 2yl jjo Hburtbuey sspou [euTtwial TTe
JO s1S0D 3yl JO wns 3yl suaniax ()3Isod youeaq 1¥0SSHADIY

* ok o

*/

f(()sTeuTWI®I<- ((3YDBTI) <x 9913 oTqeunad>]1sed 0T3e3S) +
() sTeuTwI®}<— ((3IST) <* 9213 oTqeunad>]1seo DTIe]S)) uIniax
EEE
{1 uanisx
(33°1i) 37T

}

() sTeutwaal: 9913 oTqeunad JUT

/*

*9pou jJus1INnNd 8yl IJjo butbuey »

S9pouU TeUTWIS] JO JISQUNU Byl SUINISI () STRUTWID 1MOSSHAIIV *
*/

*@913 oTqeunad ® o3juT //
3T suiInl eyl 9913 UOTSTOSP e 03 AJTTLUOTIOUNT SYJ Ppe om ‘IsITd //

WU T1ounad, SpniouT#
<wy3lTIiobTe> SpniouT#
<Y yjeuw> SpNTOUTH
WU-bTyUOD, SpnTOUTH
WU-elepelsw, epnyouT#
<Y OTP3IS> opnIouT#
<bPuTals> epnIouUT#H

<Y qTIP3IS> dpnidut#
<y-druewoT> SpPNTOUTH
<Y‘wesaIrlsI> SPNTOUTH

JTpuSH

92137 UOTSTO®p //
UT SUuT3nox ()sTeutwisly poob Ar3oszzsd e Apesafe ST a1syl ybnoyi usas //

‘o19Yy 13,UsT STYl} JT I0II9 ISTTAWOD TLUISIUT Ue SMoIYl} sobe ‘uosesr swos I103I //

!f()sTeuTwIsl JUT

o1e a18yj) sordwexs butureil Auew Moy USATH 8913 JO 1S0D 93@TNdOTED //
! (seTdwexs” [R303 3JUT)ISOD 3BOTI

sesodand butbbngsp I10I1 //
! ()senTen” A3TxaTdwoD 1S00 MOUs buTils

10sS2900B //
{ {A3TxsTdwod 3s00 uanisx } ()A3TxsTdwod 3S00 MOYS JBOTT

97eI UOTIEOTITSSETOSTW S,9pOU Yoes JO UOTIdUNy e //
! ()3soo youeaq 3IeoTT

snTea eydle sTY3l sey yoTym youeaq ayj drus //
{(enTen 1eOTJI)MUTT 23soyesam dTIUsS PIOA

9913 9yl JO youeiq 3soyesm anTea eydle 8yl puty //
! ()A1rTxoTdwoo 3S00” 1SS TRWS PUTI 3LOTI

sentea eydle TeTITUT @U3 3es //
!()senTen A3TxoTdwoOD 3S0D0 3TUT pPTOA

IdVYD UT PSqTIdsSp se 9313 II SY3 S3ediad //
(0 = saTdwexs Te30]1 JUT ‘OnIi] = 9913 JO do3 TOOQ) [I 03 =20NpaI pPTOoA

177

sseooxd butunad 3xe3ls //

{(pw ‘UTO)STTI WOIJ ©I03S31°Hp
@213 @yl PTTNger 3Isaty //

! (2d) bp zomoab yidep
{2d esa3 oTqeuniad

{([1]abxe)pu ejepeisw
fouTT buTaas

!(,"9TT7 brJuoo e {Ppae T ssaxTnbsx :xsuniad,)TVIVI
}
(z =i obxe) 3T
}

([1abxex xeyo ‘obxe jJuT)uTew UT

/*
*9uo yoes I93Je *
w#u B INg °sepou JO 3no uni noA Traun 3T HbutddTus pue HUTT ISoYLoM *
2yl butpury desy 2asnl ‘Ases Axsa ATTenioe sT wexaboxd zsunad utew 8yl MON *
*/
{
{
(T - ()sTeutwIsl) / (()3Isoo youeiq
— () seTdwexs AuBW MOY MOUS'UOTSTOSD oyl
* (()@and uoT3zodoad MOUS UOTSTOSP =Yyl - (Q'T)) = A3Txa7dwoo 3500
}
(339T) 3T
sspou youeiq I0J AJTxXSTdwWOO 1S00 MBU 38S ‘3Ino Aem syl uo //
{
{(enTea)UTT 3sayeam dTus<- ((3ybTa)<x 2213 @Tqeunid>3sed 0TIels)
(3ubta) 37
!(snTea) UTT 3aseyesm drus<- ((3FST)<* 92131 oTgeunid>]1sed OT3e3Ss)
(3327) 37

}
butyoaess desy osTMILYIO // BSTS

{
{0 = Jubtx
‘0 = 3391
{0°00000000T = A3Tx2TdwoOd™ 3500
{(()uoTiejussaadea 1saUYDBTY MOUS UOTSTOSP oyl)aind 19SS UOTSTOSP oyl
fqybta s389Tep
{3397 939T°pP

}

butyl ano op // (A3TxeTdwoo 3500 sntea) IT

}

(enTeA 3POTJ)HUTT 3soyesMm dTus::9913 oTqeunad proa

/*
-dn yoeq Aem 8yl uo paubrssesi x
o1e senrea A3TxoTdwoOd 3S0D 3T MOTSQ BUTYIAISAS UO I03DNIISSP 8y *

sTTeo pue youeiq o3eradoadde 8yl Sputri YUTT 3Isayeam drus - g9 abed x
‘IMyD 03 PurpIoooe @213 BY3 JO ,UTT 3ISeeoM, 8Y3 SUTISP oM 1WOLVINW *
*/

f(enTea”1ybTI + onTea 39T + °oNIeA) UuINILI

! ()sentea A3TxaTdWOD 13S00” MOUS<— ((IYDTI) <» 9213 oTqeunad>1sed OT3e]s)

= anTea ubta

(3ybtx) 3t
{() senTea” A3TXaTdwod™ 18007 MOYS<— ((3FDT) <+ 9913 oTqeunid>1sed OT3e3s)
= enyTea” 1197
(3327) 3T

!{(1931INnq)buTtils =+ onyea
{(A3Txo7dwod 3500 ‘,U\F%, ‘ONI¥ISXVW ‘I9F3Inq) Fjutadus

fonTea 3ybTa ‘snTea” 1797 ‘enTea buTils
{ [ODNIMISXVYW] I9330q IBYD

}

() senTea A3TxaTdWOO 3500~ MOUS: :9913 oTqeunad HuTals

/¥
%
*PUTIIS e se soTITXaTdwod 3s00 oYyl sdwnp :¥OSSHIOY *
*/
{
{(00x1 : OOT ¢ 001 > OOT) uanlax
osTa

f(o0x1 : A3TxoTdwoD 3S0D ¢ 001 > A3TxXSTdWOD 1S0D) uUINIDI
(00T > A3txeTdwoo 3s0D) IT

f()ArTxeoTdwon 3500 3saTTRUS PUTI<— ((3YbTI) <» 2913 oTgerunid>1sed OT3E3S)
= 001 3e0TJ

() AaTxsTdwoO 3500 3SOTTRWS PUTI<—((3IST) <¥ 9313 oT7qeunid>]1sed O0T3els)
= 00T 1e0TJ
0°00000000T uInisx (3FaTi) IT

}

() A3TxoTdwoD 3S00” 3SSTTBWS PUTJ::9913 oTqeunad 3eoTJ

/*

ssut3nox burddrus Syiz Jo 3Ino x

dn yoeq Aem uo soT3TxoTdwoo 100 oYyl 3snlfpe o3 pssu oM osneosd x
;o913 oyl uniax Ardwrs em 3 ,uop AyMm -osIsaeI] 1SATI-yizdep © uo x
919yl 3deq 39H ued oM 90UTS ‘enTea oYyl uiniail ATAWTS oM x

sonTen A3TxoTdwoD 13S0D 3SSTTRWS 9yl JI0J 9913 oYl YdILas :¥OSSHIOV

*

*/

{0 = 3ubta

‘0 = 3791

! (()uoTiyejussaadea 3SoUDBTY MOYS UOTSTOSD oyl)aind 39S UOTSTOSD oyl
{3ybta e3eTepP

{3397 @38Tep

(((ssTdwexs Te3013) 3S00<— ((IYPTI) <» ©913 oTgrUNId>]SLD OTIeIS) +
(seTdwexa” Te303) 3500<~ ((3IST) <* 8213 oTqeunad>]1sed 0T3Ie3s))
== (ssTdwexs Te303)3s0d) IT
}
(z == ()sTRUTWIS]) IT
3T 330 butbuey //
sepou TeuTwIal g AT3oexe sey youeliq oyl JT buriswos op ATuo am //

(seTdwexs Tej03‘9sTeI) [L” 01 @0npai<— ((IYHTI) <¥921]1 oTqrunId>1SLD 0T3RS
(seTdwexa Te303 ‘8STeI) [1 01 o0onpai<- ((21I9T)<*921]1 oTgeunid>1sed 0T3e3ls

(3391) 37T

178

T SIHDIHEM SUTISpP#

<wy3lTIiobTe> SpnIouT#

<Y p3sTun> SpnIouT#
<WeSI3SIYS> SPNTOUT#
<I03D2A> SPNTOUT#

<19s> 9pnTouT#

WU bTJuODd, SpPNIOUTH

WU 29137 UOTSTOSpP, SPNTOUTH
wU-elepelaw diw, SpNTOUTH
<y-dTuewoT> SPNTOUTH
<bPuTalsS> epnIouUTH

<Y WesI3SOT> SPNTOUTH

weIdold seTnI]L 'V

uonejudwduy

>> 2091100 — (0°T >> , u >> 9913 3saq >> , 21s9q, >> 2IN0D

{

{(baq::soT ‘p)byess aTTIqP {()IESTOSTTIAP

{TpUS >> IISPIST 9IBPTPUED >> , 4 >>
3081100 @3epIPURD >> , 303II0D , >>
IYBTI >> (9)MISS >> 4w >>

T+T >> (€)mM3ss >> ,, 9913, >> II8D

! (PTSTFILOTF::SOT ‘pPOXTI::SOT)FI8S " II8D
!(p)uorstoead-1a80

!119p1Ss” @1EPTIPURD = II9P1IS
110911007 @1RPTIPURD = 3081100
!14+4T = @917 3s9q

()sTeutwIal<—[T]a10309A d3p %% 2109II0D =< 30DII0D 221epPTpued) IT

{(Te301 / ((209171007 @3EPTPURD - (°T)
* 3091100 @3epTpued))3ibs = II19p1s 93epIpPUERD

{72303 (380T3F) / UBTI(IBOTI) = 3091100 93BPTPUERD
{
{4++TE3073
!{y+buoam
ssTa
fy43ubTa
(()TeqeT moys- 3 == (3)AJTssero<-[T]70300a7d3ap) IT

{(pw ‘euTT)pEOT 3
£(()u3busT oUTT ‘()e3ep oUTT)ISIINQ WeSIISIIST

((SUTT ‘OTTIQP)SUTTISH) STTUM
‘0 = TP101 ‘Q = buoam ‘p = ybTa 3uT

}

(++T f()®zTs*z0309A dap > T fQ = T 2JuT) I0T

{TpuS >> ,:pajenyesd s9913 , >> ()9zTS 103094 dIp >> 119D

{(I1TAW ‘pu ‘UTO)STTI WOIF 2103591 bp
pes1 puodss //

! (d3px) 33€385 " bP

{93137 UOTSTOSpP Mau = dip

4 (dap) yoeq ysnd-ao3oaadap
}

(uto) oTTUM

£(ILTOW ‘Pw ‘UTO)STTI WOIF ©I03SSI" 6P
peax 3sit3y //

!119p1S” @3epPTIPURD 3ROTI

10 = 99137 3s9q 2JuT

{119pP13S 1BOTT

{0°0 = 1091100 931ePTPULD 1LOTT
{0*0 = 1091100 23BOTJT

{(d3apx) 3ae3S bp

{pp TomMOIH UY3dop

{99137 UOTSTOSP Mau = dipx 9913 UOTSTOSpP
!10709A7d3p <* 9911 UOTSTOSP>I0309A
{([z]abIe)oTTIgP WESIISIT

!foutT butals

{(pw) 3 o1dn3a

{([1]abae)pu ejepelaw

}

([]abxex xeyo ‘0bae JuT)uTew 2UT
/*
*Inopas 031 1T SpuSdS pue eIRP 1597 DY *

103 9211 13saq 9yl spury ‘andut p3s 2yl uo so9913 oTdTITNW SB)e] I93S9] OUL *

*/

<U°U3Ieu> SpnIouT#

<buta3s> spnouT#

<y diuewoT> SpPNIouUT#

WU oTdn3, SpnIouT#

WU°99I1 UOTSTOSpP, SPNTOUTH
<WeSI3SIYS> SPNTOUT#
<I03D2A> SPNTOUT#

<Y wWesI3sI> SpNTOUTH

WU bTJuUOD, SpnIOUTH

weIdord I193S93 YL ¢V

fTpue >> ,#, >> (pw)burtazs ol -31d >> 3noo

! (00s)quTT 2sayesm drus-3d

() A3Txeo7dwoo 3s00” 3soTTeWS puTi-ad = 200S 3BOTI
}

(++T fz < ()steutwae3l-ad T = T 3uT) 203
{Tpue >> . >> (pw)buraisTol-id >> 3Inod

! ()senten” A3TxaTdwod 3500 3TuT 2ad
{()T1 03 eonpax-ad

179

{

{1 + pusT o = 3ae3s” o
asT®

(T + (1xe3S O - pus O) ‘3xeIS O)°sers-3ounluod
([ubts]aounfuoo == [punoz]iounfuod) IT
{1 4+ (2xeas™m ‘, ,)purti-iounfuod = ubts

{1 + (punojy ‘, ,)putI-3ounlfuod = punoj
ubTs swes I0J ooyo //
}
(0 < punoj) 37T

\ \
! (pusa™o
‘(373 M - pus M ‘3IE3ST M) I3sgns-3ounfuod)puTy-iounfuod = punojy
f(2xe3s™m ‘, ,)purIy-iounfuodo = pus M
T + (3aeas o 4, ,)purI-iounfuod = j3IE3S M

{(3ae3s70 ‘,u\,)puTrI-ilounfuoo = pus o

(()yabusT-3ounfuoo > 3Ie3IS™O 8% () =< 2IILIS D) STTUM
fubts ‘punoj 3uT

0 = pus™mMm ‘Q = 1IeIST M JUT

!0 = pusTo ‘Q = 1Ie]1S” O JUT

f,u\, =+ 10unfuoo

!(sod 3ae3s - sod pus ‘sod 3ae3ls)iaisqgns-suoriounfuod = jJounfuod

0z > X pesu osTe 3,uUop om ‘eisyl Ul ST 0T > X JT //
‘90ue]lsSUT 104 "UOTIOUN(UOD YOS WOIJ SUOTSTOSP JULPUNPSI SAOWSI //
oM ‘31sTT 8yl uT uotriounlfuod oy3 soeTd om ax0jeg //

!{(sod 3xe3s ‘,u\u\,)pury-suoriounfuod = sod pus
}
(0 =< sod 3ae3s 3% ()yabusy-suoriounfuod > sod 3ae]S) STTYM

f7ounfuoo butagys
! (pw) seTna 03-3p = suoT3ounlfuod butils

!0 = prom pus ‘p = pIom 3xe3Ss ‘p = sod pus ‘g = sod 3IEIS JUT
{(wa)3oeq ysnd- st uoT3oUNLSTP
(++T ¢ ()sesse(d JO Iaqunu Moys- pw > T {0 = T 3JUT) IOJ

f3sTT uoT30UNLSTP <bPUTIIS>TI0308A

f3sTT uoT10UNfUOD < <burtals>ssaT ‘HBuTiis>aes

*9Tn1 yoes HuTAITTdWTS JO Iom //

oy3 buTop ApesiTe o1e M 9DUTS ‘003 919y SuoTIOUNLSTP JO ISTT oYl oyew am //
*suotiounfuod 8yl Jo 1ASTT e oyew //

{0 = [T]sezTs uoT3ounlsTp
(++T ! ()sesse[d JO Iaqunu MOoys 'pw > T {0 = T 3JUT) IOT
[()sesseTO JO ILqUNU MOUS ‘Pw]sSazTs uoTiounlsTp JuT

{(3ASTT UOTSTOSP ‘pw) ISTT UOTSTOSP o3BW’ 1P
{3STT UOTSTOSp < <buTals>ssal ‘Huriis>ies
suoTsTo®p enbTun 8yl TTe JO ISTT © ayeuw //

! (pw ‘UTD)STTI WOIJ oI03s8I1"Hp
°213 °Y3 PIINgaI 3sat3y //
{(3p) 3xe3S " HBP

{bp zemoaby3zdep

{1p 9813 UOTSTOSP

! ([putado]abie)pu ejepejsu dlw

fouTT buTaas

!(butaisaido ‘abze ‘obze)adolsb = uorido

!yesaq
!{SIHOIEM = 3ndino
i ,m, osed
!{(baeado) Joje = ewbts
: ,s, osed
‘(0)3txe
{()dtey
! ()sbesn
: ,y, sseo
ies1q
‘aNag = 3ndano
: ,p, Ssed
Iyesaq
! (baeado) Joje = e3aq
: ,q, Sseo
} (uot3do) yo3TmMs
}
(30" =i uotido) oTTyM

! (butaysaido ‘abae ‘obae)3dolrsb = uorido aeyo

fuMmisyp:q, = butaisidox aeyod

162070 = ®39q 3BOTF

{0°'G = ewbTs LOTT

oslasueg Aq pejssbbns ssoyiz 03 3Tnezsp seniea eisq pue ewbis //

{S1HO9TEM = 3Ind3ano Jut
}

([1abxex zeyo ‘Obxe JUT)UTEW UT

!Tpus >>
wu\aIn3os3Tyoae drw 3ndino m— w >>
Tpue >> , (s3ybTem uoT3lO2UUOD Huoils I0J onTea 8yl sT euwbrs) w >>
Tpu® >> ,<@nTea> 03 ewbTS 189S <ONTEA> S— w >>
Tpus >> ,dTay STyl Y- w >>
Tpue >> ,JNd uT saTnx 3ndino p- w >>
Tpu® >> , (S3ybTeMm UOTIO2UUOD
\MOT I0J 0I82Z 013 9SOTO anTea ,\TTBWS,\ oYUl ST ©3aq) W >>

Tpu® >> ,<9NTeA> 01 ©19J 18S <ONTeA> (- :suoT1do, >>
ZU\U\ " (3TneI®p) o1n3093Tyore dIw TeTITUT U IO SOTNI ANd, >>
wU\I2YyaTe s3indino pue uTplsS UO 9913 e spear wexboad ,\saTnIx,\ Sylu\, >> IN0D
}
()d1ey ptoa
/%
sbessaw dysy e jutad x
*/

{
{Tpus >> ,<®TTJ DPTIuUOO>
\ [U- <enTea”e3ag> g- <enTea ewbTs> s- M- p-] se[na :sbesnu\, >> 3INOD
}
()obesn ptoa
/*
obessau obesn e utad x
*/

Z JANQ SuTIep#

180

39s 03 Indutr suo ATUO :93NQTIJJE SNONUTIUOD // SSTD

‘0'z / ewbTs- = [T - ()I2AeT 3saTI u-pw] [1unoo]IxXTIjew
Tserq sy3x 3ss //
{

fewbTs = [T][3unod] IXTIJew
(uti) It
osT®
{} est1®
fewbTs = [T][3unoo] IxXTIjeu
(ut) 37T

(()pus-3esT3eO 3UT =

(T + wnu 3nduT - T)PUTI-3I8S 38O 3UT) IT
}
(++T fysTUTy > T fwnu 3nduT = T 3JuUT) I0F
! (23InqTI33®8) ISPIO MOYS "PU + wnu InduT = YSTUTI JUT
93nqrIlle TedTIoboled 9yl jusssidsi //
Jeyl sanduT YIOMISU SY} JO PUS pue IS SYJ USSMIS] //
dooT 03 juem oM :argeTies dooT e ST ,UsTuty, //

! (Ioquew) 3I8SUT " 19s™ 3eO JUT
(TaquBw << 18S” 31eDT ST) STTUM
3se3 ,uoTsn{out, Ases ue 10I //
39S TTIS UB O3UT 39S 3eD 9yl UT saTIobs3ed syl Tre 3Ind mou //

{1987 3BDT 3UT < <3UT>SSST ‘IUT>1A8S f{Isquew JUT
{(()yabusT-19sT1e0 ‘()eLIEP 19SS 1ED) 19ST1LOT ST WESIISIIST

oTgeTIRA ,I9qWSUW, ® 03UuT buTtdunp //

Kses 707 wes1]SI3ST ue O3UT 239s” 3ed =ay3l 3nd //

f(, 4 '.{, "(OpusrassT3ed !
(¢, . “.}, “(pus-iss qeo !
f(, , *,', *()pus-iss 3eo

buTtyjewioy uoT3

()utbaq-31ss qe0)soerdax
()utbaq-31ss 3e0)soerdax
()utbaq-31ss qed)soerdax
®3lOU-38S Byl JO PTI 3I8b //
{
!asTey = urtr
{3987 3eD << I933Ing
}
(.}, =i [0]3es73e0) 3T
w30U, TEBTITUT Ue JO PTI 396 03 pssu JybTw am //
3987380 << I933INQ
19sT1e0 03uT saTIO0beIED JO 189S Byl Ind //
feni3 = utr ToOQq

@3nqralle Teoraobesles // (,u, == [gledA3Tdo || ,T, == [p]=adA3~do) 3T

! (@3nqra32e) InduT yoTYM pu = unu 3nduT

!fadA37do << 83InqTIlIR << ISIINQ

fubTts ‘wnu anduT JuUT

fsnTean 3eO0TT

{3ssTqeo ‘adhk3do ‘sanqrajlle HuTIs

£(()y3zbusT<-TTP ‘() B3IBP<-TTP) ISFINQ WESIISIIST

}

(()puUS*3STT UOTSTOSP =i TTP) STTym
{0 = 3unod 3ut
f(()utbeoqg-31STT UOTSTOSP) TTP I01eIL8]T::< <buTals>ssaT ‘buTtiis>3es
rz/eubTs— sAkemTe ST Sopou 9sayl 103J sSerq oyl //
‘elaq I0 ewbTIS+ UYITM 1D9UUOD OM I9YISYM SSUTWISISP ,UT 30U, I0 ,UT, //
ST UOTSTO®pP 9yl Iaylaym -AxobHbejled ayj burjusssidex sapou [[e 03 3deq //
109UUOD 03 8ARY 9M ‘93ngTIlIe TEOTIOHSILD B UO Paseq ST UOTSTIOSpP oyl II //
onTea » PWOTS (-+) ST 9POU UOTSTOSP Yons yoes I0J ST Oyl //
*qybTem JO UBTS SBUTWISILDP ,=<, I0 ,>, ST UOTSTOSP 9yl Idylaym //
{oqnqTI33e TEOTISWNU B UO PasSeq ST UOTSTOSP oYyl IT Spou [I2keT //
STHUTS © 07 30Bg 109UUOCD SM ‘ISTT UOTSTOSP SYJ UT UOTSTOSP yoes 104 //

‘opou 83nqrijle [edTIoHS3ed B I0 9pou o3ngrijlie //
TeoTIswnu e 03 3Oeq HUTIDLUUOD oIt oM I9Ylaym uo spuadep oI9Yy Op oM Jeym //

{
‘ubts x el8q = [[][T]exTareW
1- 1 T ¢ (Zz % (Jwopuex) = ubrs qut
}
(++0 #()ezTs 3sTr uor3lounfuod => [‘g = [3ur) z07
(++T ?()sesseld JO Iaqunu moys‘pw > T {0 = T 3JUT) IOJ
L[T + ()°zTs 3sTT uoT3ounluod] [()seSsSseTd JO ISqWNU MOYS 'pu] €xXTIjew JeoTT
T+ (6)u X (p)u :p pue ¢ sasAel ussmiaq I103J //

{

‘ubts x e3aq = [[][T]lzxTIeuw
{I- 1 T ¢ (z % (Qwopuex) = ubTs 3ut
}
(++40 f()®zTs 3sTT UOTSTO®P => [‘g = [3uT) x0%
(++T f()9zTs-3sTT uoT3ounfuod > T 0 = T 3uT) I10J

[T + ()22TS 2ASTT UOTSTO®P] [()@2zTs 3sTT uoTiounfuod]zxTajew 3e0TJ
T + (2)u X (€)u :¢ pue gz sIi2heT ussmisq I0I //

{
fubts x el8q = [[][T]TIxXTI70W
1- ¢ T ¢ (2 % (Jwopuex) = ubTs 3ut
}
(++C f()70keT 3sITy u'pw => [{p = [3JuT) z03
(++T !()®2TS"3ISTT UOTSTOSP > T ‘0 = T 3JUT) I03F
f[()a2keT 3sITI U pw] [()®ZTS 3ISTT UOTSTOSP] TXTIFRBW 3IBOTJ
T+ (T)u X (g)u :z pue T sisAel usamiaq I103J //
:seoTIRW HhuTMOTTOF =yl dn 38s ‘3satd //

/*
NOILIDNAOdd XTYIVW NIDHEd *
*/

os ‘suoT3ounfsTp pue suoT3ounfuod JO ISTT © SABY OM MON //

!z + sod pus = sod 31e3s

!++ [Toqunu TegeT]sezTs uoTiounlsTp

f,u\, + 230ounfuod =+ [I9qUNU ToqeT]3ASTT uoTiounlsTp

!1T — (ToQgeT 2BUM) ISqWNU [9CgeT MOUS 'pW = I2qunu [ageT 3JuT

!{(37e38™M - pus” M ‘3IP3S M) I3sqns- iounfuod = TageT 1eym buTtils
f(3xe3s™M ‘,u\,)puTtI-lounfuod = pus M

! + (u ST ,)PUTI 30unfuocd = 3IE3S™ M

3sSTT uoT3ounfsTp 2yl uT 3T 3nd 03 //

SIS9YM MOUY SM 1BY] OS YITM HUTTESp oI oM [SgeT JeyM MOUX O3 pPasu sm //

! (3ounfuod) 319suT - 3sTT uoT3ounfuodo

{,3, = [1]30unfuoo
£,T, = [0]3ounfuod
{(1 ‘0)esexs-jounfuod

(,e, == [0]30unfuod) 3T

,IT, o1 ,pue, buTpes] a8yl sbueyo pTnoys am 8sed yoTym ut ‘,IT, buTpesT //
S1T Y31TM UOTSTOSP 1SITI 9yl poasowsal aaey oM eyl alqrssod s,1T //

*21sTT uoTiounfuoo oyl ur 2ounfuoo peatITTdwrs =yl and //

{1 + pusTo = 3Ie3S DO
asTe

181

*SUOTSUa31X3

<Y'OTP1sS> opnTouT#

/¥

doadyotnb yatm doxdxoeq Jo uorTjiejuswaTdwT IsAeT-§ :HISOJ¥Nd *
93I13unoy ueyleN :¥OHIAV *

o-diw :@TId */

weidord dTwayy, SV

£(0)2Tx®

!Tpus >> ()©2zTs"3STT uoT3dUNLSTP >>
w w >> ()°zZTs 3sSTT uoT3ounluod >>
w u >> ()9ZTS"2ASTT UOTSTOSP >>
wow >> T — ()ILAeTT3saTI U'PUW >> II8D

!Tpus >> 3noo
fuow >> [[)[T)exTarew >> (9)M3I®S >> Inod

(++C {()®zTs*3sTT uoriounfuoo => [{9 = [quT) z07

(++T ! ()sosseldo JO Iaqunu moys‘'pw > T ‘0 = T JUT) I03J

{Tpus >> 3noo

fuow >> [L)[TlzxTa3ew >> (9)M3Ss >> 3Inod
(++f #()®zTs 3sTT UOTSTOSP => [0 = [3uT) z03
}
(++T ¢()®zTs"3sTT uor3ounfuoo > T {0 = T 3JUT) 07

!Tpus >> 3nod
fuow o >> [E)[TlT¥TI3PW >> (9)M38S >> 3Jnod
(++0 #()asker 3satyurpu > [fo = [3ur) z07

(++T #()®2TS*1STT UOTSTOSP > T {0 = T 3JuT) I07
}
(SIHO9IAM == 3nd3no) JT osT8
{
{
LU\ W >> 300

f[T]3sTT uoTaounlsTp >> 3IN0OO

(++T {()sesseld JO Isqunu moys'pw > T {0 = T 3JUT) IOF
}
(NG == 3nd3no) 3T
{
‘0rz / ewbTs- = [()®zTs 3sTT uorjounfuod] [T]eXTIjeW

‘T + pusTp = 3Ie3sT P
fewbTs = [Ioqunu O] [T]ExXTIijeuw
!+4+T9qUNnUT O

((3ae2s™P - pus p ‘3a1eASTP)I3Sqns” [T]ASTT uoTidUNlLSTP
=i ++TT0x) oTTUM

f()yutbaq-3stT uotiounfuod = TTO

{0 = Isqunu O 3JUT

£STYa ST uoTiounfuod yoTym os //

1+ (3aB3STP ‘,U\U\,)PUTI’ [T]ISTT UOTIOUNLSTP = pPus P

(()u3zbusT- [T]3ISTT uoT3oUNLSTP > 3IeIS P B3 (0 =< 3IILIS pP) STTUM
EOHUUCS,ﬁmHU °2U3 ut WEOHUUES.WEOU JO Isqunu =yl 3junod \\
‘0 = pusTp ‘0 = 3IBISTP 3UT
}
(+4+T {()sesseld JO iaqunu moys- pw > T {0 = T JUT) IOT
*qybtem sjetadoadde syl 39S ‘ST 3T JI ‘uoT3ounlstp //
9yl uT ST 1T JT @9s ‘uoT3ounfuno yoes 10J ‘usyl ‘uotldunlstp //
yoes 107 suotjounfuodo Auew moy Jo uoTiouny e 3snl :Ases axe saseTq urteby //
(9seqelep 2yl UT SSBTO YOBS J10J°8°T) uoTlounlstp yoses 104 //

!4+43unoo

0°z / ((T - 3unod Tex=83TT * ¢
* PWHTS-) = [()®ZTS 3STT UOTSTOSP] [IUNOD] ZXTIJEW
Z/(1 - ug)ewbTs- 01 serq 39s //

{4+4+3Unod” [eISITT

!T + pus” 0 = 3Ie3S” O

fewbTs = [3unod p][3unod]zxTijew

posu oM jeyl ISTT UOTSTOSP Byl UT Iaqunu aYl g MOU PTNOYS JUnod p //
!4+4+3unoo™p

((3723870 - pus™© ‘31e35TD)IISANS<-TTO =i ++TTPx) STTUM

{()utbeq-3STT UOTSTOSP = TTP

{0 = 3UNOO P JuT

T + (3xe357 0 ‘, ,)PUTI<-TIO = IS O

upue, I0 ,JT, 9Y3} FJO SARYS ‘3IsSITI //

!yesaq (,usyl, == (3ILISTO - pusS M ‘IS D) IISqNS<-TTD) IT

(3183570 Y, ,)PUTI<-TIO = pus™ m 3ut

‘puS Syl paydoesI saey oM JT esaid //

!{(3xe3sT O f,U\,)PUTI<-TID = pus o

(()yabusT<-TTO > 2IIS O 8% () =< 23ILIS D) STTUM
{0 = pusT o 3JuT {Q = 3Ie3sT O 3JUT

‘uoT3ounfuod yoes UT WSJT UYded I0J 189S UOTSTOSP oyl buTlsisaeil //
:Aem AT1bn 8yl sTya op TITM @M MOU 04 “xXTIjew s3ybTem syl ut o3 //
109UUOD O3 PodU OM SUOTSTOSP ISqUNU UYDTYM N0 9INBTI 03 pPaau oM mou //

!0 = 3UnoOOT TRIS3TT ‘Q = IS M JUT

}
(++TT72 {()pusr3sTT uorlounlfuod =; TTO {()utbaqg-3stT uotiounfuod = TTD) I0J
{0 = 3unoo
!TT0 I03BI9]T::< <PuTIIS>SsoT ‘buTiis>aiss
*jybtem e3etadoadde ue 38s ‘uorjzounfuod syl uT ST (uot3ebsu s3T I0) IT IT //
‘SUOTSTOSP JO 1ASTT 9Yl UT UOTSTOSP Yoes I0J ‘Usyl °"oIe 218yl ,spue, //
Auew moy jo uotjouny e 3snl o1e Asyl ssneosq ‘Ases a1e saserq 8yl //
:suot3ounfuod Jo 3STT oYyl uT uotiounfuocd yoes 103 //

{4++3unoo

f4+4TTP
fonTea x ewbTs x ubTts = [T — ()I2AeT 3sITI u-puw] [JUNOD] IXTIJeW
fewbTts x» ubrs— = [wnu 3InduT] [UNOD] IXTIJeW

seTq eyl pue 3ybTeM SUI 39S //

1- 1 1 ¢ >, == [0]edAy~do = ubts
fonTea << I93INg

182

! (yu\wyatxobre butuzesT doadxornb ssn b-3\,) J3utad /* I9keT 3nd3ino I0J swis] JOIIe x/ {sioxxspIasAerx eOTT
£(,U\(T°0 23TNEISP) <3eOTI> JO 39SJJO 20dsieTJ © oSN <3Le0TI> 0-3\,)Jjutad /% S3Tun USPPTY JO ILAe] PIATY} I0J sSwIa]l I0IIs x/ Isrorragiskelx eOTI
{(,u\syoods <3uT> JO WNWIXew e I0J UTeI} <3uT> u-3\,)J3utad /% S3TUn USPPTY JO ISABRT PuUODSS I10J SWID] I0IIS x/ I{sroiragiskelx 2eOTT
£(,U\ (6°0 3ITNEISP) <2IBOTI> O WID] UNIUSWOW 39S <JLOTI> W-3\,) Jutad
f(uu\ (u\OTTIOOT,\ 2TNEISP) <OTTI> 01 STTIHLOT 38s <dTTI> T-3\,)Fautad /* situn andino jyo iskel x/ !paskerx 0TI
{(,u\obessau STy Y-3\a) J3utad /% S3TUn USPPTY JO I9AeT puodas x, fgiskelx 1eOTJT
{(4U\STTF UT s3ybrom pautTeal saedT <BTTI> F-3I\,) F3utad /* S3TUn USPPTY JO I9ART 3ISITI x/ {zaskeTx 30T
! (,u\ (pejuswaTdwT J0U) YSTP UO ©TTI uralled aaesT P-2\4) Jautad /* satun Indut Jo I9AeT +/ {1a9AkeTx 21eOTI
£(,U\(T°0 3ITNBI®P) <3UT> O3 JURISUOD DbuUTuUIRST 3I8S <3uT> 9-3\,)F3uTtad
! (,u\:suotado,) Fautad !pesabueyo” TENIORXx JROTT
f(,u\u\ sursjjed UOTILOTITSSEIO JO STTJF =Yl ST <STTI> pue w) Jautad /+ doxdyotnb 103 x/ {gzsebueyo Tenjoexx ROTT
f(,u\p--T1 sI2AeT JO s8zTs aUyl =21 si2H623UT INOJ BY3 =I=UM w) Jautad /* Se0TIjew 8say3l UT spew =bueyd 3ISBT 2Yl 2ABS x/ fZ][sebHuUPYO [en3oexx 3IROTJT
! ([o]labae
‘,U\<®TTI> <3UT> <3UT> <3UT> <3UT> [suoTado] sg :abesnu\,)Fautad /* § pue ¢ sislel ussmiaqg yoods 3Ise] opeuw sabueyd x/ fpesiusTpeabdxx 3eOTI
} /* € pue z siskel ussmiaqg yoods 3se] opeuw sabueyd x/ fgzsiusTpeabdxx 3eOTI
(nbaexx IeUD)SbHESN pPTOA /* 7 pue T siake] ueemiaq yoods 3se] opew sabueyd x/ fzlsjusTpeabdxx JeOTI
/*
u®9I0S 9yl 03 obessauw obesn e JUTIJ * /% p pue ¢ sIsAel usemMlag opew oS¢ 03 sabueyd ybTemM x/ {pesjusTpeibxx LOTT
(abxexx Ieyo)ebesn pron x /* € pue z sieAe] ussmlsq opew ¢ 03 sabueyos ybrtem x/ !gzsjusTpeabxx ILOTIT
%/ /% g pue T sisAe usemlaq opew ¢ 03 sabueyd ybTem x,/ Iz[sjusTpeibxx LOTJ
{0 = saybrtem dump op 23uT /¥ ¥ pue ¢ siehkel usemiaq siybrem x/ pcsiybTemxx 1eOTT
{0 = 3s83 Jutr /% € pue g siskel usomilaq s3jybTem x/ !gzsiybTemxx 2vOTJ
{0 = I0xx9 paxenbs wns HoT JuT /¥ 7 pue T siehkel ueemiaq siybrem x/ fzTsiybTemsx 21eOTJT
{0 = STP uo @aeBST 3JUT
{00001 = syooda xew JUT {00 = I0119 poxenbs wns 3s93 1BOTJT
{0 = saybTem HuTsn JuT 10°0 = I0119 pazenbsTums 3BOTI
{0 = 3otnb aut {0 = T0xa9 TROTH 3883 2UT
/* Inotaeysq weibord x/ {0 = 701797 TEQOTH 2UT
{0 = urslzed 3ss93 juSIIND UT
{0 = pesswopuer JuUT {0 = ursijed JUSIIND JUT
{sursljed 3se3 umu uT /% SSTQeTIeA TeqoTD */

!suzsjjed wnu uT

!ozTspasheT ‘ezTsgashel ‘ezTszaslke] ‘ozTsTIsAeT Jutr (pToA)pIeMIO] 3S31 pPTIOoA

‘
‘

{1000°0- = Aedsp 3eOTF (pPToa) I0MIBU 3§83 PTOA
pr0 = PTOYS®IYY I0II® LOTT {(9TTIUTx HTId)sIybrem pear proa
‘gL 1 = deisTxew 3eOTF {(o1T3An0x FIId)AeTdsTp pToa
{10 = 239s330 3ods3eTI 21eOTJI !/ (PTOA)UOTSSOS DUTUTRI] PTOA
{60 = unjuswow 3e0TI ! (pToa)yoode bUTUTEI] PIOA
{1°0 = 2JUP1SUOD PUTUIEST 2ILOTI f(o7TI23n0* HTIJ4)s3ybrem dunp proa
/¥ sjuejsuodo jueixodwl x/ !(pTon)sjuaTpeab Aedsp pTOoA
! (pToAa) squeaTprRIb OI9Z pPTOA
!sandanolx Jut !(pTon)sijybtem ganizad pToa
fsandutix» 3eOTT ! (pTon) sa9AkeT ©STTRTITUT PTOA
/+ sbutddew 3ndano/andur STTIASSL */ ! (sousyms FTIL ‘IATWTIT UT ‘[]s Teyo)suTrT3I=b JuT
!(pTon)sjybtem sbueyo db pToa
/* seTI0be3ed I8b23UT Os ‘sasseld aie s3indiano x/ ‘fsindinox 3uT ! (pTon) sqybtem sbueyo dg pToa
!sandutxx 30T ! (pTOA) pIEMYOEQ PTOA
/+ sbutddew 3ndano/andul x/ ! (PTOA) PIEBMIOT PTOA
! (nbxexx IPYD)SbESN pTOA
!oTTydumnpiybTeomx FTIA /* sadkjojoxg uoTioung x/
f9TTIASex FIIA
{oTTIsaybTemx FTIL (x 1 x= ¢ (0 > X)) (X)sSdY 2uTIap#
foTTIelepx ITII (((x=)dx® + 0°1)/0°1) (X)JIOWDIS SUTIapP#

{oTT3bOT* ATIA
L 9Ngdq SuTIep#

! [ONIYISXVIW] SWeusTT33sey Ieyd 0007 ONIYISXVA SUTIop#
! [ONTYISXVIW] sweusTTIs3ubTem 1eyd
! [ONIYISXVW] 2weusTIIelep Ieyo <y*butais> epnIouT#
L [ONIYISXVH] dweuaTTI dunp 3ybtem 1eyd <Y‘ylew> SpniouT#
! [ONIYISXVW] sweusTTIH0T IeyD <Y’p3sTun> SpniouTH

<Y'qTTPIS> opnouT#

183

! ((3e0T3) 30o2TS

f((3e013) JO°ZTS

! ((3eo013)JoazTS

f((2v0T3) J0O0ZTS

.

‘

’

‘T + ozTsTasAeT)D0TTeO (¥ 1BOTI) = [Mox]zlssbueyo Tenjoe
/¥ SeTq I10J BIIXD BUO x/

(++mo0x fezTsgzieAel > MOI () = MOI) I0Z

f((* 3BOTI)JO9ZTS ‘©zTSZILSART)DOTTRD (¥ 3BOTI) = gIsabueyod Tenioe
‘1 + ozTsgioAeT)00TTeO (¥ 3BOTI) = [MOI]pesiuatpeabd
/¥ SeTIq I0J BIIXD DUO x/

(++m01 ‘{9zTspIekeT > mox {(Q = mMOI) IOF

! ((¥ 2eOTT)JO9ZTS ‘9zZTSyIoAeT)O0TTRO (¥* 3EOTI) = pesjusTpeabd
‘T + 9zTszasAkeT)00TTED (¥ 3BOTJI) = [MOI]gzsijusTpeabd
/% SeTIq I0J BIIXS SUO x/

(++m0x1 fozTsgiskel > MoI {(Q = MOI) IOJ

!((¥ 21e0TF)J0OozTs ‘szTsgasheT)d0TTed (¥* 3BOTI) = ggsjusTpeabd
‘1 4+ ozTsTaoAeT)D0TTED (¥ 3BOTJF) = [MOx]zTs3jusTpeabd
/% SeTq I10J BIIXS SUO x/

(++m0x !ozTsziskel > mox {(Q = MOI) I0JF

f((x 21EOTJ)JO9ZTS ‘9zZTSZIL2ART)DO0TTED (*¥* 3BOTI) = gIsjuaTpeabd
{((120T7) JOOZTIS ‘T + 9zTSgI2ART)DO0TTEOD (¥ 3LOTI) = [MOI]pesjuatpeib
/% SeTq I0J BIIXD BUO x/

(++mo0x fezTspiehe] > MOl Q) = MOI) I03F

f((* 220TJ)JO9ZTS ‘OZTISpID2ART)DOTTIED (¥x 3BOTI) = pesjustpeib
£((220T7) JO9ZTS ‘T + ©zZTSZILART)OO0TTEO (* 1BOTI) = [MmOX]gzsjusaTpeab
/% SeTIq I0J BIIXS SUO x/

(++Mm0x1 fozTsgasheT > mox () = MOI) IOJ

! ((* 21°OTF)JO9ZTS ‘SzTSgasAeT)D0TTRD (¥x 1BOTI) = €ZsjusTpeib
! ((3e0TJ) JOSZTS ‘T + ©2ZTSTISAET)OOTTED (* 1BOTI) = [MOX]ZIsjusTpeib
/¥ SeTq I0] BIIXS SUO x/

(++m0x1 fozTsziskel > mMoI {(Q = MOI) IOJ

f((x 3e0TJ)JO9ZTS ‘9ZTSZI2ART)D0TTED (** 3BOTJI) = gIsjusTpeib
((3e017)3092TS ‘T + 92TsgI2heT)O0TTeD (* 3BOTI) = [MOA]pesiybram
/% SeTq I10J BIIXD BUO x/

(++Mm0x f8zTspIiehe] > MOl () = MOI) I0Z

{((x 2BOTJ)JOOZTS ‘©zTSyIokeT)D0TTED (¥* 1ROTF) = pEsiybrom
((12077F) J022zTIS ‘T + 9zTISzI2AeT)DO0TTED (¥ 3BOTI) = [MOox]gzsiybrem
/¥ SeTq I0J BIIXD DUO x/

(++MOx1 fozTsgasheT > mox () = MOI) IOJ

!((* 2BOTT)JO9ZTS ‘9zZTScI2ABRT)O0TTRO (** IBOTJI) = £zsaybrem
((3e0TJ)J092ZTS ‘T + 9zZTSTISABRT)OOTTeRO (¥ 3BOTJ) = [MOI]ZTs3ybTem
/¥ SeTq I0J BIIXS SUO x/

(++m0x1 fozTsziskel > mMoI {Q = MOI) IOJ

!((* 2eOTJ)JO9ZTS ‘9zTSzaskeT)D0TTeD (¥* 3EOTJI) = ZIs3iybrem

((3e0T3) FoozTs '
((3e0T3) JoozTs '
((3e0T73) FoozTs '

‘((3e013) 30

{((3e0TF) 30°2ZTS

/% S9O0TIjew SSTTETATUT x/

9ZTSpI2ART)DOTTeD (¥ 3BOTI) = SIOIIBpIBART
9ZTSEI2ART)DOTTRD (¥ 3BOTI) = SIOIIDCIDART
©2TsZ12AeT)D0TTRD (* 3BOTI) = SIOIIDzILART

/% sAeiie wIs®j I0IId SSTTRTITUT x/

/% QUB]SUOD SBTIQ B PI3U 13 ,US90p pIBABRT */

9ZTS ‘9ZTSyI2ART)DO0TTED (*» 2ROTI) = pIsker
10°1T = [ozTsgashkeT]caskeT
‘T + ©2TsSgIokeT)00TTED (¥ 1BOTI) = gIahkel

£ (4u\(GL"T 2Tnessp) <23eoTI> 03 doxdyotnb uT dels xew 39S <1BOTI> S-3\,

10°1 = [9zTsgzasheT]zashkeT

£((2e0TJ)J00ZTS ‘T + OZTSZILABRT)DOTTED (* 1BOTIF) = zIa=kel
10°1T = [@zTsTaokeT] Ta10heT

{((320TJF)JO9ZTS ‘T + 9zTSTILART)DOTTED (* 3BOTJI) = [I2AeT

/¥ 0°T JO 1uel1sSuod seTq I0J 20eds auo HbuTppe ‘sIsAe] ©STTRTITUT */

{ [DNIMISXVW]SUTT IBYD

/+ Aexxe 3ndut ut x/ ‘uor3irtsod 3uT
/+ Iequnu uxsilzed x/ o = ud 3uTt
/¥ XSPUT XTI3eW x/ {MOI 3JUT

}

(pTOA) s19AeTT8STTRTITUT pTOA
/*
sseTqeTIeA TeqOTH buTsq sIsAeT pue ssdTIjew ayl T[e uo spuadsq x
*seoTIJRW OY]} [TE I0J AJIowsu 93BD0TTY *
()saeAeT @STTeTITUT *

*/

!(T)uanisx

f,0\, = [Tls

/* *buTzls 9yl JO yabusT 8yl uiniax pue (,u\, 3Jou) x/
/* I930BIRYO TIAN B Y3aTmM DUTIIS 8Y] o3euTWIL] ‘osed Aue ul x/

{

(s T fuu\sy

Ps yzbusT 03 psieounzy nduT :butuzeM,

‘139p38) 33uTadz

(0 == 3TwWTy) 3T
D = [++T
(0 < 3TWIT--) IT
/* T.payusnII, x/
* %Hm\wﬂunkuuw ST UTp3s Aem STYL "31T pIedSTIpP uwﬂ,m 2sTMI=ay3jo *\
* ~U®£Ummu used 30U sey JTWTIT JT S O3UT sI=3deIeyd peal %HEO *\
}
(,u\, =i © 3% 404 =j ((eousym)213b = 2)) STTYM
* SUTTMaU I0 JOH TT3Iun QOOH «\

0 = T ‘o aut

1s

}

(sousym+ EIIJ ‘ITWIT JUT ‘[]s IeUD)suTT3ILH IUT

/

© ,obenpueT PuTwweibordg D SYL, S,8TYDITY pue ueybtuisy JO

67 @bed uo punog ‘,suTT3I8H, JO UOTILDOTITPOW B ST UOTIOUNT STUL
- Kxesssosu

JT suTTMau syl buroerdsx ‘,Q\, Y3ITM HUTIIS 8yl ssjpuTwI=l 3T
anduT-Jo-pus IO SUTTMSU e sayoesal 3T usaym dols TTTM 3T

*[]s o3uT sisjoeIeUD ,T - JTWTIT, ISOW 3B SPeaI UoT3IdUNnI STYL
(eousymx ETIIJ ‘ITWIT IUT ‘[]s Teyd)auTr3sh 3uT

Jautad
Jautad
Jautad
Jautad
Jautad
Jautad

{(4U\U\ (1000 0- 3TNEBISP) <320TI> JO Aedop JUbTOM 8SN <IBOTI> Z-3\,

! (,u\ (sesseTo buoam :3Tnegep) Io0xxe parenbs Jo uns boT X=3\ 4
{(4U\<OTTI> WOIJ sIYBTOmM TRTITUT 9SN <BTTI> M-I\,

{(,U\®TTJ 1S9 UOTIEPTTRA B SB <BTTI> SN <BTTI> I-I\,

{(wUu\ (0 2TNBISP) <3IUT> O] POSS wWopuel 138s <3UT> I-3F\u

*

*

R

184

f(wu\y ‘oTTF3I00) J3uTady
f(IC)[T)ezsaubTtem ‘y IL°0T%w ‘©TTIIN0)J3uTId]
(++C fozTszasler => [‘g = [) 03

(++1 ‘ozTsgashel > T {0 = T) 107

f(wUu\y ‘®TT33N0) F3uTady
f([C)[TlzTsaubtem ‘y FL0T%w ‘OTTFIN0)F3utady
(++C fozTsTaehkeT => [{g = [) 707
}
(++T fezTsgashel > T {0 = T) 03
{07 qur
}
(8TTF3n0Ox FTI4)s3ubrem dunp proa
/*
ssaseTq pue sjybrtem ay3 TTe 23Ino jutad Ardwrs *
(9TTFIN0x ETIIJ)sIybTem dump pPToOA *
*/

{
f((w 3w ‘TINN) ¥033S) JO3E = [[][T]pesaybrom
(++C fozTsgasker => [1 = [) o3
{((w F\u ‘2UTT)03x3S)FO3R = [0][T]pEsubTom
{(STTIUT ‘(SUTT)JOS2ZTS ‘SUTT)SUTTISH

(++T fezTspashel > T 0 = T) 03
{
£((w 3\w ‘TION) ¥03x3S) JO3R = [[][Tlezsaybrem
(++C fezTsgasherl => [1 = [) z03
f((u F\u ‘eurT)¥031I3IS) O3 = [0][TlECgsaubrem
{(STTIUT ‘(SUTT)JOSZTS ‘SUTT)SUTTILD
}
(+4T fozTsgaohkeT > T {p T) 1037
{
f((u AN\ “TIAN) X03T3S) FO3E = [C][T]ZTS3ybToOM
(++0 fezTsTaehel => [1 = [) 303
f((u F\u ‘2UTT)¥03I3S)JFO3e = [Q][TlzTIs3ubrem
{(STTIUT ‘(SUTT)JOS2ZTS ‘SUTT)SUTTISH
}
(++T fozTsgaskeT > T g T) 103

‘ [ONTYISXVW]SUTT Ieyd
{047 qur
}
(8TTIUT+ ETIJ)SIUDTOM pesI proA
/*
-ApeaiTe paTTeo usaq buTary sisAeT ©STTRTIITUT uo spuadaqg x
sseoTajew JYBTeM OJUT STTIUT WOXJ SIYBTOM peay «
(STTIUT* @TIJd)SIYDTOM PESIT PTOA
*/

{([ud)sandanols ‘,pgu ‘(u3I\ u ‘TION)H03IIIS) JUEDSS

.

{([uotatsod] [ud]sanduta® ‘,I%, ‘(u3\ u ‘TION)03I3S) JuedSss

(++uotatsod fezTsTa@AeT > uotjztsod {1 = uorirsod) 103
£([0] [ud]sanduTa® “,I%. ‘(u3\ u ‘OUTT)O03I3S) JueDSS
!{(9TTI2s91 ‘(9UTT)JO9ZTS ‘BuUTT)oUTTI=bO
}
(++ud fsuxs3jed 3sej wnu > ud {9 = ud) I03
/+ suzeijed 3ndino/anduTt uT peeax x/

! ((quT)JoszTs ‘ud)ooTTed (* 23UT) = s3ind3nol

! ((3e0T7F) J092zTs ‘8zTSTISART)00TTED (¥ 32OTF) = [ud]sindut)y
(++ud fsuxsjljed 3ss3 umu > ud {9 = ud) 037
! ((¥ 3e0TF)JoozTs ‘suxsjjed 3se3 wnu)o0TTeD (¥x 1EOTF) = sindutrl

/* sandut I03 °20eds ©3eD00TTE */

! (91TF23S93) puTMax
‘ud = suxsijed 3se3” wnu

f++ud
((9T7T33s91 /(9UTT)JOS2ZTS ‘SUTT)SUTTISD)STTUM
0 = ud
}
(3se3) 37T

/* suxeiled O/T ©TTIIS9]1 UT peaI ‘STTJI 3Is921 © HuTsn JT x/

{([ud)sandanos ‘P, ‘(u3\ u ‘TION)¥0II3S) JuLDSS
{
{([uot3tsod] [ud]sanduty * “(u3\ w ‘TIAN) 303I3S) JURDSS Vo)
} e o]
(++uoTaTsod fezTsTa2hel > uoratsod {1 = uoT3aTsod) I07 —
f([0] [ud]sandut® “,F%, ‘(43\ . ‘SUTT)>03I3IS)JUROSS

{(9TTFe3ep ‘(SUTT)JOSZTS ‘BUTT)SUTTILSH

(++ud fsuzsijed wnu > ud {g = ud) I037
/* suxsijed jndino/anduT uT pesI x/

£ ((3ut)z092zTSs ‘ud)DOoTTeEO(* 2UT) = s3ndino
!{((220T77) J09ZTS ‘9zTSTI2ART)D0TTRO (* 2120TI) = [ud]sandut
(++ud fsuzsijed wnu > ud {g = ud) 1037
f((x* 3e0T3)J0ozTs ‘suielled wnu)dOTTeD (¥x 2e0TI) = sindut

/¥ sanduT 107 ooeds 93eD0TTE */

! (STT3FeIEP) PUTMET
‘ud = suxzsjjzed wnu
f4+ud
((3TTye3jep ‘(SUTT)JO8ZTS ‘SUTT)SUTTISH)STTUM
}
(¥sTp U0 eA®ST|) IT
/¥ ¥STp uo butaesT 3ou IT sburtddew 3nduT JuUNod 03 pPaduU x/

!((2e0T7F)J022Ts ‘T + 2zTsca2AeT)00TTeD (¥ 1BOTI) = [MOX]pgsabueyo Tenjoe
/% SEBTQ I0J BIJXS SUO x/

(++Mm0x fezTspIiehe] > MOl Q) = MOI) I0ZI

f((* 3BOTI)JO9ZTS ‘©zZTSpHILART)DOTTRD (¥ 3BOTI) = pEsSabueyod Tenioe

{((2e0T7F) JOOZTIS ‘T + 92zTSZI2ART)DOTTED (¥ 21BOTI) = [MOI]ggzsabueyo Tenioe
/¥ SeTq JI0] BIIXD BUO x/

(++mox !fozTsgisheT > mox {p = moIx) 107

! ((» 1eO0TJ)JOSZTS ‘9zTSgI2ART)D0TTED (*¥* 3BOTI) = g£zsabueyo Tenjioe

sIZoqunu uxsjljed JuUSIAND SYJF 0 x
Hbutpaoooe diw o2yl ybnoiyi yoeq sioxis sjebedoxag x
(pTOA) pIeMYDRQ PTOA *

*/

!++10119 TRQqOTH 3597
([uxs33ed 3s93 quarando]sindinol =i UOTILOTITSSETD) IT

{
!([uot3Ttsod] pashkeT - UOTIBATIOER PIITSSP)
* ([uoT3Tsod] pIshkeT - UOTJIBATIOR PSITSSpP) =+ I0II1S5 parenbs ums 3ss]

![uotatsod] pashkeT = 3saybty
{1 4+ uoT3Tsod = UOTIEDTITSSETD

(3seybty < [uoTatsod]pasier) IT
{(uns) AIOWOIS = [uoTatsod]pasler

![pbutwoout] [uoT3iTsod] pesaiybrem » [DuTwoouT]gishke] =+ uns
(++buTtwoout {ezTsgashe] => DBuTwoouT ‘() = DuTtwoout) I07
10°0 = wns

‘0°0 0T
¢ (uoTtatsod == T - [uxel3ed 3s93 juarand]sindinol) = UOTIBRATIOR POITSOP

}
(++uoTatsod fezTsyashel > uoritsod {g = uorirtsod) 103

/% I0II5 SIBTNUNDOE + x/
/* ¥ I2AeT 03 ¢ 12ART WOIJ pPIEMIOT PO */

£ (uns) AIONDIS = [uoT3tsod]gIsheT
! [buTwoouT] [uoT3Tsod] gzsaybTem » [HUTWOOUT]ZISART =4+ uns
(++butwoout {ezTszasAe] => DBuTwoOUT ‘() = HutwoouTt) I0J
0°p0 = uns
}
(++uoTatsod fezTsgisAeT > uotr3Ttsod ! = uorjrsod) I07
/% ¢ 19KkeT 03 7 I9AeT WOIJ PIeMIO] posg x/

{(wns) AIOWDIS = [uoT3tsod]zasder
![butwoout] [uoTiTtsod]zTis3ybrtem » [DuTtwoouT]TIi9ALT =+ wns
(++buTwoout {ozTsTILAeT => DBuTwWOOUT {(= DHuTwoOUuT) IOJ
00 = wns
}
(++uoTaTsod fezTszashel > uoratsod {p = uoTarsod) i03
* z Mw\AMH o3 1T Hm.hm‘m wWwoI3I pIemiIoy pos4 k.\

![uoTaTtsod] [uxslied 3se3 quaxano]sinduTtl = [uoTaTsod] Tx=heT
}
(++uoTatsod !ezTsTIsAeT > uoratsod ! = uor3yrsod) IoJ
/* “0°T 03 POSTTBTITUT ST [9zTsTIoAeT][I9he] eyl IoquLwsY x/
/% "OTTJ WOIJ UT PeaI 9STMISYIO ‘YSTPp uo butaes] jou JIT Azowsw woiJ Adod =/
/¥ “TaeAkeT oautT uxeilled 3se3 Jusaano oyl Adod x/
{0 = UOTJEDTJITSSETD JUT

{0 = UOTJ1eOTJITSSETO 109II0DUT JUT
1070 = 23soybTy ‘UOTILATIOR PDITSSP ‘uns 3eOTI
!putwoout ‘uorjitsod JuT

(pToA)pIeMIO] 31S31 pPTIOoA
/*
*I10119 ¥ooyuo snid «
‘yaomiau 9yl ybnoiyl pIemioy uisjjed IS8 QUSIIND BYJ PO *
(PTOA)PIRMIOT 3S97 PIOA x
*/

{(wns) AIOWOIS = [uoT3tsod]pasder
!{[putwoouTt] [uoTaTsod] pesaybTem » [DuTwoouT]casAeT =+ wns
(++butwoout fezTsgIsAeT => HUTWOOUT {Q = DBuTwWOOUT) IOJ
0°0 = uns
}
(++uoTaTsod f{ezTspashel > uoratsod {p = uoT3aTsod) I07
/% p I9AeT 03 ¢ I9AeT WOIJ pIemMIo] posg ¥/

{(uns) AIOWOIS = [uoTatsod]gasher

![putwoouTt] [uoTaTsod]gzsiybtem » [DuTwoouT]zisAke] =+ uns
(++buTwoout {ezTszasAe] => buTtwoout {Q Hutwoout) I0J
10°0 = wns

}
(++uoTatsod fezTsgisAeT > uotatsod ! = uorirtsod) I0T

/* € I9AkeT 03 gz 19AeT WOII PIEBMIOT podd x/

{(uns) ATOWDIS = [uotatsod]zasier
!{[butwoouT] [uoTaTsod] zTsIybTem » [DuTwoOuT] [I8AeT =+ wns
(++buTwoouT f{ozTsTIskeT => buTtwoduTr {Q

= HuTwoouT) I0JT
0°0 = uns
}

(++uoTaTsod {ezTszashel > uoratsod {g = uoTaTsod) Io07
/% 7 19AeT 03 T I9AeT WOIJ pPIeMIo] posg x/

f[uoTatsod] [uze3jed juaaano]sindutr = [uoTlTsod] [asAeT

}

(++uotatsod f{ezTsTiekel > uoritsod {p = uotrjztsod) I03%

/* “0°T 01 POSTIRTITUT ST [9zTsTIoAeT][I2ART 1oyl IaquUBwey */
/¥ *©TTI WOIJ UT pPeaI 9STMISYI0 ‘YSTP uo HbuTaesT Jou IT Azowsw woxl AdoD x/
/* *Tx9keT oajut uze3ljed jusaano oyl Adod x/

funs jeO0T3J
!puTwoouT ‘uorjiTsod uT
}
(PTOA)PIBMIOT PTOA
/*
s3IomIBU SY} ybnoiyl piremioJ uisijed JUSIIND SYJ pPood x
(PTOA) PIRMIOT PTOA %

*/

f(wUu\y ‘9TTF300)J3uTIdI
{([C)[T]pesaubtom ‘, FL°0T%w ‘©TTFINO)F3uTIdZ
(++0 fezTsgiehel => [g = [) z03
}

(++T fezTspashel > T 0 = T) 03I

186

!dws3xx 3e0TI
{100 ‘mox uTt
}
(pToa) saybtem abueyo db proa
/*
onbtuyoel ,dunl, doxadyotnb syl osn x
fwayl oyew ATTenioe pue peleTndoTed sjusTipeib oyl ybnoiyy dooT »
(pToa) saybtem obueydo db prToa
*/

!()sjusTpeIb 0192

!dws] = pgsiusTpeIb
!pesjusTpeab = pesjusTpeabd
!yesauatpeabd = dwsj

!dwe] = gzsjusaTpeab
!gzsjuatpeib = ggzsjuatpeabd
!gzsquatpeabd = dwel

{due] = zIsjusIpeab
!z1suatpeib = zisjusaipeabd
!z1suatpeabd = dwel

/* sijusTpeab 1seT 29Ul 9ABS x/

! ([T0o2] [mOox] FEsquaTprIbd » wnjuswow +
[Too] [MOI] pESruaTpRIb) ¥ QUBISUOD DbUuTUILST
=+ [T0O] [MOI]pEesaybTom
(++700 f@zTsgiske] => Too {p = ToOd) I0J
(++Mm01 f2zTspIskel > Mox {Q = MOI) IOJ

! ([To2] [MmOox]gzsauaTpeabd x wnjuswow +
[Too] [MOx]gZsquaTpeab) x JUe]lSUOCD” buTuiesT
=+ [T00] [mOI]czsaybTem
(++700 !@zTsziskel => [0D {(Q = TOD) I03F
(++m0x fezTsgieAe] > MOI () = MOI) I0Z

{([T100] [MmOox]zTs3uaTpeibd x wnjuswow +
[ToD] [mOx]ZzTsS3uaTpeab) x URPISUOD buTtuies]
=+ [T00] [MOX]ZTS3ybTom
(++T00 {ozTsSTI9AeT => OO () = TOD) IOJ
(++m01 !f9zTsziskeT > mox {(Q = MOI) IOJ

!dws3xx 3BOTT
{700 ‘mox 3uT
}
(pToA) sqybTeam sbueyo dg pPTOA
/¥
‘wey3l oyew ATTenjoe pue psjeTnoTed sijusTperb syl ybnoayjy dooT »
(pTon) syybTem sbueyo dq proa x

*/

{
!{[1d] 1xekeT x uns =+ [1d] [uoT3Tsod]zIs3uatpeib
(++1d feztstaelel => 1d ‘o = 1d) 103

fums = [uoT3Ttsod]sioxasgisiel
f((([uotyrtsod]zasher - 1) » [uoTatsod]gasher

+ 39s3J0 10ds3eTI) =x wns
!{uot3Ttsod] [Tu]l€zsauybTem x [Tu]sIOIISCIDART =4 wns

(++Tu fezTsgashel > Tu {Q = Tu) I07F
0°p0 = wns
/* *03UT SPee3 3T S3ITUR 2Y3 TIVY JO SWIdF */

/* I01I9 @yl uo spuadep 1TUN Yoes I0J WIL1 JI0IID SYL */
}
(++uoTatsod fezTsgzisAeT > uotatsod ! = uor3itsod) I0T
/¥ ZT1s2ybTem I0I sabueyd 923eTNOTRD */

{
![1d]lzashkeT x ums =+ [Td][uoT3Tsod]ggzsiusTpeib
(++T17d fezTsgzaskeTl => 1d {0 = 1d) 703
fums = [uoT3Tsod]sioxaagaslerl

f((([uotatsod]gasher - 1) x* [uoTirsod]gasler
+ 39s330o 30ds3eTJ) =x ums
!{uot3Ttsod] [Tu] pesauybTem x [Tu]sIOIISFILART =+ wns

(++Tu fezTspashkel > Tu {Q = Tu) I03F
0°0 = uns
/* TO3UT SpeS3 31T S3Tun Syl TIV JO suisl x/

\« I0Ix9 9yl uo m.@EWQWU 3Tun ydes I0J wI=Ll I0I1I9 {YL *\
}
(++uotatsod feztsgishkel > uotitsod {p = uot3rsod) I0I
/* €7s2aybTem I0I sabueyd 9231eTNOTED */

!{4+10119 TRQOTD

([uz®33ed quazano]sindino =i UOTIBOTITSSETO) IT
/* !++I0I1I87 TRQOTH x/
/% (UOT3IEOTJITSSRTO 302II00UT) JIT x/

{
![1d]lcashkeT x [uoTiTsod]saoxaspasle] =+ [Td] [uoTaTsod]pgsiustpeab
(++T17d fezTsgaslkeT => 1d {g = T1d) I03I

f((([uotarsod]pasher — 1) » [uorartsod]pisdeT)
+ 39s3J0 j0ds3eTI) =x [uoT3iTsod]sioraspasierl

![uot3Tsod]sioxaspaoAe] » [uoTiTsod]sioiiopislke] =4+ I0119 paienbs wns
(1oxx9 peoxenbs wns boT) IT
![uot3tsod] pashkeT = 3saybty
{1 + uotaTsod = UOTIBOTITSSETO

(3seybty < [uot3itsod]pasieT) IT
/¥ !{++UOT3BOTITSSBIO 309II00UT x/

/* (pTouseIy3l I01I2 =< ([uoT3Tsod]sioxrspIraieT)sdy) IT x/
![uoTaTsod] pashkeT - pPaaTssp = [uoT3tsod]sioxaspasierl
{0070 : 00°T ¢ (uotaTtsod == (T - [uax®3ljed jusxano]sindino)) = PaITSSP

/¥ ¢9ATIDOR o 03 3Tun 3ndino STYl INYM oM Op x/
}
(++uoTatsod !ezTspasAeT > uotratsod ! = uorjTsod) IOT
/% sioxis 3Indino o3eTNdTEd x/

{0 = UOTJEDTJITSSE[D JUT
{0 = UOT3EDTITSSETD 309IIODUT JUT
‘0 = 3seybry ‘poatTsep ‘uns 0TI
/¥ I9AeT 3xeN ‘I9AeT snoTaeig ‘aTun uerano x/ fTu ‘Td ‘uor3Ttsod quT
}
(PTOA) PIRMYDRQ PTOA
/*

187

![10o02] [MOx] pEsjusTpeab x Juelsuod” puTturesT =+ ds3s
(070 > [T02] [MOx]pesiuaTped) IT
/% "3T79s31T Aq sjewrisa orjeapenb ssn 3snl ‘9STMILSYI0 x/
/* {UT 3T ppe ‘eA- OSTe ST JUSTPeID JULSIIND 8yl JT */
}
/¥ JueTpeib snotasiad oa- x/
(0°0 > [T0o] [MOox]pesabueyo™ Ten3oOR) JT OST®
{
{(([10o2] [mOx]pesjuatprab — [TOD] [mOI]pgsaustpeabd) /
[Too] [mOX]pesauaTpeab) » [T0D] [MOI]pesabueyo Tenidoe =+ do3s
/% "93ewTiss oT3eIpenb osn x/
EEE
!{[T00] [mox] pgsabueyo Tenjoe x deis xew =4+ ds3s
([Too] [Mox]pesiuaTpeabd x T030®I HMUTIAYS < [TOD] [MOI]pEsiusTpeab) IT
/* rdeals dejsTxew 2yl oyel ‘jusTpeab snotasid syl x/
/¥ 031 = 3sowTe IO ‘01 = ‘ueyl IsHIET ST JUSTPRID JT */
!{[T02] [MOI]pEsiuaTpeab x jJuelsuod HbuTuresT =+ da3s
(070 < [T09] [MOI]pgsquaTpeIb) IT
/% "3T7es31T Aq sjewriss orjeapenb ssn 3snl ‘9STMILSYI0 x/
/* fUT 1T ppe ‘eA+ OSTe ST JuaTpeib JuaIInd oyl IT */
}
/¥ JueTpeib snotasad an+ x/
(070 < [T02] [Moa]pgsabueyo™Tenioe) IT
{0°0 = deas
}
(++T00 {ozTsgaohel => TOO {(Q = TOD) I03F
(++Mm0x1 fozTspashkeT > mox () = MOI) IOJ

{
!dsls =+ [TO0] [MOI]gzsaIybTom
!ds3s = [T0D] [MOI]ggsabueyo Tenioe
/% "SWT] 3X9U I0J WSyl ISqULWSI Pue SsHUPYD Tenioe syl S3ew mou x/

!{[T00] [MmOI] gZzsauaTPRID * JuUe]SUOD” buTuiesT = do3s
}
/% JuSTpeIH SSWT] JULISUOD PuTuIesT osn Isnl :esxe JerI x/
EE
{
f(([102] [mox]ggsauaTprab —~ [TOD] [MOx]ggsiuatpeabd) /
[Too] [MOox]gzsauaTpeab) » [T0D] [mOx]¢gzsabueydo Tenidoe =+ dels
/% °"®3ewTise oTleapenb asn x/
osT®
{[100] [MOI]gzsabueryo Ten3oe x dois xew =+ da3s
([Too] [MOox]gzsquaTpeabd x 1030®I MUTAYS > [TOO] [MOX]gzsiusTpeab) IT
/+ *de3s dejs xew 2yl oxe3 ‘jusTpeib snotasad syl x/
/¥ 03 = 3souTe I0 ‘03 = ‘ueyl ssoT ST uUaTpeab JT x/
!{[Too] [MOI]gzsuaTpeIb x JuUE]SUOD PuTuIesT =+ d33S
(00 > [Too] [MOx]gzsiuaTpeab) IT
/% "3T9s31T Agq sjewriss orjeapenb ssn 3snl ‘SSTMISYI0 x/
/* {UT 3T ppe ‘sA- OSTe ST JUSTPeIH JUSIIND 8yl JT */
}
/¥ 3ueTpeab snotasad aa- x/
(0°0 > [Too] [Mox]gzsabueyo™ Tenioe) JIT oSTe
{
Y(([T0o0] [MOx]gzsquaTprIb - [T0D] [Mox]gzsauaTpeabd) /
[Too] [mOox]gzsauaTpeab) » [T0D] [mOx]¢ggzsabueyo Tenidoe =+ dels
/% ‘93ewr3se Or3eapenb asn x/
osT®
{[100] [MOI]gzsebueryo Tenioe x dois xew =+ da3s
([To2] [mox]gzsauaTpeabd » 1030BI UTIYS < [T0D] [moI]gzsiusTpeab) IT
/* +dejs desjs xew a2yl oxel ‘juaTtpeab snotasad syl x/

/% 031 = 3sowTe IO ‘01 = ‘ueyl IsHIET ST JUSTPeID JT */
!{[T00] [MOI]gZzsauaTpRID * JUR]ISUOD HuTuIesT =+ do3s
(070 < [T02] [MOx]ggsiuaTpead) IT
/% "3T79s31T Aq sjewrise orjeapenb asn 3snl ‘9STMISYI0 x/
/* {UT 3T ppe ‘eA+ OSTe ST JUSTPERIH JUL8IIND 8yl IT */
}
/% 3uetpeab snotasiad o+ x/
(070 < [T02][mox]ggsabueyo™Tenioe) IT
‘0°0 = de3as
}
(++T00 f{ozTsgaskel => OO () = TOD) I0J
(++mox !ozTsgishkeT > mox {p = mox) I0J

{
!ds3s =+ [TO0] [MOX]ZTISIybTom
!des3s = [T0D] [mMOI]ZTsebueyo Tenioe
/% "OWT] 3X9U I0J WLyl ISqULWSI pue ssHUBYD Tenioe oYyl o3ew Mmou x/

!{[T00] [mOX] ZTsauaTprRIb * Jue]lsuod” buTuies] = de3s
}
/% QUSTpPEIH SBWT] JULISUOD buTuaesT oasn 3Isnl :esxe JeTI x/
asTa
{
f{(([10o02] [Mox]zTs3uatprIb — [TOD] [MOI]ZTIs3uaTpeabd) /
[Too] [mox]zTsauatpeib) » [T0D] [MOI]zTsebueyo Tenioe =4+ do3is
/% °93ewTiss oTaeIpenb 9sn x/
osTo
{[To0] [MOox]zTsabueryo Ten3oe » dois xew =+ da3s
([Too] [Mox]zTsuaTpeabd x I030®I HMUTAYS > [TOO] [MOX]ZIsIusTpeab) IT
/+ +de3s de3js xew 2yl el ‘jusaTpeab snoTtasad syl x/
/% 031 = jsowTe IO ‘03 = ‘ueyl SsSST ST uUSTpeIb JT x/
!{[Too] [MOI]ZTSIuUSTPRID * JuUE]ISUOD HuTuIELST =+ do3s
(00 > [To2] [MOx]ZTs3uaTPRID) IT
/% "3Tos31T Aq sjewrise orjeapenb ssn 3snl ‘9STMILSYI0 */
/* {UT 3T ppe ‘eAa- OSTe ST JuUSTpPeIb JUSIIND Byl IJT */
}
/¥ JueTpeab snotasad an- x/
(0°0 > [Too] [Mox]zTsebueyo Tenioe) IT aSTo
{
{(([102] [mox]gTsusTPRIL ~ [TOD] [MOX]ZTsqusTpeabd) /
[Too] [mox]zTsauatpeib) x» [T0D] [MOx]zIsebueyo Tenioe =4+ do3is
/% “"®3ewTise oTieIpenb osn x/
EEE
{[100] [MOI]zTsobueryo Ten3oe x dois xew =+ da3s
([Too] [MOx]zTsAuaTpeabd x I030®I MUTAYS < [TOO] [MOX]ZIsIusTpeab) IT
/¥ rde3s dejs”xew 2yl oxe3l ‘jusTpeib snotasad syl x/
/¥ 01 = 3sowTe IO ‘01 = ‘ueyl IsHIET ST QUSTPRIL JT */
{[T0o0] [MOI] ZTSIUSTPRID * JUE]ISUOD HbuTuIesT =+ do3s
(00 < [To2] [MOx]ZTs3uaTpRIb) IT
/% "3T®s31T Ag sjewriss orjeapenb ssn 3snl ‘oSTMISYI0 x/
/* {UT 3T ppe ‘eA+ OSTe ST JUSTPERIH JUSIIND Byl JT */
}
/¥ JueTpeab snotasad on+ x/
(070 < [T02] [Mox]zTsebueyo~Ten3oe) IT
{00 = deas
}
(++700 f@zTsTieke] => [0D {(Q = TOD) I03
(++mox !ozTszisAel > mox {p = moIx) 107

!de3s 3eOT3I
f(de3sTxew + 0°T) / de3jsTxew = I030®J UTIYS 3IPOTJI

188

(3s®3) IT
EERE]

!(x0x119 poxenbsTuns ‘,u\I1%, ‘©TTIHOT)IF3uTadl
o9sTa
{(suxs3jed 3se3 wnu (3LOTF) / I0II9” [eQOTH 1893 (3BOTJ)
‘10119 poxenbs uns 3593
‘70119 pazenbsTums ‘/,u\J% I% I%, ‘©TTIPOT)IuTadl
(3se3) 37T

(z071719 pazenbs ums HoT) IT

!(zoxz9 TRQOTH ‘syoods ‘,u\pGg sIoIIS ‘pgy yoods, ‘Ixsp3s)FiuTadr
((00T % syoods) i) IT
! ()yoode~buTtuTeIa]

! ()3aIomisu 31883
(3s23) 3T
}

(syoods™xew > syoode %% IOII8 [eOTD)STTUM

{1 = 10119 TRQOTH
{9 = syoode 3ut
}
(PTOA)UOTSSOS PUTUTRIL PIOA
/*
“J8Ww ST UOTIS]TIO IOIIS SwWOs TTiun syoods bHbututeal butuunz dssy x
(PTOA) UOTSSSS HUTUTRI] PTOA *
*/

! ()paemaoi” 3s83
(++uxe33ed 1931 JULIIND
fgsuzsijed 3s93 wnu > uxsiljed 1917 JULIIAND
{0 = uxelzed 1s93” jus1Ind) I0J

{0 = 10119 TRqOTH 3s°@1
{070 = z0119 poxenbs uns 3591
}
(pTOA) 3IOMIBU 1587 PTOA
/*
*I0119 8yl 931eTNOTed pue premio] urslled 1s91 Aions peosg x
(PTOA) YIOMIBU 3S3] PTOA %
*/

{(4u\s ‘®TTF300) J3uTady

{([uot3tsod]pasher ‘, FL 0T%a ‘©TTFINO)F3uTadl
(++uotatsod {ezTspasheT > uoT3itsod ! = uorirsod) I0J
f(u *u ‘OTTFINO) F3uTadZ

{([uotatsod] tasker ‘, IL 0T%w ‘OTTIINO)J3uTady
(++uotatsod {ezTsTa2AeT > uoTatsod ! = uorirsod) 07
! ()paemiod

}

++ureiied queiano f{suxelled wnu > urslled JueiInd {() = urslled JuULIIND) IOT

fuoTt3tsod 3ut

(9TTF3n0% FT1I14)AeTdSTpP proAa
/*
suiolled TTe I0J saTnsax oyl Aerdstqg *
(8TTI3N0% ETIJ) AeTdSTP proa »

*/

! () saybtem aburyo dq
osTa
! () saybtem sbueyo db
(3oT0b) IT
{
! ()paemydoeq
! ()paemaog

}

(++uxe33ed juszand fsuxsijed wnu > ursijed jusrand {(Q = uxsljed jJusIIND) IOT
i

0°0 = I0xas paienbs uns
{0 = 10119 TRQOTH
}
(pToa)yoode~ buTureil pTIoA
/*
*o3epdn yojeq e uni usayl ‘suxslied oyl TIe ybnoiyl dooT x
(pToa)yooda~buTuteIl PIOA x
*/

! ()squsTpeab Aeosp

!{due] = pgsijusTpeib
!pegsjusTpeab = pesjusTpeabd
!yesiustpeabd = dwsl

!dwe]l = gzsjuaTpeab
!gzsjuatpeib = gzsjuaTpeabd
!gzsiuatpeabd = dwel

{dwel = zisjusatpeib
!z1suatpeib = zisjusatpeabd
!z1sauetpeabd = dwel

/% sjueTpeab 1seT 9yl 9ABS =/

{
!dels =+ [T00] [MOI]pESIYDTOM
!dejs = [T0D] [MOI]pcsabueyd TeNn3O®
/¥ tOWT] 1X8U I0J Weyl ISqWAWSI PUB SSHUBRYD TENIO SYJ S3BUW MOU x/

{[10o0] [MOI] pgsauaTpeIb » jJuelsuod” butuies] = de3s
}
/% QUSTPEIH SSWT] JULISUOD PuTuIesT osn Isnl :esre JeTI x/
EEE
{
f(([102] [Moa]pesauaTpRIb ~ [TOD] [MOX]pesiuatpeabd) /
[Too] [mox]pesauatpeab) » [T0D] [MOX]pesabueyo Tenioe =4+ dois
/% ‘93ewrise Orjeipenb asn x/
osTo
!{[100] [MOI] pesobueyo Tenioe x doils xew =+ dois

([To2] [MOx]pesauaTpeabd x 1030®I MUTAYS > [TOD] [MOI]pEsiusTpeab) IT

/* +dels de3js xew oyl oyel ‘jusTpeab snoTasid syl x/
/¥ 01 = j3sowTe IO ‘01 = ‘ueyl] SSOT ST JuaTpeib JT x/

189

! (bxeado) Tole = pess wopuex
: ,1, osed

Iyesaq

100 = wnjuswou

{1 = yotnb

Iyesaq
! (bxe3do) Joae = 218s3J0 jodsieTl
: ,0, @sed
iyea1q
! (bxeado) Toqe = syoods xeu
: ,u, sseo
Iyesaq
! (baeado) 3Joje = wnjusuour
:,u, Sseo
Iyesaq
!{(baeado ‘,sg, ‘(sweusTTIHOT)JoozTs ‘sweusTTyboT)Fiutadus
: ,T, oseo
£ (SSEIONSTLIXE) 3TXD
! (nbae)ebesn
: ,y, sseo
Iyeaaq
! (baxeado ‘,s3,
/(oweuaTTI dwunp 3ybTom)JoozTs ‘sweusTTI dunp 3ybrem) Jjutadus
{1 = sjybtem dwnp op
: ,3, oseo
{1 = STP uO aaEST
: ,p, Sseo
iyes1q
! (bxe3do) Joje = UEB]SUOD DbuTUIEST
: ,0, sseo
} (uot3do) yo3tTms
}
(g0d =juotado) STTUM

! (4,oTT3b0OT, ‘(sweusTTIhoT)JoozTs ‘sweusaTTiboT)IjuTtadus

! (butaysaido ‘abae ‘0obae)3dolsb = uotido aeyo
tzxim:iyis:abio:uiw:iTy:Ip:o, = buriisidox Ieyd 3ISUOD

}

([labxex zeyo ‘obxe JuT)uTew UT

/*

x

rdoxdyoeq JJo 39s ‘sainionzis eiep dn 239s ‘suorido pesy
*/

{Aeosp x [C][Tlpesauybreom = [[][T]pesjusTpeab
(++C fszTsgasher => [g = [) zo03

(++T fezTspashel > T {0 = T) I0JF
‘heosp x [[][T]ezsaubrem = [[][T]eczsiuatpead
(++0 fozTsziekeT => [{0 = [) 703
(++1 f9zTsgashel > T 0 = T) 107
{Reosp » [[][T]zTsaubrem = [[][T]ZTsqusTpeab

(++C foztTstasker => [‘g = [) 1037
(++T fezTszishel > T !0 = T) 103

{041 qur

(pTon) sjusTpeib Aedep pTOA
/*
s3qybtem HPurtpuodseiI0d SIT *
03 Teuorirodoid Isqunu TTEWS B 03 S9OTIjew JusaTpeidb oyl 395 x
(pTOoA) squaTpeIb Aedsp pTOoA *

*/
{
{0 = [C]1[T)pesaustpead
(++C fozTsgiehker => [{g = [) 07
(++T fozTspaskel > T {0 = T) I07
‘0 = [C][T)ezsqustpeab
(++C fszTsgasher => [g = [) z03
(++T fezTsgashel > T {0 = T) 0%
‘0 = [E][T)zTs3auatpeab
(++C fozTstasler => [!p = [) 207
(++1 f9zTsgaskel > T !0 = T) 107
{041 aqurt

}

(pToA) squsTpeIb 019z pPTOA
/¥
sedTajeW jJuaTpPeIb 8Y3 INO 0187 *
(PTOA) SQUSTPRIH 0I9Z PTOA *

*/

f9°0 * ()gppueap - £°0 =+ [L][T]pesaybrom
(++C fszTsgasher => [g = [) z03
(++T fezTspashel > T {0 = T) 0%

f9°0 » ()gypueap - £°0 =+ [[][T]egsaubron
(++0 ‘ozTszieker => [{0 = [) 703
(++7 fozTsgzeler > T {0 = 1) 103

970 * ()gppueap - €0 =+ [[][T]zTs3IubTOM
(++C fozTsTasher => [‘g = [) zog
(++T fezTszashel > T !0 = T) 103

! (poasT wopue1) gypurIs

{041 Jur
}
(pTon) saybtem ganizad proa
/*
sIsqunu wopuex TTews e Agq s3jybrem sy3y Tre ,dunqg, x
(pToa) saybTem ganjasd pToa x

*/

!4 +syooda

{(zoxx97TRQOTH ‘,u\pP%, ‘OTTFHOT)F3uTady
asTa

! (10119 TRqOTH 3593

‘zoza9” TRqOTH ‘,U\P% P%. ‘©TTFPOT)IF3uTady

190

‘

/% oT1Is1ybTem

!([y + putado]abie

(uty

‘.

se

{(SSEO0NS™ IIXE) 3TX®

{(e7TIdwnpiybreom) sqybTtem dunp
(saybrem—dunp~op) IT

! ()uotsses bututeal
!()saybtem ganjaad
asTo
!{(o71Is3ybtem) sqybTom peax
(saybtem butsn) IT

!()saskeT osTTRTITUT

{ (4T, ‘oweusTTIIS®]})usdoy = oTTIISe]
(3s23) 3IT

‘oweusTTI dump jybTem)usdoy = oTTydunpiybrem

(s3ybrem dump—op) IT

!(,x, ‘oweusTrysiybrem)usdol = oTTIs3ybrem
(saybrem™butsn) IT
{(y1, ‘oweusyryelep)usdoy = STTILIELP
f(um, ‘oueusTriboT)usdoy = oT7TIDOT
‘Kiesso0au JT ‘pue aTIelep ‘oTTIboT usdo x/

/(sweuaTTIelEpP) JOOZTS ‘sweusaTrielep) Jautadus
!([g + putado]abie)tole = 9zTIspIsikeT
!([z + putado]abie) tole = azTsgislkeT
{([T + putado]abie) TOde = 9ZTSZIDVART

/*

! ([put3ido]abae) TOJe = SZTSTISART

{(FINTIVA 1IXE) ITXS
! (nbae)sbesn
}
(¢ > putido - obie) IT
*9TTI BIEP B pUB 2INIDSITYDIE */

/% 3Iomilau e paTyToads 3,usey I9sn oYyl JT I0IIS UB YITM ISA0 TTed */

{(bxeado ‘,sg,

! (baeado

! (butaysaido ‘abie ‘obae)adolrsbh = uorido
{

Iyea1q

! (bxe3do) yoje = Aeosp
i ,z, Ssed

Iyesaq

{1 = J0xa9 pazenbs ums HoT
: ,x, Sseo

Iyesaq

{1 = s3jybtem buTsn

/(sweuaTTIs3iybreom) JoozTs ‘suweusTTIsiybrem) yjutadus
: ,m, osed
!yesaq
‘(sweusaTTIIS2]) JO2ZTS ‘BweuslTIIse]) Jjutadus
{1 = 3893
: ,3, osed
Iyesaq
! (bxeado) yoze = de3s” xew
: ,s, 9seo
Iyea1q

.

191

Appendix B
R Source Code

192

}

1 + xaddois -> xaddois
} (Ioxxs3jusxand < IoxIismau) IT
(101193593 ¥ I0II93S93)WNS —> IOIISMBU

(Tw ‘[“‘3esbutrddols]qp)FF - [‘3osburddois]siobael —-> 101193893
(Tw ‘[“‘3ssbutddols-]gp) 13 - [‘3esburddois-]siebiel —> I101I9BUTUTEI]

(,4, ‘(e * o7 (e)uoraouny ‘1b)Ardder ‘Tu)zdew —-> Tw
(,4+, ‘(e » wow (e)uotizouniy ‘TH)ATddet

‘([“3osbutddoas-]s3sbiey ‘1w ‘[‘1esburddols-]qp)dq) zdew -> 16

(uI\u ‘u ‘3unod ‘o7

/(101193897 » I0IIDISSJ)wNs ‘ (IO0IISHUTUTRI] » IOITISHUTUTEI])UNS) 3D

T + 2UNOd -> 3Junod
} (do3s > aaddojs
3% U > 3JUNOdD
3% 10 < I0IIL3S=q
®% (IO0IXIS3ISSQ)URU ST |
3% (0 < (F0xx9bBUTUTEI])Sqe)Aue
3% (I0I1I9HUTUTRIY)UBUST |) STTUM
0 -> xoddoas
I01I193S9q —-> I0IISJUSIIND
(101193893 ¥ I0II93S9I)UNS —> I0IID3S8]
(Tw ‘[“219sburddols]qgp) Il - [‘31esburddois]siebie]l -> 101193S973

(Tw ‘[“3esbutddois-]qgp) I3 - [‘3osbutddols-]siebiel —> zoxxshburtureIl

Tw —> s3jybremisaq

(0°0 * ¥ (x)uoTiouny ‘Tu)Ardder -> Tb

(Gz*0 ‘s23ebaeq)drudwesieirls —> 3asbutddoils
(p/ (gqp)moxu ‘(gp)mozu)eTdwes -> 3asbutddolsy
0 -> yoodsijsaq

0 -> 3unod

(0T=doas ‘poog=u ‘g o=wouwr ‘(qp)moIu/I=0T ‘s39bHre] ‘Tw ‘gp)uoTiouniy -> wowpbH
WNIUSWOW YITM JUSDSSP JUSTPeIdb 4
{

(sp)uanisx

[[T]]sxa® x5 ((~ ‘0°T)PUTAD)3 —> [[T]]sp

{

CCllzl Chlm+x]lTwwrp: T “[T] ([{T+x] I Twwip:z] [[T+x]]TW) 3
s*% [[T+x¥]]saa8) » (39s330 + ([[x]]s3doe — 0°1) » [[¥X]]s3oe) -> [[x]]saas
[[T+x]])sxae x5 (([[x]]s3oe ‘0 T)putgo)l -> [[T+X]]sp
bo(r:i(1 - Tu) ur %) 103
(39s330 + ([[Tulls3oe — o°1) x [[Tu]]s3oe)

* ([[Tu]lls3oe - s3ebael) -> [[Tu]l]lsaas

()3sTT -> sp

()3STT —> saas

(s23oe)yzbust -> TU

(Tw ‘a)SaeS3yy —-> s30®
} (0°0=3°s330 ‘s3s®baey ‘Tw ‘a)uoriouny -> dq
*3uybTem zadx swis] I01I1S pojebedoadyoeq S3eTNOTRD #
{

(atnssx ‘[(Tw)yabust:zlTw ‘([[T]]TWw $*% (4 ‘T)PUTYO)ATIOR) [TLOSY SSTD

[(3Tnsax)yabustiglatnsax (([[T]]Tw) TTOUST) IT
A —> [[T+(3Tnsaa)y3zbusat]]ansax
} (()3sTT=3Tnsex ‘Tw ‘A)uoTiounl -> SARSIT
SUOTIPATIOR TTe ©sodx® 3Ing ‘pPIeMIOoI-poasI #

([(Tw)y3zbuat:zltw “([[T]]TW $*% (Ao ‘T)PUTgO)ATIOR)[TLOSY OSTD
A (([[T]]Tw) TTRU"ST) IT
} (Tw ‘a)uoriouny -> IJ

1S8M 8U3 UT PIBMIOI-P33J IS33I0US #

(((Llt1lz “[[T1]& “[[T]]¥)Nnd (T) uotilouny ‘(x=buote)bss)Atdder)uiniax
(quoT30oUNy,=8pow ‘()3usred-sAs=1TaUs ‘NAJ)ISH -> NAJ
((NQJ) x9300IRPYD "ST) JT
} (NQA ‘z ‘A ‘x) uotr3ouny -> gdeu
S1sTT ¢ I07 yatmdrz :3xoddns butwwerboad TeuoTiouny #

((CLLTII& “[[T]]1%X)NAd (T) uoT3ouny ‘(x=buore)bes)Ai1dder)uiniax
(quoTa0uny,=spow ‘()ausied-sAs=1tAUD ‘NOJ)ISH -> NAJ
((NQJ) I930RIRYD"ST) IT
} (NnZ ‘A ‘x) uoT3ouny -> zdeuw
s1sTT gz 207 yatmdrz :3xoddns butuwerboad TeuoTiouny #

(((x-)dx® + 1) / T)uanisx
} (X)uoT3ouny -> AT3O®
UOT3IOUNI UOTILATIOe DTISTHOT #

(3TNsSa1) uInlax

{

AAAAQEou‘cumgwa«mvvcsou;QEwu'waQEmm‘uazmmuvvgwaam\quSmmu
(([dsTyd=doap’ ‘T == [T’]s38bie]] (s1sbaeq)sweay-ejep
) SeuRU*MOI) OTIawnu-’se —> dwal
} ((s3sbxeq)Toou:T ut T) IOT
} osT®
((((dws3)yzpusr » d)punox ‘dwsl)esTdwes ‘3rnsax)puadde -> 3Tnssx
(([FSTYa=doap ‘T == s3=bae3] (s3sbae3l)sweas eiep
) SSWRU *MOX) OTIsUNuU - se —> dwel
((((dws3)yzbusT x d)punox ‘dws3l)srdwes ‘3Tnsar)puadde —> 3Tnsalx

(([FsTVa=doap’‘Q == sisbae]] (sisbaeq)swers elep
) Seweu-MOI) OTIawnu-se -> dwal
} (T == (s3ebzeq)Toou) JT

()o —-> 3rnsax
} (d ‘s3ebaej)uoriouny -> djwdwesieils
dtw ue Jo 3es buturexal 8yl I03J oTdwes paTITIeIIS © 2190 #

(3Tnsax)uaniax
{
((((dws3)yazbusT x d)punox ‘dwel)asrdwes ‘3insax)puadde —> 3Tnsax
(([‘u == [[sweusseTD]]X]X)sSsweUu MOI)OTIaunu’se —> dwsal
} (([[sweusseTd]]X)sST248T UT U) I03F
()o -> 3Tnsax
} (d ‘sweusseTo ‘x)uoTiouny -> gpdwesierls
Sseqejep psIisqunu-mol e woxy sTdwes psTITIRIIS B 196 #

S00C :°3ep

99I3UNOY UeYIEN :Ioyine

wayl bututeal pue sizedx woxJ sdiw HuTlesId I0J suoTiouny ¥ :asodand
¥ diw :sweusTTI

Sd'TIN sune[ndiuejy 103 9po) 1'q

e H A

193

‘(0 ‘T *((Teopowino)moIu=yoes
‘([[K]]Tepouwano) stenaT)dax
== [[A]]Tepowino)osTa3T)XTIjew —> Iojdoejypabunu

} (([[A]]TepouIno) 103001 sT) IT
} ((Teopowino)ssueu ut A) I0J
siea ,Auumnp, se popodoal 9IB SI030eI 1BY} OS SWeII [oOPOoW oYyl obunu Mou #
TION —> [[[[T]] (x)saeaTTe]] [opowano

(e3ep ‘x)sweil°Iopow -> TopowWIno
ouer] Topow © 196 ueD oM IT 995 4
} (e3ep ‘x)uoTiouny -> [opowlSs
1SITJ BIBP SY3} Y3ITM punore buTsssw swos s1Tnbsx s, drw #

((0°T “0°0)o=wtTZ
“(9Gz) saoT0o 0do3=T0D
‘(10T=MOIU
‘(s3jubTtem
(1070 ‘0°T ‘0)bes
‘(10T=Yyoe® ‘(1070 ‘0°T ‘0)bes)dex)putqd)IF)xTIjew=2
‘(1070 ‘0°T ‘0)bes=4
‘(1070 ‘0°T ‘0)bes=x)sbeut
} (s3jybrtem)uotriouny —-> maTadTw
dew odol e se diw ue joT1d #

(((zoxx9buTuTeRI] *» IOIISHuUTUTEI)UMS ‘yoodslsaq ‘Junod ‘s3aybTemissq) ISTT)uinisx

(uu\y ‘u ‘3unod ‘of
/(701193837 ¥ IOIIDISSJ)WNS ‘ (IOIISHUTUTRI] » IOIISHUTUTEIZ)UNS) 3D

{

junoo -> yoodaisaq
Tw -> s3ybremissq
IOIIDJUSIIND —> I0IID3ISS]
} (xoxxs3ssq > I0xI9]3USIIND) IT
I0IIOMOU —> I0ITDJUSIIND
{
0 —-> xaddo3s
} este {
1 + zaddoas -> aaddo3ls
} (x0xx83UBIIND < JIO0IIBMBU) IT
JI0II23USIIND —> JIO0IISMIU ((I0XIISMBU)URU'ST) IT
(T0xx223189]1 » JIOII2]S2Y)WNS —> I0IISMBU
(Tw ‘[“‘39sbutddols]qgp) 33 - [‘3esburddols]sisbre] -> 101193597
(Tw ‘[‘39sbutddoas-]qp)3FF - [‘31ssburddois-]sisbaey -> Toxasbutureal
{

[C/T10(x]11T6 —> [C/T][[x]]TbPTO
deds + [C/TI[[x]]Tw —> [C/T][[x]]Tu
de3s -> [[‘T][[x]]seaTep
{

[C/T)[[x]]1Bb * ©T —-> deis

} esTe {
{
(LE“TI0(x11Th - [C/T1([x]]16PTO)
/ [E/T10[x]1T6 » [C*T][[x]]seatep + deas —> deas
} estTe {

[C/T][[x]]seaTop »* deisxew + deis -> deis
}o(LE“T] [[x]]1ThPTO * 03DRINUTIYS > [C/T][[x]]TH) 3T
[C/T1[[x]]1TH x T + de3s —> deis

(0 > [C'T1[[x]]1Th) 3T
}o(o > [CfT)[[x%]]searsp) IT osTe {
{
([C/T100x])16 — [C'T][[x]])ThPTO)
/ (0TI 00x])16 « [C/T][[x]])searsp + do3s —> deois
} esTe {
[C/T][[x]]seaTop » deasxeuw + dels -> deis
}boCIC/ Tl [[%))1bpTO * F030eIuUTays < [L/T][[xX]]T1H) 3T
[C/T][[x]]TH * ©T + de3s -> de3s
(0 < [C'T1[[x]1]11B) 3T
}o(0 < [C'Tl[[x]]searsp) 3IT
00 -> de3s
[[x]]1b)ueursT) IT

0 -> [C/T1[[%]11Th 1
x]]Tw)wrp:T ut [) 03
[
}

PO
P

((rtr
RNt
({111 ([[X]]Tw)wTp:T Ut T) IOF
((Tw)yabusT:1 uT X) I0J
(T1-0 “[‘3°sburddois-]sisbrey ‘Tu ‘[‘3esburddois-]gp)dq -> 16
T 4+ 2UNOD —> 3UNod

(uI\y ‘U “3unoo ‘o1
‘(101193893 ¥ I0II93s9})uUNS ‘ (I0IISHUTUTLI] ¥ IOIISHUTUTEI])UNS) JBD

} (21 » 101x9388Q > I0IIDIUSIIND

33 doas > zaddoias

3% U > JUNOD

% 1°0 < 101193saq

®% (I0IXIS3SSQ)URU'ST |

3% (§'0 < (x0xII9BUTUTERI])Sqe)Aue
3% (I0IISHUTUTRIY)UBU ST) STTYM
0 -> aaddoas
I01I93S9q -> IOIISIUSIIND
(101193593 ¥ I0IIS]1SSI)UNS —> IOIISISS]
(Tw ‘[“‘3ssbutddols]qp) 33 - [‘3ssbutddols]sisbae] -> I101I193597]
(Tw ‘[“3esburddois-]qgp) 33 - [‘3ssburddois-]s3sbaey -> roxasbutureal
Tw -> s3ybremissq
(6z-0 ‘sa3sbaeq)drwdwesieals -> 3ssbutddols
(p/ (gp)moxu ‘(gp)moau)sTdwes -> 3asbutrddois#

((00 » %) (x)uoTiouny ‘Tu)ATddel —> seITep
((070 » %) (x)uor3ouny ‘Tw)Ardder -> T6PTO

(dejsxew + 1) / T —> I03DBIMNUTIYS

sw —-> dejsxeuw

0 -> yoodsisaq

0 —-> 3unod
(0T=do3s ‘000E=u ‘GL T=su ‘(gp)moxu/T=0T ‘s3sbael ‘Tw ‘gp)uotriouny -> doadb
doxdyotnb s ,uewTyeI %

((z0xx9HUTUTEI] » JTOII=bHuUTUTRI] ‘ydoodsissq ‘3unod ‘sjybremissq) ISTT)uUInisl

(4U\, ‘u ‘3unod ‘of
‘(1011938873 ¥ IOIIDISSJ)WNS ‘ (IOIISHUTUTEI]F » IOIISHUTUTEIF)UWNS) JED

{

qunoo -> yoodaisaq
Tw -> sjybremisaq
I0II93USIIND —-> I0IIDIS8]
} (I0119389(> I0IILDIUSIIND) IT
JI0IISMaU —-> JI0IXII23ULDIIND
{
0 -> zaddo3s
} esTe {

194

(seaeaTU ‘Z)XPU —-> S9ARITU
(seyodueaqu ‘z)xew -> saydueaqu

uoTssexbax 0T3ISTHOT 1snl ueyl axow STY1 o3ew 03 0D #

(puedxs x ((e3ep)sauweu)ylbus] ‘soALSTU)XPU —> SOARSTU
(puedxs x (T-((e1ep)ssweu)ylrbusT) ‘sSaydueIqu)XeUW -> SOYDURIAU

} ((puedx®) TTnU'ST {) 3IT

[T-] ((BTNWIOFSTTROSDDI]) TRAD) SIRA TR —> Sainjiesay

{

([“u<FeaT>, == IeAgawRIISSaI]]BWRITSSSI])MOIU —-> S2ARSITU

} ((TeqeTsseT2) TTNU"ST) IT

([“unusseTd == TeaksswerIs&ssia
% 4<JEST>, == IPASOWRIT$S9I]]SWeIT$S9I]) MOIU —> SSALSTU

{
([0 < I9lxg)y3lbusT -> ssyoueIqu

[T+unussero ‘] [“[,<F€dT>, =i SITTAST] ((S3ATTdST)yabuaT:1)2d]zTesrdsaweazsssil —> 1q
} (usaey 33 (T°qeTSSETID) TINU°ST i) IT
{

((uSTo®ASTA, ‘@2121)I211B ‘T9CRTSSETO)Yd1RBW -> WNUSSETO

} ((T°qersseTo) TTnuU"sT j) IT
0 —> wnusseTo
(seyoueaqr) yabusT -> sayoueaqu

[u<Ie2T>, =i s3T7dsa]s3TtTdsa —> sayoduerIql
[u<FeST>, =i s3TTdsT]s3trdsT -> seyodueaqr
[u<FeST>, =i SATTAST]IeASSWRITSESSI] —-> SIRAYDURIQ

[2’] (0=uy3busTutw ‘FsTVi=9sdeTTod ‘eo313)sToqel -> s3TTdsa
[T’] (0=y3busTutw ‘FSTVI=osdeTTod ‘®213)sToqeT -> sS3TTdAST
} (TIaN=puedxe ‘FSTvd=ysaey ‘gzQ-o=dwunqg
‘g=m ‘TIAN=TSqeTSSeTd ‘ejep ‘ss13)uoTiouny -> dlwolssil

dTw ue 03 9513 UOTSTOSP 3IedI Ue JISAUOD #

(FSTVd) uaniax
{

(dNY¥l)uaniax (((¢ ‘o9p)butijzsgns)oTIswnu-’se
< ((¢ ‘[T]asTro®p)buTaisqns)oTIdUNU’SE) IT
IX2U (u<u =i (T ‘T ‘[T]3STTOOpP)I3sqns) JIT

} (u<u == (T ‘1 ‘O®p)a3sqns) 3IT SST®

(dndg1)uanisx (((g ‘o9p)burtajsqns)oTILduUnu’se
> ((¢ ‘[T]3sTTo9p)burtaisqns)orisunu-se) IT

Ixsu (u>u =i (T ‘T ‘[T]3STTO9pP)I3asqns) JT
} o(u>u == (T ‘T ‘oep)aasqns) JT
axau ([T]3sTTA3® ={ 33BOSpP) IT

} ((3sTTO®P) Y3busT:1 UT T) 03

} (3sTTOo®p ‘3sTT33e ‘O9p ‘33EOS9pP)UOTIOUNI -> OTFToadssIowsey

drtw sy3 uT buTuwuti] sueTdrsadAy swos MOTTE #

(1Tnsex)uaniax
sqybTems1TNsSaI —> siybTomMpauTeISITNSDI

(e3epigiTnNsar) ssweu —> (SIOTSSITNSSI) saweu

(T — syapImglnsai) — (SYIPTMSITNSSI)WNSWND —> SJOTSSITNSDI

(T

{
‘sy3apTmsatnsar)puadde -> SYIPTMEITNSDT

asT®
(([[A]]eaep)sTaaaTu ‘syjlptmglrnsaz)puadde —> sSYIpPTMEITNSSI
(([[A]])e3ep)a03oeI ST) IT
} ((e3ep3sarnsax)ssweu ut A) 107
TINN —> SU3pTMgITNSax
SUYIPTM pue sjoTs dn 39S #

((T + gu=moxu
/ (dwng ‘dung-
‘(s3and3nogaTnsax) Toou » (T + ZY))IJTUNT)XTIFeu
‘(T + Ty=moau
/ (dung ‘dung-
‘Zq x (T + TU))3ITUNI)XTIRU
‘(T + ((e3eP3$3TNSaI)XTIJRUW SB) TOOU=MOIU
4 (dung ‘dung-
‘TY * (T + ((e3eP3$3TNSaI)XTIJew se) [O0U)) JTUNT) XTIFew) ISTT -> SIULTeMEITNSST
{

(TeqeTaaTaTsodgaInsax ‘TaqeTsaTiebauslInsar)d —> saweuindinogiTnssai

(TeqeT ‘430u, ‘,°,=dos)s3sed -> TegelaaTiebsugiTnsax
TeqeT -> TagqeTeAaT3iTsodg3Tnsal
} esTe {
([[[[T]] (eTnwIoIgaTNS™I)sIeA"TTR]]RIARD)STOAST —> saweulndinoginsal

}((TeqeT) TTnU'ST) 3IT
(y/ (eaepagaTnsar)moau ‘(ejzepasatnsar)moau)ardues -> burddoisgiTnsax
(TeqeT ‘eaep ‘x)sindinolss -> sindinoglinsax
(ejep ‘xX) [opowlss -> eIEpPI$ITNSax
WdTw, -> (3Tnssx)sserd
0 -> syoodsgiTnsax
X -> BTNWIOISITNSSI
TIAN -> TogeTsaTiebsusiTnssa
TIAN -> TogeTsaT3iTsodsiTnssa
TIAN -> 3[nssx
} (Gzoo=dung ‘TIAN=T®9eT ‘zy ‘TYy ‘e3ep ‘x)uor3ouny -> diw
3oTpaxd o3 TageT sseTdo e HuTAIroads ATTeuorido ‘JTW I9AeT-F © OYEw #

(3TNnsax) uInlax
ToqeT -> (2INS9I) SaWeuTod
(T=Toou
‘(070 ‘0°T ‘Te9el == [T1](e3ep ‘x)oweIy’Topou)sosSTSIT)XTIJeU —> JINSDI
} esTe {
(3Tnsax)uanisx
([[T]]T®opow)sTeA®T —> (3TNSSI)SBWRUTOD
(([[4A]]e3ep) sTensTu=T02U
‘(0 ‘T ‘((TSpow)moIu=yoes
‘([l1]]Tepou)sTeasT)dex == [[T]]Tepow)esTeIT)XTIjeu-> 3TNsaI
[[T]](x)saea-TT® —> &
} ((TegeT) TTnU'ST) 3T
(e3ep ‘xX)swel]-Tspow -> Tapou
} (TIAN=T®9eT ‘e3jep ‘x)uoriouny -> sindinoiles
sandino diw I0J XTIJeW S0TU © O)ew #

(TopoWINo) UINISI

{

I030eIpabunu —-> [[A]]Tspowino
([[A]]Tepowano) sTeasT -> (I030eIpPabuUunu) ssweuTood
AﬁﬁﬁwgQHoUoEu:ovaw>wﬂ:uHou:

195

} estTe { ‘T + [[T] (zeag¢sspou) xs3oeaeyd se]sjoTsgatnsar] [[T]]saybremgaTnsax

{ ((€
([(sgoad) Too - xew] seweulndinogx) uiniysx ‘[T]s3TTdsT)buTailsgns)oTILaUNU" SE
} est1e { * M —> [wnuyoueaq‘T] [[T]]saybTemsaTnsax
((1eqersatTiebausx ‘Taqe(aaTarsodsx ‘G < sqoxd)9sTLIT)uinis }bo(u>w == (1’1 ‘[T]sarrdsT)aasqns) IT
} ((TeqeTeaT3Tsodgx) [TRU'ST|) IT 1 + WNUYDUBRIQ —> WNUYDURIQ
} (ussero, == adA3) IT } (0 < [T+wnusserd’T]greslgaweazsssl || ysaeyj) It
(sjybTempauTeIlgx ‘(T9pOowWIno)XTIlew'se)IJ -> sqoad } osTe {
{ (doamau ‘yoejysesTe])puadde -> 3yOeISOSTET
(e1ep ‘BTNWIOISX) [SPOWISS -> [IPOWINO {
} este { [(0e3sesTeT) yabusT-]3oe3sasTeI -> YOe1SasTeJ
©'1EPISX -> TIpowino } (doamsu < [(3oe3sssTe3)ylbust]yoeisssied
} ((e3ep) TTU ST) IT 3% 0 =i (3oe3sesTeI)y3lbusy) STTUM
} (- ‘,ssero,=a2dk3 ‘TIAN=EIEDP ‘X)uoTiouny -> dw-3oTpaid [(oe3sanay) ylbusT-]3oe3sanay —> doe3saniy
suoT3oTpaxd oxew o3 dlw Syl Ssn # [(0e3senzl) yabust]yoeissniy —> dojmsu
sesIq (0 == (yoe3ssnal)yabust) IT
{
{ {
((0°T ‘0°0)o=wrTZ M —> [[T]Teakgsspou ‘TrwnugesT] [[¢]]siybramgitnsaa
‘(967) sao100 0do3=T00 } ((TeqeTssero) TTnu’st) IT
‘(TpTI=moIu {
‘(saybTemgx ‘elep)I17)XTIjeU=2 {
‘(170 ‘0°%1T ‘0)bes=& m— —> [wnugesT’T+x] [[g]]siybremsaTnssa
‘(1°0 ‘0°%T ‘0)bes=x)sbewr } (([¥oe3sesTeI]seyouriqa
(0 ‘0 ‘0 ‘0 ‘0 ‘0 ‘T ‘(170 ‘pT ‘0)Axusb)purgo -> ejep ‘[doe3isesTeI] saeAYOURI]
} (sentea ‘ssanjes3 ‘x)uoriouniy -> diw-lord ‘[x]seyouraqa
2an301d A3381d B eyeu # ‘[x]saeayoueaq)orIToadsazowsey i) 3IT

} (yoe3sesTeI UT X) I0OF
{

(((0 ‘g ‘e)bss ‘(o/(e-q)=yoes ‘(o ‘q ‘e)bss)dsr)putqgo)uinisx Mm 4+ [wnugesT‘T][[z]]s3ybTeméyTnsaa
} (o ‘g ‘e)uoTiouny -> Axusb —> [unugesT‘T][[z]]s3iybTtemsiTnsax
soan3oTd dw buryew r10F sjurtod Jo pPTIb SUTT # } osTo {
M —> [wnugesaT‘T+x][[z]]s3aybTemsaTnsax
} (([¥oe3sesnai]ssyoueaqr
{ ‘[yoe3sena]] saeayoureaq
(1Tnsex)uaniax ‘[x]sayoueaqr
sqybTems1TNsaI —> siybTompauTeIl$ITNSaT ‘[x]sxeayoueiq)oTroadsazousey j) IT
{ } (yoe3lsenil ur X) I07
{ 0°c
(unuyouexq ‘yoelsenil)puadde -> yoelssnil / (1 - (doeasenil)yabusT x g) * m— —> [wnuTesT’T][[z]]saybremgatnsax
{ T + wnujesal -> wnujyeal
{ } ((1®qersse1d) [Tnu ST || wnusse(d == [T]1eadgsspou) IT
{ } (u<FeeT>, == [T]aeagsspou) IT
T+398330 -> 3988330 } ((sepou)moiau:l Ut T) IOF
{
M = [wnuyouexq TIAN -> ¥OoelsasTel
‘398330 + T TINN -> Yoe3senii
+ [[T] (zeagsspou) Is30eIRYD"Se]sjoTssaTnsax] [[T]]s3iybTemsaTnsaa SweIygssIl -> sspou
}o(a) IT 0 -> wnujesT
}o(OIT]] (w*a “[T1s3tTTdsT) 3TTdsaas 0 -> wnuyoueaq
suTy [[([T]aeagsspou)asioeaeyd-se]] (,STa2A9TX,, ‘®8I13)I33e UT () I0F
0 -> 388330 0°¢/M- —> [“T]1[[€]]saubramsaTnsax
0°¢/M- —> [wnuyoueaq’T] [[T]]s3ybromsinsax {
} esTe { (([[€]1s3ybTOMSEITNSET) TOOU=TOOU
M = [wnuyoueiq ‘([[€]]saybTemgaTnsar) MOIU=MOIU ‘M)XTI3eW —-> [[g]]saybTemgiTnsax
‘T + [[T] (zeag¢sopou) x210eIRYD *Sse]si0TssaTnsax] [[T]]saybTemgaTnsax } ((TegeTsse1o) [TnU"ST j) IT
((g :Asea sT ¢ xTalew Jo dnies #
‘[1]s3TTdsT)buTIilsgns)oTILUNU" SE
¥ M— —> [wnuyoueaq’T][[T]]saybTemgaTnsax (dumng ‘TegeTsSsSeTO ‘saaeaTu ‘saydueiqu
} (u<u == (T‘T ‘[T]s3tTdsT)a3sqns) 3IT osTe { ‘elep ‘((BTNWIOISTTRO$SDI]) TeAd)BTAWIOT "se)dTw —> 3TNSdX

dTw uo3lST9YS B oew 4

=

- = [wnuyoueIq

196

((((u u=des ‘T3qe1s ‘,30u,)s3sed
‘TageTs ‘TageTs
== [TeoqeTo ‘[[T]]3sTToTdwes]qpis)osTa3T
/(usseT1o,=2dA2
‘[*[[T]]3sTToTdWes] gpis=,iep
‘x)3o0Tpaad)sTgel) uiniax

} (T ‘x)uoriouny -> wodlwsayew

(2Tnsax)urnisx
(%) 3sooqdw -> 1S003s9q$ITNSaI
(%) 3sooadiw -> 23s0043TNsSaI1
yoodeisaqgsx -> yoodslsaggsiTnsax
syoodagx -> syoodssiTnsax
(x)ozTsdTw -> 9zTs$3Tnsax
(([[t]]13straTdwes)ylbust

/ ((XTIz3ewuoTsnjuod)beTp)umns) - T -> I0IID$3TNSaI
(T ‘x)uwodiweyew -> XTIFJPWUOTSNIUOD
TION —-> 3Tnsax

} (T ‘x)uoTiouny -> pIroosidlweeur

(([1oqeto ‘[[T]]3sTToTdwes]gpls
‘(ussero,=2dAq
‘['llT)]asTroT1dwes]gpis=e3ep
‘x)30Tpaad)aTgel) uiniax
} (T ‘x)uoTriouny -> wodlweyeu

(yoodelsagéx+3TNsaI) uanial
{
([[T]]1saybTemsx) Toou » ([[T]]S3aybTomMéX)MOIU + JTNSSI —-> JTNSSI
} ((s3jubrem¢x)ylzpusT:T uT T) I0F
0 -> 3Tnsax
} (x)uoT3ouny -> 3sooqdiuw

(syoodsgx+31TNsSal) uaniax
{
([[T]]saybTemgx) Toou + ([[T]]saybTeméx)mMoIu + 2ATNsaI -> J[Nsax
} ((s3jubrtemgx)yibusT:T uTr T) 0%
0 -> 3Tnsax
} (x)uotiouny -> 3sooadlw

((u uw=osdeT10o ‘3Tnsai)a3lsed)uinial
(([[(sauybtemsx)yrbus1]]saybTemsx) Toou ‘jrnssax)puadde -> jTnssx
{
(([[T]]s3ybTemsx)moau ‘arnssx)pusadde -> 3Tnssx
} ((s3jubtem¢gx)ylzpusT:T uT T) I0F
TIAN -> 3TNsa
} (x)uotiouny -> 2zTsdru

sjudwLRdx Sunaoddng 10j 3po) 7'qd

}

(x)urnisx

{

(¢°0 ‘utexjolsaybtem)ganizad -> urterjlolsiybriom
} esTe {
yeaiq

} (7oxI8UTW > IOoIILHUTUTRIY %% ([T]s3indino == s3ndino)Trei) IT

(doas=do3s

(usseT1o,=3dA3 ‘x)3oTpaad -> s3ndino

[[7]]1s3ybTemmau —-> JT0IISHUTUTEIY

[[z]l]1saybTemmau + syoodesx —> syoodssx

[[€]]saybTemmau + syoodesx -> yoodsissqsx

[[T]]saybTemmau —> SAUDTOMPAUTRIISEX

{
‘sw=sw ‘u=u ‘OT=0T ‘s3andinos¢x
‘uTexjolsiybrem

‘(e3jepasx) xtajew se)doadb -> siybremmau
} (udozdb, == odk3) IT esTe {

(doas=do3ls ‘wow=wow ‘u=u ‘OT=0T7 ‘s3andinosx

‘utexrjolsiybrom
/(e1epasx) XTIjRW: SB)wowpb —-> siybrTemmau
} (awowpb, == odA3) IT
} 3eadsx
s3jybtemsx —-> urexjolsjybreom
TINN -> s3ybremmsu
0 -> yoodsijsaqsx
0 -> syoodssx

(0T=do3s ‘Jur=z0axsutw ‘,wowpb,=sdA3 ‘g-p=wour ‘G/ - T=sw

(s

(P

(p ‘p-

‘(e3epasx)mMoIu/Q° T -> OT=2T ‘000€=U ‘x)uoTiouny -> dJwuTeI]
ejlep HuTUTEI] 9Y] UO S3eINndOE oI10w dTW SYJ SYew #

(%) uaniax
{
‘0 “(llTlIx)Toou » ([[T]]x)moau)juwroux + [[T]]x -> [[T]]x
}((¥)yabust:r ut T) 07
} (s ‘x)uoTiouniy -> osTOUpPpPE
sqybtem diw 03 9sTou ueTssneb ppe 4
{
(x)urniax
{
‘- ‘(L[T]]Ix)Toou » ([[T]]lx)moxu)FTuni + [[T]]x -> [[T]]X
} ((X)yabusT:T uT T) 03
} (p ‘x)uoTriouny -> ganjxad
saybtem drw gqanjasd #
{
(x)uanisx
{
“([[T]1x)Toou » ([[T]]l¥)moau)FTuna + (0x[[T]]¥) —-> [[T]]X

}((¥)yabust:T ut T) 07
} (p ‘xX)uoTiouniy -> osSTWOPURI
saybtem drw soerdex #

(sgoxd)uiniax

197

((([wuFu ‘¥ == T3qeTaAT3TS0d$0TIToads sdTwab]ot3Toads - sdrurb) uesw
‘WU\Ip°$ a)F3utads)jeo
. ((uw “wsSL$ w)3F3utrads)3ed
((([wuz, ‘x == ToqeT2aTATsod§oTyToads sdiux]oTyToads sdiux) uesw
‘wIb s u)3F3urads)jed
((((x ‘Teqero ‘sea13d)sugesiy)uesu ’ ‘wIv's UF STT%a)FIUTIdS)3EO
((([43509, ‘x == ToqeTaaT3Tsodgoryroads-sdiwab]oryroads sdiwab) uesw
‘WUN\F0'L% u)FAUTIAS) 3D
((([wdF. ‘% == ToqeraaTaTsodgoTyToads sdiuwab]lorgToads sdiwab) uesw
‘wIPT% u)FuTads)jed
((([42800, ‘%X == ToqeTaaT3TsodgoTyToads sdiwa]oTFroads sdiwr) uesw
“w30°L%) 33uTads)jed
((([wdTu ‘X == ToqeTaaT3TsodgoTyToads sdiwa]oTIToads sdTwI) uesw
‘wIv s) 3F3utads)3edo
((((x ‘TegeTo ‘sesx3d)sdFssaj)uesw ‘x ‘,Ip°s dI sSTT%,) FIuTtads) 3ed
} (([TeqeT2’]gpis)sTeael UuT x) 103
(wu\380D dTWI0 30D dTNY 2911 TaqeT) 3eo
} ()uotiouny -> oT3Toads - dump
} (Juot3iouny -> x@3eT-0T3Toads - dwunp
{
{
((([wuFu ‘¥ == TeqeTeATITSOd$OTFTORds "sdTuab]oTyToeds sdwib) uesw
‘WU\FP %) F3FuTads)jed
) ((uw “usSL% u)3F3utrads)3ed
((([wuFu ‘X == Teqer=2aT3TsodgoTyToads sdiua]orgroads sdiwr) uesw
, ‘uIP'% u)F3uTads)jed
((((x ‘TeqeTo ‘s9213d)suzyssal)uesw ‘,, ‘uJIp % UF STT%a)FIUTAAS)3ed

((([n3s0D, ‘x ToqeTaaT3iTsodsoTyToads - sdTwab]oTyToads “ sdTuab) uesw

N ‘WUNF0"L%) F3uTads)3jed
((([wdFu ‘x == TogeTaATATSOdgOTITOads “sdTwab]oTIToads - sdTwab) uesu
. ‘wIP 3% u)3J3urads)qeo
((([43809, ‘x == [eqeTeATaTsodgoTIToads sdur]oTIToads sdur) uesu
B ‘w30°L% w)3F3urads)3ed
((([4d34 ‘% == ToqeTaaT3TsodgoryToads - sdwi]orztoads - sdrwl) uesu
B ‘wIv s u)33utads)jeo
((((x ‘Toqero ‘seszad)sdyeszi)uesu ‘X ‘,Ip°s dI ST[%.)I3uTxds)qed
} (([ToqeT2‘]gp3s)sToas] UT X) 103
(wu\3s0D dTWd0 3s0D T so1L ToqeT) e

} ()uoTiouny -> OTITOoads - dwnp

(3Tnsax)urnisx
{
((Teqetrs ‘TeqeTo ‘T ‘[[T]]x)uzseal ‘3Tnsai)puadde -> 3Tnsax
} (sunx:T utr T) IOF
TINN —-> 3Tnsax
} (T=geTs ‘Tsge1o ‘X)uoTiouniy -> suJssil

(([TogeTeaTaTsod’Jwo)uns / [TegeTaaTiTsod ‘TeqelaaTiebau]wd)uiniax
((TegeToATIRbOU
‘Tegetaatitsod
‘TeqeTeaTiTsod == [T2qeTd ‘[[T]]3sTroTdwes]gpis)osTagT
‘(TeqeToATIRbOU
‘Taqetaatitsod
‘Teqereatitsod == ([‘[[T]]3sTToTdwes]gpis=e3epMaU

‘,SseT1o,=adAq
‘x)3oTpead)esTeIT)aTdel —> wd
(u uw=des ‘Tagetrs ‘,30u,)o3sed -> TeqelaaTiebau
T2geTs -> Tageraatitsod
} (TegeTs ‘Teqelo ‘T ‘x)uoTrTiounl -> uJosIil

(3Tnsax)uaniax
{
((Teqetrs ‘raqero ‘Tt ‘[[T]]x)dyssx3l ‘3Tnsax)pusdde -> 3Tnsax
} (sunx:T uT T) IOF
TION —-> 3T0s=x
} (T®geTs ‘Tsqe1o ‘x)uoTiouny -> sdissid

(([TeqeTeaTaebaU‘Jwo)uns / [TegeTaaTiebsu ‘TageTaaTiTsod]wd) uaniax
((TogeTsaTIEDBU
‘TegeTaaT3iTsod
‘Teqereatatsod == [TaqeTd ‘[[T]]3sTraTdwes]qpas)asTaIT
‘(TegeTaaTebaU
‘TegeTaaT3itsod
‘Teqereatatsod == ([‘[[T]]3asT[oTdwes]gpis=elepusu
‘.SseTo,=adA]
‘x)3oTpead) 8sTeIT)STqR} —> Wd
=des ‘ToqgeTs ‘,30u,)o3sed -> TageraaTiebau
ToqeTs -> TageraaTiTsod
} (T99eTs ‘Taqero ‘T ‘x)uoTiduny -> dzysesxl

(3Tnsax)urnisx
{
((T ‘[[T]]x)I0ax999173 ‘3Tnsax)puadde -> 3Tnssx
} (sunx:T utr T) IOF
TINN —-> 3Tnsaax
} (x)uoTriouny -> SIOIISSI]

(([[t]]astrordwes)yibust / ((([r2qero’[[T]]3sTToTdwes]gpls
‘(ussero,=2dAy ‘[‘[[T]]asTTo1dwes]gpis=elepusu
‘x)10Tpead)eTqel) beTp)uns - T)uinial
} (T ‘xX)uoTiouny -> I0II999173

(3Tnsax)uanisx
(x) 3sooqdiw -> 35003S3C$3ITNSaIT
(x) 3sooadiw -> 350043TNSaI
yoodsisasqgsx —-> yoodsisaggiTnssa
syoodsgx -> syoodsgiTnsax
(x)ozTsdw -> 9zTS$3Tnsal
TegeTaAaTIRHRUSX —> TageTaaTiebsugiTnsax
TogeTaaT3Tsodsx -> TageTaaTiTsodgaTnsax
([TogeTeATaTSOdSX /] XTIJRPWUOTSNIUOD) WNS
/ [TeqeTeaTaTsodgx ‘ToCe[oATILhOUSKX] XTIJRPWUOTSNIUOD —> UT$ITNSDI
([TogeTeATIRDOUSX /] XTIJPWUOTSNIUOD) WNS
/ [ToqeTeATIEbOUSK ‘TOCeTOATITSOdSX] X TIJRPWUOTSNIUOD —> dI§3Tnsax
(([[T]]astraTdwes)ylbust
/ ((XTIjPWUOTSNyuod)berp)wns) — [-> I0IISSITNSDI
(T ‘x)wodiwsayew —> XTIJRPWUOTSNIUOD
TIAN -> 3Tnsax
} (T ‘x)uoTiouny -> prodosadiusayeur

198

} (z =i sodutw) 3T
[wdOw ‘zloTqeadog[[T]]s®213 -> jurodsunad

T + ([ux0378%,
‘(eT1ge3dos[[T]]seax3)moausz]aTgeldos[[T]]seax3)UuTW YoTym —> sodutur
(wu\, ‘T ‘,2213 uotrsTo®p paunad ATysaey buTyew,)Ied

} (sunx:T utr T) I0OF
()3asTT -> sesaady

93], paunid JST Jo dnpps 9°q

(3utodsunad=do ‘[[T]]s®ax3)aunad -> [[T]]ssa13d
{
{
[wddu ‘T][‘23900% => [,I0118%,
‘sodutw:z]oTgeados[[T]]seax1] [‘sodutw:z]a1qeados[[T]]se211 —> uTodeunad
} esTe {
[udDu ‘xI200B => [,I0119%,,
‘sodutw:z]oTgeados[[T]]seox1] [‘sodutw:z]aTqeados[[T]]se211 —> uTodsunad
} (([‘zx800® => [,I0118%,

‘sodutw:z]oTqerdos[[T]]1seax7] [‘sodutw:z]aTgeldos[[T]]so913) 10309A°ST) IT
[wTI071719%, ‘sodutu]aTqeldos[[T]]s9s1] -> II900®

} (z =i sodutw) IT
[wdOw ‘zloTqeadog[[T]]s®213 -> jurodsunad

T + ([u¥0x78%,(5Tqe3adog[[T]]sea13)Mmou:z]aTqeddog[[T]]s92I3) uTW Yo TUM
-> sodutw

(wU\, ‘T ‘,2213 uoTsTOo®p pauniad buTyew,)ed
} (sunx:T utr T) I03F
()3STT -> seoa1ad

SU], paunid Jo dnjppg <'q

@913 -> [[T]]seax3
(0r0=do ‘1=3TTdsutw ‘[‘[[T]]3sTToTdwes-]gpis=e3ep ‘wiogqpls)izedi -> 2211
(wu\y ‘T ‘,I2qunu o211 dn HuT3lles,)Ied

} (sunx:T ut T) I0OZ

()3STT -> so213

S, UOISI(] Jo dnps g

(doxdeTdwes ‘Tage1o ‘gpas)gpdwesieils —> [[T]]3asTtroTdwes
} (sunx:T ut 1) I0Z
()asTT -> 3IsTroTdwes

$19G 1531, pasrwopuey Jo dmpg ¢'q

(WU\SUTTU\\ W) FB2

(u (dsT ‘doadyotnb) JTWY, ‘sdiwyxb)suttdwnp

(u (doxdsotnb) dTWd, ‘sdiwab)sutrdunp

(u (doxdsotnb) dTW, ‘sdiwb)sutrdunp

(u (EST ‘3us0seop JuaTpeab) JTWY, ‘sdiwyzx)sutrdunp
(4 (QUe0sep JuaTpeadb) JIWNE, ‘sdiwa)suttdwunp

(4 (3ue0sop juatpeab) dgTIW, ‘sdriwpb)sutidunp

((((seo213dy) s101199913) ULSW
WUNMA\N 0 % 0% 0% 0% 3€°% 3 (ST ‘peunad) 991l uOTsSTOSQ 3Inaas\\,)33utads)jed
((((seo213d) s1011999173) ULSW
WUN\A\N 0 2 0 % 0% 0% J€°3 9 (pounad) 9911 UOTSTOSQ INTIS\\,)Futads) 3ed
(WU\SUTTU\\u) 3B
(wU\\\\\ 2s0D 3seg » yoodg 3seg % 30D % syoody 3 IOIIT ¥ POYISW INIIS\\,) 3©0
(WU\SUTTU\\,) 3e2

} ()uoTiouny -> xajerdunp

(((3soo3seqgéx) uesu
/ (yoodejsaqsx) ueau
‘(3s00gx) uesuw

/ (syoodasx) ueau

/(101194 X) URBW
‘s YLuN\\\\ JOT% B 0% % JO'% B J0°% 3 FE€°% % Sg 3Inxas\\,)Fjurads)3ed

} (s ‘x)uotriouny -> autTdwnp

(((3s0o03saqs ((X)dweu-se) Tead) uesu
‘ (yoodsisaqs ((X) sweu- se) TeAs) uesu
/(35004 ((X)aweU" SB) TRPAS) UBRSUW
‘ (syoods¢ ((x)sweu-se) TeAs) Uesw
‘(101134 ((X)SwWeU"Sse) [eas)uesu ‘x
‘uU\I0" LY FO LS J0°L% FO0°L% FE'% :SGT%.)F3urads)aed

} (s3se3 utr x) 103
1SGT%,) FIuTads) 3ed
1SGT%,) F3uTads) 3ed

qeo

((((se=2x3dy) szoxaseax])uesu ‘,sssx3dy, ‘,u\J¢-"
((((se=213d) sz0axx989913)UPBW ‘,s9313d, ‘,u\I¢c"
(4U\23s00-3saq yoode-3saq 3SOD syoods sI0IID

%
%

(WU\BUTTU\\4) 38D
{

((([wuTu ‘¥ == ToqeT2ATATSOd$0TITOSds " sduab]orIToads sd{wib) uesu
SuINANN 3 Ip°g.) Fautads)3eo
((uw ‘u 3 SL%4)3F3uTads)3ed

((([wuFu ‘¥ == TeqeTeATITSOd$OT3ITORds “sdTur]oTFToeds sdwr) uesw
‘W % Ip°% u)JFauTads)qeo
((((x ‘Tsqero ‘s®sa3d)sugssai)uesuw ‘,, ‘,3 Jp'$ 3 UF B STI% InIas\\.)Fjutads)3ed

((([u3s002, ‘x == TaqereaTaTsodsoTyToads sdiwab]oryToads sdiwab) ueswu
“wu\\\\\ F0° L%) F3uTads)3ed

((([wdIu ‘x == ToqeT@aTaTsodgor3yToads sdrwab]orytosds sdiwib) uesw
‘w % Ipts w)Futrads)qeo

((([uw3s02, ‘x == T3qe[aAT3TsodsoTIToads " sdwa]oTIToads ~sdwa) uesu
‘w® F0°L% w)F3utrads)yeo

((([wdTu ‘¥ == ToqeT2ATATS0d§DTITOads "sdua]oT3T0o0ds " sdua) uesw

)
‘W% I¥°% u)3J3urads)3ed
((((x ‘Toqero ‘sesx3jd)sdzssxj)uesuw ‘X ‘,% Ip g % dI ® ST 3InIds\\,)J3utids)3ed
} (([T99e12’]gpas)sToAST UT X) IOJ
(WU\BUTTU\\u) 382
InTIS\\4) 380
(WU\SUTTU\\u) 382

(uu\\\\\3s0D 3 JTWNI0 3 3s0D 3 JTWA 3 9211 ®» aodAl =® ToqeT

)
n
} (Juotiouny -> dwnp

199

((wu=des ‘(yu=des ‘x ‘,-dniss,)o1sed)sised)soanos

} (s3se3 utr x) I03%

(¥ sea212dy-dnias,)a0In0s

(4¥°sea213d-dniss,) 201n0s

(u¥°s9911-dn3ss,) 90INn0S

(4¥d°S319s-3TUT,)20IN0S
(woT3T08ds *sdtwab, ‘,oT3To=ads*sdrux,
‘ysdiuyabs, ‘,sdruyzs, ‘,sdruyib,

‘usdtuyx, ‘,sdruzb, ‘,sdtuz, ‘,sdiwb, ‘,sdrupb,)o -> s3ise3l

(dndl=I9pesy ‘sweusTTF)ASDO peal -> gpis

€°0 -> 3ubresmpuex

0°0T -> II=w

Gz'0 -> doadstdwes
WBOTUTHITA,=T3qeTS
wSoTo0adg,=TageTo

66 " 0Q=swusb

000T —> uxew

G00°0 —-> oTu®b

Gz -> 3ybremushH

0€ —-> sunx

© . seoToeds -> wIoIOpls
WSTIT, -> sweujindino
uwASD PISTSTIAT, -> SWRUSTTJT
(u¥*Aoeanooe,)so1nos
(u¥-dTw,)s21n08s

(3xedx) AxeaqTT

juwLIdXy Aem-nnA [eNdAL, 6°9

(ybtomusb=m

((1 ‘drwr)wodrwerew ‘wd:sdiuI)puTgl —> wo sdlwx
(((T ‘diwx)prooazdiwexew)swer ejlep ‘sdiwi)putqr -> sdlwx
(qwoupb,=adAy ‘uxew=u ‘OTusb=0T ‘diwi)diwuterl -> dlwx

‘[“[[T]]3sTroTdwes-Jgpis=elep ‘[[T]]s®a13d)dwolssal —> drux

(wu\w ‘T ‘,7oqunu diwa dn burilss,)Ied
} (sunx:T utT T) I0T
TIAN —-> wo-sdjwx
TION —> sdiux

yuwiLRdXY JTINY [ed1dAL, 89

((T ‘drwpb)wodrwsyew ‘wo-sdiwphb)putgar -> wd - sdTwpb
(((T ‘drwpb)paoosadrwsyew)swer] -ejep ‘sdiwpb)putqr -> sdiwpb
(swdo3ls=dols ‘ITsW=I0IISUTU
4 woupb,,=adA] ‘uxew=u ‘OTusb=0T ‘diwpb)druureal -> drupb
(3ybtempuea=dung
‘((gpas) ssweu) yabusT
‘1-((gp3s) ssweu) yzbust
‘[“[[T]]3stToTdwes-]gpis=e3ep ‘wiojgpis)diw -> diwpb
(wu\y ‘T ‘., Zoqunu drwpb dn butr3iiss,)1ed
} (sunx:T ut 1) I0Z%
TIOAN —> wo*sdiupb
TIAN -> sdTupb

yuwiLRdxy JTIN eddAL, L°q

(3utodsunad=do ‘[[T]]s®a13)sunad -> [[T]]ssaxady
{
{
[wdDu ‘T][*x1900® => [,I01I8X,
‘sodutw:z]eTqeidos[[T]]seax3] [‘sodutw:z]aTgeados[[T]]sea11 —> juTodeunad
} este {
[udDy ‘Tx200® => [,I0118%,
‘sodutw:z]oTgeados[[T]]seax1] [‘sodutw:z]aTgeados[[T]]se211 —> 1uTodeunad
} (([‘xzxe00® => [,I0118%,

‘sodutw:z]oTqeados[[T]]seax]] [‘sodutw:z]oTgeados [[T]]so911) 10209A°ST) IT
1I93S + IOIIDUTW -> IIDD0®

[[uP3sx,]] [‘sodutw]aTqe3dog[[T]]soe13 —> 13938

[wT0110%, ‘sodutw]aTgeldos [[T]]se92I3 —-> IOoIIaUTW

200

