
Initialising Neural Networks with

Prior Knowledge

Nathan Rountree

A thesis submitted for the degree of

Doctor of Philosophy

at the University of Otago, Dunedin,

New Zealand.

September 2006

Abstract

This thesis explores the relationship between two classification models: decision

trees and multilayer perceptrons.

Decision trees carve up databases into box-shaped regions, and make predictions

based on the majority class in each box. They are quick to build and relatively

easy to interpret. Multilayer perceptrons (MLPs) are often more accurate than

decision trees, because they are able to use soft, curved, arbitrarily oriented

decision boundaries. Unfortunately MLPs typically require a great deal of effort

to determine a good number and arrangement of neural units, and then require

many passes through the database to determine a good set of connection weights.

The cost of creating and training an MLP is thus hundreds of times greater than

the cost of creating a decision tree, for perhaps only a small gain in accuracy.

The following scheme is proposed for reducing the computational cost of creating

and training MLPs. First, build and prune a decision tree to generate prior

knowledge of the database. Then, use that knowledge to determine the initial

architecture and connection weights of an MLP. Finally, use a training algorithm

to refine the knowledge now embedded in the MLP. This scheme has two potential

advantages: a suitable neural network architecture is determined very quickly,

and training should require far fewer passes through the data.

In this thesis, new algorithms for initialising MLPs from decision trees are

developed. The algorithms require just one traversal of a decision tree, and

produce four-layer MLPs with the same number of hidden units as there are

nodes in the tree. The resulting MLPs can be shown to reach a state more

accurate than the decision trees that initialised them, in fewer training epochs

than a standard MLP. Employing this approach typically results in MLPs that are

just as accurate as standard MLPs, and an order of magnitude cheaper to train.

ii

Acknowledgements

Most important of all, thanks to my wonderful wife Janet, for a truly amazing

amount of encouragement and support.

Many thanks to my supervisors, Associate Professor Anthony Robins and Doctor

Ian McDonald. Your unwavering belief that I could do this has meant a great

deal to me. Thanks also to Doctor Chris Handley, for your positive exuberance in

reading and commenting on drafts.

I would like to thank my colleagues Doctor Richard O’Keefe and Doctor Willem

Labuschagne. Both of you have had an enormous effect on how I see the world

of computing. Special mention must also be made of Professors Brian Cox and

Geoff Wyvill. Without your initial interest and encouragement, I wouldn’t be

doing what I’m doing.

Also, special thanks to the staff and students in the Department of Computer

Science at Otago. Your patience and understanding made it possible for me to

finish this thesis—what a great bunch of people to work with! Especially my

postgrad students: Yun Sing, Zhou, and Chris; thanks for being so patient these

last few months.

To Joe and Roanne at Profiler Corporation: thanks for giving me a shot. In many

ways, the extra stimulation really helped me to clarify my ideas, and get this

thesis finished.

I would not be able to do what I do but for my parents, who worked very hard so

that I could have the best education possible. Got there in the end! Thanks, Mum

and Dad. And thanks Marina, Bruce, and David for always being positive and

encouraging.

Finally, I cannot thank enough all the friends who have provided company, food,

and wine while Janet and I have worked on our doctorates. Janet’s brother David,

Corrin, Andrea, Sandy, Nuran, Ben, Sana, Dave, and Miche; thank you all.

I owe my thanks to so many; I hope I have not forgotten anyone. If so, please

forgive my oversight, and accept my gratitude.

iii

Contents

1 Introduction 1
1.1 Making Predictions . 1
1.2 Decision Trees and Artificial Neural Networks 2
1.3 Hybrids . 3
1.4 Thesis Structure . 4
1.5 Research Contributions . 5

2 Methods of Classification 7
2.1 General Issues . 8

2.1.1 Some Formal Notation . 8
2.1.2 Estimating Error . 10
2.1.3 Overfitting . 13

2.2 Discrimination Classifiers . 14
2.2.1 Linear Discriminant Analysis . 14
2.2.2 K-Nearest-Neighbours . 16
2.2.3 Support Vector Machines . 18

2.3 Probabilistic Classifiers . 18
2.3.1 Naı̈ve Bayes . 19
2.3.2 Logistic Regression . 21

2.4 Models That Partition the Feature Space 22
2.4.1 Decision Trees . 22
2.4.2 Artificial Neural Networks . 25

2.5 Remarks . 31

3 Decision Trees and Multilayer Perceptrons 32
3.1 Decision Tree Background . 33

3.1.1 History . 33
3.1.2 Splitting . 35
3.1.3 Pruning . 39

3.2 Multilayer Perceptron Background . 41
3.2.1 Notation . 41
3.2.2 History . 44
3.2.3 Modifying MLP Weight Update . 47

3.3 Transformational Perceptrons . 49
3.3.1 EBL Networks and KBANN . 49
3.3.2 Entropy Nets . 51

iv

3.3.3 Initialisation of MLPs by Decision Tree 53
3.4 Comments . 57

4 A Pilot Study 58
4.1 Introduction . 58
4.2 Experimental Tools . 59

4.2.1 Decision Tree Software . 60
4.2.2 General Description of the race Program 61
4.2.3 General Description of the pruner Program 64
4.2.4 General Description of the tester Program 65
4.2.5 General Description of the rules Program 66
4.2.6 Extension to Banerjee’s Method . 67
4.2.7 MLP Tools . 70
4.2.8 Gradient Descent Enhancements . 71

4.3 Pilot Study Questions . 74
4.4 The Databases . 75
4.5 First Four Experiments . 79

4.5.1 Iris . 81
4.5.2 Glass . 84
4.5.3 Synthetic Database with Categorical Attributes 87
4.5.4 Australian Credit Database . 90

4.6 Interpretation and Implications . 91
4.7 Final Two Experiments . 95

5 A General Method of Transfer from Decision Trees to MLPs 97
5.1 The Knowledge of Decision Trees and MLPs 97

5.1.1 A Simple Database with One Hyperplanar Decision Boundary . . . 98
5.1.2 Simple Databases with Two Hyperplanar Decision Boundaries . . . 103
5.1.3 Convex Regions . 105
5.1.4 Multiple Convex Regions . 106

5.2 Knowledge Transfer . 108
5.2.1 An Example . 114
5.2.2 Categorical Attributes . 115
5.2.3 Multiple Output Classes . 118
5.2.4 A Multiple Output Example . 118

5.3 Points of Difference . 121
5.4 Knowledge Refinement . 121

6 Experiments 124
6.1 Preliminaries . 124
6.2 Experimental Environment and Databases 126
6.3 Building Trees . 129
6.4 Building MLPs . 130
6.5 A Walk-Through . 131
6.6 Results . 135

6.6.1 Error Rates of Trees and MLPs . 135

v

6.6.2 False Positive and False Negative Rates 139
6.6.3 Partial Initialisation . 142

6.7 Summary . 143

7 Future Work and Conclusion 144
7.1 Research Contributions . 144
7.2 Summary of Material . 145
7.3 Future Work . 148

7.3.1 Arbitrary Statements of Knowledge 149
7.3.2 Initialisation by Oblique Decision Trees 149
7.3.3 Tree Structured Logistic Regression 150

7.4 A Final Note . 150

References 152

A C++ and C Source Code 159
A.1 The race Program . 160

A.1.1 Global configuration file . 160
A.1.2 The metadata Class . 160
A.1.3 The tuple Class . 161
A.1.4 The decision Class . 163
A.1.5 The histogram Class . 164
A.1.6 The count matrix Class . 166
A.1.7 The decision tree Class . 168
A.1.8 The classifier Class . 171
A.1.9 race . 175

A.2 The pruner Program . 176
A.3 The tester Program . 179
A.4 The rules Program . 179
A.5 The mlp Program . 182

B R Source Code 192
B.1 Code for Manipulating MLPs . 193
B.2 Code for Supporting Experiments . 197
B.3 Setup of Randomised Test Sets . 199
B.4 Setup of Decision Trees . 199
B.5 Setup of Pruned Trees . 199
B.6 Setup of 1SE Pruned Trees . 199
B.7 Typical MLP Experiment . 200
B.8 Typical RMLP Experiment . 200
B.9 Typical Multi-way Experiment . 200

vi

List of Tables

2.1 The BGB Example Database . 9
2.2 An Example Confusion Matrix . 12
2.3 A Database with Interacting Categorical Features 20

3.1 Example EBL Rule Base . 50

4.1 Attributes Contained in the Surgical Audit Database 78
4.2 Attributes Contained in the German Credit Database 78
4.3 Iris Database: Accuracy over 10-fold Cross Validation 84
4.4 Glass Database: Accuracy over 10-fold Cross Validation 87
4.5 Synthetic Database: Accuracy over 10-fold Cross Validation 90
4.6 Australian Database: Accuracy over 10-fold Cross Validation 93
4.7 Cross validation results for Surgical Audit and German Credit databases . . 96

6.1 RMLP Results for the Iris Database . 135
6.2 RMLP Results for the Pima Database . 136
6.3 RMLP Results for the Segment Database 137
6.4 RMLP Results for the Heart Database . 138
6.5 RMLP Results for the Australian Credit Database 138
6.6 RMLP Results for the German Credit Database 139
6.7 False Positive and False Negative Rates for All Databases 141
6.8 Partial Initialisation Error Rates . 142
6.9 Partial Initialisation Costs . 142

vii

List of Figures

2.1 The BGB database represented as objects in a feature space 10
2.2 An idealised plot of model complexity against error rate 13
2.3 LDA line separating two clusters of the BGB database 15
2.4 Demonstration of KNN on the BGB database with k = 7 17
2.5 Discretisation of the BGB database . 21
2.6 Decision tree derived from the BGB database. 23
2.7 Boundaries implied by the decision tree in Figure 2.6 24
2.8 A schematic diagram of Rosenblatt’s perceptron 27
2.9 An MLP for modelling the BGB database 29
2.10 MLP decision boundaries through the BGB database 29

3.1 Translation of EBL to MLP . 50
3.2 Sethi’s translation from decision tree to MLP 52
3.3 Banerjee’s translation from decision tree to MLP 56

4.1 Pre-processing a database for SPRINT . 61
4.2 Idealised error rates of a sequence of pruned trees 66
4.3 An ineffective way to represent nominal attributes 68
4.4 A working representation of a nominal attribute 69
4.5 Error-reduction rates on the Iris database for MLPs 81
4.6 A comparison of MLP learning speeds on the Iris database 82
4.7 Error-reduction rates on the Glass database for MLPs 85
4.8 A comparison of MLP learning speeds on the Glass database 86
4.9 Error reduction rates on the Synthetic database for MLPs 88
4.10 A comparison of MLP learning speeds on the Synthetic database 89
4.11 Error-reduction rates on the Australian database for MLPs 91
4.12 A comparison of MLP learning speeds on the Australian database 92

5.1 A database that follows a simple classification rule 98
5.2 An MLP with a single axis-parallel soft hyperplane 99
5.3 An MLP with a sharper soft hyperplane. 100
5.4 An MLP with a single oblique soft hyperplane 101
5.5 A one-node MLP acting as a logistic regression model 102
5.6 An MLP with two soft hyperplanes . 103
5.7 An MLP with two soft interacting hyperplanes 104
5.8 An MLP with four soft hyperplanes modelling a convex region 105
5.9 A database that requires the modelling of two convex regions 107

viii

5.10 An MLP capable of distinguishing two convex regions 109
5.11 An MLP with one re-curved soft boundary 110
5.12 An MLP that deals with a mixture of continuous and categorical input . . . 116
5.13 A decision tree corresponding to a particular set of rules 120

6.1 Effects of weight strength on MLP training 134

ix

List of Algorithms

3.1 BUILD-DECISION-TREE(D): Build a decision tree given a database 36
5.1 SET-WEIGHTS(tree , class , truelist , falselist): Set the weights of an MLP

with all continuous inputs and one output 113
5.2 INIT-MLP(tree , database , class): Initialise an MLP with continuous inputs

to recognise one output class . 114
5.3 SET-WEIGHTS-MIXED(tree , class , truelist , falselist): Set the weights of

an MLP with mixed continuous and categorical inputs and one output 117
5.4 INIT-MLP-MIXED(tree , database , class): Initialise an MLP with mixed

continuous and categorical inputs to recognise one output class 117
5.5 SET-WEIGHTS-MIXED-MULTI(tree, truelist , falselist): Set the weights of

an MLP with mixed continuous and categorical inputs and multiple outputs 119
5.6 INIT-MLP-MIXED-MULTI(tree , database): Initialise an MLP with mixed

continuous and categorical inputs to recognise multiple output classes . . . 119

x

Chapter 1

Introduction

1.1 Making Predictions

To what purpose do we collect data? We certainly collect a lot of it—almost every article on

data mining begins with some comment about “drowning in data”—and we spend a good deal

of money storing it, querying it, and generating reports from it. Retaining records allows us to

revisit the past, or at least review pertinent features of it, in a manner that would be impossible

if we relied only on human memory. However, we do not collect data at such a rate merely

for the sake of keeping records, nor as a convenience for tax gatherers, nor even to review

performance with an eye to rewarding the strong and punishing the weak. We do it because

we hope that, if only we gather enough good data, we will be able to predict the future.

Any database is no more than a collection of measured features of some real-world objects.

Some features allow us to categorise objects into groups (those that default on loans, or emit

light at a particular frequency, or have six cylinders) while others provide unique identification

(such as a name or a serial number). Sometimes, a measurement for a particular object

is missing; either because it was not recorded at the time, or because it is not yet known.

Statistical reasoning suggests that the missing data may be inferred from the rest with some

degree of accuracy: possibly high if the other data are pertinent to those missing, probably

low if not. Predicting the values of unknown features is engaging in a form of prophecy, and

gambling that the future will be much like the past.

The process of deciding just how the missing data should be inferred is that of creating a

model. A model may be a simplification of the data one has (in the same way that a model

aeroplane is a simplification of an aeroplane), or a simple way to view all of the available data

(like a photograph of a real aeroplane), or perhaps both. There are many ways of building

1

models, and many ways of using them to make predictions. It is therefore convenient to

categorise models into families.

There are two major families of prediction model. If the missing data are measurements of

some continuous value, then we are dealing with a regression model. If they are categorical,

then we are dealing with a classification model. In both types of model, the output of the

model need not be a value of the same type as the one being inferred. For instance, it may

be useful in regression to state a range that the predicted value falls into (e.g. high, medium,

or low), and in classification it may be useful to state a probability that the predicted group

is correct (some real-valued number between 0.0 and 1.0). As a result, the families can be

somewhat muddled; for instance, logistic regression is used to estimate the probability that an

object falls into a particular class: a classification model by usage, but a regression model by

name.

In both families, an instance of a model is said to generalise well when it performs

accurately on data that was not used in its building. Performance may be poor for two reasons:

either the model is too simple, in which case it cannot account for complex structure in the

data, or it is too complex, in which case it will overfit the data used to build it, mistaking noise

for structure. Herein lies the difficulty of building good models. Those that have the potential

to overfit data must be constrained so that they do not, and models that are too simplistic

for the data at hand must be augmented in some fashion. Whether and how to simplify or

augment models are non-trivial questions.

1.2 Decision Trees and Artificial Neural Networks

This thesis is concerned with two popular classification models: decision trees and artificial

neural networks. Both are very powerful models, in that they can grow complex enough

to overfit data. Both are used in the discipline of data mining, which is a blending of the

fields of database systems, artificial intelligence (especially machine learning), and applied

statistics (particularly statistical modelling and inference). The twin concerns of data mining

are description and prediction: helping database owners understand the nature of their data

by describing its structure, and using the data to build predictive models. Some techniques

participate in both roles; for instance, decision trees provide rules that describe cluster

boundaries in the data, as well as providing predictive models. Other techniques sacrifice

interpretability for modelling power and, we might hope, greater accuracy. The most famous

artificial neural network of all, the multilayer perceptron (MLP), is often described as just

such a “black box.”

2

Data miners are pragmatic: if accuracy is really important, then a highly accurate “black

box” model will be preferred over a less accurate, more easily interpreted model. It is a

rare textbook on data mining that does not mention “neural nets” in this context, but few

will propose serious use of them, citing a number of concerns. The problem that seems to

dominate is that artificial neural networks require many passes over the data to “converge,” or

to find that set of parameters that make the model as accurate as possible. If the database to be

modelled is large, then this will take an infeasible amount of time. Furthermore, the analyst

may have to repeat the whole process several times with differing architectures (i.e. differing

numbers and arrangements of the neural units that comprise the model) because there is no

reliable way of determining a good architecture a priori.

Nevertheless, there is a sense—almost an article of faith—that, if one can find a good

architecture and a good set of parameters, then a neural network will generalise well. This

seems to be bolstered by a commonly stated observation that, even when neural networks are

overfitted, they often behave as if they are not. Sometimes, accuracy is king—the model that

gives the right answer most often is preferred over the model that is easy to interpret.

In contrast to artificial neural networks, decision trees are often seen as a good initial

choice for data mining. They are quick to build, easy to interpret, and powerful enough to

model quite complex data. But the “decisions” in decision trees are harsh: slicing up the

data along knife-edge boundaries, producing perfect little cuboids of data. On one side of

the boundary, an object is predicted to be in one class, on the other side, another. Neural

networks, on the other hand, infer soft, curved boundaries through the data. This gives us

some reason to expect that, in modelling data from real world situations, neural networks

could do better than decision trees.

1.3 Hybrids

A handful of authors over the last two decades have put forward the following proposal. If you

wish to model a database using a neural network (specifically, an MLP) but are frustrated by

the infeasibility of searching for a good architecture and good free parameters, then perhaps

it is worth building a decision tree first, and then using that decision tree to determine the

architecture and free parameters of an MLP. If you then optimise the free parameters of the

MLP in the usual way, the process should end sooner due to it having started in a fairly

good state. If you view the original decision tree as a form of “knowledge,” then the process

represents a form of “knowledge refinement,” as long as the final model generalises better

than the initial one.

3

The process of initialising a neural network by a decision tree represents a special form of

hybridisation—that of combining a symbolic form of knowledge representation (a decision

tree) with a “connectionist” form (an MLP, inspired by biological neural structures). This is

inherently interesting, since it is something that human beings can do: take symbolic knowl-

edge (e.g. “things with teeth and claws are dangerous”) and integrate it into a connectionist

structure almost immediately (sometimes you only have to tell someone once).

In all of the published material in this area—and there is surprisingly little—one thing

stands out. It is rarely questioned that an MLP is a more desirable model than a decision tree. It

is always assumed that an MLP is a better tool for the job, and that changing the representation

from decision tree to neural network is a good idea. This seems worth examining. Why

should we expect neural networks to do better? The mere fact that an MLP might have a

more accurate state than a decision tree is no guarantee that we will find it. With notoriously

unreliable parameter optimisation algorithms, why should we expect knowledge to be “refined”

at all? If we use an initialisation process like those already published, should we ever expect

the MLP to have (or find) any state that generally makes fewer mistakes while classifying

new instances?

Given that some algorithms exist for initialising neural networks with decision trees,

do they actually do what we want? What do we want from such an algorithm anyway? If

we should want something different, then what would that be? Is it possible to describe an

algorithm that, given any database, could produce tree and network models that are equivalent?

And, if one were to run standard “learning” algorithms on the resulting neural network, is

its accuracy even likely to be improved? Could some optimisation algorithms work better

than others? And if one were to describe an algorithm that worked in the general case, is it

possible that the ideas behind it could be applied to other neuro-symbolic hybrids?

1.4 Thesis Structure

This document will try to shed some light on the questions raised above, in roughly the order

that they are stated. In Chapter 2, we examine six different types of classification model, for

two reasons: to provide some historical context for decision trees and neural networks, and

to compare and contrast what they can and cannot be expected to do in terms of modelling

power. Chapter 3 provides a review of three areas of literature: decision trees and their use,

MLPs and their use, and hybrid systems that attempt to derive MLPs from decision trees. It is

established that, from a data mining perspective, none of the current methods do quite what

we would ideally like, although some are quite close.

4

In Chapter 4, a pilot study is described in which one of the hybridisation methods from

the previous chapter is implemented and tested on some real and synthetic data. The purpose

here is not to be exhaustive, but to get some sense as to whether such techniques are likely

to produce good results. While previous work has established that the error rate of hybrid

neural networks plummets briskly during parameter optimisation, it is not established that the

final state is any better in terms of generalisation accuracy. Here, we see that at least some

situations exist where the network can be expected to do better, and that it is therefore worth

the effort to initialise MLPs with prior knowledge.

Next, in Chapter 5, an attempt is made to generalise the concept of knowledge transfer

between decision trees and MLPs. To do so, it is necessary to become more precise about

what each unit in a MLP does, and how layers interact with each other. A compact notation for

MLPs is derived, emerging from a link between MLPs and tree-structured logistic regression.

The notation makes it possible to describe a simple recursive algorithm that traverses a

decision tree, visiting each node exactly once, generating an MLP that precisely mimics the

behaviour of the original tree. The examination of the internal behaviour of the network also

leads to a precise theory of what the MLP might do to better the accuracy of the tree that was

used to initialise it.

Chapter 6 contains a demonstration of the new MLP initialisation algorithm, using some

well-known databases from the Machine Learning Repository of the University of California

at Irvine. An earlier concern, the extent to which redundancy in the MLP is useful, is also

revisited. Chapter 7 concludes the thesis with a summary that addresses some of the questions

raised in the introduction, and proposes some avenues of future research.

1.5 Research Contributions

The major aim (and primary contribution) of this thesis is to propose new algorithms for the

initialisation of MLPs with decision trees. The context for this work is therefore the research

of Sethi (1990), Ivanova and Kubat (1995), and Banerjee (1997). This thesis extends that

work, explains why it works, estimates the extent to which we should expect it to work, and

presents methods to make it work as efficiently as possible. To support this aim, the following

material is presented in this thesis:

• A review of crucial concepts in the problem of classification.

• A review of the development of decision trees, MLPs, and hybridisations of the two.

5

• A characterisation of MLPs that removes all architecture except the connection weights,

allowing a simple recursive procedure to perform the feed-forward function.

• An empirical study of the question of whether we ought to expect tree-initialised MLPs

to out-perform the trees that initialised them (a question not yet considered in the

published literature).

• A statement and explanation of new algorithms for initialising MLPs from decision

trees, that produce MLPs with the minimum possible architecture for the purposes of

representing the original decision tree.

• An empirical study of those algorithms to establish that they do indeed produce MLPs

that train faster and are more accurate than both MLPs produced by standard methods,

and than the trees used to initialise them.

6

Chapter 2

Methods of Classification

The word “classification” has come to refer to a particular type of data mining activity that

has two phases: first, the construction of a predictive model, and then the application of

that model to predict the class membership of unclassified objects. While some authors use

alternative terms to refer to the first phase (e.g. “predictive modelling for classification” in

Hand, Mannila, and Smyth (2001)), others use the term to refer to both phases as a genre of

data mining (see, for example, Dunham (2003)). Some authors consider classification to be the

main task of data mining rather than just one of many possible data mining activities (see, for

example, Weiss and Indurkhya (1997), Witten and Frank (1999)). To confuse matters further,

members of the AI community may refer to this activity as “machine learning” (Mitchell,

1997), “inductive learning” (Shavlik and Dietterich, 1990), or “supervised learning” (Bishop

(1995), Reed and Marks (1999), and many others). From this point on, classification will be

used to refer to the entire process of building, evaluating, refining, and using a classification

model.

The following sections are intended to provide a sense of the overall landscape of clas-

sification techniques. There is no attempt to separate classification methods systematically

into families, although themes of discriminatory and probabilistic methods will emerge. The

purpose of this overview is not to suggest that tree methods or multilayer perceptrons are

the pinnacle of classification techniques, but to contrast their nature with other methods and

show why they are interesting from a practical data mining viewpoint. At the same time, we

shall establish some notation and general ideas common to all classifiers, such as estimating

misclassification rate. There is no attempt to be exhaustive in identifying all methods used in

pattern recognition; for instance, there is only a light discussion of support vector machines

(Vapnik, 1995) or rule-based methods such as PRISM (Witten and Frank, 1999). For truly

comprehensive overviews of classification, see Bishop (1995), Hastie, Tibshirani, and Fried-

7

man (2001), or Duda, Hart, and Stork (2001). The following material attempts only to make

clear the “landmarks” of the classification countryside, and to indicate their relevance to the

task of initialising neural networks with prior knowledge.

2.1 General Issues

2.1.1 Some Formal Notation

Suppose we are interested in discriminating between members of several groups. Perhaps we

should like to be able to discriminate between good and bad debtors in a set of customers, or

maybe between safe and poisonous fruit to eat. Perhaps, more ambitiously, we would like to

assess our entire surroundings and distinguish between those situations in which we should

run and hide or stay and fight. If we have a record of the outcomes of previous situations

(or customers, or fruit), then any strategy developed for dealing with new situations can be

checked by seeing if its result would be correct for the previously encountered (and correctly

labelled) data and modified if it gets the wrong answer. This process is usually referred to as

supervised learning. Having developed the strategy, it can be applied to new situations. If

the supervised learning process went well, then the strategy should produce a good outcome

more often than a random choice would.

More formally, suppose we have a database D whose rows consist of n observations,

with the ith observation Di of the form x = x1, x2, . . . xm where there are m features. The

features may be continuous (a measured quantity such as 181.3 cm or 35 years), ordinal

(discrete ordered values such as an education level or a preference rating), or nominal (an

observed quality such as blue or female). Ordinal and nominal features are collectively

referred to as categorical. Each row in the database has one further attribute xm+1, which

can take on one of y possible class labels from the set {c1, c2, . . . , cy}. D is our training set

for supervised learning; it consists of our experience of prior outcomes. To simplify this

exposition, we shall make several assumptions regarding D, namely:

1. D contains no missing or incorrect values; that is, each observation in D has been

recorded accurately, precisely, and thoroughly. Unknown values in training sets cause

problems of varying degree for different classification methods, and are beyond the

scope of this study. See Hastie et al. (2001, p293 ff) for a brief treatment of the issue,

or Little and Rubin (1987) for an entire book on the subject.

8

2. The relative frequency of each class label ci in D reflects the frequency in the “real”

world; no attempt has been made to collect disproportionately more examples of a

particular class.

3. The features recorded in D have at least some relationship with the class of each object.

If all of the features and combinations of features are strictly independent of the class,

the resulting classifier will be unable to make better-than-chance predictions.

As an example, consider the database in Table 2.1. Here we have n = 30 observations,

m = 2 features (both continuous), and y = 2 class labels (c1 = bad and c2 = good). Perhaps

these are observations of the leaf length and width of some newly discovered plant that is

supposed to be “good” for a particular purpose (perhaps eating, or the production of a drug)

but, in some cases, is not. We shall be returning to this database often, so it needs a name: due

to its clusters of bad , good , and bad objects, it shall be referred to as the “BGB” database.

It is common to think of the features defining a “feature space,” with the range of values of

each feature providing coordinate axes. Each object x in D can therefore be treated as a vector,

in which case we can think of it as defining a point in m-dimensional space; straightforward

for continuous features (just think of each feature’s value as a Cartesian coordinate) but harder

to conceptualise for ordinal features (is satisfied exactly in-between unhappy and thrilled?)

and taking on a completely different, non-Euclidean meaning with nominal features (should

red be plotted to the left or the right of yellow?). As a simple example of a feature space,

Figure 2.1 shows a plot of the BGB database, with circles representing the label good and

triangles representing the label bad .

We now have sufficient terminology and notation to define classification quite precisely:

given any object represented as a vector x of feature values, from training set D, or possibly

from a previously unseen test set, predict the class label c that should be associated with x.

To make that prediction, we assume the existence of a function f that maps a feature vector to

Table 2.1: The BGB Example Database

length width class length width class length width class
9.43 11.59 bad 13.20 8.65 good 14.07 0.68 bad
7.58 9.68 bad 9.57 5.67 good 13.52 2.13 bad
5.90 10.38 bad 11.72 7.92 good 12.16 2.33 bad
5.23 8.92 bad 7.53 3.10 good 16.11 7.17 bad
6.18 9.15 bad 7.01 2.09 good 12.35 3.60 bad
4.47 6.66 bad 5.59 2.08 good 16.56 5.90 bad
4.62 8.31 bad 11.14 4.72 good 15.51 4.77 bad
6.79 6.98 bad 7.56 2.79 good 12.84 2.10 bad
5.05 9.86 bad 11.17 5.99 good 14.54 1.71 bad
5.79 9.61 bad 9.61 4.66 good 13.73 1.74 bad

9

4 6 8 10 12 14 16

0
2

4
6

8
10

12

Plot of BGB database

length

w
id

th

good
bad

Figure 2.1: The BGB database represented as objects in a feature space

a class label, or possibly to a tuple consisting of a class label and the probability of error. In

practice, f must be constructed in such a way that, if possible, it has a higher probability of

being right than a) random guessing, or b) consistently predicting the most common class.

Classification is the task of constructing, evaluating, and using such a function.

2.1.2 Estimating Error

Leaving aside for the moment how we might construct f , we need to consider briefly how we

might evaluate its performance. The most straightforward method is just to ask “if we used f

a large number of times, what proportion of results would be wrong?” This quantity is R∗(f),

or the misclassification rate of f .

When the probabilistic effects of the features on the class labels is fully known in advance,

as is the case when generating synthetic data rather than collecting data from the real world,

then it is possible to state the error rate of an optimal classifier. This “ideal” error rate is

referred to as the Bayes optimal misclassification rate. If there is any “noise” in the data’s

generating function, then the Bayes optimal rate will be greater than zero. In the case of

artificial data generation, noise is usually a result of randomly reassigning class labels, in

10

order to simulate the noise of real-world situations. In measuring the features of real objects,

we have many sources of error: imprecise or inaccurate measurement tools, data entry error,

failure to measure pertinent features, and a host of others. As a result, two very similar or

even identical objects may have differing class labels, making it impossible to achieve perfect

classification.

Estimating the misclassification rate of a classifier is not completely straightforward. Using

the data on which f was built to estimate R∗, producing R(f), the resubstitution estimate, is

usually unsatisfactory. Most classifier-building procedures do their best to minimise R, but

may well have a higher R∗. To put it another way, we expect that f may not perform as well

on new data as it does on the data with which it was constructed.

The usual solution for estimating R∗ is to hold data aside during the construction of f

so that it may be used to estimate R∗(f) without having been used to build f . A common

practice is to hold back a third or a quarter of the training data during construction of f , then

test f on the held-back portion and record the number of errors. This is quite satisfactory

when data for a training set is readily available, but not as convenient when data are scarce.

If there is barely enough data to build f , then it is common to use v-fold cross validation to

estimate the error, where v is a constant chosen so that an attempt to classify n
v

objects would

yield a reasonable estimate of R∗(f). The procedure works as follows. First, build f using

D as the training set. Next, split D into v disjoint sets of the same size, called d1, d2, . . . , dv.

Now, build v classifiers fi = f1, f2, . . . , fv using as the training set D with the items in the

corresponding di left out. Having constructed each fi, estimate its error Ri(fi) by testing it on

di. The final estimate for R∗(f) is the mean of those error rates. Breiman, Friedman, Olshen,

and Stone (1984) discuss v-fold cross validation in Chapters 1, 3, 8, and 11 of their book on

decision tree classifiers. The topic is also important in relation to constructing classifiers that

fit the training data too precisely, reducing R at the expense of R∗. This issue is discussed

further in the next section of this chapter.

Although it is useful to have a good estimate of how often a prediction is likely to be

wrong, focusing exclusively on R∗ can be misleading. For instance, R∗(f) may be 0.1,

which seems quite good (it gets 9 out of every 10 predictions right) until one finds that the

incidence of class c1 in D = 95%, with the incidence of class c2 = 5%. In that case, f is

not doing as well as function g(x) = c1 (a function that always returns c1) which will be

correct 95% of the time. Nor will it be doing as well as a function that makes a random

selection from a distribution of D’s class labels (which has a probability of being correct of

0.95× 0.95 + 0.05× 0.05 = 0.905, or 90.5%). Is there a situation in which f is still useful

despite these apparently unfortunate results?

11

Table 2.2: An Example Confusion Matrix

predicted class
positive negative

actual class
positive 5 0
negative 10 85

We might accept an apparently bad misclassification rate if the cost of false positives

or false negatives is too high. Suppose c2 represents the presence of a particularly virulent

disease, and c1 represents the absence of that disease. Suppose further that the disease is

particularly difficult to detect—perhaps the test is very prone to error or contamination—but

the cost of not detecting it when it is present is very high. In this situation, the analyst wants

no false negatives, that is no result that says the disease is not present when in fact it is. To do

that, it may be necessary to make the test very sensitive; so sensitive that it may report the

presence of the disease even when it is not there. The resulting classifier has a rather high

false positive rate. Under the circumstances, this is preferable to the alternative; although

a test subject may be concerned that the disease is present when it is not, this is better than

believing the disease absent when it is in fact present. The overly sensitive test may be useful

as a “screening” test for another test that is more accurate, but much more expensive.

Consider the “test” in question to be our classification function f . If, out of 100 tests, f

reports 85 true negatives, 0 false negatives, 10 false positives, and 5 true positives (when the

known incidence is 5%), then it matches our desire for a highly sensitive test—even though

R∗(f) is 0.1. We refer to the likelihood of a “positive” when the correct answer is positive as

sensitivity and the likelihood of a “negative” result when the correct answer is indeed negative

as the specificity of f . Occasionally, we find that a procedure for constructing f looks poor

when considered in terms of R∗, but looks much better when considered in terms of sensitivity

and specificity.

The differences between what a classifier predicts and what is actually the case may be

tabulated in a confusion matrix, as shown in Table 2.2. Each cell can be associated with the

“cost” of having an entry in it, so that f ’s performance can be weighted for specificity or

sensitivity. Clearly, it is easy to extend the matrix with further class labels and costs so that

the overall cost of a particular f may be calculated. Furthermore, a table of this type may be

used during the construction of f , so that the type of error to be minimised is not necessarily

the raw misclassification rate; we may be happy to accept a poor accuracy overall if it allows

f to be particularly sensitive to a class of interest to us.

12

model

typically preferred

training set

test set

error rate

complexity of model

Figure 2.2: An idealised plot of model complexity against error rate

2.1.3 Overfitting

Some classifiers are constructed in such a way as to fit the training data perfectly, usually by

making the predictive model more and more complex. When R(f) is made perfect, R∗(f) is

unlikely to be very good because the classifier has fitted all the noise in the data as well as

the structure. In this situation, an outlier or measurement error in the training data will have

an undue influence on the quality of a prediction made about a new object. Such models are

referred to as overfitted. In general, classifiers that are prone to overfitting require strategies

to keep them just simple enough, but not so simple as to be unable to model structure that is

really there.

In practice, dealing with overfitting is related to estimating misclassification rate. If one

plots the error of a successively more complex classifier on a training set, it will steadily

decrease until it reaches the Bayes optimal misclassification rate on the training set (assuming

it is free to add parameters without limit). On test data (i.e. data not used to train the model)

the error will start high because the model is too simple, decrease as the classifier’s complexity

increases, then begin to increase as the model becomes overfitted. An idealisation of this

situation is plotted in Figure 2.2.

One of two solutions to overfitting is usually employed, depending on the nature of the

classifier being built. Either the model is made as complex as possible first (so that it is likely

to be overfitted) and then “pruned” back until it reaches the smallest possible model with

acceptable error on test data; or, the model starts off simple and is made successively more

complex, but is “stopped early” when its error rate on test data begins to rise. In either of

these situations, cross validation is sometimes used to estimate a sensible misclassification

rate for the model to aim for.

13

2.2 Discrimination Classifiers

Given the large number of methods that researchers have developed to construct classifiers,

writers often try to categorise methods under headings such as “discriminative” or “probabilis-

tic.” This sometimes has the unfortunate effect of ignoring the spatial nature of a supposedly

probabilistic method, or vice versa. Instead, the following methods are organised according

to historical context rather than their mathematical underpinnings. As we shall see, some

methods only make sense if their spatial and probabilistic natures are considered at the same

time.

2.2.1 Linear Discriminant Analysis

Fisher (1936) is usually cited as the first serious attempt to build a function whose purpose is

to discriminate between classes. The idea is to project each multidimensional point onto a

single dimension, chosen so that the centres of the class groups are as far apart as possible.

The vector that will do this is

z = S−1(x̄c1 − x̄c2) (2.1)

where S−1 is the inverse of the covariance matrix for the two groups, and x̄c1 and x̄c2 are

the centroids of the groups. Having found z, there are points in the feature space that, when

projected onto z, are equidistant from the projected centres of the groups. These constitute a

line in two dimensions, a plane in three, and a hyperplane in more than three dimensions. Any

unclassified object will be assigned the class of the group on the same side of the hyperplane.

The process of finding the dimension z (or finding the best line that separates the two groups)

is called linear discriminant analysis (by some authors discriminant function analysis), or

LDA.

As an example, consider just the upper two clusters of the BGB database. The linear

discriminant function that results in maximal separation of these two groups is

d(x) = zxT

= [0.85,−0.91]xT
(2.2)

where z is calculated as in Equation 2.1. This places the projection of the centroid of the

good cluster (which is at (9.4, 4.8)) at d(9.4, 4.8) = 3.6, and the centroid of the bad cluster

(at (6.1, 9.1)) at d(6.1, 9.1) = −3.1, suggesting that anything on the line separating the two

clusters should project to 0.25. (Any point projecting to a lower value would be considered

closer to the bad cluster than to the good .)

14

4 6 8 10 12 14 16

0
2

4
6

8
10

12

LDA line through simplified BGB database

length

w
id

th

good
bad

Figure 2.3: LDA line separating two clusters of the BGB database

Solving for length with width = 0 and vice versa gives a line passing through (0,−0.55)

and (0.59, 0), which is the equation width = 0.93 length −0.55. Figure 2.3 shows this line

plotted through the data; it clearly does the job of separating the two groups. Under linear

discriminant analysis for a two-class problem, where members of class c1 have centroid x̄c1

and members of class c2 have centroid x̄c2 , we could consider f as being:

f(x) = c1 if (d(x)− d(x̄c1))
2 < (d(x)− d(x̄c2))

2

c2 otherwise

Suppose, based on an f generated by LDA, we wished to discover the class of a new

object whose length was 9 units and whose width was 7 units. We transform the centroids

of the two groups and the new point (9, 7) into the z dimension, getting −3.1, 3.6, and 1.3

respectively. We note that 1.3 is closer to 3.6 than −3.1 and so classify the new object as

belonging to the good class.

LDA rests on several assumptions. It behaves best with multivariate normal data with

common covariance, and tends to break down fairly quickly when those assumptions are

violated. It requires all features to be continuous, and classes to be linearly separable, or

at least nearly so. The technique extends to more than two classes, but because each class

is characterised by its own centroid, it cannot cope with the situation in which one class is

15

“surrounded” by members of another, since the centroid of the flanking class may end up very

close to the centroid of the class being flanked.

In fact, the full BGB database is exactly the sort of thing that LDA does not handle well.

If we include the lower cluster of bad items, the bad centroid falls very close to the good

centroid, and there is no good discriminant line that will separate the two: we refer to the

classes as linearly inseparable. If the lower cluster were a third class (say peppermint) then

all would be well, since multiple LDA lines can be defined. It might seem enough to recognise

that the second bad group is a separate cluster and treat it as such (perhaps renaming it), but

that would depend on a (potentially difficult) cluster analysis beforehand. Cluster analysis

seems easy to do in two dimensions (plot the data and use your eyes) but it is not so simple in

4-D or more. Also, it is not uncommon to get linearly inseparable data from just two clusters;

for instance, if the bad class surrounded the good in a horseshoe formation.

2.2.2 K-Nearest-Neighbours

Fix and Hodges (1951) provided a way around the problems of normality assumptions and

linearly inseparable data. Their method is known as k-nearest-neighbours, or KNN, and

requires only one assumption: that there is a well defined metric for the distance between

any pair of objects in the training set. The method is easy to describe. Choose some positive

natural number k that is reasonably large, but small compared to the size of the training set,

and then find the k objects closest to the one to be classified. The class prediction is whatever

class predominates among the k objects. When k = 1, the prediction will be the class label of

the nearest object. When k = n, the prediction will be the most common class in the training

set.

It is easy to see that KNN will do a rather fine job on the full BGB database, using

Euclidean distance to find the k closest objects. Its behaviour in classifying a new object at

(9, 7) is demonstrated in Figure 2.4, with k = 7. Since 5 of the closest 7 objects are good

and only 2 are bad , the classifier will predict that the new object’s class label should be good .

In any number of dimensions, the method amounts to finding a hypersphere, centred on the

object to be classified, that is just large enough to contain k items from the training set. If it is

convenient to do so, KNN may be interpreted probabilistically, by returning the proportion of

the majority class among the k items.

In situations with more complex distributions of classes, there are many methods to

improve the likelihood of making a correct prediction; e.g., sophisticated methods of choosing

a good k, and weighting schemes that give preference to objects closer to the query point (see

Dasarathy (1990) for a large collection of papers concerning KNN’s origins and variants).

16

4 6 8 10 12 14 16

0
2

4
6

8
10

12

K−nearest neighbours on the BGB database

length

w
id

th

good
bad
to be classified

Figure 2.4: Demonstration of KNN on the BGB database with k = 7

The method is far from ideal, however. For KNN, the training set is the prediction model,

so it makes no attempt to describe patterns in the data; it is purely predictive and not at

all descriptive (linear discriminant analysis might at least give the analyst a list of good

discriminatory surfaces in the data). If the training set is large, then classifying a new instance

is costly, requiring one complete scan of the database to find the k nearest items.

A different problem arises if one extends the data in the BGB database to include just one

categorical attribute. It is by no means clear that it is now possible to define a distance metric

(e.g. is blue closer to green than to purple?). There is recent work in the area of defining

similarity/distance metrics for mixed continuous/categorical objects in the field of automatic

cluster detection; for instance, Zhou, Wang, Dougherty, Russ, and Suh (2004) use mutual

information between clusters to improve cluster analysis of gene-wide expression data; and

Al-Harbi, McKeown, and Rayward-Smith (2004) use Cramer’s V statistic as an analogue of

covariance to produce a scaled distance metric for categorical data. It is not yet clear whether

these tactics are extensible to mixed continuous/categorical feature spaces, or how well they

will perform in KNN systems.

17

2.2.3 Support Vector Machines

KNN classifiers avoid assumptions of normality by placing hypersphere boundaries enclosing

k items. However, it is also possible to make parametric enhancements to the basic idea of

LDA that will allow the setting of good discrimination boundaries. Vapnik (1979) describes a

method of setting a discrimination boundary using the following simple idea: maximise the

distance between the boundary and both the nearest positive data point and the nearest negative

data point.The points that cause the boundary to fix in a particular place are referred to as

support vectors, and a “learning machine” that uses such a boundary is therefore referred to

as a support vector machine (SVM). The space between the boundary and the support vectors

is called the margin, and SVMs are sometimes referred to as maximum margin classifiers.

In its most basic form, an SVM requires the data to be linearly separable, and will place a

boundary in almost the same place as LDA—but not quite, since the boundary only moves

if the support vectors move; it does not depend at all on the rest of the data. In later work

(Cortes and Vapnik, 1995) the idea of slack variables was introduced, adding a penalty for

misclassification. By maximising margin and minimising errors, a good boundary may be

placed through data that has overlapping clusters. However, as with LDA, there is no good

linear boundary that can be placed through a dataset such as the BGB database.

The extension that allows the method to be applied to situations where the decision

function is not a linear function of the data is presented by Boser, Guyon, and Vapnik (1992).

Again, the concept is ingeniously simple: pretend that we are mapping all of the data to a

higher-dimensional (possibly infinitely-many-dimensional) space. It is now possible to find a

single boundary in the new space that will separate the data. Except we do not really perform

the mapping (which would be impossible in an infinite number of dimensions anyway), we

just define an appropriate kernel function that can be used in the training phase and produces

an SVM that behaves as if it lives in the higher dimensional space.

There is, of course, a catch. The analyst must have some idea a priori as to what sort of

kernel function will do a good job on the data under consideration. Nevertheless, SVMs seem

to be popular due to their mathematical tractability and the wealth of statistical theory behind

them. For further consideration, a superb survey of SVMs has been produced by Burges

(1998).

2.3 Probabilistic Classifiers

If categorical attributes and linear inseparability in a feature space cause difficulty in building

discriminatory classifiers, it is often possible to exploit probability as an alternative. For

18

instance, consider the case of classifying documents (streams of text of some kind) into

categories such as “spam” and “not spam.” Each token in the document can be treated as

contributing to the probability that the document as a whole should be classified one way or

the other; in other words, each token can be seen as the appearance of a categorical attribute.

2.3.1 Naı̈ve Bayes

In the mid 1700s, the Reverend Thomas Bayes provided a mathematical theorem that related

the prior and posterior probabilities of classes and features, usually expressed as:

P (ck|x) = P (ck)×
P (x|ck)

P (x)

which simply says that the probability of a particular class ck given a particular set of features

x is the real-world proportion of that class, multiplied by the probability of seeing that class

with those features, divided by the real-world proportion of those features. These proportions

are typically estimated from a training set, but estimating P (x|ck) is difficult because there is

usually a huge possible number of valuations of x—one must account for all combinations of

all possible values.

Therefore, a popular simplification is to assume that each feature xi of x is independent

from all others. Given this assumption, P (x|ck) no longer has to take into account all of

the possible interactions between features, nor the effect of each interaction on the outcome.

This is plainly ridiculous in most practical situations. For instance, in spam detection, the

likelihood of a particular word appearing in a document is highly dependent on context (i.e.

on the appearance of other particular words). However, in practice the assumption often works

amazingly well. Some words are vastly more “evidential” than others, and a small collection

of the most important words quickly provides collective evidence for or against a particular

classification. The assumption of independence is referred to as naı̈ve, and a classifier that

uses the assumption is referred to as a Naı̈ve Bayes classifier. Naı̈ve Bayes classification is a

favourite strategy in the field of Information Retrieval (see, for example, the review of Naı̈ve

Bayes methods in Lewis (1998)) and for detecting spam (popularised by Paul Graham in his

famous online article “A Plan for Spam” http://www.paulgraham.com/spam.html).

To calculate the probability that a word belongs to a spam email, simply divide the number

of times that word appears in all spam messages by the number of times it appears in both

spam and non-spam messages (possibly biased to discourage false positives). Given a new

piece of mail to classify, the classifier finds the k words which appear to provide the “most”

evidence, either for or against, where “evidence” is calculated as distance from a neutral

probability of 0.5. The probabilities are then combined by dividing their product by the sum

19

Table 2.3: A Database with Interacting Categorical Features

colour size count class
red big 5 good
red small 4 bad
blue big 5 bad
blue small 5 good

of their product and the product of their complementary probabilities. If the result is near 1.0,

the document is probably spam, and probably not spam if the result is nearer 0.0. Although

all the calculations assume the independence of words, and are therefore naı̈ve, this method

works astonishingly well in detecting spam. It almost never generates false positives, since it

is very hard for a spammer to design a message that avoids all “bad” words and predominantly

uses words only from a recipient’s personal “good” database.

For the purposes of creating general classifiers, Bayesian methods run into the converse of

the KNN problem; there are difficulties with continuous attributes and their relationship with

the likelihood of a particular class. The usual response is to use some sort of discretisation

process that breaks continuous attributes into bins, and then proceed with Naı̈ve Bayes

classification based on the associations between bins and classes (see Yang and Webb (2002)

for a comprehensive review of discretisation methods in this context). Such feature reduction

can be dangerous in a machine learning context; what if the thresholds generated in the

discretisation process turn out not to suit whatever algorithm estimates the model’s parameters

during training? Worse, Naı̈ve Bayes classifiers cannot deal with simple cases where the

dependency between features is important, such as the one that appears in Table 2.3. In this

example, red would provide evidence of 5
9

for falling into the good class, as would small .

Thus, a new red ,small object would be classified as good with a probability of 25
41

, or about

0.61 (assuming no bias in favour of false negatives or false positives). This does not accord

well with the fairly obvious pattern that an object is bad if it is small and red or big and blue.

Consider also the effect of discretisation combined with the naı̈ve assumption. Suppose

we were to carve up the BGB database into length and width values at the 4, 8, and 12 marks

on each axis, as depicted in Figure 2.5. The Bayes calculation would then award a 100%

chance of the class being good to anything that fell in the diagonal cells from bottom left to

top right, and a zero chance for anywhere else. One would need to bring in methods from

elsewhere if one wished to optimise the discretisation boundaries.

20

4 6 8 10 12 14 16

0
2

4
6

8
10

12

BGB Database Discretised for Bayesian Inference

length

w
id

th

Figure 2.5: Discretisation of the BGB database

2.3.2 Logistic Regression

Another way of exploiting the probabilistic relationship between features and classes is to

employ logistic regression. Techniques such as least squares regression can be used to

create a linear model that uses a weighted combination of features to estimate a continuous

outcome. However, when the task is to predict a categorical outcome, it does not make sense

to allow the possibility of a response above 1.0 or below 0.0, which is what can happen if

we use a standard linear model y = a + xb. Instead, logistic regression uses the model

ln p
1−p

= a + xb, where p is the probability of a positive outcome, finding good coefficients

for a and b by maximum likelihood estimation via the Newton-Raphson method. Hosmer

and Lemeshow (1989) provide an overview of the process and a mathematical treatment of

methods to determine the significance of coefficients, to select features, and to analyse for

situations where interactions of features affect the class distribution.

No distinction need be made between categorical and continuous attributes in logistic

regression, since the coefficient estimation process will simply find good constants to multiply

each feature by, with categorical features “dummy-coded” as a 1 for “this category is present,”

and 0 otherwise. A category’s importance with respect to the class distribution just gets

21

reflected in the coefficients that get chosen. However, logistic regression does assume linearity

between the features and the log-odds of the class. If that linearity is violated, a logistic

regression model is likely to produce false negatives. Furthermore, logistic regression assumes

only an additive model, so interactions between features will not be captured unless the analyst

specifically adds them as “dummy codes” to the feature list (for instance, by adding a column

length × width to the BGB database). This makes logistic regression useful for testing

the evidence for theories, but less useful for exploratory data analysis. However, we draw

an interesting connection between MLPs and logistic regression in Chapter 5, so further

discussion on the matter is left until then.

2.4 Models That Partition the Feature Space

While LDA and KNN place simple boundaries in the feature space, naı̈ve Bayes and logistic

regression assign simple probabilities. Decision trees and neural networks are more complex

models, able to partition the feature space of the training set in an (almost) arbitrary manner,

the decision tree by recursively placing hard decision boundaries, and the neural network by

placing “soft” boundaries by assigning a probability of class membership to every possible

point in the feature space.

2.4.1 Decision Trees

Morgan and Sonquist (1963) pointed out that interactions between explanatory variables were

often neglected in the processing of survey data. Their proposed solution was to induce a

decision tree from the data by splitting it in such a way as to reduce the diversity of classes in

each of the two newly created groups, then to continue doing this recursively until groups

contain mostly one class or the other. Each time such a split is made, the decision is recorded

in a directed acyclic graph. The graph will end up being a tree, with the root node associated

with all the data. The tree can be described recursively thus: a decision tree is either a leaf

containing data of all one class, or it is a branching node containing a decision that would split

the data into two groups; each arc of the branching node leads to decision tree. A decision

tree that might be induced on the BGB database is depicted in Figure 2.6.

To classify a new item, just “drop” it through the tree, examine its features at each

decision node, and follow the appropriate arc to the next node. When a leaf is entered, predict

that the object is the majority class at that leaf. Our classification function f now has a

logical/mathematical structure, looking something like this:

22

f(x) = if (p1 ∧ p2 ∧ . . . ∧ pi) ∨
(q1 ∧ q2 ∧ . . . ∧ qj) ∨
· · ·
(r1 ∧ r2 ∧ . . . ∧ rj)
then c1, otherwise c2

The clauses in each sequence of ANDs are decisions to be made at each node, and the

OR sequence recognises that there may be more than one path to regions of the feature space

where the class of interest is common. Figure 2.7 illustrates the result of plotting the decision

boundaries of the tree from Figure 2.6 through the feature space of the BGB database. Note

that the space is partitioned into areas where the frequency of one class is much higher than

its expected frequency across the whole space.

Linear inseparability is dealt with easily by decision trees, because they can have as many

nodes as required to carve up the feature space into regions that are pure (or nearly so) in

one class, and predictions for one class may be found at more than one leaf. In this way,

interactions that affect class membership can be found and exposed: the tree will simply

discover which features need to be tested and ANDed together in order to hunt down dense

regions of one class. These interactions may occur just as well between continuous attributes,

categorical attributes, or a mixture of both; each decision being either a threshold decision on

length < 11.94

width < 6.325

yes

good

yes

length < 10.575

 no

bad

yes

good

 no

width < 7.91

 no

bad

yes

good

 no

Figure 2.6: Decision tree derived from the BGB database.

23

4 6 8 10 12 14 16

0
2

4
6

8
10

12

Decision tree boundaries on BGB database

length

w
id

th

good
bad

Figure 2.7: Boundaries implied by the decision tree in Figure 2.6

a continuous attribute, or a subset-membership decision on a categorical one. This strength of

decision trees is also related to the method’s greatest weakness: all boundaries are thresholds

(all or nothing) and axis-parallel (perpendicular to the axis on which the decision is being

made). Note the result of axis-parallel splitting in the case of attempting to classify the point

(9, 7) in the BGB feature space: the boundaries in Figure 2.7 mean that the tree would produce

the result bad when KNN and LDA would both predict good .

Researchers in both artificial intelligence and statistics quickly began to show great interest

in decision trees. Hunt, Marin, and Stone (1966) published experiments to show how the

procedure of inducing a decision tree might be related to human concept formation—that

the successive, hierarchical decision process could provide an analogy for not only the

discrimination of one situation from another, but also for the development of the ability to

discriminate in the first place. Quinlan (1986) provided algorithms based on Claude Shannon’s

idea of information entropy to ensure that splits in the data maximised (locally) the chance of

reducing class diversity at each split, and Breiman et al. (1984) demonstrated algorithms and

mathematical analysis for growing trees for both classification and regression.

24

When classification was reinterpreted as a data mining task (Agrawal, Imielinski, and

Swami, 1993), researchers became interested in creating programs that could induce accurate

decision trees from large amounts of data in reasonable time (Mehta, Agrawal, and Rissanen,

1996; Shafer, Agrawal, and Mehta, 1996). Decision trees quickly became a favoured method

for classification in data mining due to their ability to combine continuous and categorical

data, their ability to model the same class in distant parts of the feature space, and the speed

with which they could be induced: approximately log(n) passes of the training set, one pass

for each level of the tree.

While decision trees often provide a good solution to classification problems, real data

often turn out to be messy, noisy, and badly behaved. They occupy oddly shaped regions of

the feature space, and overlap with little regard to thresholds or subsets. Sometimes these

spaces cannot be modelled with a series of axis-parallel hyperplanes (see Murthy, Kasif,

and Salzberg (1994) for trees that make oblique hyperplane splits), and so a decision tree

model may be good for approximate discrimination but no more. Yet, animals and human

beings are often able to make very fine distinctions in noisy environments: between edible

and poisonous, natural and artificial, Pinot Gris and Gewürztraminer. Is this kind of reasoning

able to be specified in terms of symbols and symbol processing (as in a decision tree), or is

there some other requirement?

After the Dartmouth conference on Artificial Intelligence in 1956 most of the attendees

(John McCarthy—who coined the much-lamented phrase “Artificial Intelligence”—Marvin

Minsky, Nathaniel Rochester, Claude Shannon, Trenchard More, Arthur Samuel, Oliver

Selfridge, Ray Solomonoff, Herbert Simon, and Allen Newell) began to pursue a programme

of research into “Symbolic AI.” This is summed up in the theme of the conference, that:

Every aspect of learning or any other feature of intelligence can in principle

be so precisely described that a machine can be made to simulate it.

(Crevier, 1993)

One might see decision tree classification as part of this programme, consisting of a careful

description of the process of partitioning data and discriminating objects based on rules

concerning their features. However, another programme of research was leading in a different

direction: that of artificial neural networks, or the simulation of brain-like activity.

2.4.2 Artificial Neural Networks

McCulloch and Pitts (1943) introduced a simple mathematical model for the behaviour of a

single neuron in a biological nervous system. Working on the principle that biological neurons

25

receive “input” (i.e. electrical voltage) from many sources and produce just one “output,”

they proposed a model for a neural unit that calculates the sum of its numerical inputs. If

the sum reaches a certain threshold, the unit produces an output of 1.0, otherwise 0.0. If the

inputs are “weighted” (i.e. some inputs are treated as more important than others) then the

McCulloch-Pitts neuron behaves like a linear discriminant function. However, wiring up

many of these units so that the output of several can flow into the input of another allows

arbitrary decision boundaries to be created; rather like the ANDing part of a decision tree, but

with oblique hyperplane splits. McCulloch claimed that many connected neural units would

be computationally as powerful as a Turing machine.

If neural units could compute by combining inputs until a threshold is reached, it still

remained to be shown how they could learn; that is, under what conditions they would

change the weights attached to each connection and the threshold at which they would

fire. Hebb (1949) suggested that brain connections change as we learn different tasks; new

connections are formed, old connection strengths change. The “Hebb Rule” simply states that

the simultaneous activation of two neural units via one connection increases the conductivity

of that connection. Therefore if any two units are firing, and one provides the input to another,

the weight on the connection between the two should be increased. Under this scheme a

“brain-like” network of units could potentially “train” itself to reach a correct representation,

given the right sort of stimuli.

Having established that a network of McCulloch-Pitts neurons could learn at all, it

remained to be shown just what could be learned. Rosenblatt (1958) investigated a feed-

forward network of units which he called a perceptron and which Widrow and Hoff (1960)

called an adaline. A schematic diagram of a perceptron is provided in Figure 2.8; it consists of

a sensory layer which receives input from the environment and passes it through fixed-weight

connections to McCulloch-Pitts association units, an adaptive layer of connections whose

weights could change in order to improve classification accuracy, and response units that

summed and applied a threshold to the adaptive layer. Rosenblatt’s perceptron learning rule,

formalised and extended to real-valued outputs as the Widrow and Hoff delta rule, provided

a Hebb-like scheme for training the network: assign “blame” to the adaptive layer units

according to strength of their connection with the output, and adjust them in the appropriate

direction according to the proportion of that blame. If done iteratively, in small increments,

the device should converge on a reasonable mapping of input to output.

The perceptron caused great excitement: here we had brain-like computing that could

learn things by example. However, there was a strict limitation, demonstrated by Minsky and

Papert (1969): the perceptron, consisting as it did of a single series of linear discriminant

26

Σ

Σ

Σ

Σ Σ

Σ

Σ

Σ

Sensor
Array

Fixed weights
Variable weights

Response Units(McCulloch-Pitts neurons)
Association Units

Figure 2.8: A schematic diagram of Rosenblatt’s perceptron

devices, could not learn a representation for a problem that was linearly inseparable—it had to

depend on the constructor of the network to get the initial layer of association units right. For

instance, it could not learn the mapping of XOR (a 0 if both of two inputs are the same, and a

1 if the inputs differ), three-bit parity (a 1 if an even number of three inputs are 1, 0 otherwise),

or the mapping in Table 2.3. Unless the layer of fixed processing weights immediately after

the input units could be made adaptive, there was no way to go from a state where the network

could not represent a linearly inseparable problem to one where it could. If more than one

layer of adaptive weights is allowed, establishing a training procedure proves to be difficult.

It is easy to work out which units in the layer immediately before the output unit are to blame

for incorrect classification in a perceptron, and to what extent, but how could units one layer

farther back be appropriately “blamed” for a given output?

The answer was provided by Werbos (1974), and popularised by Rumelhart, Hinton, and

Williams (1986): exchange threshold units for logistic units (to make the activation function

differentiable), then use first-derivative methods to drive the weights in the “hidden” layer(s) in

the appropriate direction on an error surface in the weight/output space. The method is greedy,

so can end up in a local minimum, but usually seems to produce good results. It is incremental,

so requires potentially many scans through the training data before it “converges,” and it may

oscillate rather than converge, as do many iterative optimisation methods. The multilayer

perceptron (MLP) is in fact doing something similar to a decision tree: examining the features,

deciding for itself which to treat as most important, estimating decision boundaries that

discriminate one class from another in the feature space, and adjusting those boundaries to

produce the best classification that it can. The technique of deciding to what extent units in

the previous layer are to blame for a misclassification is referred to as error backpropagation,

27

or backprop for short. There are several variations of the method, which shall be covered in

detail in Chapter 3.

Due to each unit in the MLP having a logistic activation function, each unit behaves as a

single logistic regression equation, providing a “soft” decision boundary in the feature space.

If the layer of units immediately forward of the sensory layer sets up these boundaries, layers

further on in the network can AND them (producing arbitrary region boundaries) and still

further layers can OR them (producing arbitrarily nested or separated regions). Since the final

output unit is also activated logistically, it can be interpreted as a probability, thus allowing

the network as a whole both to partition the feature space and estimate the density of classes

within those regions. Since the sensory layer need not be concerned with whether inputs are

continuous or categorical (categorical inputs may be dealt with by providing all-or-nothing

sensors that detect the presence or absence of a particular category), the feature space may be,

as with decision trees, non-Euclidean. Empirical investigations of MLPs suggest that, despite

having a large number of parameters (connection weights as well as the units themselves),

they appear to remain accurate on test data.

Figure 2.9 shows the architecture of an MLP that could be used to model the linearly

inseparable data in the BGB database. It has three layers of adaptive weighted connections,

one layer of sensory units (which do nothing other than “detect” input and feed it forward

though connections), and three layers of processing units with logistic activation functions

(denoted by a(·)). Note that there is a “bias” term on each node, denoted by b, that represents

the amount that the inputs have to reach before the activation of the unit will reach 0.5. Each

bias term is local to its particular node; thus, some nodes will “tend” to be off while others

will “tend” to be on. These bias terms can be treated as if each were just another connection

weight coming from a unit whose activation were frozen at 1.0. The Σ term in each node

represents the sum of the net input to the unit. Since there are four connected layers of units,

we refer to it as a four-layer MLP.

Figure 2.10 shows the decision boundaries of the MLP in Figure 2.9 after training by

backprop on the linearly inseparable data in the BGB database. Blue represents an output

close to 0.0, and beige an output close to 1.0. Note that the boundaries are “fuzzy” rather

than sharp (due to the logistic activation function), and “oblique” rather than axis-parallel

(unlike the decision tree boundaries in Figure 2.7). We would therefore expect this MLP not

to make the kind of error that a decision tree might in classifying a point at position (9, 7).

And indeed, (9, 7) falls within the wedge-shaped beige region indicating output close to 1.0.

Suppose that the weights of a three-layer MLP are stored in two matrices, wA and wB.

If there are M nodes in the sensory layer (indicating that the input is a vector of size M),

28

length

width

a(Σ + b)

a(Σ + b)

a(Σ + b)

a(Σ + b)

a(Σ + b)

a(Σ + b)

a(Σ + b)

Figure 2.9: An MLP for modelling the BGB database

Figure 2.10: MLP decision boundaries through the BGB database — values

close to 0.0 are represented by blue and values close to 1.0 by beige

29

H nodes in the hidden layer, and just one output unit, then wA must have M + 1 rows and

H columns, and wB must have H + 1 rows and one column. In each case, the extra row is

to store the bias weight for the appropriate unit. Rows and columns are numbered from 0;

thus wA
5,2 refers to the weight on the connection between the fifth sensory unit and the third

(not the second) unit in the hidden layer. Similarly, wA
0,2 refers to the bias on the third (not

the second) unit in the hidden layer. To keep with the convention used so far, features of x

are still numbered from 1 to m. The output value for feeding forward an input vector x is

therefore:

feedforward(x) = a

(
H−1∑
h=0

a

(
M∑

m=1

xmwA
m,h + wA

0,h

)
wB

h+1 + wB
0

)

The function symbol a represents the logistic activation function, a(x) = 1
1+e−x . Further

hidden layers can be represented simply by “wrapping” the whole expression in further

summation/activation terms. Strategies for optimising the weights in the matrices will be

presented in Chapter 3, along with more convenient notation.

Despite the felicitous combination of probabilistic and discriminatory representation, the

soft, smoothly curved decision regions that can be modelled, and their almost mysterious

ability to generalise well in the presence of many parameters, MLPs have several detracting

features from a data mining perspective. Where sheer predictive accuracy is the main concern,

MLPs are an attractive option. However, it has never been clear how to choose the initial

architecture of an MLP (that is, the number of hidden layers and the size of each hidden

layer), nor has it been clear how to choose the size of the increment during the training phase,

although the smaller the increment, the smoother the gradient descent. If the increment is

very small, the training data may have to be presented to the MLP many times (in the order

of hundreds or thousands) and if too large, the MLP may never converge as the position

in weight/error space oscillates. Typically, MLPs have been initialised with small random

connection and bias weights, so that they essentially “know nothing,” and are able to learn

“their own” representation by way of their training algorithm. This, too, can lead to a

prohibitively large number of presentations of the training data, since the MLP’s weights

could start off a long way from those that will minimise R(f). Finally, if description is

as important to the analyst as prediction, MLPs provide little insight, since their decision

boundaries are all emergent from their many connection weights and unit biases.

A promising tactic for the more efficient use of MLPs has always been to initialise them

with domain knowledge before training commences: but how should this be done? And where

should the knowledge be derived from? In a data mining situation, prior knowledge may be

scarce.

30

2.5 Remarks

Sometimes a straightforward approach to discrimination is the best. If data are cleanly

separated into their classes, are fully defined by continuous features, and are not interleaved

in any awkward manner, then linear discriminant analysis or logistic regression are fine

candidates for generating classification functions. If data are interleaved awkwardly but

follow some reasonable probability density distribution, and consist entirely of continuous

features, then k-nearest-neighbours works well. If the features can reasonably be expected to

be independent, Naı̈ve Bayes classifiers are easy to construct and provide clear “reasons” for

reaching their conclusions. These tools are clean, simple, and sharp; often they are right tools

for the job.

However, data are often messy, noisy, incomplete, and of mixed feature types. Those

features interact: sometimes importantly, and not always as a simple additive or multiplicative

combination. In these cases, decision trees and neural networks are very useful. Decision

trees provide models that can easily be interpreted as simple threshold rules, and are computa-

tionally efficient to construct, at the cost of making sharp, axis-parallel decisions. They can

be interpreted probabilistically, if the hypercuboids at each leaf contain the distribution of

classes that are found in that part of the feature space. As knowledge representations in AI,

they might shed light on how we make decisions and how we develop default rules. MLPs, by

contrast, can model the feature space with arbitrary combinations of oblique, soft decision

boundaries, allowing huge flexibility in the decision model. As research tools in AI, they may

shed light on how animal brains store and retrieve information. However, one can spend a

great deal of time finding a good architecture for the MLP, and then more time training it.

If an analyst is in a situation where accuracy is more important than explicability, then

producing an MLP decision model might be highly desirable. Is it possible to make decisions

about an MLP’s architecture and starting state based on what we might already know about the

training data? Further, is it possible to transfer prior knowledge regarding the training data to

the MLP, and will that actually reduce the MLP’s training time? Where can we get that prior

knowledge from? Are other, simpler classification methods a useful source of such knowledge,

or will their output simply cause an MLP to reach a local minimum, or to oscillate? If an MLP

can refine knowledge that it is initialised with, is it possible to characterise that refinement?

Can the refined knowledge be extracted without ruining it, or is it intrinsically tied to the

representation of the MLP? These questions are explored in Chapter 4, after a discussion of

tree-building and MLP-building details in Chapter 3.

31

Chapter 3

Decision Trees and Multilayer
Perceptrons

Having sketched the broad outline of classification methods in the previous chapter, we turn

our attention to just two: decision trees and multilayer perceptrons (MLPs). Our interest lies

in trying to exploit the complex decision regions that MLPs can model, while alleviating those

aspects that make them less satisfactory in data mining situations, such as their long training

times, and the difficulty of determining a good initial architecture.

It is generally accepted that artificial neural networks of various kinds may be initialised

either in a random state or in a state that encodes prior knowledge. Sometimes the former

is preferred, in an attempt to eliminate “preconceptions.” However, if the idea is to “refine”

knowledge rather than generate it in the first place, then we need some way to get the

knowledge into the MLP. While there is a huge body of work on getting knowledge out of an

MLP after training finishes, the literature concerning the initialisation of MLPs is remarkably

sparse, and tends to focus on neural networks other than “plain” MLPs. The small amount

of literature that does address the initialisation of feed-forward MLPs with prior knowledge

has a unifying theme, which is the use of decision trees to generate (or at least to encode) the

prior knowledge, and a primary interest in how much faster the MLP converges having been

initialised.

It is hardly surprising that tree-structured knowledge is the focus of this previous work.

There is an appealing similarity between the graph-like structures of trees and MLPs, and

decision trees may be induced fairly quickly (typically in log n passes through the training

data). Thus the answer to the question, “where do we get our prior knowledge from?” is

easily answered: from a decision tree induced on the training data. Both decision trees and

MLPs carve up the feature space into sub-regions, and neither is particularly challenged by

32

the presence of categorical features. However, there is a general belief that MLPs typically

achieve better generalisation accuracy than decision trees, and that it is therefore worth

transforming decision trees into MLPs. In the next chapter we shall begin to examine this

claim, using the transformation method that best seems to suit data mining situations.

This chapter addresses the following three topics:

1. the historical development of decision tree classifiers and attempts to improve their

efficiency and accuracy;

2. the historical development of MLP classifiers and attempts to improve their efficiency;

3. progress in the area of initialising MLPs with decision trees.

3.1 Decision Tree Background

3.1.1 History

The earliest suggestion of using computers to generate decision trees seems to have been

made by Morgan and Sonquist (1963). The authors note that, in survey data, explanatory

variables tend to interact, making an additive model inappropriate. Their solution was to

induce a decision tree by choosing sub-groups of the data that reduce the sum-of-squares

error in predicting the dependent variable, then to recursively apply the same process to

the groups just created. The process terminates when no group accounts for more than two

percent of the error. The analysis thus produced is in tree form, and captures interactions

in the form of logical ANDs; for instance, the example survey analysis that Morgan and

Sonquist provide suggests that the highest income group in their sample was that consisting

of people who were Caucasian AND between 45 and 65 AND not farmers AND college

graduates. Retaining a focus on the analysis of survey data, these ideas were developed as

AID (Automatic Interaction Detection), THAID (Theta-AID, Morgan and Messenger, 1973),

and eventually CHAID (Chi-squared AID, Kass, 1980). CHAID is still used in data mining

packages available today, such as SPSS AnswerTree.

The use of decision trees as a statistical analysis tool makes for an interesting contrast

with the work of Hunt et al. (1966), which explores the idea of decision trees as concept

formation devices. The programs described by the authors fall squarely into the field of

Artificial Intelligence rather than Exploratory Data Analysis (the second section of the book

is entitled “Experiments in Artificial Intelligence”) and the idea is that new “concepts” are

formed by recursively partitioning the training data and following paths to leaf nodes that

33

contain only positive exemplars of the concept. Splits are performed as the data is scanned

(rather than at the end of each full scan), and features have to be discretised because splits are

determined by either noting similarities of features between positive exemplars, similarities

of features between negative exemplars, or splits that can be made based on the feature “most

shared” between the two.

By far the most well known work on decision trees is that done by Quinlan (1986),

introducing ID3 (the ID stands for Interactive Dichotimizer), and by the authors of CART

(Classification and Regression Trees, Breiman et al., 1984) during a similar period. Quinlan’s

work takes a machine learning approach, with ID3 being used to learn six simple rules for

playing an end-game in chess. These rules are induced from a few pages worth of examples

of rook and king vs. king and knight endgame situations. In contrast, CART is firmly rooted

in statistical prediction, and essentially breaks all classification problems down to the feature-

space model explained in Chapter 2 of this thesis. CART also spends a lot of time examining

the question of pruning decision trees to avoid overfitting the training data, and proposes

v-fold cross validation to get an unbiased estimate of the error of a tree. As interest grew

in using decision trees for group prediction (i.e. classification), Quinlan (1993) developed

C4.5, a decision tree program that took into account pruning, validation sets, and test sets. It

remains very widely used, and is now (with the commercial release of its successor, See5)

free for public use, with source code available.

In keeping with applied (rather than experimental) use, CART, ID3, and C4.5 are char-

acterised by attempts to improve the efficiency of the splitting of data. Intuitively, a good

split is one that gets lots of one class into one partition, and hardly any into the other; i.e., it

reduces the diversity of class labels in any given branch or leaf. Now, any split (for instance,

arbitrarily cutting off just one easily identifiable object) will reduce diversity, so the trick is to

find a split that minimises the diversity of the partitions created. To this end, Quinlin used a

splitting criterion based on Claude Shannon’s Information Theory called “Gain,” while CART

used a criterion called the “Gini” coefficient (named after Italian economist Corrado Gini,

and commonly used in Economics as a measure of demographic diversity). Recent work by

Raileanu and Stoffel (2004) suggests that both criteria will choose the same feature/value pair

on which to split in all but 2% of possible distributions, explaining the strong similarity of

trees grown using the two different methods.

A major variation in standard decision tree building is the idea of multivariate rather than

univariate splitting; i.e., using more than one feature to make a decision at any one node.

Finding linear discriminant functions at each node is discussed in the 1973 edition of Duda

et al. (2001), with many authors subsequently describing trees that form “tilted” hyperplanes

34

using some form of linear discriminant; for a comprehensive list, see Murthy (1998). CART

uses a hill-climbing algorithm to find parameters for good linear combinations of features for

non-axis-parallel splits, and significant extensions and improvements were made to this idea

to yield the oblique decision trees of OC1 (Murthy et al., 1994).

With the increase in the ability to generate and store vast quantities of data came the

rise of data mining: a discipline that combines statistics, exploratory data analysis, machine

learning, and database theory with the expectation of being able to scale knowledge discovery

to massive numbers of objects of high dimensionality. With description and prediction

as data mining’s major goals (Fayyad, Piatetsky-Shapiro, Smyth, and Uthurusamy, 1996),

association mining (that is, finding items in transactions that occur more often together than

apart) and classification are both considered fundamental techniques. The SPRINT (Scalable,

PaRallelisable INduction of Trees) decision tree system, implemented in IBM’s Intelligent

Miner software, was introduced by Shafer et al. (1996). As the name suggests, scalability is

the primary concern: SPRINT scales almost linearly with the number of training objects and

the number of features. Furthermore, SPRINT does not require that the training data can fit

into memory; it builds disk-based attribute lists kept in sorted order to facilitate the finding of

split points using the Gini coefficient. Since split points are then found by way of a single

sequential scan of the data, it is possible to parallelise the operation, with only a small amount

of communication between independent CPUs/core memories/disks.

There are a number of subsequent methods for providing scalable classification. BOAT

(Bootstrapped Optimistic Algorithm for Tree Construction) tries to build several layers of the

tree in one pass through the data (Gehrke, Ganti, Ramakrishnan, and Loh, 1999). PUBLIC

(PrUning and BuiLding Integrated in Classification) avoids building subtrees that are likely to

be pruned (Rastogi and Shim, 1998). RainForest (Gehrke, Ramakrishnan, and Ganti, 2000)

suggests a unifying framework for differing methods of building and a speed improvement

over SPRINT, but at the cost of memory bounded by the sizes of the domains of features.

3.1.2 Splitting

A decision tree classifier is formed by the procedure BUILD-DECISION-TREE, presented as

Algorithm 3.1. Assuming that constructors and database operators do what one might expect

from the pseudocode, the construction of the tree is fully determined by how FIND-SPLIT

works. This section explains briefly some techniques for finding splits that minimise diversity

locally, in an attempt to build a reasonably compact decision tree.

Suppose we have a database consisting of six objects labelled good and six labelled bad .

We wish to separate them in some way so as to get, intuitively speaking, as many good things

35

Algorithm 3.1 BUILD-DECISION-TREE(D): Build a decision tree given a database

BUILD-DECISION-TREE(D)

1 if D contains only objects of one class
2 then return TREE-NEW(class-label , nil , nil)
3 condition ← FIND-SPLIT(D)
4 return TREE-NEW(condition, BUILD-DECISION-TREE(RESTRICT(D , condition)),

BUILD-DECISION-TREE(RESTRICT(D ,¬ condition)))

on one side as we can and as many bad things on the other. We might also prefer that we do a

bit better than just taking the first item that can be cleanly discriminated and putting it in a

group on its own; such a group is indeed pure in one class (and the rest of the collection is

now less diverse in its classes) but repeated application of this technique will result in a list

rather than a tree.

To make the example concrete, let us take the following as the set of objects:

row-ID x y label
1 1 1 good
2 2 1 good
3 2 2 bad
4 2 2 good
5 2 2 good
6 2 3 bad
7 3 3 good
8 3 3 bad
9 3 3 bad
10 3 4 bad
11 3 4 good
12 4 4 bad

This data only allows us six possible splits: at x < 2, x < 3, x < 4 and the equivalent

splits for y. Each split can be represented as four numbers (gl, bl)(gr, br) where gl is the

number of good items that ended up on the left, bl the number of bad items on the left,

etc. The six possible new distributions for (gl, bl)(gr, br) are therefore x < 2 : [(1, 0)(5, 6)],

x < 3 : [(4, 2)(2, 4)], x < 4 : [(6, 5)(0, 1)], y < 2 : [(2, 0)(4, 6)], y < 3 : [(4, 1)(2, 5)],

and y < 4 : [(5, 4)(1, 2)]. Which of these is to be preferred? This is the question that must

be answered at each node of a decision tree.

Intuitively, [(5, 4)(1, 2)] looks like a bad split; on one side the ratio of labels is nearly one

half (almost perfect diversity, when diversity should be being reduced), and on the other a

third. Whatever measure we use had therefore best avoid splitting on y < 4. On the other

36

hand, [(1, 0)(5, 6)] also looks bad: if a tree-induction process continued to make such splits

on the basis that one side is pure in one label, we would end up with a list instead of a tree.

In ID3 and C4.5, Claude Shannon’s idea of information entropy is used to define how

much information is gained by making a particular split. The information of a probability

distribution P = p1, p2, . . . , pn is defined as:

I(P) = −
n∑

i=1

(pi × log2 pi)

Thus, a distribution of (0.5, 0.5) (the worst situation we can be in, perfect diversity) has

I(0.5, 0.5) = 1.0 and a distribution of (0, 1.0) (purity) has I(0, 1.0) = 0.0.

Weighting for the sizes of the two partitions that we create when we make a split, the

information after splitting P into Q and R is:

I(Q, R) =
nQ

nP

I(Q) +
nR

nP

I(R)

The “information gain” that is achieved by splitting P into Q and R is:

Gain(P, Q, R) = I(P)− I(Q,R)

Plugging our example into the equation, we get “gain” values of x < 2 : 0.08881,

x < 3 : 0.08170, x < 4 : 0.08881, y < 2 : 0.19087, y < 3 : 0.19571, and y < 4 : 0.02712.

We would choose the split which led to the highest information gain: that is, y < 3.

As an alternative, the Gini index measures the diversity rather than the information/entropy

of a probability distribution. Using the same P, Q, R:

Gini(P) = 1.0−
n∑

i=1

p2
i

so a distribution of (0.5, 0.5) has Gini(0.5, 0.5) = 0.5 and a distribution of (0.0, 1.0) has

Gini(0.0, 1.0) = 0.0.

Again, weighting for the sizes of the partitions:

Gini(Q, R) =
nQ

nP

Gini(Q) +
nR

nP

Gini(R)

Since making any split at all will improve diversity, we do not bother to calculate a “Gini

gain”; we just look for the smallest possible value of Gini(Q, R).

Following our example, the Gini measures are x < 2 : 0.45455, x < 3 : 0.44444,

x < 4 : 0.45455, y < 2 : 0.40000, y < 3 : 0.37143, and y < 4 : 0.48148. Note that this

method would also choose to split on y < 3. However, it is interesting to note that, if only the

37

x feature were available, the Gini coefficient would have chosen to split on x < 3 and Gain

would have chosen either x < 2 or x < 4.

In both cases, categorical features may be treated the same way, but with a subset test

rather than a threshold test producing the probability distribution of class labels. If there are

too many subsets to test all of them due to there being too many possible categories, then the

possible splits may be tested in a greedy manner, finding the subset of size 1 that produces

the best split for that feature, then attempting to add a category that improves the split until

no more can be found (the authors imply that this is what is done in SPRINT). Alternatively,

we can do what ID3 does, which is to calculate splits as if they were multiway splits on

each category. Under this scheme, the Gain criterion favours features with many categories.

Quinlan (1993) suggests in this case the use of Gain Ratio, i.e., that a split is evaluated as

Gain(P)/I(S) where S is the probability distribution of the categories of the splitting feature.

In order to test every possible split in a reasonably efficient manner, SPRINT first pre-

processes the database into list of sorted feature values, each carrying its class label and row

identifier. Thus the example above would be converted to:

row-ID x label row-ID y label
1 1 good 1 1 good
2 2 good 2 1 good
3 2 bad 3 2 bad
4 2 good 4 2 good
5 2 good 5 2 good
6 2 bad 6 3 bad
7 3 good 7 3 good
8 3 bad 8 3 bad
9 3 bad 9 3 bad
10 3 bad 10 4 bad
11 3 good 11 4 good
12 4 bad 12 4 bad

All possible split points can now be calculated in a single scan of the attribute lists. Once

the split point is found, SPRINT forms a hash table (on disk, if necessary) of the row-IDs of

all the attribute-values that meet the split condition; all of the attribute list portions can now

be sent to the correct node of the decision tree by querying whether each row-ID is in the

table. If the tree is grown breadth-first, only four files of attribute lists need to be maintained

at any one time; one each for those items that are currently placed in a left subtree and in a

right subtree, and one each for those that are about to be placed in a left or right subtree.

It should be noted that this basic outline of decision tree induction is inherently greedy.

The “best” tree is searched for by finding the one feature/split-point (or feature/subset) pair

that improves diversity the most, making that split, then doing the same with the resulting two

38

partitions. It is entirely possible that a combination of features would produce a better split,

but the problem quite quickly becomes intractable. To a certain extent, multivariate decision

trees such as OC1 and those described by Utgoff and Brodley (1990) alleviate this problem,

but at the expense of not being nearly as scalable as SPRINT.

3.1.3 Pruning

Having induced a decision tree, it is necessary to ensure that it is likely to generalise well.

Heuristically, we use the principle of Occam’s Razor: a small tree is likely to be better than

a large tree, which is most likely fitting the noise in the training data. Too small, however,

and the model will have too much bias. For a comprehensive survey of pruning methods and

comparative analysis, see Esposito, Malerba, and Semeraro (1997). Here, we will just present

the basic principles and representative methods.

One can grow a decision tree until it classifies the training data as perfectly as possible,

then prune. Or, one can merely employ a stopping rule that halts growth when a certain

accuracy has been reached or when the data at a node become too few. It is widely accepted

that the former strategy produces superior trees. This accords with the intuition that, since a

decision tree is grown greedily, lower branches may contain decisions that swiftly discriminate

between objects that may look inseparable at upper branches, or whose proportion of any one

class may appear insignificant. Such branches are less likely to be removed under pruning

schemes than subtrees that contain as many leaves as there are data examples; those subtrees

are probably just fitting the data rather than patterns in the data.

The CART method of Minimal Cost Complexity (MCC) pruning involves taking a fully-

grown tree and finding the branch that has the worst trade-off of size (i.e. number of terminal

nodes hanging off it) against the improvement in accuracy on the training set gained by

keeping the branch. This branch is then converted to a leaf that will predict the majority label

at that node. This process is repeated until only the root node remains, converted to a leaf.

The sequence of trees has progressively worse accuracy on the training data as the trees get

smaller, but grows progressively better on unseen data drawn from the same population—until

some point at which the trees become too small, at which point the error begins to rise again.

So, three data sets are required: one to grow the tree in the first place, one to pick the tree

in the sequence of pruned trees that has the best trade-off of size against accuracy, and one to

make a final estimate of accuracy after pruning. (The second set cannot be used to estimate

overall accuracy, as it has already been used in model selection and is thus biased in favour of

the pruned tree.)

39

While the MCC method of pruning is noted to produce rather small trees, it does require

splitting the data into three pieces, though they need not be of equal size. Choosing the

appropriate tree from the sequence is also tricky, since the error curve against the hold-out set

is usually bowl-shaped, so picking the lowest point of the bowl may produce a tree that is still

too large. To get a tree closer to the “elbow” of the bowl, the CART authors suggest choosing

a tree within one standard error of accuracy of the tree that minimises the error.

Prior to C4.5, Quinlan advocated the use of “reduced-error pruning.” This involves

presenting a hold-out set to the fully grown tree and examining each node from the leaves

upward to see whether it would reduce the misclassification rate if pruned. If it would, it is

pruned, unless there is a subtree whose existence reduces error more than pruning would.

This method of pruning finds the smallest partial tree with the best error rate on the hold-out

set, but also quite strongly overfits the hold-out set, throwing away “pattern” that might have

been hard-won during the growing phase.

As a compromise, C4.5 uses “error-based pruning” (EBP). Each branch of the tree is

treated as a set of trials with binomial outcomes. A confidence interval is constructed (using

the Wilson estimate for standard error rather than the usual Wald estimate taught in first year

statistics courses) and the upper limit of the proportion of errors contrasted with the number of

errors expected from keeping the subtree in question, or with replacing it by the most accurate

branch. Half of one error is added to every leaf to account for the fact that subtrees at first

make no errors at all on the training data. The default confidence interval on C4.5 is very

narrow (only 75%) so this method is often reported as being quite prone to underpruning, but

Hall, Bowyer, Banfield, Eschrich, and Collins (2003) make a strong case for users choosing

wider confidence intervals and thus harsher pruning. The advantage, of course, is being able

to prune without using a hold-out set.

The versions of decision trees used in IBM’s Intelligent Miner (SPRINT, for example)

use the Minimum Description Length (MDL) principle for pruning (Mehta, Rissanen, and

Agrawal, 1995). The MDL principle involves finding a suitable and compact encoding for

a prediction model combined with the instances in the training set that it gets wrong (the

authors go to some trouble to show that the encoding they choose places a sensible weighting

on these exceptions with respect to the model). The best model is then assumed to be the

one that can be described with the minimum number of bits; it is assumed to have the best

trade-off between model complexity and model accuracy. The authors compare their pruning

method to that of C4.5 and CART. Clearly it is quicker than MCC to perform (although in

both cases pruning takes a tiny fraction of the time taken to build the tree) since it requires

only one pass through the tree and no checking against a validation set. However, according

40

to the same results, MCC seems to produce much smaller trees that are just as accurate on a

test set. The comparison against C4.5 seems to have been done using the default confidence

level of 75%, which allows EBP to underprune, potentially producing over-large trees that

do not perform well on new data. At present, there appears to be no published evidence that

MDL pruning produces better-pruned trees than MCC or EBP.

For the purposes of experiments reported in Chapters 4 and 6, we use MCC when we

wish to see if MLP initialisation is strongly affected by pruning, since it seems consistently to

produce the most “harshly” pruned trees; we can expect that there is a reasonable difference

between the size of an unpruned tree and the size of a pruned tree.

3.2 Multilayer Perceptron Background

3.2.1 Notation

Before discussing the details of MLPs that shall concern us for this thesis, it is convenient

to introduce some notation and terminology that will allow us to avoid presenting too many

network diagrams.

In general, an MLP is considered to be a piece of machinery such as that described near the

end of Section 2.4.2; an array of arrays of neural units, where each unit is fully connected to

all of the units in the following layer. Each connection has a real-valued “weight” associated

with it (either positive or negative). When data are presented at the “sensory” end of the

network, they are fed forward through the weighted connections. The unit at the far end of

each connection “activates” (or not) according to the sum of the weighted inputs from its

incoming connections, added to that unit’s “bias” value (a signed real value that indicates the

unit’s tendency to be on or off). In order to activate smoothly between 0.0 and 1.0, the sum of

weighted inputs and bias is put through an s-shaped activation function, usually the logistic

a(x) = 1
1+e−x . The activation pattern in the MLPs last layer is considered its “output,” to be

interpreted in whatever way suits the designer.

The term layer is used in the MLP literature to mean both “a layer of neural units” and

“a layer of connection weights”; here we shall use it only in the first sense. Therefore, a

“three-layer” network is one that has a layer of sensory units, a single “hidden” layer of units,

and a layer of output units. A “four-layer” network has two hidden layers between sensory

and output layers. Unless stated otherwise, each layer is assumed to be fully connected to the

one after it and all weights are adaptable (i.e. none are assumed to be frozen by default). We

41

use the term epoch to denote one complete presentation of the training data to the network

followed by an update of the connection weights.

In the following material, we need to distinguish between matrices (as traditionally

presented in linear algebra) and lists of matrices (ordered lists as one finds in programming

languages such as Lisp, Scheme, Python, etc.). In a break with mathematical tradition, lower-

case bold letters (e.g. x) will represent matrices, while upper-case bold letters (e.g. X) will

represent lists. Square brackets imply list construction, with [] indicating an empty list. The

+ operator indicates the appending of either a list or an item to another list; the operation is

assumed to have no side-effects, so that if X = [a, b] then X + c returns [a, b, c], with X

remaining unchanged.

Suppose we represent an MLP as a list of matrices of weights and biases. Denote each

matrix in the list as wi, representing the set of weights connecting layer i − 1 with layer

i. If the sensory layer is numbered as layer zero, then in a four layer MLP we will have

[w1, w2, w3]. The (j, k) element of wi is the strength of the connection between the jth

unit in layer i − 1 and the kth unit in layer i. For the moment, assume that biases are not

represented in the weight matrix, but that the bias on the kth unit in layer i is denoted bik, and

that the biases for a whole layer are collected in a row vector bi.

Let the “activation” function a(x) = 1
1+e−x be an element-wise function that may be

applied to a matrix x, such that a(x) = [a(x1,1), . . . a(xn,m)]. Matrix multiplication will

always be represented with an ×; ab refers to the element-wise multiplication of matrices a

and b, and a + b represents element-wise addition.

If D constitutes a training set, then let d be a matrix where each row maps to an object’s

features (neglecting the class label). Let c be a matrix of values representing the target values

according to D; perhaps a simple vector of ones and zeroes for a two class problem, or a

matrix representing the output activations of multiple nodes for multiple-class problems. Let

o be a matrix of output values, where each row represents the output corresponding to the

input on the same row of d. The purpose of training the network is to bring o as close as

possible to c without overfitting the training data.

With a four layer MLP, then, one obtains predicted classification values thus:

o = a(a(a(d×w1 + b1)×w2 + b2)×w3 + b3)

The use of matrices reduces notation considerably, compared to the formula for calculating

output given in Section 2.4.2 on page 30. However, it it possible to go a little further,

eliminating the need for explicit bias terms. First, we add a “zeroth” row to each connection

weight matrix. To represent biases, we suppose that the zeroth row of wi is the strength of

42

the bias on each node in the ith layer; conceptually this equates to a connection to a node in

the previous layer whose “activation” is always one. This can be simulated by adding a first

column to d and to each xi whose elements are all 1.0. The feedforward equation is then

altered so as to keep these “bias nodes” frozen (that is, set to 1.0 and allowed no input so they

can never be re-calculated). Explicitly, feedforward becomes

o = a(1|a(1|a(1|a(1|d×w1)×w2)×w3)

Where 1|x represents adding a column of 1s to the left hand side of a matrix. This is beginning

to look like a recurrence, if we allow ourselves to substitute d for x. We can, in fact, represent

a feed-forward operation through any number of layers, assuming we keep each weight matrix

in a Lisp-like list W that has operations first and rest :

feedforward(d, W) =

d if W is empty,

feedforward(a(1|d× first(W)), rest(W)) otherwise.

with the number of layers in the MLP being length(W) + 1. This allows us to say:

o = feedforward(d, W)

where feedforward is the recurrence as stated. Since matrix multiplication allows us to have

as many “rows” of input as we like, we can treat each iteration through the recurrence as if it

were producing a new “database” d to be pushed through the next layer of weights. Each new

d is the pattern of activations of each layer of units, given the “original” d. Once there are no

more layers (i.e. rest(W) is empty), the “result” is just the activation of the last set of units

(which, by this stage, is d). The number of layers is arbitrary; it is just one more than the

number of weight matrices stored in W . Although matrix notation is used in Bishop (1995),

we believe that this is the first publication of a simple recurrence to represent the feedforward

function.

During weight optimisation, it is necessary to know the activation state of each and every

unit in the network. Implemented naı̈vely, the recurrence above will only provide the state of

the output units. To get the whole activation state, use:

state(d, W , M) =

rest(M + d) if W is empty,

state(a(1|d× first(W)), rest(W), M + d) otherwise.

The first member of M is the original database, so we only need return the subsequent

activations. The state of an MLP after a feedforward is thus exposed by:

S = state(d, W , [])

43

3.2.2 History

Two problems will occupy the analyst who decides to use MLPs as prediction models. The first

is the problem of representation, which concerns whether and how a network can represent

the task at hand. The second is training, which concerns how to optimise the connection and

bias weights so as to achieve the best possible predictions.

It is a pair of popular misconceptions that Rosenblatt’s perceptron and Widrow’s adaline

were networks containing no hidden layer, and that Minsky and Papert (1969) showed that

such networks could not correctly classify all objects in a linearly inseparable feature space.

In fact, the perceptron consisted of a set of fixed functions transforming and thresholding the

inputs, which were then transferred through a set of adaptive connection weights to the output

layer. It is thus a three layer network, but with only the second matrix of weights available for

“learning.” With a judicious choice of the fixed weights, a perceptron can therefore transform

a linearly inseparable problem into a linearly separable one, which may then be solved by

adaptation of the the weights leading to the output layer.

Those weights between (transformed) inputs and outputs may be set first with small

random values, and then updated by the perceptron learning rule:

wt+1 = wt + η(c− o)d

where η is a constant that constrains the growth of |w|. If the mapping of the transformed

inputs to desired outputs is linearly separable, then the perceptron learning rule will guarantee

convergence (i.e. making no errors on the training data) after some finite number of epochs.

What Minsky and Papert established in Perceptrons was that, if functions connecting

inputs to the adaptive weights remain fixed, then the number of them must grow exponentially

with the dimensions and complexity of the problem. They experimented with different

methods of limiting the first layer of perceptrons—for instance, by limiting that part of the

feature space that each could perceive, and limiting the number (but not scope) of inputs that

each could perceive—but showed in each case the the resulting network could not classify all

instances correctly. The response to this challenge was to develop networks with adaptable

connection weights between at least two layers, so that the functions that transform the input

can be chosen by whatever learning process is used. These are referred to as multilayer

perceptrons, or MLPs. (Minsky and Papert remark in the second edition of Perceptrons that

this does not eliminate the problems they noted; the number of functions needed to transform

the inputs still grows too fast with the dimensionality of the problem. Furthermore, the

techniques usually proposed to allow the first set of weights to be adaptive amount to greedy

hill-climbing algorithms, prone to getting stuck on local maxima in “goodness” space.)

44

The problem of allowing multiple layers of weights to be adaptable is one of credit

assignment. When only the weights between the output layer and the previous layer are

adaptable, one can change each weight in proportion to the activation of the unit from whence

it comes, since that is how much “blame” to assign to that end of the connection. This is

possible because we know exactly what we would have liked the result at the output end of

the connection to be: we have the matrix c to tell us that. Transferring the problem to the

weights between the previous two sets of units presents a puzzle: what can we say the “output”

values should have been?

The solution, due to Werbos (1974) and Rumelhart et al. (1986) is error backpropagation,

often referred to as “backprop.” If we assume that the activation function of each unit is

differentiable, then the output of each unit is a differentiable function of the input variables,

weights, and biases. Similarly, if the error function is a differentiable function of the outputs,

then it is a differentiable function of the weights. We can therefore work out the derivatives

of the error with respect to the weights and work out the direction (if not the magnitude)

of change. For this to work, we must have differentiable activation functions, so linear

thresholding will not work: its slope is infinite at the point of the threshold. Fortunately, the

logistic function a(x) = 1
1+e−x has a rather convenient derivative a′(x) = a(x)(1− a(x)).

To collect the set of “error signals” δ, the procedure is slightly different for the weights

leading to output nodes compared to weights leading to hidden nodes. For the final layer in

an n-layer network:

δn = (c− o)(o(1− o))

Whereas for the previous layers:

δi = (δi+1 ×wT
[1 :] i+1)(xi(1.0− xi))

The w[1 :] is “slice” notation, borrowed from the Python programming language. It

indicates “all the rows from one onward”; i.e., not including row zero, which holds the biases.

The slice is performed before the matrix transpose.

Updating the weights can be a simple matter of steepest descent. For each weight matrix:

wt+1
i = wt

i + η(1|xi)
T × δi+1

where η is, as before, a constant that scales the distance a weight will shift in any direction.

Steepest descent is often referred to simply “gradient descent” or just plain “backprop.”

Suppose we were to plot the values of connection weights against the total error of the

MLP: we would get a curve in two dimensions, a contour in three, etc. A space consisting

of weights in n− 1 dimensions and error in the nth is often referred to as an error-surface

45

in weight-space. Typically, such a surface will consist of steep valleys, long plateaux, and

“knees” and “elbows” of varying “suddenness.” The purpose of any weight updating algorithm

is to (attempt to) find the lowest point in this space—the global minimum. It is easy to see

that the technique of steepest descent suffers from two major problems:

1. It is slow. If η is too large, the steps in the weight-space will be too large and may

overshoot the minimum. Correcting itself in the next epoch, it overshoots in the other

direction, and may oscillate, perhaps converging eventually or perhaps not. If η is small

enough to avoid oscillation, then small updates on valley-sides will improve error a

lot—but similar steps on long plateaux will not.

2. It is prone to getting stuck in local minima on the error surface. If η is small enough

to guarantee smooth gradient descent, then the weights may converge to a spot where

neither increasing nor decreasing any weight will improve the error; however, this may

not in fact be lowest point on the error surface.

The speed (or lack thereof) of steepest descent is of great concern if the MLP is to be used in

a data mining situation. If the training data have many features and there are many objects,

then the MLP is going to be large (it will consist of many units with many connections) and

each epoch will take a long time. If the mapping from features to classes is complex, then

many epochs may be required; typically hundreds or thousands. Since there are at best a few

rules of thumb for finding good architectures, initial weights, and learning parameters such as

η, it may be necessary to go though several iterations of initialisation and training to make a

good model: all very time-consuming, ad hoc, and reminiscent of a “black art.”

The standard method for initialising the connection weights and biases is to set them to

small random numbers. Here is a typical statement of how to set up an MLP, paraphrased from

(Le Cun, Bottou, Orr, and Mueller, 1998): Assuming that inputs are normally distributed with

a standard deviation of 1.0, and that the sigmoidal activation function is hyperbolic tangent

rather than logistic, the weights should be drawn from a uniform distribution with mean zero

and standard deviation σw = m−1/2 where m is the fan-in, or number of connections feeding

into the node.

The purpose of such rules is to do little more than ensure that the sigmoids are not

saturated (i.e. that their input does not place their output in the flat region at top and bottom)

when training begins. Nevertheless, this can still place the weights a good distance from

their ideal position. It is just as common to see suggestions such as initialising with random

weights between −0.3 and 0.3, and there is no good evidence to suggest that any random

initialisation is much better than any other.

46

Finding good architectures (in terms of the number and size of hidden layers) is even more

of an ad hoc process. Le Cun et al. (1998) do not address the issue at all, but there is a general

sense that each input should have at least one hidden node to allow a hyperplane decision to

be developed for it. Techniques for searching for a good architecture include starting with a

network that is likely to be far too small and growing it (Fahlman and Lebiere, 1990; Frean,

1990); or starting with a network that is likely to be far too large and shrinking it (Mozer and

Smolensky, 1985; Le Cun, Denker, and Solla, 1990).

3.2.3 Modifying MLP Weight Update

The most well-known augmentation of steepest descent backprop is the idea of momentum,

introduced by Plaut, Nowlan, and Hinton (1986). Rather than simply changing each weight in

the direction determined by backprop multiplied by the learning constant η, a proportion of

the amount the weight moved in the previous epoch is also added. Thus, the update becomes

wt+1
i = µwt−1

i + wt
i − η(1|xi)

T × δi+1

with µ a parameter chosen by the user; usually around 0.9. Movement across plateaux will

speed up, since a step of size s in one direction will result in the next step consisting of at

least µs movement in the same direction. Momentum does no damage in situations where

the minimum is overshot, since µ is usually set to some value less than 1.0; the oscillations

generally converge on the minimum. Although momentum is virtually considered part of

standard backprop, it is still rather inefficient (still requiring hundreds of epochs for simple

problems) and results in yet another parameter, µ, to be searched for and set by the user.

To address the issue of reaching an optimum error in weight space more quickly, Fahlman

(1989) investigated the use of momentum, alternative activation and error functions, and the

use of an offset to avoid activation function saturation. However, the most effective speed

increase in his study was due to the introduction of a new weight-update technique that he

called “Quickprop.” The idea is that the error-curve of each weight be treated as if it were

parabolic. Given the gradient before a round of regular backprop and the gradient after (both

given by error backpropagation), and working on the assumption that the error due to each

connection is independent of the rest, it is possible to calculate the minimum of the parabola

and jump there. Although that jump probably does not minimise the error (because the

weights are not independent and the shape not actually parabolic), repeated application of

the procedure seems to work very well. The process is not terribly sensitive to the η value

for backprop, because it is only used once to determine the two gradients necessary on the

surface to calculate the minimum, and again if the the process needs to be “restarted” due to a

47

change of direction. Empirically, Quickprop seems to perform an order of magnitude faster

than backprop, and is widely used.

In order to push weights more rapidly to their destination, Riedmiller and Braun (1993)

proposed the RPROP algorithm. Rather than depending on the amount of slope of the error

term, RPROP checks only that the sign of the slope remains unchanged. If it is the same as

the previous epoch, the weight is pushed in the same direction by a greater distance. If it

differs, then the previous change is undone and the step-size decreased. The only parameters

set by the user are a maximum and minimum possible step size, and an initial change size.

RPROP is believed to require around five to ten times fewer epochs than plain backprop,

and has the advantage that each connection weight may develop its own distinct η value.

According to the article that introduces RPROP, there is not enough empirical evidence to

distinguish between Quickprop and RPROP on the basis of speed. It is also not entirely clear

that retracting changes and ignoring rise/fall in error are the best ideas, with improvements

suggested by Igel and Húsken (2000) and by Anastasiadis, Magoulas, and Vrahatis (2003).

Another technique widely used to improve the speed of convergence is Levenberg-

Marquadt optimisation (Bishop, 1995, Chapter 7). The update is given by:

wt+1 = wt − (δT δ + λ diag(δT δ))−1δ

This works due to δT δ being an approximation to the Hessian, so the process is relying on

second-order (i.e. curvature) information. In approximate terms, it is willing to take big steps

along flat plains and small steps on steep valley sides. The λ term controls just how much the

process is doing plain gradient descent versus relying on the Hessian; when λ is large, the

process approaches plain gradient descent, and when it is small the process is relying strongly

on the Hessian. Thus, if the error drops, it is assumed that the approximation to the Hessian is

good, and the λ term is decreased (perhaps by a factor of 10). Conversely, if the error rises,

the approximation is considered bad, and the λ term is increased.

While both Levenberg-Marquadt and Quickprop make use of second-order approximation,

Quickprop has one major advantage: although it makes a potentially dangerous assumption,

it does not have to calculate a matrix inverse at every epoch. While Levenberg-Marquadt

is considered very effective for small problems, converging in a remarkably small number

of epochs, it has difficulty scaling to larger problems due to having to perform that inver-

sion. Thus, for the purposes of testing the interaction of fast training methods with weight

initialisation methods, we have tended to use Quickprop.

48

3.3 Transformational Perceptrons

In a large article surveying hybrid neuro-symbolic techniques, McGarry, Wermter, and

MacIntyre (1999) state:

The experimental work carried out by a number of researchers on different

knowledge-based neural network architectures has produced some impressive

results. They show good performance in terms of classification accuracy, speed of

training, reasoning with noisy and missing data and good generalization capability

with small training sets.

They are referring specifically to what they call transformational hybrid systems, which are

those that take symbolic knowledge and transform it into a neural network architecture, and

possibly back again.

The expected benefits of initialising MLPs with prior knowledge are the following:

• The size and architecture of the the network is suggested by the prior knowledge;

• The initial weights of the network are determined by the prior knowledge;

• The network already classifies approximately as well as would rules based on the prior

knowledge; thus it is close(er) to an error minimum and should require fewer epochs to

converge.

The following sections present a selection of those transformational systems that have had

a strong influence on the field of initialising neural networks with prior knowledge, and in

particular, with knowledge gained from decision trees.

3.3.1 EBL Networks and KBANN

Perhaps the best known system for transforming propositional knowledge into an MLP is that

proposed by researchers at the University of Wisconsin-Madison. Shavlik and Towell (1989)

present a hybrid system that encodes rules in “Explanation Based Learning” (EBL) format

into an MLP architecture. An EBL system contains a rule base that breaks down higher level

rules into lower level rules until atomic comparisons may be made. An example rule base for

determining whether the item in question is a cup is shown in Table 3.1

The rule base in Table 3.1 is only partial—a system which classifies cups solely on that

basis will get some wrong (e.g. a plastic bucket will be wrongly classified as a cup). The

49

Table 3.1: EBL Rule Base for Recognising Cups

cup :— stable, liftable, open-vessel

stable :— bottom-is-flat

liftable :— graspable, light

open-vessel :— has-concavity, concavity-points-up

Open VesselStable

Cup

fl
at

 b
ot

to
m

m
ad

e
of

 c
er

am
ic

m
ad

e
of

 p
ap

er

m
ad

e
of

 s
ty

ro
fo

am

co
nc

av
ity

 p
oi

nt
s

up

ha
s

co
nc

av
ity

fr
ag

ile

ex
pe

ns
iv

e

lig
ht

ha
nd

le
 o

n
si

de

ha
nd

le
 o

n
to

p

ha
s

ha
nd

le

Liftable

Graspable

Figure 3.1: An MLP initialised from the EBL rule base — the network is

fully feed-forward connected but only strong connections are shown

authors suggest that we can do better with an MLP, arranged in the fashion shown in Figure 3.1.

The weights in this system are set so that items which do not correspond to rules in the

rule base have a weak initial effect on the decision Cup, while items which appear in the rule

base have strong initial connections. After training, the weights have altered so as to have

adapted/refined the initial rules, providing a more accurate classification. Results across many

experiments (summarised in Shavlik (1994)) suggest that classification performance is indeed

enhanced in a wide range of domains after conversion to MLP and backprop training.

Their manner of rule embedding makes rule extraction fairly easy; Towell and Shavlik

(1993) presented their method for converting an MLP back to rules, based on normalisation and

rearrangement of the biases and weights so that it is possible to work out which intermediate

rules will be supported by various combinations of “leaf” rules. Their updated system was

renamed KBANN (for Knowledge Based Artificial Neural Network) and is considered one

of the most successful studies of transformational networks. It has generated a great deal of

50

interest in the symbolic interpretation of MLPs, notably by researchers such as Setiono and

Lu (1996) and Taha and Ghosh (1999).

KBANN depends on a human expert to provide an initial set of rules, and these rules

must be in a form that supports intermediate rules (to make up the hidden layer). This is

crucial, since without at least one hidden layer, an MLP is unable to represent a linearly

inseparable set of objects. Therefore, even if the initial knowledge base for KBANN were

to be formed automatically, intermediate rules would still be required. This requires domain

knowledge: to say that “open” means “has concavity” and “concavity points up” requires

a level of conceptual modelling not typically available from a database of observations; a

human being must add hierarchical information to the system to categorise groups of features.

Furthermore, any decisions based on continuous attributes must be determined by the user,

for all inputs to KBANN are categorical; thus, if the MLP wishes to shift, tilt, sharpen, or

fuzzify a continuous boundary, it is unable to do so.

3.3.2 Entropy Nets

The work of Shavlik and Towell (1989) quite clearly supports the use of error backpropagation

to refine an incomplete rule set. However at about the same time, other researchers were

looking for ways to avoid backprop training. A technique for embedding decision-tree rules

into an MLP architecture was first suggested by Sethi (1990). Training (in the sense of

improving the initial set of rules) is never undertaken under this scheme. First a mapping

is made between the architecture of the tree and that of the MLP. Then, connections are set

layer by layer, “training” each unit to make the same threshold decision that was made by the

equivalent node in the tree (using a variant of the Widrow-Hoff rule). Since trees perform

hyperplane splits, each layer’s task is linearly separable—we are essentially training each unit

to partition the dataset in much the same way as a decision tree behaves.

It is significant that connections which are not deemed important by the decision-tree are

never created by the mapping or weight-setting process. This implies that if the decision-tree

classifier made an error in determining the significance of an attribute, then this error would

never be rectified by the MLP during the weight setting process. Figure 3.2 sums up the

mapping between decision-tree and MLP. Formally, the method proceeds thus:

1. For every input to the classifier, create a neuron in layer one, to be connected to every

neuron in layer two.

2. For every decision node in the tree, create one neuron in layer two.

51

Y N

NY Y

Y N

N

Decision 2

Decision 4

Decision 1

Decision 3

D1

D2

D3

D4

Output Class 1

Output Class 2

ANDing ORing

Inputs

Figure 3.2: Sethi’s translation from decision tree to MLP — decisions 1 to

4 in the tree become nodes D1 to D4 in the MLP

3. For every leaf node in the tree, create one neuron in layer three. Connect the neurons in

layer two to the neurons in layer three such that the hierarchy of the tree is maintained;

e.g., the neuron representing the root of the tree will be connected to every neuron in

the next layer. Neurons representing subsequent nodes will only be connected to those

units which they could reach by a downward traversal of the decision tree.

4. For every class, create one output node, connected to each node in layer three which

represents that class.

5. Using the Widrow-Hoff rule, train each unit in layer two to make the same threshold

decision that the equivalent node in the decision tree would make. Train each unit in

layer three to activate only when all of the required “decision” nodes for each class are

active (creating an AND layer). Train each unit in the output layer to activate when any

of the appropriate nodes in the AND layer are active (creating an OR layer).

52

We can see that the resulting MLP behaves exactly as the decision tree from which it was

created. Replacing the threshold activation functions in all units is claimed to improve the

generalisation capability of the network. Overall network training is never undertaken—and

may do little good anyway, given that the network is only connected according to the branches

of the original decision tree.

Brent (1991) and Chabanon, Lechevallier, and Milleman (1992) present Sethi’s method

as a “fast alternative” to backprop training. However the strength of MLPs as compared to

decision trees—the ability to model curves as fuzzy tilted hyperplane combinations—seems

to have been relinquished. Since each node is trained to be a symbolic decision-maker, we

gain only an alternative representation to a decision tree. Units in the end are stuck with the

symbolic representation they are forced into, even though a better classifier may be possible.

Sethi’s method points to a particularly useful idea—that a four layer MLP can operate in

the following way: the first hidden layer acts as a set of hyperplane tests for the propositions

tested by the decision tree. The second hidden layer does an ANDing of the first according to

the rules of the tree and the output layer does an ORing of those rules. This relationship of

node-layers to decision-making is the focus of the following section.

3.3.3 Initialisation of MLPs by Decision Tree

Banerjee (1997) proposes a similar mapping to that suggested by Sethi, but with three very

important differences:

1. Instead of each unit in the first hidden layer representing an internal node of the decision

tree, it represents a proposition concerning the input attached to it. Thus, each input

can represent an attribute, and pairs of units in the first hidden layer act as “switches”

indicating the level of that attribute.

2. The biases are used to control the level at which the aforementioned switches will

activate, with the incoming connection weights being set to sum to a value equal

but opposite to the bias. Thus we have a complete weight and bias setting regime

upon which it is appropriate to perform backprop training. Further, each layer is fully

connected to the previous one with small connection weights so that if a more complex

mapping needs to form during training, it can.

3. Since the MLP is set up specifically with backprop training in mind, it can be shown to

improve the knowledge with which it was initialised. Banerjee makes the point that this

technique is not merely designed to produce an MLP with accuracy equal to a decision

tree, but one which outperforms the tree.

53

Initial knowledge is provided solely by decision tree induction, the decision tree maps directly

into an MLP, and Banerjee established that an improvement on initial conditions can be made.

Although the method is only described in the context of continuous variables—no attempt has

been made to incorporate categorical variables into the model—we shall see in the following

chapter that this is a weakness that may be easily rectified.

Banerjee’s method depends on each node performing a hyperplane test of the form

b +
n∑

j=1

wjxj > 0?

where b is the bias of the node, wj is the incoming weight from unit j and xj is the activation

of unit j. If the test succeeds, the result is one, otherwise zero. Of course, the threshold nature

of this test is replaced with a sigmoidal activation function to facilitate backprop training.

Informally, the network is set up like this:

1. Let σ and β represent a general weight magnitude and a “perturbation” magnitude,

respectively. Set σ = 5.0 and β = 0.025 (These values were determined empirically,

but are reasonable in the sense that a value of 5.0/2 will not unduly saturate a sigmoidal

activation function, while still producing a clear result close to 1.0.)

2. Create a descriptive statement Disjunctive Normal Form (DNF) for each class in the

decision tree.

3. Create an input node for each database attribute.

4. For each literal in the DNF of the form attrib < value create two hidden units. One

shall represent the test succeeding, the other failing. Connect the “success” node to the

relevant input unit with weight−σ and bias σ ∗ value. Connect the other node the same

way, but with the signs reversed. We have thus created a switch where the “success”

node will stay active as long as the input remains under a certain value, but will be

inhibited as it rises above that value. The second node will be inhibited by its bias as

long as the input remains under the critical value, but will begin to activate as it rises

above it. For a critical threshold of 3 and σ = 5, the result looks like this:

sensory
unit

bias
15

bias
−15

A

B

C

while A < 3, B will
have output ≈ 1

while A > 3, C will
have output ≈ 1

−5

5

54

5. For each disjunct in a class, create a new hidden unit in the third layer. These nodes

represent the leaves of the decision tree in much the same way that those in the previous

layer represent decisions made on the inputs. As such, each one needs to activate only

if all of the relevant decision nodes are activated—we are creating AND nodes. To do

this, we connect each AND unit to the relevant decision units with weights σ and set

the bias to −σ(2n− 1)/2, where n is the number of relevant units in the decision layer.

6. For each class, create an output unit and connect it to the AND units representing the

appropriate class with weight σ. Set the bias to σ/2. Now if any of the AND units

activate, so will the appropriate output unit.

7. Fully connect the rest of the MLP with weights β and −β, with equal probability.

Figure 3.3 summarises the complete transformation from tree to network.

The main strength of Banerjee’s method is that, although we assign a symbolic interpreta-

tion to internal units initially, those interpretations may change during training. Thus we truly

have the chance of refining the initial knowledge, whereas entropy nets and KBANNs bind a

symbolic test to a unit and only allow feed-forward connections to strengthen or weaken the

effect that this has on the classification result.

It is interesting to contrast Banerjee’s technique with two others published at almost the

same time: Ivanova and Kubat (1995) and Park (1994). The Tree Based Neural Net (TBNN)

system (Ivanova and Kubat, 1995) is regarded as a highly successful transformational system.

The critical differences from Banerjee’s technique are:

1. Only three layers of units are used.

2. Only one neural unit per decision node in the tree is used.

3. The input layer represents membership within decision boundaries.

The system operates in the following way:

1. Re-describe the decision tree as a set of DNF rules, but simplified so that each attribute

tested by the tree falls within an interval. For instance, taking the tree in Figure 3.3,

instead of describing attribute X as being either < 2.5 or ≥ 2.5 we form intervals such

as min ≤ X < 2.5 and 2.5 ≤ X ≤ max .

2. Create an input node for each interval created in the previous step. These units do not

take items from the database as inputs—tuples are pre-processed through the fuzzy

membership functions to determine the extent of each input unit’s activation.

55

Decision Tree

DNF Rules

MLP
(Weak initial weights not shown)

class 1

x < 2.5 x ≥ 2.5

class 1

y < 1.3

class 2

y ≥ 1.3

(x < 2.5) ∨ ((x ≥ 2.5) ∧ (y < 1.3)) → class 1

(x ≥ 2.5) ∧ (y ≥ 1.3) → class 2

x

y

12.5

−12.5

6.5

−6.5

−2.5

−7.5

−7.5

−2.5

−2.5

class 1

class 2

x < 2.5
x ≥ 2.5

y < 1.3
y ≥ 1.3

−5

5

−5

5

5

5

5

5

5

5

5

5

Figure 3.3: Banerjee’s translation from decision tree to MLP

3. Create an AND layer similarly to Banerjee. Connect each node to input units in such a

way that all of the relevant inputs must be active for the AND node to activate. Each

AND node effectively represents a leaf on the decision tree.

4. Create an OR layer, again similarly to Banerjee, whose units are connected to the AND

units in such a way that an output unit designated class x will activate if any of the

AND units of class x are active.

Unlike Sethi’s entropy nets, it is the intention that a TBNN should be trained (by backprop

or some variant) in order to improve its classification accuracy. However, the three-layer

architecture is achieved at the cost of turning the sensory layer into a set of propositions

(similar to KBANN). Thus, during training, the TBNN cannot alter the critical thresholds of

continuous variables, and therefore cannot re-orient class-separating hyperplanes.

56

Another mapping due to Park (1994) is very similar to Sethi’s, consisting of a four-

layer network with the first hidden layer performing hyperplane decisions on the sensory

layer, the next performing an ANDing function, and the last performing an ORing on nodes

corresponding to tree leaves. The mapping is of particular interest because each node of

Park’s decision trees is a linear discriminant function rather than a simple hyperplane split, so

the network can in fact start off with oblique hyperplanes. The bulk of the article is devoted to

attempting a mapping with just one hidden layer; unfortunately later work (Bioch, Carsouw,

and Potharst, 1997) showed that the theorem on which the mapping depended (that each

decision region could be mapped onto a particular neural unit) was incorrect. At best, the

regions can be approximated.

3.4 Comments

Tree-structured knowledge has been used by several researchers to initialise MLPs. All claim

that the MLPs behave at least as well as the decision trees on which they were based, and

sometimes better. However, we make the following observations:

• No tree-to-network mapping thus far presented has been designed to allow for objects

with arbitrary mixtures of continuous and categorical features.

• None of the literature establishes that a tree-initialised MLP might generalise any better

than the tree that initialised it.

• It remains unknown whether a tree-based neural network is likely to generalise any

better than one that is randomly initialised, or whether it is likely to converge to local

minima on an error surface.

• The interaction of fast training methods such as Quickprop with MLP initialisation is

unknown.

• All extant tree-to-network mappings attempt to model all classes in one network; none

take advantage of the parallelism inherent in networks that just try to recognise one

class.

The most critical unanswered question is this: given a mapping from decision tree to

neural network, does there even exist a state for that network that is more accurate than the

decision tree that created it? In the next chapter, we present a pilot study to try to answer this

question.

57

Chapter 4

A Pilot Study

4.1 Introduction

In this chapter, we present an investigation of the questions posed at the end of Chapter 3.

First, we propose an extension to the initialisation of MLPs described by Banerjee (1997),

one that allows us to initialise nominal as well as continuous and ordinal feature detectors.

This, in principle, allows us to examine MLP initialisation techniques using databases that

consist entirely of continuous features, entirely of nominal features, or a combination of the

two. We then try to see if there is any reason to expect that MLPs can be made more accurate

with less training by using this initialisation method. Prior work in this area has tended to

focus on whether MLPs reach the desired “convergence” state in fewer epochs. However, this

is only a first step. For the method to be generally useful, we need some reason to expect that

the generalisation of the MLP is improved, and that the resulting classifier does a better job

than the tree that bootstrapped the process.

Furthermore, we need some reason to expect:

• that initialisation techniques will do better than simply improving the weight optimisa-

tion procedure using, say, quickprop;

• that initialisation techniques do not interact in some deleterious way with smarter

weight optimisation techniques;

• that, in examining these questions, neither tree nor MLP is compromised in some way

by being anything less than “best-of-breed.” For example, decision trees should not

have their ability to generalise reduced by choosing a poor pruning method.

It is tempting, in setting up an experiment to compare several machine learning algorithms,

to use the “default settings,” which is to say, to use the originally published version of the

58

classifier with no tuning for the data on which it is being currently used. The effect of such a

decision may be seen, for instance, in Lim, Loh, and Shih (2000), where the authors compare

33 classifiers with each other and come to the conclusion that linear discriminant analysis has

a mean error rate “close to the best.” Considering that the databases used in the comparison

contained mixtures of feature types and non linearly-separable classes, this is a very surprising

claim indeed. All classifiers were essentially run “out of the box,” meaning, for instance, that

C4.5 was run with a pruning confidence of 25% (the default value). This means that none

of the classifiers was observed at its best and few conclusions may drawn regarding their

suitability for or sensitivity to differing types of data.

Our approach is to ask how well a really well-tuned decision tree would be expected to

work on a few databases that exemplify the conditions in which we are interested. Should

a really well-tuned MLP be able to do any better? And should an MLP initialised with a

decision tree be able to do any better than that? Note, the question is not will each version

typically do better, but should it or can it? This is, in fact, an easier question to answer, because

we can cheat. We defer the more difficult question of whether initialised MLPs typically

behave better, and why, to Chapter 6. For now, we are just asking: is there an MLP state,

somewhere during its weight optimisation phase, that generalises better than the decision tree

that initialised it; and does that state arrive earlier than it would for an uninitialised network?

This enables us to cheat by ignoring the fact that it is difficult to know when to stop training

an MLP. We simply train for a fixed number of epochs, then examine each MLP state to see

how early in the optimisation process the best generalisation state was reached.

If no such state exists (that is, if there is no state of the initialised MLP that is more

accurate than the decision tree that initialised it), or if that state is only reached after it would

be reached by a regular well tuned MLP (i.e. one utilising quickprop or something similar),

then we should have no reason to expect that this line of investigation would ever yield

anything useful. However, as we shall see, six data sets provide sufficient evidence to suggest

that MLPs behave very well under initialisation methods, even when compared to their own

“best-of-breed,” and that further development of the theory and evaluation of initialisation is

warranted.

4.2 Experimental Tools

The purpose of the following experiments is to compare decision trees, MLPs, and initialised

MLPs to each other and determine if initialised MLPs are ever more accurate than decision

trees, and, if so, whether they can reach that state sooner than a regular MLP. To that end,

59

several programs were developed so as to compare the best versions of these methods that

can be reasonably expected, rather than 20-year-old versions with none of the well-known

recent enhancements. We should like to be able to process data that may or may not fit into

main memory as well; but currently, all publicly available software (e.g. C4.5, R, and Weka

among others) is limited to in-memory datasets. Thus, we present as an appendix to this

document two distinct sets of software: procedures in R for manipulating R’s decision trees

to convert them to MLPs (for memory-resident datasets); and programs in C and C++ for

creating decision trees and converting them to MLPs for disk-resident datasets.

4.2.1 Decision Tree Software

There are two desirable traits for decision tree software to be used in the following experiments:

some reasonable expectation that the best split has been found in each sweep of the data, and

a pruning mechanism that produces the smallest possible tree that still has good generalisation

accuracy. The first feature is exhibited by SPRINT (Shafer et al., 1996) as a by-product of its

scalability enhancements; no “windowing” is used regardless of data size, and all possible

split points are evaluated, even for disk-resident data. The second feature is usually regarded

as being provided by minimum cost complexity pruning (Breiman et al., 1984), which is

often described as being particularly “aggressive.” Even the article proposing the use of

MDL pruning for SPRINT (Mehta et al., 1995) notes that minimal cost complexity pruning

produced trees of similar accuracy that were significantly smaller.

The programs developed for these experiments take the form of Unix command-line

utilities. They are:

1. race: RACE is A Classification Engine. This program induces a decision tree from

data. Input consists of a data file and a metadata file. Output consists of a decision

tree, in text format. Each line of the output is a node of the tree, in pre-order traversal,

with leaves distinguished from branches. The tree can thus be built up again by any

subsequent program.

2. pruner: a pruning program for race. This is a Unix filter; input is a decision tree

induced by race (the race format includes the misclassification cost of each node),

and output consists of the set of subtrees pruned by the minimal cost complexity method

described in Breiman et al. (1984).

3. tester: another Unix filter. Input is a list of trees and a data file; output is the accuracy

and standard error of each tree. This program may be used to select the best-pruned

subtree, using hold-out data.

60

4. rules: a Unix filter which takes a tree as input and generates either a) an MLP

architecture according to Banerjee (1997), or b) a set of DNF rules.

The source-code of all programs is included as Appendix A.

4.2.2 General Description of the race Program

The race program is an implementation of the SPRINT decision tree induction algorithm

outlined in Shafer et al. (1996) and Zaki, Ho, and Agrawal (1998). SPRINT itself is an

improvement on SLIQ (Mehta et al., 1996), the motivation for which was to build a classifier

that handled disk-resident data gracefully. Previous methods for dealing with large datasets

(such as ID3) used sampling methods to build their decision trees, but SLIQ uses every piece

of data in the database to build its trees, gaining somewhat greater accuracy. However SLIQ

still depends on a memory-resident data structure proportional to the size of the database,

albeit one which uses very little memory per item. SPRINT, on the other hand, utilises

memory-resident data structures that remain constant in size throughout the building of the

tree, and thus scales rather well. SPRINT was also designed with easy parallelisation in mind.

The key to both SLIQ and SPRINT is the pre-processing of the database. Conceptually,

the following steps occur:

1. Each tuple in the database is assigned a unique identifier (an integer suffices).

2. Each column of attribute instances is separated into its own file, together with its unique

identifier and the class label associated with each row.

3. Each file is sorted according to attribute value.

An example which follows these steps is provided in Figure 4.1. If the resultant attribute lists

are too large to fit into memory, they may be kept on disk (essential, if the original dataset is

too big to fit into memory).

a b class row id

100 20 1 1

150 30 2 2

200 10 2 3

120 40 1 4

⇒

a class row id

100 1 1

120 1 4

150 2 2

200 2 3

+

b class row id

10 2 3

20 1 1

30 2 2

40 1 4

Figure 4.1: Pre-processing a database for SPRINT

61

Now instead of processing the database table, we process the concatenated set of attribute

lists. The next task is to calculate the best point on which to split the data—this can be done

in one pass over the sorted and concatenated attribute lists, given that we have counted the

number of times each class appears. We proceed as follows (let us for the moment assume a

continuous attribute):

1. We set x to be the value of the first attribute in the list. We hold a table like this for each

attribute:

class 1 class 2

above 2 2

below 0 0

It is essentially a frequency distribution; it tells us how many of each class is currently

above value x, and how many are below. Since we are pointing at the first element

of the list, nothing is below it, and everything is above it. The initial values for the

distribution may be gathered during the pre-processing phase.

2. We now step along the attribute list. At each point, we set the new value of x to the

current attribute value. Whatever class we see, we increment in the below part of the

distribution and decrement in the above part. The distribution therefore is the one we

would get should we choose x as our split point and the current attribute as the attribute

on which to partition the data. This information is all we need to calculate the Gini

index of diversity (see Section 3.1.2).

3. We continue stepping along the list, calculating the Gini index for each new (attribute,

x) pair. We want a splitting point with the lowest diversity possible, so we are looking

for the smallest Gini value. Each time the Gini lowers, we save the current split point.

Each time we are finished with an attribute list we reset the frequency distribution and

move on to the next attribute list. Thus we find the smallest Gini value with respect to

a) which attribute is best to split on, and b) the critical value at which to split the data.

If an attribute is categorical rather than continuous, we proceed a little differently for that

attribute list. First, the list does not need to be sorted by value. Second, instead of setting up a

frequency distribution of above and below values, we set up a count matrix with rows labelled

by category and columns labelled by class. In the creation of the attribute list, we note in the

matrix how many times each class appears for each category. We get something which looks

like the following:

62

class 1 class 2

gnus 1 3

gnats 0 2

penguins 4 1

Once again, we now have all the class distribution information we need to calculate the Gini

index. What we want to do now is generate the subset of categories which gives us the

smallest Gini value; we can either do this exhaustively (calculating a Gini index for every

possible subset) or greedily (choosing the single best category, then adding one category at a

time as long as the Gini value drops).

Having decided on the best split point (either attribute x < y or attribute w ∈ {a, b, c . . .})
it remains to partition the data. It is easy to partition the attribute list which “won” the split

point: simply test each attribute instance to see whether it should be sent right or left. How

does one partition the rest of the attribute lists? That is why we hold the row IDs for each

attribute instance. While we split the data for the winning attribute, we create a hash table of

row IDs for whichever rows should go left. Then we simply go back to the beginning of the

concatenated attribute list and partition according to whether each instance’s row ID is in the

hash table or not.

The attractive aspect of this sort of partitioning is that it may also be done in a single pass

through the attribute list. Moreover, the order of the attributes is maintained (so we do not

have to re-sort them) and we can create our new frequency distributions/count matrices on the

fly as we partition.

A concatenated attribute list, once partitioned, forms two new concatenated attribute

lists. Since order has been maintained and we have our new distributions, we can begin the

process all over again—finding new split points and partitioning the list—until every new

distribution produced is pure or meets some other stopping criterion (e.g. there are no more

than m tuples in the list, where m is some suitable minimum). Each splitting point is saved in

a tree structure; once the process has terminated, this structure is the unpruned decision tree.

Since we tend to build trees recursively, an immediate criticism of this method is that it

will create as many open files as there are nodes in the tree, assuming the process is being run

on enough data to require remaining disk-resident. Zaki et al. (1998) presents a solution to

this problem by growing the tree breadth-first. Thus, we only have to have four files open

at any time: a “left” and “right” file for the current layer of the tree, and the same for the

next layer of the tree. We now not only concatenate attribute lists for each partition, we also

concatenate the partitions themselves.

63

One final thing remains to be said about this tree induction technique. During the

partitioning phase, we can collect another crucial piece of information. Suppose that a

decision was going to be a leaf node even though it may not have met a stopping criterion; i.e.

suppose it is about to be pruned. Instead of holding a decision, it would have to hold a class

label; the obvious one to choose would be whichever was highest represented in the current

histogram. However there would be an associated cost; the misclassification rate of that leaf

would be the proportion of items which were being tested by that node but did not belong to

the highest represented class. This information is useful at pruning time, and is stored at each

node of the decision tree during partitioning.

4.2.3 General Description of the pruner Program

The pruner program implements minimal cost complexity pruning (MCC) as described

in Breiman et al. (1984). MCC works on the basis that each internal node in the tree could

either remain a branching node, or be “snipped” and become a leaf. As a leaf, it will have

a misclassification cost: these are gathered by the race program as the tree is built. The

principle behind MCC is that there exists a sequence of nested subtrees, each of which has the

next least overall misclassification cost on the original dataset.

The following description of MCC pruning is paraphrased from Breiman et al. (1984,

Chapter 3). Consider a parameter α ∈ R,≥ 0. We call this the “cost complexity parameter”

and define the cost complexity of decision tree T as Rα(T) = R(T) + α|T |, where |T | is the

number of terminal nodes in tree T . If R(T) is the misclassification cost of tree T, Rα(T) is

therefore that cost plus a penalty for every terminal node.

Now, for each value of α from 0 ≤ α <∞, find the subtree of T which minimises Rα(T).

While α is small, that subtree may be large, since the penalty for having a lot of terminal

nodes is small. As α increases, the penalty for being large also increases, so at some value

of α it is suddenly going to be cheaper to drop a branch (and accept the concomitant rise in

misclassification cost against the original data set) than it will be to retain both the branch

and the cost of all of that branch’s terminal nodes. As we slowly increase α, more and more

branches “fall off” as the accuracy they offer is outweighed by the cost of their complexity.

Eventually, we are left with only the root node.

Obviously, we do not wish to set a variable like a radio dial and slowly increase it,

calculating Rα(T) for each possible subtree at each value of α. For one thing, it would be

dangerous to choose an increment value for α that would not result in more than one prune

occurring at an iteration; for another, even modest trees have so many possible subtrees that

a search through all of them is too computationally expensive. Instead, we calculate which

64

branch should be the one to be snipped next in such a process, and snip that one to produce

the next tree in the sequence of pruned subtrees.

First, we prune branches of T so that we start with T1, a tree which has the same misclas-

sification cost as T but is the smallest possible. We can do this by checking every branch: if

R(branch) = R(branchleft) + R(branchright) then there is no advantage to “branching” at all

and the left and right branches may be taken off. If we check every node in the tree this way,

the resulting tree is T1.

Next, we note that at some point as α increases, a branch will become too “costly.” What

point is that? Let’s say that B represents a branch and b represents just the node at the top

of the branch, acting as a leaf. While Rα(B) < Rα(b), the branch B has a smaller cost

complexity than the single node b. At the critical value of α, the two cost complexities

become equal; i.e. Rα(B) = Rα(b). To work out that value of α, all we have to do is solve

the inequality Rα(B) < Rα(b), getting:

α <
Rα(b)−Rα(B)

|B| − 1

Now, obviously we do not want to prune leaves, so we define a function that tags each

internal node with the value Rα(b)−Rα(B)/|B| − 1. The branch with the smallest tagged

value is the weakest link, in the sense that it is the first that would be turned into a leaf if we

did slowly increase α through a continuous range.

The pruning process therefore involves calculating the tagging function for each internal

node of T1, turning the node with the smallest value into a leaf, and setting the resultant tree

as T2. We then recalculate complexity values (since all branches above the pruned branch

now have fewer terminal nodes), and go through the same process to create T3. We continue

until we have a tree with only the root and two leaves.

4.2.4 General Description of the tester Program

Once we have a sequence of pruned trees, which one do we choose as the best? The tester

program provides a means of judging the generality of a sequence of trees by testing them

against a data set different from the training set but drawn from the same population.

If we graphed the output of the tester program using the initial data set, we would see

something like the first graph in Figure 4.2. Since the tree is grown to be perfectly accurate

on this data, the misclassification rate steadily rises as the size of the tree decreases. However,

in the second graph, we see what happens when we test the same set of trees on a new data

set from the same population. Our largest tree (on the right-hand end of the graph) has a

65

Misclassification
Cost

Misclassification
Cost

Number of nodes in tree

Example 1: Sequence of trees tested
against original data.

Number of nodes in tree

Example 2: Sequence of trees tested
against new data from the same population

Figure 4.2: Idealised error rates of a sequence of pruned trees against 1)

the original data set, and 2) a new data set from the same population

high error, since it is overfitted to the original data. As the size of the tree decreases, the

misclassification rate also decreases—for a while. Eventually, as the tree gets too small, it

suffers from having too much bias, and the error rate starts to rise again.

This visualisation suggests that we should choose the tree that corresponds to the minimum

point on the second graph. However, Breiman et al. (1984) established that the surface of

the valley in this graph is “bumpy”; what we really want is the left-most point of the valley

before the error starts to rise again. This will correspond to the smallest possible tree that has

a misclassification cost within about one standard error (1SE) of the tree corresponding to the

minimum. Of course, if 1SE does not get a tree small enough (or there exists a smaller tree in

the sequence with an acceptable error rate) the user should be free to select that tree instead.

The 1SE heuristic merely provides a potential method of automating the process.

4.2.5 General Description of the rules Program

The rules program provides two facilities—first, it converts a decision tree representation

of knowledge to DNF rules; this is a fairly trivial task. Secondly, it can use that set of rules

to produce an initial MLP architecture by applying Banerjee’s technique as described in the

following pages. Recall that we can fully specify an initial MLP as a list W , where each

member of the list is a matrix containing the weights and biases connecting each layer to the

one before it.

The output of the rules program is just such a list, with the weights set according to

the extension of Banerjee’s method outlined in the next section. For the convenience of the

66

program reading in the matrix list, the list is preceded by integers specifying the size of each

layer.

4.2.6 Extension to Banerjee’s Method

In the context of data mining, we expect classifiers to deal with both categorical and continuous

attributes. Banerjee’s technique is only defined for database tuples consisting of continuous

attributes; moreover, the core of the method requires continuous attributes, since the first

hidden layer is designed to act as a set of hyperplane tests on the input.

If we wish to maintain the basic essence of Banerjee’s idea, we should stick with each

pair of first hidden layer units representing the truth or falsehood of a proposition concerning

the inputs. This way, no change is required in the method to set up the second hidden layer or

the output layer. Let us imagine that we have some nominal input i and two units in the first

hidden layer (say, h1 and h2) which will perform the test on i. Given a proposition such as

i ∈ {a, b, c . . .} we want the following to occur:

• When x is one of {a, b, c . . .}, h1 must be active and h2 must be inactive.

• When x is not one of {a, b, c . . .}, h1 must be inactive and h2 must be active.

• The activity of h1 and h2 will be conveyed to the rest of the network in the manner

described by Banerjee—units in the second hidden layer will check for an AND of

these units with the other propositions which form a conjunct in the DNF; units in the

output layer will perform the OR of the ANDs to determine which class should be

indicated.

This reduces the problem to one of representation: how do we represent the nominal attribute

i? Continuous and ordinal variables are easy; the activation value of input units can be set to

the real-number value of the attribute, since the biases of the units in the first hidden layer

will scale them back. To what do we set the input unit for a nominal attribute?

If there are, say, seven categories and our predicate is i ∈ {1, 3, 5, 7}, we clearly cannot

have a single unit representing the attribute. Why not? Because when that unit’s value is 1,

h1 will have to be active. As it rises to 2, h2 will have to become active and h1 will have to

deactivate—but as i gets to 3, h1 will have to be stimulated again and h2 must be inhibited.

This is the situation we see in Figure 4.3: there are clearly no values we can give the biases

and weights which will have the desired effect.

What if we gave the nominal attribute a coded representation? For instance, we could

binary encode seven categories in three units and specify that for patterns 001, 011, 101, and

67

A=1{1234567}

w1=?

w2=?

bias1=?

bias2=?

Desired output
1.0 if A in {1,3,5,7}

Desired output

0.0 otherwise

1.0 if A in {2,4,6}
0.0 otherwise

A in

Figure 4.3: An ineffective way to represent nominal attributes

111 (1,3,5 and 7) that unit h1 be active, while 010, 100, 110 would cause h2 to become active.

This is indeed possible, since the example pattern could be learned by the hidden units as

a function of whether that last of the three units is on or off! However, we run into more

difficulty if, instead of trying to detect the last bit, we try to detect the parity of units. Take a

simpler example: categories 1 to 4 represented by two units, with the predicate i ∈ {1, 4}.
This would give us a situation that is essentially the XOR problem, but only two layers (one

set of adaptable weights) to do it—and we know that one cannot represent XOR with only

two layers of units and one layer of weights.

“Spread encoding” (Swingler, 1996), where the units activate cumulatively to represent

each subsequent numbered category, is also not a good option. It would imply that the

categories were ordered; i.e., that category 5 should be “more active” than category 4, and so

on. This is not the case, so to impose ordering on the categories presents false structure to the

MLP.

This leads us to the only conclusion that we can make: that each category has to be

represented by a single input unit. We use unit 1 to represent category 1, unit 2 to represent

category 2, and so on. It is now quite easy to set up units in the first hidden layer to represent

predicates, since only one input unit will ever be activated upon presentation of a tuple of data;

all we have to do is connect the units which meet the predicate strongly to the “is in” unit,

and weakly to the “is not in” unit and vice versa. Figure 4.4 shows an input of five categories,

with units to detect a) i ∈ {1, 3} and b) i ∈ {4, 5}.
All we need to do now is decide what values the weights and biases should be set at so as

to a) fall in line with the rest of Banerjee’s method, and b) not grow too large, saturating the

activation function (and thus inhibiting any further backprop learning). We want the output

of the predicate nodes to be fairly close to 1.0 when a predicate is met, so if we stick with

68

category

activates;
each unit
represents
one

Only 1 unit

Only strong links are shown

Activates if i in {1,3}

Activates if i not in {1,3}

Activates if i in {4,5}

Activates if i not in {4,5}

3

1

2

4

5

Connection weights = 5.0

Biases (not shown) = -2.5

Figure 4.4: A working representation of a categorical attribute — layer 2

detects categories {1,3} and {4,5}

a “strong” weight being 5.0 (the σ value in Banerjee’s original algorithm), we can treat the

“subset” node roughly the same way as an OR node. Banerjee chooses −σ/2 as the bias for

his OR units, so we shall do the same; the summed weighted input to the activation function

will thus never rise above 2.5 (nor drop below −2.5), which is a reasonable value to avoid

saturation, given a logistic activation function.

The new tree-to-MLP conversion now proceeds as follows (changes from Banerjee’s

original version are in bold):

1. Let σ and β represent a general weight magnitude and a “perturbation” magnitude,

respectively. Set σ = 5.0 and β = 0.025.

2. Create a Disjunctive Normal Form for each class in the decision tree.

3. Create an input node for each continuous/ordinal attribute and multiple input nodes
for each nominal attribute, one node for each category.

4. For each literal in the DNF of the form attrib ≤ value and each literal of the form
attrib in {a,b,c} create two hidden units. One represents the test succeeding, the other

failing. We refer to this layer as the “decision” layer, since its units encode tests in the

decision tree.

5. For the continuous attributes, connect the “success” node to the relevant input unit with

weight −σ and bias σ ∗ value. Connect the other node the same way, but with the signs

reversed.

69

6. For the nominal attributes, connect the “success” node to the input units repre-
senting categories “in” the desired set, and “failure” nodes to the other input units
of the same category. Set all the connection weights to σ and biases to −σ/2.

7. For each disjunct in a class, create a new hidden unit in the third layer. These are AND

units. Connect each AND unit to the relevant decision units with weights σ and set the

bias to −σ(2n− 1)/2, where n is the number of relevant units in the decision layer.

8. For each class, create an output unit and connect it to the AND units representing the

appropriate class with weight σ. Set the bias to σ/2.

9. Fully connect the rest of the MLP with weights β and −β, with equal probability.

The empirical results that follow show that this extended version of Banerjee’s technique

behaves as well as the original method.

One other limitation to the original technique was noted; attributes which have very

different ranges will have different influences on the initial network due to the bias term in

the first hidden layer (this is the value at which an input will cause a “switch” to another

disjunction). This is very easily dealt with by normalising all inputs to the network to a

standard deviation of one and a mean of zero; it is easy to convert back to original values after

processing. This method of normalisation preserves the spread and outlier characteristics of

the data. We treat it as an optional method that an analyst might use to make an MLP behave

decently; it probably has little effect on a well-initialised MLP.

4.2.7 MLP Tools

The requirements for MLP programs for the following experiments are:

1. The ability to participate in a Unix shell script, to facilitate the running of multiple

cross validation experiments.

2. The ability to provide output that may be easily graphed by programs such as gnuplot.

3. The ability to specify four-layer architectures, initial weights and initial biases.

4. The ability to specify alternative learning procedures such as quickprop (Fahlman, 1989),

alternative activation functions and means of avoiding the “flat spots” in activation

functions.

70

An MLP toolkit (named mlp) has been written as part of this project. The following sections

describe the enhancements made to traditional gradient descent learning, and the behaviour of

the actual program.

4.2.8 Gradient Descent Enhancements

Fahlman (1989) firmly established what had been largely accepted earlier: that the error-

surface gradient descent method of backprop learning typically took an unreasonable number

of epochs to complete. His article systematically catalogued the efficiency of backprop

for certain tasks, and recorded results of hundreds or thousands of epochs for even simple

problems such as XOR and a 10-5-10 encoder. (A 10-5-10 encoder is a three-layer MLP with

10 inputs, 5 hidden units and 10 outputs, trained to map all possible values of 10 bits onto

themselves; i.e. the output of each training example is the same as its input. The network is

therefore creating an encoding for the input, reducing 10 bits to 5.) Subsequently, quite a lot

of research has been performed on speeding up the process of backprop learning. (We will use

the common abbreviation “backprop” to refer to “gradient descent with error backpropagation,”

although strictly speaking it is only a way of establishing the relative extent to which each

connection is responsible for the MLP’s errors).

There are two broad approaches to making backprop faster. The first is concerned with

the algorithm itself, and involves finding ways to make the weight-updating process converge

more quickly. The second is to use the standard gradient descent algorithm (with whatever

optimisations are appropriate) but to develop an architecture optimised for the problem at

hand. A useful summary of these techniques can be found in Hassoun (1995, pp. 210–234).

Obviously the main thrust of this study is in the direction of the second idea: architectural

manipulation of the MLP to provide a network which is “suited” to the problem domain.

However, a secondary aim is to see how well a particular type of architecture modification

(i.e. the modified Banerjee method) interacts with faster variants of the backprop learning

algorithm. To test this, the mlp program incorporates the following theory.

We can state the backprop learning rule as defined by Rumelhart et al. (1986) thus:

∆pwji = ηδpjopi (4.1)

where ∆pwji = the change to be made to the weight from the ith to the jth unit following

presentation of pattern p; opi is the output and η is the learning constant. The δpj term is the

amount by which we wish to change the weight: it determines how much each activation is

blamed for the current error. Rumelhart et al. (1986) gives the calculations for δpj; firstly for

71

output nodes (where a target is specified):

δpj = (tpj − opj)a
′
pj (4.2)

where a′ is the derivative of the activation function. If we use a sigmoidal activation function

it is easily differentiable, the result being opj(1− opj). Then for hidden nodes:

δpj = a′pj

∑
k

δpkwkj (4.3)

where δpk is the δ of each neuron k to which j connects, and wkj is the weight from neuron j

to neuron k.

There are three parts of the algorithm that may be attacked in order to speed up backprop

learning:

1. Learning Rate:
The learning constant (the η term in Equation 4.1) has the most obvious and direct

bearing on how quickly backprop converges: if it is too low, then the weight changes

will be too small and convergence will require more epochs. If too large, the weight

changes calculated will over-correct each other too strongly, and the total error will

begin to oscillate. Many heuristics have been developed to calculate appropriate learning

constants from prior information, but there is as yet little strong theory to back them up.

During simulations, we can see empirically if the learning constant is set too high or

too low and adjust it accordingly.

The most popular heuristic for calculating/adjusting learning constants was proposed

by Plaut et al. (1986), and has seen several variants. The basic idea is to set a learning

constant, but to then divide it by the ‘fan-in’ for each neuron (i.e. the number of synapses

coming in to the neuron). This technique seems to work particularly well when the

difference between fan-in from layer to layer is very large (Fahlman, 1989).

2. Activation Function:
Some units in backprop will inevitably train faster than others, resulting in outputs

close to the saturation level of the activation function. The weights and biases of these

neurons will then change very slowly, despite the fact that they may require dramatic

changes before training will cease. Several methods have been suggested to counteract

this problem, including the use of non-linear error functions which push the weight

change higher as the δpj approaches zero.

By far the simplest (and easiest to implement) method of avoiding this so-called “flat-

spot” problem is to bias the derivative of the activation by adding a small number to it

72

(typically 0.1). Thus the result of calculating the derivative with respect to the neuron’s

output (the A′ term in Equations 4.2 and 4.3) ranges from 0.1–0.35, instead of 0.0–0.25.

This is the method settled upon by Fahlman (1989) as being the most effective, as well

as the most simple.

3. Momentum:
Originally proposed by Plaut et al. (1986), this extension to backprop has become almost

ubiquitous. It is an elegant idea: simply to add a term to each weight change based

on the previous weight change. This cancels out random fluctuations and enhances

systematic gradient descent. If we call our momentum term α, then the generalised

delta rule (Equation 4.1 above) becomes:

∆wji(t) = ηδpjopi + α∆wji(t− 1)

The weight change is the usual one plus α times the previous weight change. The α

term is set typically to about 0.8 or 0.9.

Several different versions of momentum have been proposed, the most radical being

termed the quickprop algorithm by its creator, Scott Fahlman.

Quickprop makes two risky assumptions about the gradient that the algorithm is trying

to descend—firstly, that the error slope roughly resembles a parabola; and secondly, that

the change in the slope of the error curve as seen by a particular neuron at update-time

is not affected by all the other weights being updated. Quickprop then calculates the

minimum point of the parabola, and jumps straight there. The equation for weight

updating becomes:

∆w(t) =
δ(t)

δ(t− 1)− δ(t)
∆w(t− 1)

where δ(t) and δ(t− 1) are the present and previous values of the δ term from Equa-

tion 4.1.

Normal gradient descent is calculated when the previous error slope is zero (for instance

at the beginning of training) and a ‘shrink factor’ is added to stop weight steps becoming

too large.

Of course, it is not safe to assume a parabolic error curve, but when applied iteratively,

Fahlman (1989) claims some fairly impressive speed improvements. A quickprop

network also uses the enhancements described in (1) and (2) above to get its best

results.

73

In the light of the theory outlined above, the mlp program provides the following func-

tionality:

• The network may be initialised by a configuration file which specifies not only parame-

ters such as learning constant and momentum, but also initial weight/bias matrices.

• A momentum term has become ubiquitous in MLP simulators; it is assumed that

momentum will be used. If the user specifies a momentum term of 0.0, this has the

same effect as using no momentum term.

• The user may optionally specify the use of quickprop gradient descent and flatspot

offset.

• Error may be reported as the sum of squared error or as the current misclassification

cost. Command line options control error reporting frequency.

4.3 Pilot Study Questions

The experiments presented in this chapter are designed to answer these questions:

1. Does embedding prior knowledge in an MLP using Banerjee’s technique reduce the

number of training epochs required?

2. How does that reduction compare to that gained by using Fahlman’s quickprop tech-

nique?

3. How does Banerjee’s technique interact with quickprop? With pruned trees?

4. Does the extension to Banerjee’s technique to include nominal attributes produce similar

behaviour?

5. Is any accuracy gained in the conversion from tree to MLP and subsequent training?

Some of these questions have been answered before, and some are new. Banerjee (1997)

presents evidence to show that training speed is improved by his technique, but includes no

databases with nominal attributes (since his technique is only defined for continuous attributes).

His method is only tested against standard backprop; here we compare to quickprop as well.

Banerjee points out that only unpruned decision trees were used to initialise his networks;

here we examine the results of using Minimal Cost Complexity to produce smaller trees

which in turn produce smaller MLPs. Finally we examine a completely new situation, where

74

a pruned decision tree is used to create an MLP which is then trained using quickprop on a

database containing a mixture of categorical and continuous attributes. To reiterate: we are

only concerned with whether a more accurate state exists for initialised MLPs, and whether it

exists earlier in the training sequence than for regular MLPs. We do not concern ourselves

with recognising that the MLP should stop training there—for treatments of such problems,

see Prechelt (1996) or Prechelt (1998).

4.4 The Databases

Six databases were used as test cases. The first four were used to observe the speed of training

of initialised MLPs against uninitialised MLPs, and also to compare the error rates of decision

trees, MLPs, and tree-initialised MLPs. Having established similar patterns in the speed tests

for the first four databases, the final two were used only to discover if an initialised MLP

might sometimes beat a decision tree for pure accuracy. In all tests, we used the percentage of

correct classifications as an accuracy measure, since the purpose was only to see if MLPs had

a better chance of being correct more often. For a characterisation separating false positives

and false negatives, see the experiments in Chapter 6.

Four databases were initially used for both speed and accuracy tests. The three “real”

databases are freely obtainable from the UCI Machine Learning Repository, while the “syn-

thetic” database was generated by a short program written in C.

The Iris Database

Perhaps this is the most famous machine learning database of all. The “Iris” set was introduced

by Fisher (1936). Since then it has been used too many times to mention, and has become a

de facto calibration benchmark for machine learning and statistical classification methods.

The database consists of 150 records, 50 each of three different kinds of iris: setosa,

versicolor, and virginica. Each record consists of four measurements: sepal width, sepal

length, petal width and petal length. The fifth attribute in each row is the class label. The

setosa records are linearly separable from the other two, but the latter are not linearly separable

from each other.

75

The Glass Identification Database

The motivation for this dataset was forensic—glass collected from crime scenes may be used

as evidence, if correctly identified. In particular, it is of interest as to whether the glass has

been “float” processed, and whether it is building glass or vehicular glass.

The database consists of 10 attributes: a row number, refractive index, sodium, aluminium,

silicon, potassium, calcium, barium and iron content. All attributes are continuous. The class

labels consist of building windows (float processed and non-float processed), vehicle windows

(float processed and non-float processed), container, tableware and headlamps. There are 214

rows in the database, with 87 float-processed, 76 non-float processed and 51 non-window

glass instances. There are no instances of non-float processed vehicle windows (class label 4).

Both the Iris and Glass databases featured in Banerjee (1997). The experiments described

here do not exactly replicate the results, since a different tree-growing and pruning algorithm

is used (race, based on SPRINT rather than C4.5). Added to those findings is the interaction

with quickprop training.

A Synthetic Mixed-Attribute Database

One of the goals of this project is to extend Banerjee’s method to include categorical (specif-

ically nominal) attributes. In order to verify that the extended method behaves similarly

to its predecessor, we need a tractable database with categorical attributes. This database

consists of two categorical attributes (one with six categories, the other with fourteen) and

three continuous attributes. The program which generates the data does so randomly, but also

applies the following rule:

� numeric attributes are a, c, e
� categorical attributes are b, d
� class label x has levels 1, 2, 3
if a < 33 and b ∈ {1, 3, 4, 6}

then x← 1
else if a ≥ 33 and b ∈ {5, 6}

then x← 1
else if c > 7 and d ∈ {2, 4, 6, 8, 10}

then x← 2
else if e > 900

then x← 2
else x← 3

Any number of rows may be generated. The application of the rule gives a distribution

of the class labels of P (1) = 46%, P (2) = 9.7% and P (3) = 44.3%. There is no “noise” in

76

the database, because every row obeys the rule. Here we are interested in seeing how long a

normal MLP takes to learn the rule, versus how precisely an initialised MLP “knows” the rule

to begin with.

The Australian Credit Database

This database is included to provide a “real world” dataset consisting of both categorical

and continuous attributes. It has been used by Quinlan (1987), and is part of the standard

STATLOG dataset used to assess the behaviour of decision tree pruning procedures in Mehta

et al. (1995). It is interesting here because it provides a good mix of attributes—continuous,

categorical with small numbers of values, and categorical with large numbers of values.

The dataset consists of credit card applications. All attribute names have been changed to

meaningless values to protect confidentiality, including the class labels; however we can

assume that they indicate good and bad credit risks, or possibly “approve” and “decline” the

application.

The database contains 690 rows with 15 attributes including the class label. The categorical

attributes include 2-value, 3-value, 9-value and 14-value fields. The classes have 44.5% and

55.5% representation.

Surgical Audit

The Surgical Training Unit at the School of Medicine, University of Otago records every

operation performed in a database (Pettigrew, McDonald, and van Rij, 1991). Recently there

has been interest in the automatic prognosis of patients—not for use as a prognostic tool, but

as a method of risk-adjustment when calculating league tables of mortality and morbidity.

Twelve prognostic variables were identified; their names and possible values are listed as

Table 4.1.

Class labels are 1 (minimal or no complications) and 2 (intermediate and severe complica-

tions). There are 2996 cases in the subset of data under scrutiny, with 302 in Class 2.

German Credit

This database is similar in nature to the Australian Credit dataset, except this time we know

exactly what each attribute represents. This database forms part of the STATLOG system

(used to calibrate MDL pruning in Mehta et al. (1995)).

There are 1000 instances in the database; 700 of them are “bad”, and the other 300 are

“good.” The attributes and their possible values as listed as Table 4.2.

77

Table 4.1: Attributes Contained in the Surgical Audit Database
attribute possible values

age continuous in years
sex male, female

timing arranged, urgent, emergency
admission acute, not acute

wound category contaminated, not contaminated
duration of operation continuous in minutes

operation category intermediate, minor, major 2, major 1
operation number continuous

operator consultant, registrar
pre-operative stay continuous in days

inpatient status inpatient, day-case
organ system urology, gastro, renal, breast/endocrine, vascular, gyn/orth/misc

Table 4.2: Attributes Contained in the German Credit Database
attribute possible values

status of existing cheque account < 0 DM, < 200 DM, > 200 DM, no a/c
duration of account continuous in months

credit history none/all paid, all here paid back,
paid back till now, delay in past,
critical account/others existing (not at this bank)

purpose new car, used car, furniture/equipment,
radio/tv, domestic appliances, repairs, education,
vacation, retraining, business, others

credit amount continuous in DM
present employment since unemployed, < 1 year, < 4 years,

< 7 years, ≥ 7 years
installment rate continuous in percentage of disposable income

personal status and sex male+divorced/separated,
female+divorced/separated/married, male+single,
male+married/widowed, female+single

other debtors/guarantors none, co-applicant, guarantor
present residence since continuous in years

property real estate, life insurance, car or other, unknown/none
age continuous in years

other installment plans bank, stores, none
housing rent, own, for free

number of existing credits at this bank integer
job unemployed/unskilled+non-resident,

unskilled+resident, skilled/official,
management/self/highly qualified/officer

dependents integer
telephone none, registered under customer’s name

foreign worker boolean

78

4.5 First Four Experiments

Each of the first four databases was subjected to training speed tests and generalisation

accuracy tests.

Training speed tests

1. Log the sum of squared error of an MLP over v random-start runs for a) 3-layer

backprop, b) 4-layer backprop, c) 3-layer quickprop and d) 4-layer quickprop. Empiri-

cally determine a good architecture and learning constant (i.e. the experimenter must

“guess-and-check”).

2. Build a decision tree on the data. Derive two trees: one unpruned and one pruned to an

arbitrary level (close to the size of the “good” MLP above).

3. Log the sum of squared error of an MLP a) initialised with the unpruned tree and b)

initialised with the pruned tree. Train with both backprop and quickprop.

Step 1 allows us to calibrate how effectively the mlp program behaves on the current

dataset, under ideal conditions (meaning that the experimenter quite quickly determines a

reasonable architecture). We can average the training error of the network at each epoch over

the v runs to produce a “typical” graph of how quickly the error reduces during training. To

produce conservative results, we ignore all the false-starts the experimenter must engage in;

error logging only occurs once an architecture has been found that seems to suit the problem.

Step 2 requires a sensible choice of pruned decision tree; some human intervention is

required, since we are not using a test set to determine which is the best pruned tree. Choosing

a tree which, using Banerjee’s technique, will produce an MLP of similar size to the optimal

4-layer MLP seems sensible, as long as that tree is not so large that it is obviously overfitted.

This also tends to bias the experiment on the conservative side; the uninitialised MLP has the

best possible chance of doing well compared to the initialised one.

Step 3 allows us to graph the speed of error reduction during training of 3 and 4-layer

MLPs with the MLPs produced by the tree-embedding technique. Both pruned and unpruned

trees are used; MLP training is undertaken with both backprop and quickprop.

All of the tests up until this point are concerned only with the speed of error reduction

on the original training set, not with the generalisation accuracy or the optimum training

time. The following cross validation tests indicate how many epochs are required before the

network has reached an optimal state and what level of accuracy it can achieve.

79

Generalisation accuracy tests

1. Log the classification accuracy and optimum training time over v-fold cross validation

for a) 3-layer backprop, b) 4-layer backprop, c) 3-layer quickprop and d) 4-layer

quickprop.

2. Create a sequence of unpruned trees for each subset over v-fold cross validation. Create

a further sequence of pruned trees, cut to optimum performance on the v test sets.

3. Log the classification accuracy and optimum training time over v-fold cross validation

for an MLP a) initialised with the unpruned tree and b) initialised with the pruned tree.

Train with both backprop and quickprop. For tree initialisation use the tree grown on

the same subset to provide paired comparison.

Since we do not care at this stage how to stop training the MLP, only whether a better

MLP may exist while training on the same data, we can use the same hold-out set in v-fold

cross validation to choose the best-pruned subtree and to assess the accuracy of the MLP after

each training epoch. In fact, this test will be a little biased in favour of the decision tree, since

the hold-out will over-estimate the accuracy of the tree (having been used as “model-selection”

data). Thus the MLP will have to improve significantly if it is to do better than the decision

tree from which it was created.

Step 1 is a calibration similar to Step 1 in the training speed tests, indicating a baseline

performance on accuracy and stopping time for 3 and 4-layer backprop together with 3 and

4-layer quickprop.

Step 2 creates a pruned and unpruned decision tree for each training set and logs its

accuracy on the corresponding test set.

Step 3 uses the trees created in Step 2 to initialise MLPs which are then trained with

backprop and quickprop. Their accuracy is tested every epoch against the corresponding test

set, and the best accuracy is logged, along with the number of epochs required to achieve

it. Thus we can compare how effectively MLPs can scale up in with respect to both speed

(in terms of how soon the MLP reaches its “most accurate” state) and accuracy (in terms of

classification error). Finally we can compare the accuracy of the pruned trees under cross

validation with the accuracy of the MLPs on the same training/test sets.

To avoid confusion when referring to differing configurations of MLPs, a network ini-

tialised with Banerjee’s technique will be referred to as a “BMLP.”

80

4.5.1 Iris

The experiments were run on the Iris database so as to provide an illustrative example, and

to see how the technique behaves on a low-dimensional, well-behaved training set. As such,

some extra explanation is provided as we go through this example. Figure 4.5 shows us the

typical behaviour of 3 and 4-layer MLPS on the database across 10 random-start trials. All

connection weights and biases were set to an arbitrary value between −0.3 and +0.3 and the

learning constant was set to 0.005. For each start v, the random number generator seed was

set to v, so that backprop had the same start condition as quickprop at each run. The sum of

squared error for the network was logged at the end of each epoch in a separate file for each

run; the average error at each epoch over the 10 runs was then plotted on the graph. Had every

run been graphed, each type of network would produce a range of error values for each epoch

whereas this graphing technique gives us a “mean line” over the trials.

We can see from Figure 4.5 that error drops off far more sharply for quickprop than for

backprop, reaching a point where little more improvement on the training set is possible

somewhat before 100 epochs. By contrast, the backprop networks are only beginning to

flatten out after 500 epochs.

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250 300 350 400 450 500

S
um

 o
f S

qu
ar

ed
 E

rr
or

Number of Epochs

MLP Speed Comparision: Iris Dataset

3-layer-bp
3-layer-qp
4-layer-bp
4-layer-qp

Figure 4.5: Average error-reduction rates for 3 and 4-layer backprop and

quickprop on the Iris database

81

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250 300 350 400 450 500

S
um

 o
f S

qu
ar

ed
 E

rr
or

Number of Epochs

Speed Trial with Unpruned Tree: Iris Dataset

3-layer-bp
3-layer-qp

bp-with-tree
qp-with-tree

(a) 4-layer backprop and quickprop with unpruned tree initialisation.

 0

 20

 40

 60

 80

 100

 120

 50 100 150 200 250 300 350 400 450 500

S
um

 o
f S

qu
ar

ed
 E

rr
or

Number of Epochs

Speed Trial with Pruned Tree: Iris Dataset

3-layer-bp
3-layer-qp

bp-with-tree
qp-with-tree

(b) 4-layer backprop and quickprop with pruned tree initialisation.

Figure 4.6: A comparison of MLP learning speeds on the Iris database

82

Using race to induce a decision tree on the Iris data and running rules to generate an

initial network architecture produces the result seen in Figure 4.6a. The results from the 3-layer

networks are included to aid comparison—clearly, these BMLPs “know” something already,

starting their training from a point far lower on the error gradient. It is interesting to note that

the quickprop BMLP has a sharper drop-off in error than the backprop BMLP, and that the

quickprop BMLP is the only network to reduce training set error to zero misclassifications,

which automatically halts training. Also note that this occurs shortly after 100 epochs.

Although interesting, it is unlikely to be significant since any perceptron which actually

reached zero error on the training set is almost certainly overtrained and will therefore

generalise poorly. The network produced by the unpruned tree has layer sizes 4, 16, 9, and 3.

Figure 4.6b shows the results of pruning the tree so that it is reduced from 100% accuracy

on the training set to 97% accuracy (a reduction from 17 nodes to 7, using Minimal Cost

Complexity pruning). The resulting tree produces a BMLP with hidden layers of sizes 6 and

4 (rather than 16 and 9) but we can see that the error drop-off is very similar, with quickprop

once again interacting well with the tree embedding technique. On the surface this may

indicate that pruning the tree before embedding it in a BMLP is not important, until one

considers that the smaller network has a much faster training time since each epoch is faster.

These graphs certainly indicate that training speed is strongly affected by a knowledge

embedding technique, but what about reaching the point of best generalisation? If, for

instance, the MLP ought not to be trained past a total sum of squared error rate of 10 for

optimal generalisation, then the technique is a complete waste of time, since 3-layer quickprop

reaches this value in around 75 epochs.

The numbers in Table 4.3 paint a reasonably optimistic picture of this, though. What we

see here are the best error percentages achieved on test sets through cross validation, and the

number of epochs required to achieve them.

Table 4.3 gives the mean value of this accuracy over 10 cross validations and the mean

number of epochs taken to reach this value. We can see from this table that the accuracy

achieved by the tree embedding method is close to all the other methods; this suggests that

at least we are not setting the network up in such a way that it is poorly equipped to deal

with the domain. We also note that the BMLPs have performed particularly well with respect

to how many epochs it takes to reach best generalisation; two orders of magnitude better

than a 3-layer MLP trained with backprop. This is particularly interesting considering that

Figure 4.5 implies that 4-layer backprop is normally the slowest to train; for this database, the

tree-embedded knowledge can barely be improved upon.

83

Table 4.3: Iris Database: Generalisation Accuracy and Best Stopping Points

over 10-fold Cross Validation

Mean Best Error (%) Mean Epochs

on test sample

Unpruned Tree 4.7 (not trained)

Pruned Tree 4.0 (not trained)

3-layer standard backprop MLP 3.3 497.3

4-layer standard backprop MLP 2.7 488.3

3-layer standard quickprop MLP 1.3 206.1

4-layer standard quickprop MLP 1.3 192.1

Backprop BMLP with unpruned tree 3.3 3.3

Quickprop BMLP with unpruned tree 2.0 7.6

Backprop BMLP with pruned tree 3.3 3.1

Quickprop BMLP with pruned tree 2.0 7.4

Note that the best generalisation accuracy of all MLPs appears to be better than the

generalisation accuracy of pruned trees; however a 2-way analysis of variance (ANOVA)

shows that there is not enough evidence to suggest a difference between the 9 methods of

generating a classifier (unpruned trees were not included in the test since they are always

assumed to be overfitted). The F-value for difference in method was 1.88 (2.097 required for

95% confidence). There is strong evidence of a difference between sets in cross validation

(F-value of 15.44), suggesting that for all methods, some training/test combinations were

harder to learn than others.

4.5.2 Glass

The standard behaviour of MLPs for 3 and 4-layer backprop and quickprop is given in

Figure 4.7. Once again, 10 random starts were used. We can see that this classification is

significantly harder to learn, with the backprop MLPs not reaching anywhere near a decent

error rate after 500 epochs, but with quickprop once again showing a much sharper error

gradient descent. Reference to Table 4.4 shows that quickprop MLPs take about 0.6–0.7 times

as long to reach the optimum training point.

In Figure 4.8 we see the effect of embedding unpruned and pruned trees on the training

speeds. As with the Iris database, we see a marked difference in start point (the error starts

84

 0

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350 400 450 500

S
um

 o
f S

qu
ar

ed
 E

rr
or

Number of Epochs

MLP Speed Comparision: Glass Dataset

3-layer-bp
3-layer-qp
4-layer-bp
4-layer-qp

Figure 4.7: Average error-reduction rates for 3 and 4-layer backprop and

quickprop on the Glass database

already low because of the embedded knowledge, but higher than the tree used to embed it due

to logistic activation functions). Furthermore, we see that the interaction between quickprop

and the embedding method is favourable—once again this combination is the only one to

reach a zero error on training set.

Once again we can see that pruning the tree makes only a small difference on how quickly

the error reduces. However, difference in network size is quite significant this time: 9-36-19-7

as opposed to 9-96-50-7. Since the time to complete an epoch scales to the order of O(n2),

being one third of the size means that each epoch takes a great deal less time.

The results for 10-fold cross validation on the glass database is presented in Table 4.4.

The quickprop BMLP is the clear winner here, approaching a 5-fold speed-up. If we consider

the fact that the two backprop MLPs really required longer training (indicated by their poor

error rates) then it is not much of a stretch to assume an order of magnitude improvement.

(Backprop MLPs which are allowed to run for 1000 epochs on this database still only reach an

error rate of around 30%—still worse than the BMLP achieving 22% at around 100 epochs.)

Note that a 4-layer network seems to be a good architecture for this domain, since the 4-layer

quickprop MLP has produced results close to the accuracy and speed of the BMLPs.

In this case a 2-way ANOVA provides us with strong evidence of both a difference in

accuracy (F-value of 14.57) and a difference in the difficulty of training sets (F-value of 7.01).

85

 0

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350 400 450 500

S
um

 o
f S

qu
ar

ed
 E

rr
or

Number of Epochs

Speed Trial with Unpruned Tree: Glass Dataset

3-layer-bp
3-layer-qp

bp-with-tree
qp-with-tree

(a) 4-layer backprop and quickprop with unpruned tree initialisation.

 0

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350 400 450 500

S
um

 o
f S

qu
ar

ed
 E

rr
or

Number of Epochs

Speed Trial with Pruned Tree: Glass Dataset

3-layer-bp
3-layer-qp

bp-with-tree
qp-with-tree

(b) 4-layer backprop and quickprop with pruned tree initialisation.

Figure 4.8: A comparison of MLP learning speeds on the Glass database

86

Table 4.4: Glass Database: Generalisation Accuracy and Best Stopping

Points over 10-fold Cross Validation

Mean Best Error (%) Mean Epochs

on test sample

Unpruned Tree 32.7 (not trained)

Pruned Tree 24.2 (not trained)

3-layer standard backprop MLP 35.0 482.2

4-layer standard backprop MLP 37.4 435.3

3-layer standard quickprop MLP 29.5 324.4

4-layer standard quickprop MLP 23.3 267.8

Backprop BMLP with unpruned tree 21.1 120.9

Quickprop BMLP with unpruned tree 18.2 74.2

Backprop BMLP with pruned tree 20.5 127.5

Quickprop BMLP with pruned tree 16.8 91.9

Since the pruned quickprop BMLP appears to achieve the best accuracy, we can test whether

it is improving on that of pruned trees; we see an average paired difference of 7.45 percentage

points between the two methods, generating a t-value of 5.73. We therefore conclude that

there is very strong evidence of an improvement in generalisation accuracy between pruned

trees and quickprop pruned BMLPs (t-value of 3.250 required for 99.5% confidence).

4.5.3 Synthetic Database with Categorical Attributes

This experiment is designed to display the behaviour of a BMLP with the extension to

Banerjee’s technique introduced earlier in this chapter. (Recall that the purpose of the

extension is to deal with categorical attributes.) As usual, we check the expected behaviour of

3 and 4-layer MLPs in Figure 4.9. Also as usual, we see quickprop significantly outperforming

backprop. As with the Glass database, we can see that a 4-layer architecture seems to be

particularly good for this domain, at least when combined with the quickprop algorithm.

With the addition of tree-embedding in Figure 4.10 we see the pattern we have come to

expect: the network starts with a lower error and progresses to a minimum error level very

quickly. This provides some empirical evidence that the extended knowledge embedding

actually works—the technique is now usable with categorical attributes. A marked difference

87

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200 250 300 350 400 450 500

S
um

 o
f S

qu
ar

ed
 E

rr
or

Number of Epochs

MLP Speed Comparision: Synthetic Dataset

3-layer-bp
3-layer-qp
4-layer-bp
4-layer-qp

Figure 4.9: Average error-reduction rates for 3 and 4-layer backprop and

quickprop on the Synthetic database.

is that this time pruning the tree has had a noticeably adverse effect on the gradient descent

for both quickprop and backprop BMLPs. This is to be expected, since the database has no

“noise”; every tuple follows the artificial set of rules which were used to create the database.

Thus pruning a tree created on the complete set can only reduce its accuracy.

Table 4.5 confirms that the tree method, even on cross validation (where the tree is built on

part of the data and then tested for accuracy on the rest) performs unusually well on noise-less

data. Also, we see that 500 epochs is once again not enough to get the standard MLPs to an

optimum training level. In contrast, the quickprop BMLPs reach their optimum states after

about 20 epochs. If we assume that a 3-layer MLP will take perhaps 1000 epochs to reach a

similar error level, then we see almost two orders of magnitude increase in speed. (Training

runs for this problem which are allowed to reach 1000 epochs produce errors of around 12%,

so this is a conservative assumption.) On noiseless data, however, it seems that we cannot

expect MLPs of any type to compete with decision trees for either speed or accuracy. Indeed,

a 2-way ANOVA gives strong evidence of a difference in methods (F-value of 58.98) but this

time we can clearly see that the winning method is pruned trees. There is also strong evidence

of a difference in difficulty of training/test subsets (F-value of 4.76).

88

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200 250 300 350 400 450 500

S
um

 o
f S

qu
ar

ed
 E

rr
or

Number of Epochs

Speed Trial with Unpruned Tree: Synthetic Dataset

3-layer-bp
3-layer-qp

bp-with-tree
qp-with-tree

(a) 4-layer backprop and quickprop with unpruned tree initialisation.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200 250 300 350 400 450 500

S
um

 o
f S

qu
ar

ed
 E

rr
or

Number of Epochs

Speed Trial with Pruned Tree: Synthetic Dataset

3-layer-bp
3-layer-qp

bp-with-tree
qp-with-tree

(b) 4-layer backprop and quickprop with pruned tree initialisation.

Figure 4.10: A comparison of MLP learning speeds on the Synthetic

database

89

Table 4.5: Synthetic Database: Generalisation Accuracy and Best Stopping

Points over 10-fold Cross Validation

Mean Best Error (%) Mean Epochs

on test sample

Unpruned Tree 1.0 (not trained)

Pruned Tree 0.7 (not trained)

3-layer standard backprop MLP 14.9 500.0

4-layer standard backprop MLP 15.9 500.0

3-layer standard quickprop MLP 10.2 461.4

4-layer standard quickprop MLP 5.5 493.5

Backprop BMLP with unpruned tree 1.9 80.3

Quickprop BMLP with unpruned tree 2.0 20.2

Backprop BMLP with pruned tree 1.7 66.1

Quickprop BMLP with pruned tree 1.7 19.0

4.5.4 Australian Credit Database

Now that we have some evidence that the extended embedding technique works well for

databases with both categorical and continuous attributes, we can test its effectiveness on

real data. Figure 4.11 shows the behaviour we have come to expect from standard 3 and

4-layer networks. As with the Glass database, a 4-layer quickprop network seems to be

particularly suited to this domain. Figure 4.12 also shows the results we have come to expect

from embedding decision tree knowledge into backprop and quickprop MLPs. As usual,

both BMLPs start with a much lower global error. Here we begin to see quickprop really

interacting well with the embedding technique—for both pruned and unpruned trees, the

quickprop learning algorithm shows a vast improvement in error reduction when started with

“preconceived ideas.” Note also the oscillation in the BMLPs when the initialising tree is not

pruned—the result of a learning constant which is slightly too high.

Does this training behaviour translate into good generalisation and early stopping? Ta-

ble 4.6 presents the usual 10-fold cross validation results for trees and MLPs. This time,

we can see that pruning the tree before embedding it in the MLP has produced the best

generalisation accuracy. A 2-way ANOVA suggests strong evidence of a difference in classifi-

cation methods (F-value of 4.82) and very strong evidence of a difference in training/test set

difficulty (F-value of 32.74). A paired t-test on pruned trees vs. pruned quickprop BMLPs

90

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300 350 400 450 500

S
um

 o
f S

qu
ar

ed
 E

rr
or

Number of Epochs

MLP Speed Comparision: Australian Credit Dataset

3-layer-bp
3-layer-qp
4-layer-bp
4-layer-qp

Figure 4.11: Average error-reduction rates for 3 and 4-layer backprop and

quickprop on the Australian database

shows an average difference of 1.45 percentage points, with t-value of 4.74 (3.250 required

for 99.5% confidence). We can therefore confirm that there is very strong evidence of an

improvement on test set scores for quickprop pruned BMLPs over pruned trees.

4.6 Interpretation and Implications

At this point, we pause to ask a few questions regarding the results we have seen so far.

1. Does embedding prior knowledge in an MLP using Banerjee’s technique appear to

reduce the number of training epochs required?

These experiments certainly lend support to the idea that an MLP initialised with

Banerjee’s technique will not need as many epochs to train. Not only does the global

error of the network reduce faster (according to the graphs of training error) but the

MLP will reach a point of optimal generalisation much sooner. Over the four databases

presented so far, a quickprop BMLP initialised with a well-pruned tree seems to reach

optimal accuracy with at least an order of magnitude fewer training epochs than a

standard 3 or 4-layer MLP.

91

 0

 100

 200

 300

 400

 500

 600

 700

 50 100 150 200 250 300 350 400 450 500

S
um

 o
f S

qu
ar

ed
 E

rr
or

Number of Epochs

Speed Trial with Unpruned Tree: Australian Credit Dataset

3-layer-bp
3-layer-qp

bp-with-tree
qp-with-tree

(a) 4-layer backprop and quickprop with unpruned tree initialisation.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 50 100 150 200 250 300 350 400 450 500

S
um

 o
f S

qu
ar

ed
 E

rr
or

Number of Epochs

Speed Trial with Pruned Tree: Australian Credit Dataset

3-layer-bp
3-layer-qp

bp-with-tree
qp-with-tree

(b) 4-layer backprop and quickprop with pruned tree initialisation.

Figure 4.12: A comparison of MLP learning speeds on the Australian

database

92

Table 4.6: Australian Database: Generalisation Accuracy and Best Stop-

ping Points over 10-fold Cross Validation

Mean Best Error (%) Mean Epochs

on test sample

Unpruned Tree 19.1 (not trained)

Pruned Tree 12.2 (not trained)

3-layer standard backprop MLP 14.3 405.1

4-layer standard backprop MLP 13.9 228.7

3-layer standard quickprop MLP 12.5 204.7

4-layer standard quickprop MLP 12.6 68.6

Backprop BMLP with unpruned tree 15.2 143.9

Quickprop BMLP with unpruned tree 14.9 58.1

Backprop BMLP with pruned tree 11.7 87.6

Quickprop BMLP with pruned tree 11.4 47.9

2. How does that reduction compare to that gained by using non-standard weight update

methods?

We occasionally see 4-layer quickprop doing as well as a BMLP; for instance in the

Australian Credit database experiment we see only a slight difference in performance

between 4-layer standard quickprop and a quickprop BMLP. What is not apparent from

the experiments is the amount of work that went into finding a good 4-layer architecture

that could allow standard quickprop to work that well; by contrast, Banerjee’s algorithm

provides an architecture which seems to work well every time.

3. How does Banerjee’s technique interact with faster weight optimisation schemes, such

as quickprop? What about with pruned trees?

The tree embedding technique seems to work very well indeed with quickprop. In

domains where we see a fast initial drop in error and then a long plateau (such as the

Glass and Australian databases) a backprop BMLP seems to start with lower error, but

that error then reduces at a similar rate to the plateau of a standard backprop MLP. By

contrast, a quickprop BMLP has an immediate and dramatic error reduction. In every

experiment the quickprop BMLP requires about half the number of epochs to reach

93

optimal accuracy when the initialising tree is pruned and a quarter when the initialising

tree is unpruned.

This sheds some light on the second question, regarding pruning. The trees produced

by race for the Iris database are already quite small, so pruning seems to have little

effect on the embedding technique except to increase the number of epochs required to

reach best accuracy. Furthermore, quickprop seems to work better without pruning the

tree first. However when we look at the results from a database which produces a large

decision tree (such as the Australian data, on which race induces a tree of 165 nodes)

pruning is essential. Without pruning, a BMLP of size 43-154-83-2 is created: clearly

too big, when a BMLP of 43-30-16-2 can learn the classification more accurately!

Under cross validation on the Australian Credit data we see that pruning the test-set

tree and selecting the best-pruned tree to initialise the BMLP produces classifiers with

an error rate 3 percentage points smaller.

4. Does the extension to Banerjee’s technique to include categorical attributes produce the

desired behaviour?

The extended technique introduced in this chapter does indeed exhibit the same be-

haviour as the original technique. The benefit of this is that we can now use the BMLP

method on a much wider range of databases. Also, it brings the technique into the field

of data mining and knowledge discovery where we would expect it to be able to cope

with categorical as well as continuous data. The improvement in training time seen

in the original technique is also seen in the extended method; a quickprop BMLP is

usually at least an order of magnitude faster to reach optimum accuracy than a 3 or

4-layer MLP.

5. Is any accuracy gained in the conversion from tree to MLP and subsequent training?

We have seen two databases where accuracy is gained by the conversion and subsequent

training; in particular, BMLPs for the glass database have an error rate 7.4 percentage

points lower than the best pruned tree available. Since the trees have an error rate of

around 24%, this represents a drop of about 30% of the original error. BMLPs for the

Australian Credit database also outperform the best pruned trees, although only by

about 0.8 percentage points. This means that there exist databases where MLPs could

outperform trees for classification accuracy, assuming we could recognise the right

time to stop training. We can also suggest that, on these databases, a tree-embedding

technique is likely to work well in reducing the number of epochs required to train the

network.

94

On the other hand, we also saw no evidence of a difference in classification accuracy

in the Iris dataset, and strong evidence that trees were better for the Synthetic dataset.

This suggests that there exist databases where training an MLP at all is a waste of effort,

since a pruned decision tree will always produce a better classification faster.

4.7 Final Two Experiments

The Surgical Audit and German Credit databases were used to focus on the question of

whether we might expect a BMLP to end up producing a more accurate model than the

decision tree that was used to create it.

One cross validation experiment was run on each database, to determine whether or not

quickprop pruned BMLPs performed better on generalisation accuracy than pruned trees.

Once again, we are only concerned with whether a more accurate BMLP exists in the sequence

of training states, and how early that state appeared in the sequence. The results are presented

in Table 4.7. This time, we present every run over cross validation. Due to the low incidence

of the class of interest in the Surgical Audit database, only five rather than ten cross validations

were run. Note the consistency of results—the BMLP shows equal or better accuracy than the

best pruned tree for every randomly generated subset of data. Recall that the BMLP never

gets to observe the test set for the purposes of training; its parameters are only ever adjusted

according to the signals provided by the original training set. Nevertheless, it seems capable

of reaching a state where it will generalise better than a tree that the test set actually favours

most strongly.

We see an average difference of only 0.17 of a percentage point in BMLP vs. pruned

trees on the Surgical Audit database. Without performing an ANOVA, we can observe that

every training set/test set combination has a different “difficulty,” but that the tree and BMLP

models find them similarly difficult. However, on each run, the BMLP finds a representation

that is just slightly more accurate than the tree’s. Although the improvement is very small,

it is consistent across all training/test subsets. However, this may be a case of a statistically

significant difference being a practically insignificant difference: it depends on what that fifth

of a percent is worth in real terms.

On the German Credit database, we see an average difference of 3.1 percentage points.

Once again, there seems to be variation in training set/test difficulty (F-value of 28.42), and

once again the BMLP finds a more accurate representation every time—although in this case,

one that is almost certainly large enough to be of practical use.

95

(a) Surgical Audit: 5-fold cross validation

run tree error (%) BMLP error (%)

1 11.5 11.5

2 8.85 8.68

3 8.51 8.35

4 9.68 9.52

5 10.18 9.85

mean 9.75 9.58

(b) German Credit: 10-fold cross validation

run tree error (%) BMLP error (%)

1 23 19

2 30 27

3 20 17

4 16 15

5 22 16

6 22 19

7 28 26

8 25 22

9 20 19

10 29 24

mean 23.5 20.4

Table 4.7: Results of cross validation tests on the Surgical Audit and

German Credit Databases

Both databases contain real-life data, both are noisy and “hard” to generate classifiers for

(the average size of the unpruned trees for Surgical Audit is 521 nodes, which gets pruned

down to an average of 18.6 nodes). Interestingly, BMLP classification seems to work better

for both of them, but to quite different degrees; a 1.7% improvement in accuracy for Surgical

Audit (from 9.75% to 9.58% error) and a 13.2% improvement for the German Credit dataset

(from 23.5% to 20.4% error rate).

This method of tree embedding seems to be giving us what we want—an improvement

on decision tree classifier accuracy. But when will it be enough? Is a reduction of 0.17 of a

percent error enough to justify the effort of the technique? Perhaps, if it means we correctly

classify 17 more patients out of a database of 10 000. Perhaps not, if we only operate on 1000

patients a year. On the other hand, a 3.1 percentage point drop in error could save a credit

firm millions of dollars per year; but it could also result in some expensive litigation.

In the next chapter, we shall attempt to explain what we should or should not expect an

initialised MLP to be able to do, and set the scene for an alternative method of initialisation

that produces rather smaller MLPs than have yet been proposed in the literature.

96

Chapter 5

A General Method of Transfer from
Decision Trees to MLPs

From the results of the experiments in the previous chapter, we have some empirical reason

to believe that MLPs can be more accurate classifiers than decision trees. But why? What

exactly is an MLP doing that is different from a decision tree? And why should an MLP

that is initialised by way of a decision tree have any chance of outperforming the tree? An

exploration of these questions will lead to a method of initialising MLPs that produces smaller

MLPs than all prior methods. We examine the changes that an MLP undergoes when a

training algorithm adjusts connection weights and biases, and show precisely how the internal

nodes of an MLP may be used to set up arbitrary decision boundaries in the feature space.

To keep matters simple, we shall at first examine decision trees and MLPs that operate

on a feature space consisting of two continuous dimensions, with one output representing a

probability of class membership. Without loss of generality, the ideas presented here extend

to any number of dimensions (with straight-line boundaries becoming planar or hyperplanar).

We will explicitly examine feature spaces containing categorical inputs, and output spaces

containing multiple classes.

5.1 The Knowledge of Decision Trees and MLPs

To link the “knowledge” stored in decision trees and MLPs, we shall utilise a simple transpar-

ent propositional logic language that allows us to talk about objects in a database. Statements

in this language can then be shown to map to decision trees (of a particular architecture) and

to MLPs (also of a particular architecture). Propositions in this language consist of statements

about objects, such as x < 3 (meaning “the value of feature x is less than 3”) or z ∈ {2, 3, 5}

97

0 2 4 6 8 10 12

0
2

4
6

8
10

12

Database with One Axis−Parallel Decision Boundary

X value

Y
 v

al
ue

bad
good

(a) A simple database

X < 6

class = good class = bad

yes no

(b) Decision tree derived from (a)

Figure 5.1: A database that follows a simple classification rule

(meaning “the value of feature z is one of 2, 3, or 5). This language contains all the usual

modifiers and connectives that one expects to find in a propositional language: ¬ (negation),

→ (implication), ∧ (conjunction; i.e. AND), ∨ (disjunction; i.e. OR) and is read left-to-right

unless parenthesised. When we find the language inadequate to our needs, we shall extend it

as and when necessary.

5.1.1 A Simple Database with One Hyperplanar Decision Boundary

To take a simple example, imagine a database in which all of the objects whose x-value is less

than 6 belong to the class good , and the rest belong to the class bad . A decision tree induced

on this database should have one branch containing the decision x < 6 and two leaves, the left

leaf labelled good and the right labelled bad . The database and the resulting decision tree are

depicted in Figure 5.1. Note that the y-values have no association at all with the class label.

Our simple language allows us to say, regarding the database, that “x < 6 → class =

good”, or “if the x-value of an object from this database is less than 6, then the class of that

object will be good .” Note that the implication is only one way, so we are not saying that if the

class is not good , then x is not less than 6. Nor does the statement suggest that if the x-value

is greater than 6, that the class is anything other than good . To tighten up the circumstances in

which we would deduce that a class label should be good , we could use

x < 6→ class = good ∧ ¬(x < 6)→ ¬(class = good)

Alternatively, we could reverse the sense of the less-than operator:

x < 6→ class = good ∧ x ≥ 6→ ¬(class = good)

98

X

Y

act(inputs + 30)

−5

0

Figure 5.2: An MLP with a single axis-parallel soft hyperplane

Far more succinctly, we can add an “if and only if” form of implication, with “↔” being the

appropriate connective. Then “x < 6↔ class = good” says that we should only classify an

item as good if x < 6, which requires that we have established what the default class should

be. The “if and only if” gives us a crude form of “default rule”; it suggests that, in the absence

of any other knowledge, we should not classify an item as good . In all further examples, we

assume a default class of bad .

So if a single-branch decision tree can represent a piece of knowledge such as “x < 6↔
class = good”, what form of MLP could do the same? The answer is a very simple MLP;

one that has a single feature detector to observe feature x, and a single output node biased in

such a way as to be strongly “on” when x is below 6, and strongly “off” when x is above 6 as

in Figure 5.2, where beige represents an output close to 1.0, and blue represents an output

close to 0.0.

Note that, in order to treat some value t as a threshold value, the bias on the output node

must be t times the value of the weight on the connection between the output node and

the x-value sensory node. But what of the strength of the connection? Assuming that the

activation function of the output node is the standard a(x) = 1
1+e−x , adjusting the strength of

the connection weight has the effect seen in Figure 5.3.

As the magnitude of the weight becomes larger, the transition from “on” to “off” becomes

sharper, less “fuzzy.” This is the main point of difference between the one-branch decision

tree and the one-node MLP: the decision tree makes (and always makes) a sharp decision, so

that x = 5.999 will result in “class = good” and x = 6.001 will result in “class = bad .” In

contrast, the output of an MLP may be interpreted as a “probability that the output should be

good .” Whatever the weight magnitude, x = 6 will produce a probability of 0.5. If the weight

99

X

Y

act(inputs + 60)

−10

0

Figure 5.3: An MLP with a sharper soft hyperplane.

magnitude is quite high, then x = 5.999 may produce a probability close to 1.0; but if the

weight magnitude is not very high, then x = 5.999 may only result in a probability of, say,

0.7.

This behaviour allows us to make two statements regarding MLP training algorithms,

which adjust connection weights and biases. They may seem trivial, but they are of utmost

importance in understanding why MLPs should outperform decision trees on certain tasks.

They are, Principle 1: MLP training adjusts the threshold value of each decision boundary by

changing the ratio of bias to connection weight; and Principle 2: MLP training adjusts the

sharpness of each decision boundary by changing the magnitudes of connection weight and

bias.

Note that no alteration of the activation function is necessary in order to affect the

sharpness of a decision boundary; the magnitudes of bias and connection weight are sufficient.

Increasing the steepness of the sigmoid activation function will make the node more sensitive

to small changes in weight magnitude, but this can be achieved just as well by standardising

features to, for instance, a zero mean and unit standard deviation. Accordingly, we shall refrain

from examining activation functions while considering knowledge encoding or refinement.

To what extent does “connectedness” affect the representational power of even a simple

MLP such as this? The decision tree only “observes” feature x, because that is all it “knows”

about, but an MLP (at least, one that is fully connected) observes all the features available.

A zeroed connection weight to the y-value sensory node is essentially saying “ignore this

feature,” but a training algorithm may change that weight—so what effect will this have on the

decision boundary? Since this one-node MLP adds all of its inputs together before sending

100

X

Y

act(inputs + 20)

−4

−2.5

Figure 5.4: An MLP with a single oblique soft hyperplane

the results to the activation function, the output becomes a linear combination of the input:

i.e. the decision boundary tilts, as in Figure 5.4.

Some simple mathematics shows that, in n dimensions, the decision line will intersect

each axis at the ratio of that feature’s connection weight to the bias. Once again, the sharpness

of the transition depends on the magnitude of the bias and weights. With one output node, the

decision boundary is represented by an isosurface where the output of the node is 0.5; this

surface is perfectly flat, and can intersect the axes at arbitrary points. This is in stark contrast

to the usual conformation of a decision tree, where decision boundaries are hyperplanar

but only axis-parallel. This leads us to Principle 3: MLP training adjusts the orientation

of decision boundaries by treating them as linear combinations of features, altering their

gradient as necessary. However, a single node can produce no curvature in a boundary; the

isosurface produced by a single node with a sigmoidal activation function is perfectly flat.

To represent the isosurface in our logic language (ignoring the issue of the sharpness of the

boundary) we would need to add multiplication and addition to the propositions, like this:

−4x+−2.5y < 20↔ class = good would correspond to a single-node MLP with connection

weights −4 and −2.5 and bias 20. It would represent a line passing through x = 5 and y = 8,

below which one could expect items to be of class good , and above which one should see a

class other than good . Decision trees such as ID3, C4.5, CART, and SPRINT have no way

of representing such a boundary, and therefore no way of discovering it. Instead, they will

approximate an oblique surface by a sequence of corners made up of axis-parallel splits. All is

not lost for decision trees, though: oblique decision trees such as OC1 may generate arbitrarily

tilted boundaries, but do not treat the boundary as even potentially soft. Unfortunately, there

101

x0 = 1. 0

x1

x2

x3

x4

1

1 + e
−

n −1

i = 0
Σ β i xi

β0

β1

β2

β3

β4

Figure 5.5: A one-node MLP acting as a logistic regression model

is no reliable way of incorporating categorical attributes into the hyperplanes generated by

OC1; something that regular decision trees and MLPs do quite easily.

It is worth pausing at this point to draw attention to a link between a single-unit MLP and

a logistic regression model. They are in fact precisely the same thing. Observe the form of a

logistic regression:

ln(
p

1− p
) = β0 + β1x1 + β2x2 + . . . + βnxn

where p is the probability of the predicted variable being equal to 1, β0 represents an intercept

term, x1, x2, . . . are the individual features, and β1, β2, . . . are coefficients that indicate an

increase or decrease in the log odds of the output variable.

Rearranging to isolate p, we get:

p =
1

1 + e−xβ

where β is a vector consisting of β0, β1, . . ., and x is a row vector of features augmented by a

1 on the left end, to provide a match against the β0 term.

In comparison, observe the one-node MLP in Figure 5.5. In a break from the representation

used so far, the bias is explicitly represented as a weight on a connection from a node that is

always fully activated.

If we take the features and the bias node as a row vector, we end up with x, a row vector

with a one on the left end. If we take the weights on each connection as a column vector, we

end up with β, a column vector equivalent to the coefficients in a logistic regression. If we

follow the pattern of activation through the network, we see that the input to the output node

102

X

Y

act(inputs + 15)

act(inputs + 35)

act(inputs + 2.5)

−5

0

−5

0

−5

5

Figure 5.6: An MLP with two soft hyperplanes

is the sum of each weight multiplied by its corresponding activation, which is xβ. Finally,

the input is transformed into output via the activation function, which is 1
1+e−xβ .

The point of interest is that every theory pertaining to logistic regression pertains also to

a one-node MLP. As a simple example, it is easy to see what happens to the 0.5-isosurface

in the MLP if we do not use a bias: by analogy with a logistic regression model, it will be

forced to pass through the origin of coordinates. It is also possible to state why categorical

attributes work so easily as clusters of sensory nodes with one node per category: as with

logistic regression, the presence or absence of a particular category has a weighted effect on

the log-odds of the outcome (or in the MLP’s case, of the node activating).

5.1.2 Simple Databases with Two Hyperplanar Decision Boundaries

Having exhausted the possibilities of single-branch decision trees and single-node MLPs,

we move on to more complicated models. Let us give the decision tree the ability to decide

the class based on two boundaries. For instance, suppose our database followed this rule:

x ≥ 3 ∧ x < 7 ↔ class = good . This is just a decision tree with two branches, both

examining feature x. The region corresponding to class good is that strip between x = 3 and

x = 7; everything else is not of class good . The simplest MLP to represent this knowledge is

depicted in Figure 5.6.

Note that we have to have two “threshold detector” nodes. Since a sigmoidal activation

function is monotonically increasing, it can only detect one threshold at a time. Note too that

the node performing the AND function must be off if the lower threshold detector is on, on if

the lower detector is off and the upper one on, then off again if the upper detector is off. We

103

X

Y

act(inputs + 25)

act(inputs + 30)

act(inputs − 7.5)

−5

0

0

−5

5

5

Figure 5.7: An MLP with two soft interacting hyperplanes

shall see in a moment that it is possible to set an AND node to be on for an arbitrary pattern

of threshold detectors and off for all others. Unfortunately, Minsky and Papert (1969) show

that we cannot guarantee our node to be on for an arbitrary set of combinations of threshold

detectors; for that, we shall require another layer of nodes. Note also that the “overlaying” of

strongly “on” regions pushes the thresholds somewhat past 3 and 7; this can be corrected by

making the weights and biases in the latter part of the MLP weaker, but is seldom a problem

for all practical purposes.

What if we were to perform an AND operation on more than one feature? For a decision

tree, this would involve two branches; one that tested the x-value and one that tested the

y-value. Our logic language might say something like x < 5 ∧ y < 6↔ class = good . An

MLP could be set up as in Figure 5.7, in which we see something commonly claimed for

MLPs: the ability to model curved decision boundaries. Specifically, the curved boundary is

a result of creating an isosurface from two perfectly flat-but-soft boundaries. The softer the

two boundaries, the gentler the curve. The more acute the angle between the two boundaries,

the stronger the curvature; that is, a “hairpin” bend can be created by two boundaries that are

nearly but not quite parallel.

This allows us to present Principle 4: MLPs represent curves in the decision boundaries

by isosurfaces on soft, intersecting flat boundaries. There are three corollaries: that curves

are only possible if two or more nodes are allowed to interact; that MLP training adjusts the

curves only by altering the softness and tilt of the interacting flat boundaries; and that the

regions representable by a single AND node are necessarily convex, since the extent of each

hyperplane is infinite. Therefore, to get “recurved” shapes, or two separate convex regions,

another layer of nodes is necessary.

104

X

Y

act(inputs + 15)

act(inputs + 40)

act(inputs + 20)

act(inputs + 35)

act(inputs − 7.5)

−5

−5

−5

−5

−5

5

−5

5

Figure 5.8: An MLP with four soft hyperplanes modelling a convex region

To return for a moment to the relationship between MLPs and logistic regression; here

we have a logistic regression with more than one output. This is achieved by making β a

matrix instead of a column vector, each column of the matrix being functionally equivalent

to a one-node MLP. The result of matrix-multiplying and applying the activation function to

each element is a transformed row of the database—which of course may then be augmented

with a one on the left end, and then used as the input for a one-node MLP that determines the

final output. A three layer network is therefore a logistic regression on the output of a logistic

regression.

5.1.3 Convex Regions

If each threshold node represents a proposition concerning a feature being less than a certain

value, then in order to represent the simplest fully-enclosed convex region (a rectangle) we

must combine propositions on one feature with propositions on another. A decision tree

represents this by a path to one leaf: for instance, x > 3∧ x < 8∧ y > 4∧ y < 7↔ class =

good . To achieve this effect with an MLP, we require four threshold-detecting nodes and an

AND node that will come on only if x < 8 and y < 7, but will turn back off if either x < 3 or

y < 4. The network depicted in Figure 5.8 does the job.

This example is indicative of a broader theory that we can state regarding convex regions

in the decision space: that it is possible to build an arbitrary convex region by assigning

one hyperplane to each flat surface and two hyperplanes to each curve. We can then model

that region with an MLP by assigning a threshold node to each hyperplane, calculating the

intersections of the hyperplanes with each axis, and setting the ratio of weights and biases to

105

those intersections. An AND node completes the model, with its bias set just low enough to

come on if the correct threshold nodes are active, but turn off again if any of the incorrect

nodes become active. If the general connection weight is w (chosen to make thresholds

sufficiently soft), and the number of “true” nodes (i.e. the number of nodes in the previous

layer that must be active for the AND node to be active) is n, then the correct bias weight is

−nw + 1
2
w, or −w(2n− 1)/2.

A decision tree is, in effect, calculating the critical thresholds for us, but approximating

the convex decision region by axis-parallel hyperplanes. Thus, we can easily model any

path to a leaf (i.e. a conjunction of propositions in our logic language) as a three-layer MLP

with one hidden node per hyperplane and one output node. By this method of construction,

such a network is also the smallest that can model the decision tree’s boundaries. While it

is true that it only requires n + 1 nodes to produce a convex region in n dimensions, it will

require 2n nodes to model the hyper-cuboids produced by a decision tree. This opens up a

question concerning redundancy in the MLP: is it possible that the n− 1 “extra” nodes in the

“threshold” layer provide sufficient flexibility during training?

5.1.4 Multiple Convex Regions

Decision trees are capable of recognising many regions of the decision space as containing

items of the desired class; in fact, each path to a leaf containing the class of interest represents

a non-overlapping region. If each region is a conjunction in our logic language (i.e. a sequence

of ANDs), then a set of regions is a disjunction (i.e. a sequence of ORs). Each class of interest

can therefore be represented as a sentence where the clause before the implication symbol

is in disjunctive normal form. For instance, suppose our database contained two completely

separate regions of good items; one bounded by 1 < x < 4 ∧ 2 < y < 4, and the other by

7 < x < 11∧ 6 < y < 10. Plotting the elements of such a database could produce the regions

in Figure 5.9, and the corresponding decision tree.

We already know how to model each region: with a three layer network that detects the

appropriate thresholds and provides an AND node to combine them properly. All that remains

is to connect the AND nodes representing a single class into a single OR node that will

activate if either of the AND nodes is active, but remains off otherwise. Since any one of the

AND nodes can activate the OR node, each may be connected with a weight w, and the bias

can be set to −w/2. The MLP in Figure 5.10 solves the problem of two convex regions, each

region having four hyperplanes.

106

0 2 4 6 8 10 12

0
2

4
6

8
10

12

2 convex regions

x−value

y−
va

lu
e

good
bad

(a) A database with two convex regions

x < 1

bad x < 4

y < 2 x < 7

bad y < 4 bad x < 11

good bad y < 6 bad

bad y < 10

good bad

(b) Decision tree derived from (a)

Figure 5.9: A database that requires the modelling of two convex regions

107

As a matter of interest, it is simple to extend this network to represent a boundary that

is “re-curved”; just move two or more convex boundaries together so that they overlap, as in

Figure 5.11. Of course, that network represents no possible decision tree, since the leaves of

a decision tree never “overlap” (i.e. no item in the database belongs in more than one leaf).

However, it does show how arbitrary curves may be explicitly modelled in an MLP: by the

overlapping of soft convex regions.

To maintain the pattern of comparing MLPs to logistic regression models, we should note

that a four-layer MLP is a logistic regression on the output of a three-layer MLP (augmented

by a left-hand column of ones); a three-layer MLP is a logistic regression on the output of a

two-layer MLP (augmented by a left-hand column of ones); and a two-layer MLP is a logistic

regression on the original database (augmented by a left-hand column of ones). This provides

us with two things: a simple recurrence representing feedforward (as previously stated in

Chapter 3) and a simple representation of an MLP of four layers (a list of three matrices

representing the MLP’s connection and bias weights).

5.2 Knowledge Transfer

It is now possible to state an algorithm for translating a decision tree model into an MLP

model, by applying the piecemeal methods outlined in the previous sections. It is possible to

do this as:

1. an MLP that recognises just one class of interest. That is, it has one output node that

activates when the sensory nodes see a member of that class and remains off otherwise.

2. an MLP that recognises multiple classes. That is, it has one output node per class, and

the most active output node is taken to be the class prediction after the sensory nodes

have fed an object’s features through the network.

The second algorithm is a generalisation of the first, which we shall concentrate on initially.

The advantage of the single-class version is that it determines an MLP architecture that is the

minimum necessary to recognise one particular class using the hyperplanes built by a decision

tree. To recognise several classes, we can simply build more single-output MLPs and train

them in parallel. Or, we can build a multiple-class MLP, which may have advantages in its

architectural redundancy during weight optimisation.

First, let us state the idea of the algorithm at a high level of abstraction. The basic idea

is to set up one fuzzy boundary for each hyperplane in the decision tree—that is, for each

branching node in the tree. Each of these is represented by a node in the first hidden layer of

108

X

Y

act(inputs + 5)

act(inputs + 20)

act(inputs + 35)

act(inputs + 55)

act(inputs + 10)

act(inputs + 20)

act(inputs + 30)

act(inputs + 50)

act(inputs − 7.5)

act(inputs − 7.5)

act(inputs − 2.5)

−5

−5

−5

−5

−5

−5

−5

−5

−5

5

−5

5

−5

5

−5

5

5

5

(a) An MLP with eight decision boundaries

(b) Output from (a)

Figure 5.10: An MLP capable of distinguishing two convex regions

109

X

Y

act(inputs + 5)

act(inputs + 20)

act(inputs + 15)

act(inputs + 35)

act(inputs + 10)

act(inputs + 20)

act(inputs + 15)

act(inputs + 35)

act(inputs − 7.5)

act(inputs − 7.5)

act(inputs − 2.5)

−5

−5

−5

−5

−5

−5

−5

−5

−5

5

−5

5

−5

5

−5

5

5

5

(a) Another MLP with eight decision boundaries

(b) Output from (a)

Figure 5.11: An MLP with one re-curved soft boundary

110

the MLP, connected to its appropriate sensory node with a strong weight, and to all others

with small random weights. The algorithm will then place one node in the second hidden

layer for each convex region containing objects of the target class—that is, for each leaf of

the decision tree. Each “leaf” node is connected to its appropriate “boundary” nodes with a

strong weight (as in Figure 5.10: the sign on the weight determines whether the test on the

boundary is “less than” or “greater than”), and to all other nodes in the previous layer weakly.

Finally, an output node is connected to the leaf nodes, so that any one leaf node will “trigger”

the output node.

The algorithm thus produces MLPs with an architecture completely specified and bounded

by the number of nodes in the decision tree—there will be as many nodes in the first hidden

layer as there are branching nodes in the tree, and as many nodes in the second hidden layer as

there are leaves. Since we are processing a tree to create an MLP, the natural statement of the

algorithm is as a recursive tree traversal, with the connection weights of the MLP available as

global variables. Assuming that we know the size of the tree beforehand, it is possible to set

the MLP architecture up front, then set every connection weight in a single depth-first traversal

of the tree. The trick that allows this is to maintain two stacks of visited tree nodes; pushing’

onto the first stack when we enter a node (via a left branch) gives us a list of boundary nodes

for our “less-than” conditions. The “greater-than” conditions are maintained by popping from

the first stack and pushing immediately onto the second stack each time we leave a node (via a

right branch). This form of processing is not new—it is identical to the well-known algorithm

for turning an expression-tree into reverse Polish notation.

Specifying an MLP

First, specify the class that the MLP will attempt to predict, and identify in the decision tree

those leaves that predict that class. Then, set up three matrices. The following notation uses

the convention that array indices are numbered from zero; hence A0,0 is the top-left entry of

matrix A. Initially, we will only deal with the case where the database consists entirely of

continuous attributes.

The architecture of a four-layer fully-connected feed-forward MLP is completely specified

by three matrices, which we shall call A, B, and C. (With some regret, we cannot call them

w1, w2, and w3 in keeping with the notation in Chapter 3, as they are frequently subscripted.)

A has m + 1 rows and b columns, where m is the number of feature-detectors necessary to

observe one object, and b is the number of non-leaf nodes in a decision tree induced on

111

the training data. The extra (zeroth) row stores the bias weights; each column represents

the weights feeding into a node in the first “hidden” layer.

B has b + 1 rows and c columns, where b is as above, and c is the number of leaf nodes that

predict the class of interest. Again, the extra row is for the bias weights.

C has c + 1 rows and 1 column. It represents the connections feeding into the single output

node of the MLP.

To begin with, suppose we set all entries in A, B, and C to small random values.

Suppose further that we keep A, B, and C in a Lisp-like list called W ; the database of

features in a matrix d; and that we have a logistic activation function a(x) = 1
1+e−x that may

be applied to every entry in any matrix (that is, a(x) = [a(x0,0), a(x0,1), . . . , a(xr−1,c−1)]

where x has r rows and c columns). Recall from Chapter 3 that a complete feedforward of

the database of features d through MLP W may be defined thus:

feedforward(d, W) =

d if W is empty,

feedforward(a(1|d× first(W)), rest(W)) otherwise.

With all entries in W set to small random weights, feedforward(d, W) will produce a vector

of outputs (one per row of d) all around 0.5. However, the architecture is now specified; all

that remains is to set individual weights in such a way that the MLP behaves just like the

decision tree.

Weight Setting

To have the MLP respecting the same decision boundaries as the decision tree, we need

a common “strong” weight value, w, such that a(−w
2

) is close to 0.0, and a(w
2
) is close to

1.0. For these purposes, some value between 2 and 5 will suffice, though it might need to

be changed for databases with many close boundaries along one axis. We assume that w is

specified as a variable at the highest level of scope, available to all procedures described here.

The matrix C—really a vector in the single output case—is easy to set up: simply set the

first entry to −w
2

and every other weight to w. This has the effect that any active node in the

preceding layer will cause the output node to fire.

To set the weights of A and B, we define a recursive algorithm SET-WEIGHTS, which

treats the two matrices as variables at a higher level of scope. We also require higher-

scoped variables leafnum and branchnum, initially set to −1. SET-WEIGHTS is presented as

Algorithm 5.1.

112

Algorithm 5.1 SET-WEIGHTS(tree , class , truelist , falselist): Set the weights of an MLP

with all continuous inputs and one output

SET-WEIGHTS(tree, class , truelist , falselist)

1 if isleaf(tree) and class [tree] = class
2 then
3 leafnum ← leafnum +1
4 B0,leafnum ← −w × length[truelist] + w

2

5 for each i in truelist
6 do Bi+1,leafnum ← w
7 for each i in falselist
8 do Bi+1,leafnum ← −w
9 else

10 branchnum ← branchnum +1
11 A0,branchnum ← w × threshold [decision[tree]]
12 Afeature[decision[tree]],branchnum ← −w
13 SET-WEIGHTS(left [tree], class , truelist + branchnum, falselist)
14 SET-WEIGHTS(right [tree], class , truelist , falselist + branchnum)

So, assuming the existence of a decision tree called tree, and a class-of-interest good , we

can set A and B with the following call:

SET-WEIGHTS(tree, good , EMPTY-LIST, EMPTY-LIST)

The conventions used in the pseudocode for SET-WEIGHTS are those followed in Cormen,

Leiserson, Rivest, and Stein (2001). The “b[a]” notation refers to the field of object a named

b (equivalent to a.b in object oriented notation), so if tree is a decision node rather than a leaf

node, it is possible to access the decision with decision[t] and the threshold value that the

decision is made upon with threshold [decision[tree]]. Similarly, feature[decision[tree]] will

return the column number of the database feature referred to by the decision node, starting

from 1. The + operator on lists concatenates the right-hand-side to the list on the left and

returns a new list, leaving the old one available as the recursion unwinds.

For a database with only continuous attributes, we now have a complete procedure for

initialising an MLP, INIT-MLP, presented as Algorithm 5.2. The return value of INIT-MLP is

a list of weight matrices that fully specifies a four-layer MLP. The returned MLP will make

the same decisions as the tree used to initialise it, because it is setting up the same hyperplane

decision boundaries. The only thing that has the potential to cause any variation is the fact

that the decisions are soft, according to the value chosen for w; thus, any errors made by the

MLP but not the decision tree can be eliminated by choosing a higher value of w. Since w

113

Algorithm 5.2 INIT-MLP(tree , database , class): Initialise an MLP with continuous inputs

to recognise one output class

INIT-MLP(tree, database, class)

1 branchnum ← −1
2 leafnum ← −1
3 A← new-matrix(numfeatures [database] + 1, numbranches [tree])
4 B ← new-matrix(numbranches [tree] + 1, numpositiveleaves [tree])
5 C ← new-matrix(numpositiveleaves [tree] + 1, 1)
6 set C0 to −w

2
and every other entry in C to w

7 SET-WEIGHTS(tree, class , EMPTY-LIST, EMPTY-LIST)
8 return make-list(A, B, C)

is specified as a variable of global scope, the caller can decide what strength of connection

weight is appropriate.

5.2.1 An Example

Take the decision tree depicted in Figure 5.9 as input to INIT-MLP. Three matrices A, B, and

C will be set up, with dimensions 3× 8, 9× 2, and 3× 1. Line 6 of Algorithm 5.2 will set

the entries of C to −2.5, 5, 5, then the recursive function SET-WEIGHTS will be called.

At each branching node of the tree, lines 10 to 14 of Algorithm 5.1 will be called, whereas

at each good leaf, lines 3 to 8 will be triggered. The tree will be traversed in pre-order, so

the “decision” nodes will be visited in the order x < 1, x < 4, y < 2, y < 4, x < 7, x < 11,

y < 6, y < 10. As each branching node is visited, branchnum is incremented, allowing us

to set the appropriate column of matrix A on lines 11 and 12. Line 11 sets the bias value

A0,branchnum to w multiplied by the threshold value of the branching node’s decision, whereas

Line 12 is responsible for setting the connection weight leading into the appropriately biased

MLP unit.

Lines 13 and 14 of Algorithm 5.1 provide the recursive calls that traverse the decision

tree. As the left branch is traversed, the current branch number is added to the list of branches

that must be “true.” As the recursion unwinds and the right branch is followed, the current

branch number is lost from the “true” list and added to the “false” list instead; thus when we

reach a leaf we know which numbered decisions must be true for the unit representing the

leaf to activate, and which must be false.

At each leaf (but only those that are of the class specified) lines 3 to 8 are run. Line 4 is

able to set a bias to be strong enough so that the “true” nodes will be able to activate it, but

114

weak enough so that any “false” node will deactivate it. Lines 6 and 8 ensure that there is a

strong connection from nodes that represent decisions relevant to the leaf in question. In our

example, the first good leaf encountered will have 1, 3 in truelist and 0, 2 in falselist . Thus,

for w = 5, B0,0 will be set to −7.5, B2,0 and B4,0 to 5, with B1,0 and B3,0 to −5. When the

next good leaf is encountered, truelist will contain 5, 7 and falselist will contain 0, 1, 4, 6.

Thus B0,1 will also be set to −7.5, B6,1 and B8,1 to 5, and B1,1, B2,1, B5,1, and B7,1 all to

−5.

The final states of the matrices will be (with weak random weights not shown):

A: 5 20 10 20 35 55 30 50
-5 -5 -5 -5

-5 -5 -5 -5

B: -7.5 -7.5
-5 -5
5 -5

-5
5

-5
5

-5
5

C: -2.5
5
5

Note that the MLP represented by these matrices is the same as that in Figure 5.10, with the

addition of two strong negative weights coming from the x < 1 and x < 4 decisions. A small

adjustment to the algorithm can remove these by ignoring any decision that is superseded by

a more restrictive decision lower down the tree.

5.2.2 Categorical Attributes

Decision trees make splits on categorical attributes by specifying a subset of categories. If

and only if the observed value is a member of the subset, the splitting predicate evaluates to

true. This is easily replicated in MLPs as described in the previous chapter: by making one

feature detector per category, and connecting to a “subset” node with strong positive weights.

Given that the categories are mutually exclusive, it suffices to detect if any of them are active;

thus, a negative bias of half the connection weight will do the job. An example of an MLP set

to represent the rule x ∈ {1, 3, 4} ∧ y < 3 is shown in Figure 5.12.

At face value, it may appear that the problem is dealt with by re-coding the database

so that all categorical attributes are represented as a vector of ones and zeroes, each with a

new attribute name. An attribute X that could take on values {red,green,blue} would thus

115

X1

X2

X3

X4

X5

Y

act(inputs − 2.5)

act(inputs + 15)

act(inputs − 2.5)

5

5

5

−5

5

5

Figure 5.12: An MLP that deals with a mixture of continuous and categori-

cal input

be re-coded into three columns X=red, X=green, X=blue with 1 representing true and 0

representing false. Then a decision tree could be grown and INIT-MLP run with no changes at

all.

Unfortunately, that scheme loses information concerning the structure of the data; namely,

that X=red, X=green, and X=blue are mutually exclusive possibilities. A Sprint-style decision

tree maintains this information, by having tests on X in the form X ∈ {red,. . . }, obviating the

need for the data to be re-coded at all.

Now, we must re-code the input data before presenting it to an MLP, at least in the sense

that a value of category i should stimulate the ith node of the vector of nodes for that category.

So, in order to set the appropriate weights, the INIT-MLP-MIXED algorithm must know

how to translate numfeatures [D] to the right size to incorporate categorical features, and

SET-WEIGHTS-MIXED will need to know how to translate a (feature, value) pair into a

(sensory node, value) pair. Furthermore, SET-WEIGHTS-MIXED must be able to interrogate

the tree as to whether a splitting predicate is based on a threshold or on a subset.

Given those capabilities, the SET-WEIGHTS-MIXED algorithm is presented as Algo-

rithm 5.3, with the associated INIT-MLP-MIXED algorithm presented as Algorithm 5.4.

The pseudocode now assumes the existence of to-sensory-node, a function that requires

either one or two positive natural numbers as arguments. Given one argument, it returns the

number of the node that corresponds to the (continuous) feature that has the same column

number in the database. Given two arguments x and y, it returns the number of the node that

should be active when an object in the database has category y for feature x. In INIT-MLP-

MIXED, we now also have to use to-sensory-input to convert the database from a collection

116

Algorithm 5.3 SET-WEIGHTS-MIXED(tree , class , truelist , falselist): Set the weights of an

MLP with mixed continuous and categorical inputs and one output

SET-WEIGHTS-MIXED(tree, class , truelist , falselist)

1 if isleaf(tree) and class [tree] = class
2 then
3 leafnum ← leafnum +1
4 B0,leafnum ← −w × length[truelist] + w

2

5 for each i in truelist
6 do Bi+1,leafnum ← w
7 for each i in falselist
8 do Bi+1,leafnum ← −w
9 else

10 branchnum ← branchnum +1
11 if is-categorical(decision[tree])
12 then
13 A0,branchnum ← −w

2

14 for each c ∈ values[decision[tree]]
15 do Ato-sensory-node(feature[decision[tree]],c),branchnum ← w
16 else
17 A0,branchnum ← w × threshold [decision[tree]]
18 Ato-sensory-node(feature[decision[tree]]),branchnum ← −w
19 SET-WEIGHTS-MIXED(left [tree], class , truelist + branchnum, falselist)
20 SET-WEIGHTSMIXED(right [tree], class , truelist , falselist + branchnum)

Algorithm 5.4 INIT-MLP-MIXED(tree , database , class): Initialise an MLP with mixed

continuous and categorical inputs to recognise one output class

INIT-MLP-MIXED(tree, database, class)

1 branchnum ← −1
2 leafnum ← −1
3 A← new-matrix(numfeatures [to-sensory-input(database)] + 1, numbranches [tree])
4 B ← new-matrix(numbranches [tree] + 1, numpositiveleaves [tree])
5 C ← new-matrix(numpositiveleaves [tree] + 1, 1)
6 set C0 to −w

2
and every other entry in C to w

7 SET-WEIGHTS-MIXED(tree, class , EMPTY-LIST, EMPTY-LIST)
8 return make-list(A, B, C)

117

of vectors where each vector has one element per feature, to having possibly many elements

per feature.

5.2.3 Multiple Output Classes

A call to INIT-MLP-MIXED with three arguments will produce an MLP that “recognises” the

class stated by the last actual parameter. However, it is common enough to create MLPs that

recognise multiple output classes. For n classes, the MLP has n outputs, and a classification is

made by determining the output node that has the maximum level of activation. One possible

advantage of such networks is that architecture devoted to recognising one particular class

might be “shared” with some other part of the architecture during weight optimisation.

The change to be made to INIT-MLP-MIXED is reasonably simple: one only has to

provide enough nodes. To recognise every class (with no class taking on the role of default),

we present INIT-MLP-MIXED-MULTI as Algorithm 5.6, and the associated SET-WEIGHTS-

MIXED-MULTI as Algorithm 5.5.

5.2.4 A Multiple Output Example

Suppose we had a database whose objects followed, more or less, the following rules:

1. (1.5 < x < 4.5 ∧ y ∈ {orange, blue, indigo} ∧ 1.5 < z < 3.5) ∨
(5.5 < x < 8.5 ∧ y ∈ {orange, blue})↔ class = good

2. z > 4.5 ∧ y ∈ {red , orange} ↔ class = bad

3. The default rule is class = indifferent

A decision tree induced on the data might have something like the structure depicted in

Figure 5.13.

A call to INIT-MLP-MIXED-MULTI first sets up a list of three weight matrices A, B, and

C and sets all the elements to small random values. Every element in the first row of C is set

to −w
2

. Assuming that feature y has the colours of the rainbow as categories, A is set to 10

rows and 10 columns; B to 11 rows and 11 columns; and C to 12 rows and 3 columns.

Line 7 of INIT-MLP-MIXED-MULTI calls SET-WEIGHTS-MIXED-MULTI to set up the

elements of the matrices to act as the weights and biases of an MLP. Suppose the recursion in

SET-WEIGHTS-MIXED-MULTI has reached leaf L7. Lines 3 and 11 will have set leafnum to

7 and branchnum to 9. Lines 5 to 8 connect the neural unit in the second hidden layer that

represents L7 to all of the hyperplane units in the first hidden layer, Line 4 having already

118

Algorithm 5.5 SET-WEIGHTS-MIXED-MULTI(tree, truelist , falselist): Set the weights of

an MLP with mixed continuous and categorical inputs and multiple outputs

SET-WEIGHTS-MIXED-MULTI(tree, truelist , falselist)

1 if isleaf(tree)
2 then
3 leafnum ← leafnum +1
4 B0,leafnum ← −w × length[truelist] + w

2

5 for each i in truelist
6 do Bi+1,leafnum ← w
7 for each i in falselist
8 do Bi+1,leafnum ← −w
9 Cleafnum +1,class[tree]−1 ← w

10 else
11 branchnum ← branchnum +1
12 if is-categorical(decision[tree])
13 then
14 A0,branchnum ← −w

2

15 for each c ∈ values[decision[tree]]
16 do Ato-sensory-node(feature[decision[tree]],c),branchnum ← w
17 else
18 A0,branchnum ← w × threshold [decision[tree]]
19 Ato-sensory-node(feature[decision[tree]]),branchnum ← −w
20 SET-WEIGHTS-MIXED-MULTI(left [tree], truelist + branchnum, falselist)
21 SET-WEIGHTS-MIXED-MULTI(right [tree], truelist , falselist + branchnum)

Algorithm 5.6 INIT-MLP-MIXED-MULTI(tree , database): Initialise an MLP with mixed

continuous and categorical inputs to recognise multiple output classes

INIT-MLP-MIXED-MULTI(tree, database)

1 branchnum ← −1
2 leafnum ← −1
3 A← new-matrix(numfeatures [to-sensory-input(database)] + 1, numbranches [tree])
4 B ← new-matrix(numbranches [tree] + 1, numleaves [tree])
5 C ← new-matrix(numleaves [tree] + 1, numclasses [database])
6 Set every element in row C0 to −w

2

7 SET-WEIGHTS-MIXED-MULTI(tree, EMPTY-LIST, EMPTY-LIST)
8 return make-list(A, B, C)

119

set the bias. At this point, truelist will consist of [1, 2, 8] and falselist of [3, 4, 5, 9]. As the

recursion unwinds back to D8, 9 is lost from falselist and 8 from truelist ; 8 will be added to

falselist as the recursion proceeds to L8.

At the end of the process, the network will have layers of size 9-10-11-3, will represent

the same boundaries as the decision tree, and will classify items in the same way. If, instead,

INIT-MLP-MIXED had been used, with class good as the third argument, only the good leaves

of the tree would have been used to construct the MLP. As a result, it would have had a 9-9-9-1

architecture instead.

D1: z < 4.5

D2: y ∈ {orange,blue,indigo}

D3: x < 1.5

D4: x < 4.5

D5: z < 1.5

D6: z < 3.5

D7: x < 5.5

D8: x < 8.5

D9: y ∈ {indigo}

D10: y ∈ {red,orange}

L1: indifferent

L2: indifferent

L3: good L4: indifferent

L5: indifferent

L6: indifferent L7: good

L8: indifferent

L9: indifferent L10: bad L11: indifferent

Figure 5.13: A decision tree corresponding to a particular set of rules

120

5.3 Points of Difference

A little has been taken from Sethi, a little from Banerjee, a little from Ivanova, and a little

from the pilot study in the previous chapter to create these MLP initialisation procedures.

Perhaps it is necessary to point out the similarities and differences.

To begin with, four layer MLPs are always created, providing a point of difference from

Park (always three layers), Ivanova (always three layers) and Shavlik (however many layers

of hierarchy there are in the explanation base). The node layout is identical to Sethi’s in the

multiple-output case, although the connection layout differs: Sethi placed no connections

at all between nodes that were not connected in the decision tree. Of course, we provide a

weight-setting algorithm, while Sethi trained each hyperplane using the Widrow-Hoff rule.

The layout of nodes in the third and fourth layers is identical to Ivanova’s, and the weight

setting between the last three layers is very similar. However, Ivanova’s MLP has only interval

inputs, and no continuous sensory detectors at all. Our MLPs have a sensory layer inspired

by Banerjee’s, with the next layer providing threshold detection: but with half the nodes of

Banerjee’s “switching” layer (an innovation suggested by Ivanova).

To our knowledge, this is the first proposal of a tree-initialised MLP that explicitly

handles categorical as well as continuous data. Also, this is the first proposal of methods that

work equally well for multiple outputs as well as single outputs. While the multiple output

network is smaller than the equivalent BMLP (but the same size as Sethi’s), we believe that

the single-output version is the smallest possible network that can model the hyperplanes

of a decision tree precisely. Of course, this does not make it the smallest possible MLP

to represent the problem, since the decision tree might be expending a lot of structure on

modelling oblique hyperplanes. However, it is the most compact method of modelling the

axis-parallel hyperplanes of decision tree knowledge yet devised. The single-output version

has the advantage that each class-recogniser can be trained on a separate machine, reducing

the total cost of training epochs to that of the most difficult class to model.

5.4 Knowledge Refinement

Transferring knowledge from a decision tree to a neural network produces an MLP that should

classify training and test data in precisely the same way. But why should the MLP do any

better after training? The simple answer is that the MLP provides a more complex model

than the decision tree, and therefore models the decision space more precisely. A more subtle

answer rests on the principles of MLP modelling described earlier in this chapter:

121

1. MLP training adjusts the threshold value of each decision boundary by changing the

ratio of bias weights to connection weights.

2. MLP training adjusts the sharpness of each decision boundary by changing the magni-

tudes of connection weights and bias weights.

3. MLP training adjusts the orientation of decision boundaries by treating them as linear

combinations of features, and alters the gradient by changing the relative weights on

the connections feeding forward from the sensory nodes.

4. MLPs represent curves in the decision boundaries by isosurfaces on soft, intersecting

flat boundaries; curvature is altered during MLP training by changing hyperplanar

orientation.

These principles tell us exactly how an MLP might improve on a decision tree, and the

extent beyond which it will not do any better. Having set up boundaries equivalent to a

decision tree’s, it may sharpen or soften them; it may move them about; it may change their

orientation; and it may exploit the curved surfaces available at the intersections of hyperplanes.

And that is all. Unless a constructive or destructive training algorithm is used such as Cascade

Correlation (Fahlman and Lebiere, 1990) or Optimal Brain Damage (Le Cun et al., 1990) ,

the MLP will not introduce new boundaries nor remove any; although weights and biases that

drop to near zero have the effect of removing a threshold. And as with any model described in

Chapter 2, an MLP will not suddenly be able to classify correctly an item located in a region

that is densely populated by items of another class. The principle of avoiding overfitting will

prohibit boundaries being formed around “noise” objects in most prediction models; in MLPs,

the existing boundaries are probably already too busy bounding large clusters of objects to

bother trying to isolate one-off items.

However, this also tells us something about the relationship of overfitting and redundancy.

In a decision tree, there is no redundancy—extra tree structure is either necessary to express

the patterns in the data, or else it is overfitting the data. Hence, extra nodes are pruned away. If

a pruned decision tree is used to initialise the MLP, then we are restricting the neural network

in a very particular way: we are refusing to allow it to add another hyperplane. If, on the other

hand, we initialise with an unpruned tree, we are giving the MLP more redundancy (more

neural architecture to play with), but we are also setting hyperplanes in places that model

noise, not pattern.

One solution could be to initialise the network to the architecture suggested by the

unpruned tree—or, indeed, to any architecture larger than the pruned tree would suggest—but

122

to the hyperplanes suggested by the pruned tree. Then, if the weight optimisation process

wishes to develop further hyperplanes, it can.

In Chapter 6, the performance of tree-initialised MLPs is demonstrated in a series of

experiments.

123

Chapter 6

Experiments

6.1 Preliminaries

Running experiments on classification algorithms is not a straightforward matter. There are

two questions that must be answered: whether the method works, and how well it works.

There are also questions of broader interest, such as which variant is preferable, and under

what conditions. Sometimes it is necessary to compare the method to a previous version, in

order to establish an improvement. To answer all of these questions, one must specify an

appropriate metric to record and a method of generating results that is fair (i.e. not biased in

favour of any of the methods under consideration).

Consider the pilot study presented in Chapter 4. Its purpose was to establish whether we

should expect tree-based initialisation techniques to be useful. To that end, we were interested

in whether a more accurate state existed for an initialised MLP than the best state achievable

by a decision tree. To see even one database where this was the case was sufficient to prove

that existence. Despite the fact that the results were biased in favour of decision trees (since

the set used to select the best pruned tree was also used to evaluate the MLP) a better MLP

existed in all non-synthetic cases. Whether we could find that state in a normal training run

was not under consideration.

In this chapter, we place a higher requirement on initialised MLPs. A typical experiment

will involve splitting data into two sets: one for training and one for validation. Whatever

classifiers are to be evaluated are built entirely on the training set, even if that means further

splitting the training set to provide a pruning set or an early-stopping set. Only after the

procedure is completely finished for all classifiers are they evaluated on the validation set.

This is a particularly harsh test. On data sets where no MLP can model the structure

any better than a decision tree, we should expect any MLP (whether initialised by decision

124

tree or not) to fail. Furthermore, it is likely that we will have to train the MLPs for more

epochs than we really need to, in order to recognise when they have stopped improving on the

early-stopping set. Thus, we may find no improvement in training times at all.

The basic structure of each experiment is as follows:

1. Let T be a randomly chosen stratified subset of the database D. Typically, |T | will be

0.25|D|. The subset is stratified so that the class distribution of the items in T is the

same as that in D.

2. For each classifier under consideration, build an instance of it using only the data in

D − T .

3. Test each classifier’s accuracy using the data in T .

4. Repeat n times, each time choosing a different T , with n large enough to give reasonable

estimates of the mean and variation of all metrics of interest. In these experiments,

n = 30.

For both decision trees and MLPs, different training data will result in a different classifier.

In the case of decision trees, each tree can have a different structure, while in the case of plain

MLPs, the structure will remain the same but the final state of the weights (after training) will

be different from run to run. Of course, tree-initialised MLPs will have differing architectures

depending on the final state of the tree used to initialised them. Thus, each randomly chosen

training/test set pair will produce classifiers of varying quality. If one runs too few tests,

one or other classifier may simply get “lucky,” hitting a test set upon which it performs

particularly well. Repeating the train-test sequence 30 times gives us some sense of a “typical”

performance.

What metrics are of interest? If a classifier is to be of any use, it must generalise well. If

an MLP is to be of more use than a decision tree, it must generalise better than the tree on

the database under consideration. However, an initialised MLP (to be worth the trouble of

initialising it) should be no less accurate than a plain MLP (initialised with small random

values) on the same database, and must reach such a state in fewer epochs of training. Of

course, we may be willing to train for more epochs if each epoch is quicker, as it will be if

the MLP contains fewer nodes. Accordingly, there are three metrics of interest for an MLP:

accuracy on the test set, the number of epochs to train, and the cost of training, calculated as

function of the MLP’s size and the number of epochs required. For a decision tree, we care

only about accuracy on the test set, since the cost of building it is negligible compared to the

cost of training an MLP.

125

What classifiers must be compared? For convenience, an MLP initialised using the

methods described in Chapter 5 will be referred to as an RMLP (where the R stands for

“Rountree,” not “recurrent”). It is tempting to set up a comparison between RMLPs and the

techniques developed by Sethi, Ivanova, and Banerjee. However, the methods are not really

comparable. Sethi’s entropy nets are not trained (except to ensure that each node acts the same

as its counterpart in the decision tree) and is not fully feed-forward connected. Thus, it is clear

that it cannot generalise better than the tree that initialised it. Ivanova’s TBANN has inputs

restricted to intervals on the data; thus a TBANN never attempts to optimise its connection

weights against the original data. Although Banerjee’s MLPs do observe the original data,

methods for integrating mixed continuous and categorical attributes were only introduced in

Chapter 4. More pertinently, Banerjee’s method always results in second layers double the

size of the equivalent RMLP, guaranteeing that the training cost metric will always be higher.

The RMLP is the only method yet described that gracefully deals with mixed attributes,

minimises internal structure, and trains against the original dataset. Accordingly, the following

experiments pit RMLPs against the decision trees that initialised them, and against plain

MLPs of reasonable size for the database. There is also interest in the comparison of tree to

plain MLP, since it gives us some evidence as to whether MLPs can be expected to do any

better than decision trees on each database.

Until the pilot study performed in Chapter 4, it had never been established that initialised

MLPs have any likelihood of performing better on generalisation tasks. In fact, it could be

argued that initialised MLPs have a strong likelihood of generalising poorly, by getting stuck

in a local minimum on the error surface. Thus we have little reason to expect that any method

of initialisation will be better than any other. Here, we try to establish how well initialised

MLPs perform against the trees that initialised them, and against similar MLPs that were

initialised randomly.

6.2 Experimental Environment and Databases

All experiments reported in this chapter were performed in the R Environment for Statistical

Computing (R Development Core Team, 2005). There are a number of reasons for this choice,

but three stand out:

1. R provides a unified framework for data typing and data import-export. If you can get

your data into R, statistical tests on the data and models built using the data all work

the same way.

126

2. R contains an implementation of CART-like decision trees, called rpart (Therneau

and Atkinson, 2005). This would offer no advantage over the race toolset used

in Chapter 4, except that they implement a particularly interesting form of pruning,

allowing trees to be pruned using only the original training set. This fits our train-and-

test experimentation method very well.

3. R supports Lisp-like lists, matrices, matrix multiplication, and recursion as part of the

base language. Thus, the feedforward pass of MLPs as described in Chapter 3 can be

implemented as stated by the feedforward recurrence, in three lines of code, and the

backprop pass in about six.

For the purposes of demonstrating initialised networks, R serves our purpose very well.

However, it should be noted that R’s operations are entirely carried out in memory, so there is

a restriction on the amount of data that can be processed. In instances where data will not fit

into core memory, the use of programs such as those described in Chapter 4 is recommended.

For the purposes of this project, R’s decision trees are used unmodified. However, none of the

various MLP packages available for R were appropriate; hence MLP classifiers were created

for these experiments, along with R programs to traverse a decision tree and generate an MLP.

The R code for MLPs, MLP initialisation, and the running of train-and-test experiments is

presented in Appendix B.

To demonstrate the typical behaviour of RMLPs, we have chosen just six databases

from the UCI Machine Learning Repository. Recently, there has been a worrying trend

of publishing the results of machine learning algorithms using 30 or 40 publicly available

databases. The results are meaningless, as it is well established that there is no machine

learning algorithm that will be optimal for all (or even a majority) of situations. Since many of

the databases are small, sparse, and above all easily represented using simple linear decision

boundaries, the end result is that linear discriminant analysis appears to perform best on

average.

We are concerned only with databases where MLPs are likely to perform more effectively

than decision trees; those that contain non-linearly separable clusters of classes, complex

decision boundaries, and plenty of noise. We also need to demonstrate behaviour on multiple

output classes, and on mixed continuous and categorical features. The six databases chosen

give us a reasonable range of these qualities, and in our experiments are all modelled at least

a little better by plain MLPs than by decision trees. The “typical” error rates stated for each

database are taken from the STATLOG project (Michie, Spiegelhalter, Taylor, and Campbell,

1994), from David Hand’s text on Data Mining (Hand et al., 2001), from the classification

127

methods comparison article by Lim et al. (2000), and usually from a consensus of all three

sources. The chosen databases are:

Iris The classic database from Fisher (1936). The task is to discriminate between three

species of iris based on four continuous measurements: length and width of petals and

of sepals. There are only 150 instances, but two of the output classes (virginica and

versicolor) are non-linearly separable and overlapping. There are 50 examples of each

species. Most classifiers can achieve around 5% error on cross validation.

Pima The database consists of 768 diagnoses of diabetes in female Native Americans. The

task is to discriminate a positive or negative diabetes result based on eight continuous

clinical measurements, including age, body-mass-index, blood pressure, etc. There are

500 negative results and 268 positive results. Previously published results suggest that

typical error rates on this database are around 25%.

Segment This problem is drawn from computer vision. Seven outdoor images were broken

into three by three pixel blocks, and 19 continuous features calculated for each block.

There are 2310 instances, 330 each of brickface, sky, foliage, cement, window, path,

and grass. Generally, classifiers do quite well on this database, typically achieving 5

or 6% error rates. However, it is interesting for our purposes because gradient descent

MLPs exhibit extremely slow training, requiring a high number of epochs to reach a

minimum. It is also common for MLPs to stop too early, resulting in high error rates.

Heart This is a small database containing a mixture of seven continuous and six categorical

attributes, representing clinical presentations of patients being examined for chest pain.

The task is to predict which patients have heart disease. The class distribution is 150

negative and 120 positive for heart disease. Typical error rates are around 20%.

Australian The same credit application database from Chapter 4, with eight categorical and

six continuous features, and 690 instances; 307 are positive and 383 negative (but we

do not know what those classes mean). There are several interesting features of this

database: a good mix of categorical and continuous attributes, and a reasonable amount

of noise—15% error is typical. This database has been extensively used in machine

learning literature, especially by Quinlan (1993).

German Another credit application database, principally for foreign workers in Germany

for small-to-medium amounts of money to pay for such things as electronic goods or

cars. It contains seven continuous and thirteen categorical features for 1000 instances.

128

The class distribution is 300 bad and 700 good , although we do not know how these

labels were determined. Classifiers typically have an error rate of about 25 or 26% on

this database.

These databases are very heavily used in the machine learning literature. With the

exception of the Pima database, all were studied extensively as part of the STATLOG project

(Michie et al., 1994); the Pima database is used as a running example in Hand et al. (2001).

To get a general idea of the performance of various classifiers, we will just examine error

rates at first (so lower numbers are better), but later we will look at the performance of

one-output-class RMLPs, so shall examine false-positive and false-negative rates.

6.3 Building Trees

The rpart library in R builds and prunes trees as follows. First, the tree is grown in the normal

way, by default using the Gini criterion as the objective function for splitting. The rpart

object stores not only its leaves and branches, but also a list of all the database entries that

was used to grow it. Three fields per record are of interest: the original row number of the

record, the class membership, and a field added by the tree growing process that says which

leaf the record belongs to (the “where” field). A new item can be classified by dropping it

through to a leaf, then retrieving all records that have that leaf number as their “where” field.

The set of minimal cost complexity trees is then generated. Now, the usual problem of

cross-validation is that if you drop records of training data down all the pruned trees, the best

one is the original (most complex) one: it classifies all the data perfectly. The rpart tree solves

this problem by splitting the data into v subsets, then for each subset, setting all of the “where”

fields for those records to zero, effectively changing the densities of the class distributions

without affecting the structure of the tree. Each tree in the pruning sequence is evaluated with

each of the v subsets, and the accuracy stored. It is then possible to examine the tree and find

the α-value that corresponds to the best accuracy, or the one that is one standard error smaller.

For these experiments, we are interested in the tree with the lowest cross validation error

and the smallest tree within one standard error of it. However, we use its performance on

the set T as the estimate of its accuracy rather than its performance on cross validation. Its

accuracy on a completely unseen test set is taken as a fair comparison of the accuracy of an

MLP on the same previously unseen test set.

129

6.4 Building MLPs

What constitutes realistic use of an MLP? As with the decision trees, our goal is to initialise

and train the MLP as best we can, then do a one-off test of its accuracy on a previously unseen

set of data (specifically, the same set used to test the accuracy of the corresponding decision

tree). This requires that we a) can propose some sort of reasonable architecture for the MLP,

and that b) we can make a reasonable decision as to when to stop training the MLP.

For the architecture, we take the simple expedient of creating four-layer MLPs with m

units in the first hidden layer and m + 1 in the second, where m is the number of attributes in

the original database. When the original database has all continuous attributes, this will result

in the sensory and first hidden layers being the same size. However, when the database has

categorical attributes, the sensory layer will be bigger then the first hidden layer, due to the

extra units needed to represent each category. The result is an MLP that is able to place as

many hyperplanes as there are attributes, and can represent m + 1 convex clusters. On the six

databases used for these experiments, several larger and smaller networks were tested, but

none did any better in terms of accuracy or training cost.

For both plain MLPs and RMLPs, a learning constant of approximately 1
n

was used.

For quickprop, all networks used a maximum shrink factor of 1.75 if quickprop appeared

stable for the database, or 0.99 otherwise. For plain MLPs, initial weights were set uniformly

randomly between −0.3 and 0.3. No variation on range or distribution of weights seemed to

improve accuracy or training time.

Choosing when to stop training can be quite a challenge. The MLPs used in these

experiments use a variation of the early stopping methods examined by Prechelt (1998).

Before training begins, we select a stratified random sample of the training data, typically

of 25%, as the early-stopping set. This set is then ignored during each epoch of weight

optimisation. However, at the end of each epoch, the error of the network is estimated as the

sum of squared error on the early-stopping set. As the network trains, it is possible to see the

error on the training set decrease after every epoch. However, the error on the early-stopping

set decreases for a while, then begins to increase. For gradient descent, training is halted

when the error on the early stopping set has increased for ten epochs in a row, or when some

maximum number of epochs has been reached.

For quickprop, another stopping criterion must be added. Due to its update consisting

of leaps toward a minimum, quickprop’s error on the early-stopping set tends to be quite

unstable. Thus, we halt quickprop training when error on the early-stopping set climbs to 30%

130

higher than the best error seen so far, or when early-stopping error has risen for ten epochs in

a row, or when a maximum number of epochs has been reached.

For both methods, there is no point in continuing training once all of the training examples

have been learned correctly. Following Fahlman (1989), we consider “correct” to be a value

above 0.6 when the output should be 1.0, and a value below 0.4 if the output is supposed to be

0.0. (In contrast, during prediction, 0.5 is used as a threshold to determine whether an output

node is “on.” For multiple outputs, the “winning” node is the one considered “on,” even if it

below 0.5.)

These early stopping criteria are quite rough, and are no more than heuristics; but they

seem to work fairly well. For either gradient descent or quickprop, each time a lower error

rate on the early-stopping set is observed, those weights are saved, along with the epoch

number. Clearly, the final set of weights we should assign to the MLP is the set that performed

the best on the early-stopping set.

In both forms of training, an unlucky start or an unlucky choice of early-stopping set

can result in an MLP with truly terrible performance. Usually we can observe when this has

occurred by noting that the MLP always predicts the same class (its weights are said to have

got “stuck”). When this occurs, we perturb the weights by uniform random values between

−0.3 and 0.3, and restart training. The epochs already run are counted as part of the final

result.

Finally, we need a slightly more sophisticated cost model than just the number of epochs

taken to train. Bigger MLPs have more connection weights, so take longer to train even

if they take the same number of epochs. In the interests of machine-independent results,

we take the “cost” of back-propagating one error signal through one connection as a unit

cost. Thus, for an MLP of architecture (a, b, c, d), the cost of an entire training session

can be treated as the number of connections and biases times the number of epochs, or

e((a + 1) ∗ b + (b + 1) ∗ c + (c + 1) ∗ d) where e is the number of epochs.

6.5 A Walk-Through

Let us begin where we left off in Chapter 4, with the German Credit Application database.

Recall that it consists of 1000 records, 7 continuous features, 13 categorical features, 700

good labels and 300 bad . The R command:

> atree <- rpart(label ˜ ., data=german, minsplit=1, cp=0)

produces a tree that has 192 leaves, and classifies the database perfectly. The first argument to

rpart is an R formula. The tilde in the formula means “using,” and the dot refers to “all

131

other features.” The cptable field of atree contains estimates of cross-validation error

indicating that the pruned tree with 12 leaves should generalise the best. Applying the 1SE

rule prunes more harshly still, resulting in a tree with only 5 leaves.

So, to answer the first and most important question: does the RMLP method work at

all? Since we are going to be dealing with MLPs, we begin by standardising all continuous

attributes to zero mean and unit standard deviation. Next, we generate:

> aptree <- prune(atree, 0.0117)

to get a pruned tree that classifies 73 good items as bad , and 130 bad items as good . The

value 0.0117 is drawn from atree’s cptable. Now, we can generate an MLP using INIT-

MLP-MIXED-MULTI, with a general weight strength of 5.0, and compare it with the tree that

it was initialised from like this:

> anmlp <- treetomlp(aptree, data=german, w=5)
> table(predict(anmlp), predict(aptree, type="class"))

aptree
anmlp bad good
bad 228 3
good 15 754

which says that the MLP is calling 15 things good that the tree calls bad , and 3 things bad

that the tree calls good . Note that at this point we do not care which classifier is correct, just

that the MLP and the tree are behaving the same way.

But they are not. They are in disagreement. Why? The w value is too weak to make

hyperplanes that separate data exactly as the tree does. It is quite likely that we do not want to

do exactly as the tree does in the long run, but here we can demonstrate that the algorithm

works as desired:

> anmlp <- treetomlp(aptree, data=german, w=5)
> table(predict(anmlp), predict(aptree, type="class"))

aptree
anmlp bad good
bad 228 3
good 15 754

> anmlp <- treetomlp(aptree, data=german, w=10)
> table(predict(anmlp), predict(aptree, type="class"))

aptree
anmlp bad good

132

bad 238 1
good 5 756

> anmlp <- treetomlp(aptree, data=german, w=50)
> table(predict(anmlp), predict(aptree, type="class"))

aptree
anmlp bad good
bad 243 0

good 0 757

So with sufficiently sharp hyperplanes, the RMLP can behave exactly as the pruned tree

does.

The RMLP has 62 sensory nodes, 12 nodes in the second layer, 13 in the third layer, and 2

in the output layer. If we instead used:

> anmlp <- treetomlp(aptree, data=german, w=5, classlabel="bad")

then the INIT-MLP-MIXED algorithm is invoked, and the resulting RMLP has 62 sensory

nodes, 12 nodes in the second layer, 7 in the third layer, and 1 in the output layer. (In contrast,

Banerjee’s method would produce 62, 24, 13, and 2.) It behaves in much the same way,

replicating exactly the behaviour of the tree at w = 60.

This basic pattern remains the same for all databases; the “strong” weight on connections

has to be very strong to mimic perfectly a decision tree’s hard splits. This poses a question:

what level of weight strength should we use in the experiments? If it is too low, the RMLP

will not “know” much to begin with, and may take as long to train as a plain MLP. If it is too

high, it will “know” too much and probably get “stuck” in whatever state it was initialised to.

We can take an empirical approach to this issue. Figure 6.1 shows plots of the error and

cost of an RMLP trained on the German Credit database. The x-axes represent the w-value

used to initialise the network from a pruned decision tree. Each point represents the mean

error/cost in a 30-fold train-and-test run after training has ceased according to our usual

stopping rules. The pattern for error in Figure 6.1 (a) is quite clear: as the weight strength

increases, so does the final error on an unseen test set; after a w-value of about 10, the error

is fairly constant around 0.263. Below a w-value of 5, the results are comparable to the

performance of a plain MLP. With respect to the cost of training, the plot in Figure 6.1 (b)

shows a sort of vee-formation, with cost steadily decreasing until w ≈ 9, then steadily

increasing after.

Interestingly, after standardisation to 0 mean and unit standard deviation, all six databases

display this pattern—a linear increase in error against w, and a vee-shaped pattern for cost

133

●

●

●

●

●
●

●
● ●

●
●

●

●

●

●

● ●

●
●

5 10 15

0.
25

0
0.

25
5

0.
26

0
0.

26
5

Relationship of Weight Strength to Error
German Database

Weight Strength

E
rr

or

(a) Effect of weight strength on error rate

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

5 10 15

40
00

0
60

00
0

80
00

0
12

00
00

16
00

00

Relationship of Weight Strength to Cost
German Database

Weight Strength

C
os

t
(b) Effect of weight strength on cost of training

Figure 6.1: Effects of weight strength on MLP training

with the point of the vee sitting at about 9 or 10. At around w = 2.5 we get an acceptable

trade-off of accuracy (after training) against training time, so that was the value chosen for all

of the tests that follow.

How can we normally expect an MLP to behave on this database? We generate an accuracy

estimate by creating two “plain” MLPs to be trained by gradient descent and by quickprop.

Using the plan of having as many hidden nodes in the first layer as there are features, both

have architecture 62, 20, 21, 2, and are initialised using random weights between−0.3 and 0.3.

Using the 30-fold train-and-test procedure described above, we discover that gradient descent

MLPs have, on average, an error rate of 0.251 and took 294 epochs to train. Quickprop

MLPs have 0.253 error, and took 86 epochs to train. Are these better than the pruned trees?

Those pruned to the best cross-validation error achieved 0.272 error, as with those using the

1SE pruning rule getting 0.274. On the surface it would appear that the MLPs are doing

about 2 percentage points better, and a t-test confirms it. Since we are dealing with the same

training and test sets for all classifiers, we can perform paired t-tests, where each MLP is

compared with the tree that was grown on the same training data and tested on the same test

data. Examining the gradient descent MLP against the non-1SE trees, we get a p-value of

0.000012 for an average difference of 0.021. Even though the difference is very small, it is

consistent: we can usually expect the MLP to do this much better than the best pruned tree

(on this database).

134

As for the various flavours of RMLP, we are interested at first in two: initialised by the

pruned tree, and initialised by the 1SE pruned tree. All tests are done for both gradient descent

and quickprop. At this point, we are concerned with both accuracy (which needs to be as

good as plain MLPs) and with training cost (which should be considerably better than MLPs).

The complete set of results for all six databases is presented in the following section.

6.6 Results

This section is broken into three parts, corresponding to the three different families of RMLP

tested. The first subsection deals with a comparison of RMLPs to “plain” MLPs and decision

trees. To reflect the fact that errors are backpropagated in all MLPs, we will use the term

gradient descent to refer to “typical” backprop, and quickprop to refer to the parabolic

estimation introduced by Fahlman (1989). The second section presents a comparison of false

positive and false negative rates of one-output RMLPs with the trees that initialised them. The

third examines the efficacy of providing an RMLP with excess architecture.

6.6.1 Error Rates of Trees and MLPs

The results of 30-fold train-and-test runs on the Iris database are presented in Table 6.1. Error

rates are reported as the proportion of test data misclassified. There is little difference between

the error rates of those decision trees pruned by choosing the minimum error rate on R’s

method of cross-validation, or those pruned using the 1SE rule (which are always either the

same size or smaller).

Table 6.1: RMLP Results for the Iris Database

Method Error % Epochs Cost
Decision Tree (pruned) 6.6 0 0
Decision Tree (pruned, 1SE) 6.0 0 0
MLP (gradient descent) 4.3 632 39789
RMLP (gradient descent) 4.4 350 25076
RMLP (gradient descent, 1SE) 4.4 356 15405
MLP (quickprop) 5.6 170 10700
RMLP (quickprop) 4.2 45 3063
RMLP (quickprop, 1SE) 4.4 47 1859

Observe, however, the difference in accuracy between MLPs (trained either by gradient

descent or by quickprop) and pruned decision trees. MLP seem to be performing two

135

percentage points better regardless of how they are trained. However, the difference is

statistically significant for the gradient descent MLP (paired t-test p-value = 0.000683) but

not for quickprop MLPs. Quickprop seems to be quite unstable on this database for an MLP

of this architecture, with about 10% of all runs having a high finishing error, no matter what

“maximum shrink” setting is used.

Note that we could potentially perform 28 paired t-tests for all possible pairs of 8 classifiers.

To reduce the possibility of claiming something to be significant when it is not, we make a

nod in the direction of the Bonferroni adjustment (Bland and Altman, 1995). To be considered

significant for our purposes at the 95% level of confidence, a p-value in a t-test must be lower

than 0.05/28, or about 0.0018.

As for our main question—how RMLPs perform when initialised with pruned trees and

1SE pruned tree—we see that they both achieve a similar error rate, and a similar number of

epochs. However, the RMLP initialised with the 1SE tree is, on average, smaller, so the cost

of training it is somewhat lower (by about 60%). This result is even stronger in the RMLPs

trained with quickprop; the instability goes away, and the number of epochs of training drops

to about 5% of the original training time, or a speedup of 20 times for the same level of

accuracy. (The quickprop 1SE RMLPs have about 1.6 percentage points lower error than the

1SE trees that initialised them, with a p-value of 0.00048).

The results for the Pima database are presented in Table 6.2. Here, we see once again

that plain MLPs do better than decision trees in terms of error rate, although in this case

gradient descent performs rather weakly and quickprop rather more strongly. Once again, the

RMLPs initialised with 1SE trees and trained with quickprop perform the best, both in terms

of accuracy and in terms of training cost, being about five times faster than a gradient descent

MLP and three times faster than a quickprop MLP.

Table 6.2: RMLP Results for the Pima Database

Method Error % Epochs Cost
Decision Tree (pruned) 25.5 0 0
Decision Tree (pruned, 1SE) 25.1 0 0
MLP (gradient descent) 24.4 84 14469
RMLP (gradient descent) 23.8 57 13977
RMLP (gradient descent, 1SE) 23.8 43 3349
MLP (quickprop) 23.8 61 10559
RMLP (quickprop) 23.9 32 7419
RMLP (quickprop, 1SE) 23.7 40 3272

136

The Segment database, presented in Table 6.3 provides an example of plain MLPs behaving

rather badly. In fact, they are able to find a good stopping point; but not in the 2000 epochs

allowed. In most cases, gradient descent was still reducing error on the early stopping set

when 2000 epochs was reached. In contrast, quickprop MLPs require on average only 302

epochs, and get to a reasonable error rate. In this case, gradient descent 1SE RMLPs reach

the best state (1.4 points better than 1SE trees, with p-value 0.000000009) but the cost is

very high. In this case, the MLPs created by INIT-MLP-MIXED-MULTI are larger than the

standard MLP. The initialisation process is resulting in a tree where each epoch will take

longer, and many epochs are needed, but at the end of training the error rate should be very

low.

Table 6.3: RMLP Results for the Segment Database

Method Error Epochs Cost
Decision Tree (pruned) 4.1 0 0
Decision Tree (pruned, 1SE) 4.3 0 0
MLP (gradient descent) 15.8 1891 1594506
RMLP (gradient descent) 3.1 1735 8061361
RMLP (gradient descent, 1SE) 2.9 1822 5793770
MLP (quickprop) 3.6 302 254895
RMLP (quickprop) 3.7 180 857422
RMLP (quickprop, 1SE) 3.7 193 580859

The Heart database, whose results are presented in Table 6.4, is particularly interesting, in

that it represents a set of data where MLPs outperform decision trees by quite a lot. The best

result is for MLPs trained by quickprop, at nearly 6.5 percentage points better than pruned

trees (representing a 28% reduction in error). Although there is almost a percentage point

difference between best and worst MLP, it just about within the bounds of chance (p-value of

0.049), so we conclude that all MLPs are about as accurate as each other. However, their cost

of training is not at all similar: the quickprop 1SE RMLP requires only 13% of the training

time of the plain MLP, and 22% of the time of the quickprop MLP.

The Australian Credit database, presented in Table 6.5 is interesting for the opposite

reason to the Heart database. In this case, we have a database where the MLPs just barely do

better than the decision trees; in fact, if we stick to our multiple testing principles and require

a Bonferroni adjustment, only one of the classifiers performs better than any other. In this

case, the gradient descent 1SE RMLPs just squeak in at 1.3 percentage points lower than the

1SE trees, with a p-value of 0.0015. Note that they have approximately 9% of the training

cost of the plain gradient descent MLP.

137

Table 6.4: RMLP Results for the Heart Database

Method Error % Epochs Cost
Decision Tree (pruned) 22.9 0 0
Decision Tree (pruned, 1SE) 23.1 0 0
MLP (gradient descent) 17.0 60 32441
RMLP (gradient descent) 17.7 47 15820
RMLP (gradient descent, 1SE) 17.2 39 6746
MLP (quickprop) 16.6 37 19942
RMLP (quickprop) 17.7 22 7479
RMLP (quickprop, 1SE) 17.6 30 4292

Table 6.5: RMLP Results for the Australian Credit Database

Method Error % Epochs Cost
Decision Tree (pruned) 14.9 0 0
Decision Tree (pruned, 1SE) 14.5 0 0
MLP (gradient descent) 13.6 211 180905
RMLP (gradient descent) 13.5 102 31913
RMLP (gradient descent, 1SE) 13.2 110 12935
MLP (quickprop) 13.2 83 71440
RMLP (quickprop) 13.9 54 11604
RMLP (quickprop, 1SE) 13.6 58 6772

Coming back to where we began, the results for the German Credit database are presented

in Table 6.6. Once again, we see that we can expect an MLP to do about 2.1 percentage points

better than a decision tree (p-value = 0.000012). Between the best and worst MLPs there is

no statistically significant difference in error, but the quickprop RMLP takes a mere 4% of the

training time of the plain MLP, and 12% of the training time of the quickprop MLP.

Let us consider for a moment the possibility that the cost function is unfair, since it

depends strongly on the size of the MLP; that is, a smaller MLP that takes the same number

of epochs as a larger MLP will have a lower cost. Is it fair to compare the (obviously rather

small) RMLPs with the arbitrarily determined architecture of the plain MLPs? There are two

responses to this, both of which apply here. On the one hand: which trick should one use to

decide upon an MLP architecture? In all cases, the time taken to search through the possible

architectures must be taken into account when establishing the training cost of the method.

On the other hand: suppose we had some prior knowledge that a good architecture for the

MLP was the same as the one a tree would produce. This would allow us to ignore the cost

function, and concentrate purely on number of epochs, as we did in the pilot study. However,

138

Table 6.6: RMLP Results for the German Credit Database

Method Error Epochs Cost
Decision Tree (pruned) 27.2 0 0
Decision Tree (pruned, 1SE) 27.2 0 0
MLP (gradient descent) 25.1 294 507725
RMLP (gradient descent) 24.5 123 140867
RMLP (gradient descent, 1SE) 25.3 108 46354
MLP (quickprop) 25.3 86 148695
RMLP (quickprop) 25.1 40 49171
RMLP (quickprop, 1SE) 24.8 41 18519

trying this on the Pima, Segment, Heart, and German Credit databases quickly establishes

that this is not a good strategy; the number of epochs required to train is far higher than for

the architecture proposed here, and the MLPs almost never reach a reasonably accurate state.

Without a weight-initialisation scheme, these small MLPs are doomed.

6.6.2 False Positive and False Negative Rates

Do we gain any advantage by making RMLPs as small as possible? The one-output version of

the RMLP that is produced by INIT-MLP-MIXED contains just enough structure to recognise

one class (usually encoded as output 1), and relies on a default output (of 0) to specify

“everything else.” If these RMLPs have a lower training cost than their equivalent multiple-

output RMLPs, then they could be built in parallel on absolutely separate machines. The

total cost of training would be the cost of the second most expensive class, since it would be

sensible to make the most expensive the default.

In this experiment, we build one RMLP per class in the database, train it, and test it in the

same 30-fold train-and-test sequence as before. We then compare its false positive and false

negative rate to the decision tree that created it, which ensures that we are not mistaking a

lowering of sensitivity for an improvement in accuracy.

The results are presented for all databases in Table 6.7. Each class label represents a set of

30 RMLPs with just one output, with the false positive and false negative rate reported for the

pruned tree, the RMLP trained by gradient descent, and the RMLP trained by quickprop.

With only a few exceptions, the false positive and false negative rates are improved upon

by the one-output RMLPs. In those cases where an increase in error is seen (in the Australian

and Segment databases) there is enough of a lowering in the other false positive/negative rate

139

to get an overall increase in accuracy. Whether or not it is preferable to use the RMLP rather

than decision tree depends on whether it is more desirable to have a sensitive or selective test.

Comparing the costs of training to those in the previous experiment suggests that there

is little to be gained by making such small RMLPs, as they tend to have higher (or at least

equal) training costs than their equivalent multiple-output RMLPs. This would be worth it

for a gain in overall accuracy, but only the Segment database ends up with a lower overall

error when one-output RMLPs are used. Perhaps the multiple-output MLPs are able to share

structure between classes just enough to facilitate a better model, but not so much as to stop

training too early.

140

Table 6.7: False Positive and False Negative Rates for All Databases

Label Type Tree RMLP Cost QRMLP Cost

Ir
is

setosa fp 0.0000 0.0000 621 0.0000 320
fn 0.0000 0.0000 0.0000

versicolor fp 0.0542 0.0222 12448 0.0333 2044
fn 0.0889 0.0750 0.0639

virginica fp 0.0444 0.0333 11576 0.0444 2055
fn 0.1083 0.0556 0.0500

Pi
m

a

negative fp 0.4448 0.3950 7549 0.4000 7156
fn 0.1525 0.1531 0.1504

positive fp 0.1525 0.1416 11990 0.1301 4746
fn 0.4448 0.3970 0.4363

Se
gm

en
t

brickface fp 0.0038 0.0014 1916553 0.0011 113322
fn 0.0211 0.0081 0.0138

cement fp 0.0078 0.0054 2421039 0.0064 187019
fn 0.0663 0.1118 0.1520

foliage fp 0.0147 0.0089 3256623 0.0117 393238
fn 0.0821 0.0675 0.1102

grass fp 0.0010 0.0000 960475 0.0001 54658
fn 0.0073 0.0098 0.0098

path fp 0.0016 0.0009 191142 0.0012 46896
fn 0.0045 0.0000 0.0012

sky fp 0.0004 0.0000 71078 0.0009 66854
fn 0.0000 0.0004 0.0000

window fp 0.0186 0.0152 3843922 0.0175 576297
fn 0.1057 0.1057 0.1508

H
ea

rt

negative fp 0.3056 0.2400 13598 0.2244 9326
fn 0.1693 0.1272 0.1474

positive fp 0.1693 0.1316 11379 0.1175 8410
fn 0.3056 0.2311 0.2433

A
us

tr
al

ia
n negative fp 0.1156 0.1411 36961 0.1364 13006

fn 0.1750 0.1260 0.1330
positive fp 0.1750 0.1288 32948 0.1316 14594

fn 0.1156 0.1424 0.1433

G
er

m
an

bad fp 0.1421 0.1152 124615 0.1229 46584
fn 0.5760 0.5791 0.5649

good fp 0.5760 0.5462 222130 0.5156 53568
fn 0.1421 0.1312 0.1518

141

6.6.3 Partial Initialisation

Suppose we have an MLP that is almost certainly too big for the job. If we run INIT-MLP-

MIXED-MULTI for the weight setting but not the structure setting, we are initialising part of

the network and leaving the rest in a random state. In effect, we are giving the MLP “more

neurons” to play about with, but not specifying what should be done with them until the

weight-optimisation scheme runs.

The results of initialising MLPs with pruned 1SE trees in just this fashion are presented

in Tables 6.8 and 6.9. In each case, the same structure as the plain MLP from the first set of

experiments was used, but weights were set using INIT-MLP-MIXED-MULTI. The exception

is the Segment database, whose RMLPs were actually bigger than the plain MLPs. For

the Segment database, the sizes of the two hidden layers were set to 70 and 71, ensuring

that they were bigger than any decision tree would suggest. The MLP and QMLP columns

of the tables are the same results from the standard error rate experiments; the RMLP and

QRMLP columns represent a partial initialisation trained with gradient descent and quickprop,

respectively.

Table 6.8: Partial Initialisation Error Rates

Database Tree MLP QMLP RMLP QRMLP
Iris 6.0 4.3 5.6 4.4 4.5

Pima 25.1 24.4 23.8 23.5 23.7
Segment 4.3 15.8 3.6 3.0 3.3

Heart 23.1 17.0 16.6 17.2 17.8
Australian Credit 14.5 13.6 13.2 13.5 13.6

German Credit 27.4 25.1 25.3 25.4 25.2

Table 6.9: Partial Initialisation Costs

Database MLP QMLP RMLP QRMLP
Iris 39789 10700 26499 3418

Pima 14469 10559 8886 7277
Segment 1594506 254895 12995354 1494625

Heart 32441 19941 25611 15214
Australian Credit 180905 71440 106916 47388

German Credit 507725 148695 190445 75463

Again, we see the pattern of RMLPs reaching as good an error rate as the MLPs, which

are in turn better than the decision trees. Also, the cost of training is lower than the plain

142

MLPs, so the method is basically sound; there is some use to starting an MLP with partial

knowledge. The apparent exception to this is the Segment database, where the RMLPs are

more expensive to train than the plain MLPs. (Note that the plain MLPs trained with gradient

descent rarely reach a reasonable error rate, although those trained with quickprop do.)

A comparison with the tables in the first experiment shows quite clearly that the “extra”

structure in the network gives no real advantage in accuracy or in training cost. The error

rate remains about the same, and the training cost is somewhat more expensive due to the

higher size. There is no concomitant reduction in the number of epochs to compensate for

the increased MLP size. Thus we conclude that, while it may occasionally be effective to

“partially” initialise an MLP, it is no substitute for initialising both architecture and initial

connection weights.

6.7 Summary

On the harshest test possible, RMLPs generally outperform trees in terms of accuracy and

MLPs in terms of training cost. However, the training cost for quickprop MLPs is very low,

and it is not always the case that RMLPs trained by gradient descent do any better than those

trained by quickprop. Fortunately, the initialisation process seems to interact happily with

quickprop weight optimisation, resulting in RMLPs that are as accurate as any MLP, but

require about an order of magnitude less time to train.

While it is possible to show that single-output RMLPs improve upon the false-positive

and false-negative rates of the trees that initialised them, there is no great advantage to their

small size; multiple-output RMLPs seem to behave just as well, if not better. The possible

exception is the Segment database, where the overall misclassification cost is very low for the

one-output RMLPs; it is possible that this is a good strategy to pursue when there are rather

more than two output classes.

Finally, larger RMLPs whose connection weights are initialised with decision trees display

similar tendencies to “pure” RMLPs; training time is lowered, typically without sacrificing

accuracy. However, there seems to be no real advantage to doing this, at least on the databases

tested here. It is, of course, possible that a database exists where it is better to give the RMLP

more units than the decision tree would warrant. Perhaps, though, the weight optimisation

strategy will necessarily assign the wrong amount of “blame” to units that are relatively

inactive at the time training starts. A possible avenue of future research is to see what happens

if units are added or removed systematically at various points during training. Various other

avenues of future research are outlined in the following chapter.

143

Chapter 7

Future Work and Conclusion

7.1 Research Contributions

Throughout this thesis, we have explored the theme of how one should initialise MLPs with

decision trees, and how useful that might be. We have taken a gently sceptical approach, not

necessarily assuming that MLPs will train more quickly when initialised in this manner, nor

that they will necessarily end up as more accurate classifiers. Happily, we have found that

there exist at least some databases where this is the case, and reasonably suspect that there are

more. The following contributions and conclusions may therefore be put forward:

• There often exists an MLP whose state is more accurate on a validation set than

the decision tree used to initialise it (the general result induced from Chapter 4).

Furthermore, such a state can exist in the state-space searched by standard MLP training

algorithms such as gradient descent and quickprop.

• Previous algorithms to initialise MLPs from decision trees have tended either to be too

small (having insufficient architecture to respond properly to changes in stimuli) or too

large (containing more nodes in the hidden layers than necessary). An MLP can be built

with just one node in the first hidden layer for each branching node in the tree, and one

node for each of the tree’s leaf nodes. The algorithms that achieve this are developed

and presented in Chapter 5.

• Until now, there has been no “fair” test of tree-initialised MLPs against the trees that

were used to create them. The fairest possible test is to train and prune on one data set,

then test both of the classifiers on previously unseen data. Crucially, such a test will

show if the initialised MLP is unable to improve on the decision tree, or if improvements

144

are inconsistent or random. Happily, some improvement in size, training time, and

accuracy was seen in nearly all of the MLPs tested in Chapter 6.

7.2 Summary of Material

There is a huge variety of tools available for classification, and this thesis has focused on

just two: decision trees and MLPs. However, to some extent, all classification methods are

related by their treatment of the training data as n-dimensional points in a feature space. This

relationship is explored in Chapter 2, in order to express the capabilities and limitations of

various classifier families. All of the classifiers mentioned work by placing hyperplanes in the

feature space, thereby creating boundaries of various shapes. Those boundaries may be sharp

(as in the case of linear discriminant analysis and decision trees) or fuzzy (as in the case of

logistic regression and perceptrons). If categorical attributes are catered for at all, they are

dealt with by expressing a probability of class membership contingent upon their categorical

features, or possibly on some interaction between categorical features and numerical features.

Decision trees and MLPs are particularly interesting because they allow the modelling

of almost arbitrary regions of the feature space. In the case of decision trees, the regions

are expressed by fitting axis-parallel hypercuboids around clusters of one class or another.

In the case of MLPs, the regions are expressed by fitting logistic regression models around

clusters, allowing fuzzy boundaries and curved isosurfaces. As a result, both forms of model

are inherently more powerful than linear discriminant analysis, logistic regression, or Naı̈ve

Bayes classifiers, and are to be preferred in situations where the classes are non-linearly

separable. K-Nearest-Neighbour classifiers are also able to distinguish between complex

groupings of classes, but are not “models” in the true sense, since the data and the model are

the same thing. Nevertheless, the relationship still holds, since the hypersphere containing the

k nearest neighbours acts as the decision boundary.

From this brief survey of classification methods, one thing becomes clear. If “knowledge”

is to be transferred from one classification method to another, it will be in one of two forms:

either decision boundaries in the feature space, or probability adjustments based on the

presence, absence, or magnitude of particular features. Throughout this thesis, we have

concentrated on the first form, but really the two are one and the same. Sharp decisions

are just zero/one probabilities, and probability distributions may become sharp decisions

simply by stating a “discrimination” value. Treating that value as an isosurface in feature

space allows us to bring MLPs close enough to decision trees to express an algorithm for

transferring knowledge from one to the other.

145

Chapter 3 contains a review of three fields of literature: decision trees, MLPs, and attempts

to transfer knowledge from the first to the second. The sections on decision trees and MLPs

are necessary background for the rest of the thesis, but they have another purpose. They make

the point that both methods are subtle and complex, and should not be applied “out-of-the-box.”

Decision trees require conscious thought regarding the splitting method used, when to stop

growing, and how to prune. For instance, it is simply not fair to decision trees to include

them in a comparison when the default pruning method of C4.5 has been used. MLPs require

even more consideration: representation of the database, MLP architecture, choice of learning

constant, choice of weight optimisation method; all must be tuned to the database, not held

constant across experiments.

In particular, it is not sufficient to test methods of hybridisation using the default settings

of decision trees and MLPs, whatever they may be. If it is to be rigorously established

that hybridisation is useful, then it must be more useful than using the individual techniques

properly. To be precise, a hybrid method must allow training to be cheaper than that achievable

by using a fast training method (e.g. quickprop, RPROP, or Levenberg-Marquadt) and it must

have an error rate no worse than a carefully crafted MLP.

In anticipation of needing a compact notation for MLPs, we suggest a Lisp-like list of

matrices, where each matrix stores the connection weights between two layers of units. The

first row of each matrix stores bias weights, allowing us to specify the feedforward function

in a two-line recurrence. While elegant, the real gain from this notation is that it allows us

to specify a particular weight or bias with three numbers: one to specify the matrix, one to

specify the row, and one to specify the column. Thus it will be possible later to specify a

weight-setting algorithm formally, independently of whatever representation is used for an

MLP in an actual programming language. (Of course, R allows us to use precisely the same

representation, since it supports lists, matrices, matrix multiplication, element-wise function

application, and recursion.)

In Chapter 4, the results of a pilot study are presented. The purpose of the study is to get

a broad sense of how Banerjee’s approach to hybridisation behaves on a range of databases.

We present a modest change to his method to deal with categorical attributes, allowing us

to process a larger class of training sets. All data sets were split into two parts for v-fold

cross validation, with trees pruned on the validation set. The interesting result is that, even

though the trees are biased in favour of the validation set, a more accurate state existed on the

validation set for MLPs in almost every case. Further, it became clear that training error began

low and decreased quickly, suggesting that the MLPs did indeed “know” something by having

been initialised. It was not clear that an initialised MLP trained by plain gradient descent

146

finished a lot sooner than a plain MLP trained by quickprop, but fortunately quickprop and

initialisation by decision tree seemed to interact well, resulting in MLPs that train quickly

and at least have a state where they are more accurate than decision trees.

We pause for a moment in Chapter 5 to reflect on what MLPs actually do. In the simplest

case (one logistic activation node) an MLP is a logistic regression, placing a single soft

boundary at an arbitrary orientation through the feature space. This is in contrast to the

simplest possible decision tree, which places a sharp boundary parallel to all axes but one.

However, we can use a simple logic language to connect the two forms of knowledge,

specifying what kind of tree or MLP is needed for gradually more complex expressions in the

language. Following through the possible boundaries for MLPs, we see that by connecting

several single-node MLPs to a single output unit, we can express an arbitrary convex boundary

in a continuous feature space. To get multiple convex regions, or re-curved regions, we need

one more layer of hidden nodes. Thus we can derive a four-layer MLP that has just enough

nodes to represent the boundaries of a decision tree, and no more. This exposition also sheds

light on why MLPs might be expected to perform better than decision trees. During weight

optimisation, MLPs have the chance to re-orient separating hyperplanes, and to change the

softness of each boundary.

Using the MLP notation developed in Chapter 3, it is possible to generate an “RMLP”

that has one node per branch in the first hidden layer, and one node per leaf in the second.

Adjustments are suggested for dealing with categorical attributes, resulting in INIT-MLP-

MIXED for the one-output case, and INIT-MLP-MIXED-MULTI for the multiple-output

case. Rather than using the intermediate format of DNF rules as suggested by Banerjee, the

initialisation is achieved directly by traversal of the decision tree. By using a double-stack

method (similar to algorithms used to process Reverse-Polish expressions), it is possible to

keep just enough state information at each node of the tree to be able to set a connection

weight precisely according to what conditions must be true, and what conditions must be

false.

Chapter 6 contains a set of experiments designed to assess the utility of RMLPs. Rather

than seek a proof of the possibility of usefulness, as in Chapter 4, we perform a comparison of

decision trees, MLPs, and RMLPs trained on one set, tested on a completely independent set,

repeated 30 times with a random selection of test set each time. Databases were deliberately

chosen to provide situations where MLPs were at least likely to perform better than decision

trees, and this was established to be the case. We saw RMLPs trained with quickprop produce

misclassification rates equivalent to plain MLPs, but usually at a cost of an order of magnitude

less training time. However, this performance is quite sensitive to the “strong weight” value

147

chosen during the initialisation process; too weak, and the RMLP does not “know” enough,

too strong, and the RMLP is unable to break out of what it “knows.”

One-output RMLPs were shown to improve upon the false positive and false negative

rates of the decision trees that initialised them. However, it seems to be the case that there is

little advantage in terms of the cost of training. Finally, the results of initialising “oversized”

RMLPs with decision trees were presented. While there was certainly some positive effect in

terms of training cost, there seemed to be no advantage over a “right-sized” RMLP.

The results presented in Chapter 6 suggest that there is indeed little to separate an RMLP

trained by gradient descent from an MLP trained by quickprop. They are similarly accurate,

and cost a similar amount to train. However, an RMLP trained by quickprop is sufficiently

cheaper than one trained by gradient descent that we can safely make the following statement:

Suppose you have a wish to build a multilayer perceptron model of a database, for the

purposes of class prediction. If the dimensionality of the database is high, and the classes are

not easily separable, then it will be difficult to determine an MLP architecture, difficult to

determine a good learning constant, and training is likely to take a long time. These problems

may be solved by growing and pruning a decision tree on the training data, then using it to

initialise an RMLP, then training the RMLP with quickprop. The RMLP will probably be at

least as accurate as any other MLP trained on the data; the architecture will be determined

immediately, and the cost of training will be low, due to a combination of small size and fewer

epochs. Since quickprop is rather insensitive to the learning constant, an arbitrary value of 1
n

should suffice.

7.3 Future Work

There are many opportunities to apply the ideas in this thesis to new situations. Perhaps the

most obvious is a favourite of neuro-symbolic researchers: extracting the refined knowledge

from an RMLP. However, this line of inquiry is not something we will pursue. The reason

is simple. The knowledge contained in an MLP is encoded as a set of fuzzy convex regions

in a feature space. To state explicitly those regions is to start reducing the power of the

representation. Stating the regions as hyperplane boundaries means losing the softness of the

regions, and stating the boundaries as predicates on single features loses their orientation. The

best we could hope for is that the “refined” knowledge may correct some misfortune suffered

by the tree in the application of the greedy heuristic, but this seems unlikely, since the weight

optimisation algorithms are themselves greedy. Instead, we prefer to view MLPs as just what

148

they are: recursive multiple logistic regressions. They are the simplest representation of their

form of knowledge; “extraction” is at best a rough approximation of that knowledge.

7.3.1 Arbitrary Statements of Knowledge

Another obvious extension of this work is to be able to take any statement of symbolic

knowledge and encode it in an MLP. For instance, it should be possible to say, “we know

that the class is good if x < y, but in all other situations we are at sea.” An appropriately

initialised MLP should therefore have an output of 1 when x is less than y, an output of

around 0.5 in all other cases (reflecting the “don’t know” situation), and still be free to learn

new representations as new data is presented.

Further, it should be possible to take any group of statements in any modal logic and

encode it as an MLP, so that an agent applying entailment rules and an agent using the MLP

behave in the same manner. While that is interesting in and of itself, it is perhaps even more

interesting to ask if there is any improvement in the MLP that might make the agent using it

behave more effectively than the one using an entailment relation. This would constitute a

rather long-term research programme.

7.3.2 Initialisation by Oblique Decision Trees

Oblique decision trees such as OC1 (Murthy et al., 1994) separate regions in the feature

space using arbitrarily oriented hyperplanes. Rather than axis-parallel splits, a hyperplane is

greedily induced as an inequality on a linear combination of features. The greedy heuristic

seems to be quite effective in the case of OC1, typically producing rather more compact trees

than C4.5. What if we were to initialise an MLP with the hyperplanes from OC1? The MLPs

would be typically even smaller than those initialised from CART or rpart or C4.5, and would

have separating planes almost certainly closer to a final “good” orientation. Is is possible that

an MLP could do any better than OC1 in choosing a new orientation, and by adding “softness”

to the boundary?

To answer this question, we would first need to extend OC1’s concept of “hyperplane”

to include categorical attributes. Our work to date with RMLPs gives us some insight into

how to do this, so we do not expect this to be an insurmountable challenge. OC1 attempts to

optimise hyperplanes by a combination of greedy induction and random restart, so there is

some reason to expect that an MLP might be able to do better in terms of misclassification

rate. This line of inquiry constitutes a fairly near-term research programme.

149

7.3.3 Tree Structured Logistic Regression

The relationship between MLPs and logistic regression is striking. The optimisation methods

for logistic regression are suitable for no-hidden-layer MLPs, but do something quite different

from gradient descent methods. Instead of gradually sliding a fuzzy hyperplane across the

data until a class cluster is just inside a class boundary, the Newton-Raphson method places

the isosurface in the space in between two clusters.

However, it has been noted that logistic regression cannot solve the problem where one

class is flanked by two clusters of another class, as in the BGB database presented in Chapter 2.

One very promising approach is to use decision tree methods to partition the data into regions

that can be solved by logistic regression. To achieve this, the objective function of the decision

tree (some sort of diversity metric) must be replaced by an objective function that attempts to

get a good logistic regression on both sides of the split. The LOTUS logistic regression tree

(Chan and Loh, 2004) takes exactly this approach.

Logistic regressions are arbitrarily oriented, so it seems natural that the splits that are used

to build tree structured versions should be too. Thus, we are currently investigating the use

of OC1’s hyperplane induction method as a replacement for LOTUS’s splitting procedure.

Eventually, it may be possible to use fuzzy splits for both the partitioning and the regression, in

which case the tree structured logistic regression would become an MLP but trained piecewise

rather than globally. It will be interesting to find out whether any form of globally trained

MLP can perform better than a tree structured logistic regression.

7.4 A Final Note

It is very well known that there is no “ultimate classifier” that is optimal for all problems. In

some cases, linear discriminant analysis is sufficient. In others, a decision tree will outperform

an MLP simply because the MLP cannot find a good representation during training. This

thesis does not advocate the blind use of MLPs over decision trees or any other type of

model; it is always necessary to explore a database thoroughly in order to get a sense of what

modelling techniques are likely to produce useful results. If description is as important as

prediction, then decision trees are very likely to be the way to go, as most human beings can

understand the simple restrictions they place on a feature space. MLPs may squeeze out a few

extra percentage points of accuracy, but a “fuzzy convex region bounded in n dimensions” is

unlikely to be acceptable as an “explanation.”

Sometimes, though, prediction is more important. Sometimes, each improvement in

accuracy of 0.1% is worth a great deal. Sometimes, an MLP can provide that improvement

150

where no other classifier is able to. When all three of these things are true, then the methods

developed in this thesis can be used to produce an accurate MLP that has a well-specified

architecture and requires few training epochs.

151

References

Agrawal, R., Imielinski, T., and Swami, A. (1993). Database Mining: A Performance

Perspective. IEEE Transactions on Knowledge and Data Engineering, 5(6), 914–925.

Special Issue on Learning and Discovery in Knowledge-Based Databases.

Al-Harbi, S., McKeown, G., and Rayward-Smith, V. (2004). A New Metric for Categorical

Data. In H. Bozdogan (Ed.), Statistical Data Mining and Knowledge Discovery, Chapter 20,

339–351. Chapman & Hall/CRC.

Anastasiadis, A., Magoulas, G., and Vrahatis, M. (2003). An Efficient Improvement of the

RPROP Algorithm. In Proceedings of the First International Workshop on Artificial Neural

Networks in Pattern Recognition (ANNPR-03), 197–201.

Banerjee, A. (1997). Initializing Neural Networks Using Decision Trees. In Computational

Learning Theory and Natural Learning Systems, Volume 4, Chapter 1, 3–15. MIT Press.

Bioch, J., Carsouw, R., and Potharst, R. (1997). On the use of Simple Classifiers for the

Initialisation of One-hidden-layer Neural Nets. In S. Ellacott, J. Mason, and I. Anderson

(Eds.), Mathematics of Neural Network Models, Algorithms and Applications, 113–117.

Kluwer Academic Publishers.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press.

Bland, J. M. and Altman, D. G. (1995). Multiple Significance Tests: the Bonferroni Method.

British Medical Journal, 310, 170.

Boser, B., Guyon, I., and Vapnik, V. (1992). A Training Algorithm for Optimal Margin

Classifiers. In Fifth Annual Conference on Computational Learning Theory, 144–152.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and

Regression Trees. Wadsworth International Group.

152

Brent, R. P. (1991). Fast Training Algorithms for Multilayer Neural Nets. IEEE Transactions

on Neural Networks, 2(3), 346–354.

Burges, C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data

Mining and Knowledge Discovery, 2(2), 121–167.

Chabanon, C., Lechevallier, Y., and Milleman, S. (1992). An Efficient Neural Network by a

Classification Tree. In Proceedings of the 10th Symposium on Computational Statistics

COMPSTAT, Volume 1, 227–232. Physica-Verlag.

Chan, K.-Y. and Loh, W.-Y. (2004). LOTUS: An Algorithm for Building Accurate and

Comprehensible Logistic Regression Trees. Journal of Computational and Graphical

Statistics, 13(4), 826–852.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2001). Introduction to Algorithms.

MIT Press and McGraw-Hill.

Cortes, C. and Vapnik, V. (1995). Support Vector Networks. Machine Learning, 20, 273–297.

Crevier, D. (1993). AI: the Tumultuous History of the Search for Artificial Intelligence. Basic

Books.

Dasarathy, B. V. (Ed.) (1990). Nearest Neighbour (NN) Norms: NN Pattern Classification

Techniques. IEEE Computer Society Press.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. Wiley.

Dunham, M. H. (2003). Data Mining: Introductory and Advanced Topics. Prentice Hall.

Esposito, F., Malerba, D., and Semeraro, G. (1997). A Comparitive Analysis of Meth-

ods for Pruning Decision Trees. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(5), 476–491.

Fahlman, S. (1989). Fast Learning Variations on Back-propagation: An Empirical Study. In

Proceedings of the 1988 Connectionist Models Summer School. Morgan Kaufmann.

Fahlman, S. and Lebiere, C. (1990). The Cascade-Correlation Learning Architecture. In D. S.

Touretzky (Ed.), Advances in Neural Information Processing Systems, Volume 2, 525–532.

Morgan Kaufmann.

Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (Eds.) (1996). Advances

in Knowledge Discovery & Data Mining. AAAI Press/MIT Press.

153

Fisher, R. A. (1936). The use of Multiple Measurements in Taxonomic Problems. Annals of

Eugenics, 7(2), 179–188.

Fix, E. and Hodges, Jr., J. (1951). Discriminatory Analysis: Nonparametric Discrimination:

Consistency Properties. Technical Report Project 21-49-004, Report No. 4, USAF School

of Aviation Medecine.

Frean, M. (1990). The Upstart Algorithm: a Method for Constructing and Training Feedfor-

ward Neural Networks. Neural Computation, 2(2), 198–209.

Gehrke, J., Ganti, V., Ramakrishnan, R., and Loh, W.-Y. (1999). BOAT—Optimistic Decision

Tree Construction. In Proceedings of the 1999 ACM SIGMOD Conference, 169–181.

Gehrke, J., Ramakrishnan, R., and Ganti, V. (2000). RainForest—A Framework for Fast

Decision Tree Construction of Large Datasets. Data Mining and Knowledge Discovery, 4(2-

3), 127–162.

Hall, L. O., Bowyer, K. W., Banfield, R. E., Eschrich, S., and Collins, R. (2003). Is Error-

Based Pruning Redeemable? International Journal on Artificial Intelligence Tools, 12(3),

249–264.

Hand, D., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. MIT Press.

Hassoun, M. H. (1995). Fundamentals of Artificial Neural Networks. MIT Press.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer.

Hebb, D. O. (1949). The Organization of Behaviour. Wiley.

Hosmer, Jr., D. W. and Lemeshow, S. (1989). Applied Logistic Regression. Wiley.

Hunt, E. B., Marin, J., and Stone, P. (1966). Experiments in Induction. Academic Press.

Igel, C. and Húsken, M. (2000). Improving the RPROP Learning Algorithm. In Proceedings

of the Second International Symposium on Neural Computation (NC2000), 115–121.

Ivanova, I. and Kubat, M. (1995). Initialization of Neural Networks by Means of Decision

Trees. Knowledge Based Systems, 8, 333–344.

Kass, G. (1980). An Exploratory Technique for Investigating Large Quantities of Categorical

Data. Applied Statistics, 29(2), 119–127.

154

Le Cun, Y., Bottou, L., Orr, G. B., and Mueller, K.-R. (1998). Efficient BackProp, Volume

1524, 9–50. Springer.

Le Cun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal Brain Damage. In D. S. Touretzky

(Ed.), Advances in Neural Information Processing Systems 2, 598–605. Morgan Kaufmann.

Lewis, D. (1998). Naive (Bayes) at Forty: The Independence Assumption in Information

Retrieval. In C. Nedellec and C. Rouveirol (Eds.), ECML-98: 10th European Conference

on Machine Learning, Volume 1398 of Lecture Notes in Computer Science, 4–15. Springer.

Lim, T.-S., Loh, W.-Y., and Shih, Y.-S. (2000). A Comparison of Prediction Accuracy,

Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms.

Machine Learning, 40, 203–228.

Little, R. and Rubin, D. (1987). Statistical Analysis with Missing Data. Wiley.

McCulloch, W. S. and Pitts, W. H. (1943). A Logical Calculus of the Ideas Immanent in

Nervous Activity. Bulletin of Mathematical Biophysics, 5, 115–33.

McGarry, K., Wermter, S., and MacIntyre, J. (1999). Hybrid Neural Systems: from Simple

Coupling to Fully Integrated Neural Networks. Neural Computing Surveys, 2, 62–93.

Mehta, M., Agrawal, R., and Rissanen, J. (1996). SLIQ: A Fast Scalable Classifier for Data

Mining. In P. M. G. Apers, M. Bouzeghoub, and G. Gardarin (Eds.), EDBT, Volume 1057

of Lecture Notes in Computer Science, 18–32. Springer.

Mehta, M., Rissanen, J., and Agrawal, R. (1995). MDL-based Decision Tree Pruning. In

Proceedings of the First International Conference on Knowledge Discovery in Databases

and Data Mining.

Michie, D., Spiegelhalter, D. J., Taylor, C. C., and Campbell, J. (Eds.) (1994). Machine

Learning, Neural and Statistical Classification. Ellis Horwood.

Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Morgan, J. N. and Messenger, R. C. (1973). THAID: A sequential analysis program for the

analysis of nominal scale dependent variables. Technical report, Survey Research Center,

Institute for Social Research, University of Michigan.

155

Morgan, J. N. and Sonquist, J. A. (1963). Problems in the Analysis of Survey Data, and a

Proposal. Journal of the American Statistical Association, 58(302), 415–434.

Mozer, M. and Smolensky, P. (1985). Skeletonization: a Technique for Trimming the Fat

from a Neural Network via Relevance Assessment. In D. S. Touretzky (Ed.), Advances in

Neural Information Processing Systems 4, 107–115. Morgan Kaufmann.

Murthy, S. K. (1998). Automatic Construction of Decision Trees from Data: A Multi-

Disciplinary Survey. Data Mining and Knowledge Discovery, 2, 345–389.

Murthy, S. K., Kasif, S., and Salzberg, S. (1994). A System for Induction of Oblique Decision

Trees. Journal of Artificial Intelligence Research, 2, 1–32.

Park, Y. (1994). A Mapping from linear Tree Classifiers to Neural Network Classifiers. In

Proceedings of the IEEE International Conference on Neural Networks, 94–100.

Pettigrew, R. A., McDonald, J. R., and van Rij, A. M. (1991). Developing a System for

Surgical Audit. Australian and New Zealand Surgery, 61, 563–9.

Plaut, D., Nowlan, S., and Hinton, G. (1986). Experiments on Learning by Backpropaga-

tion. Technical Report CMU-CS-86-126, Carnegie-Mellon University, Computer Science

Department.

Prechelt, L. (1996). Early Stopping—But When?, Volume 1524 of Lecture Notes in Computer

Science, 55–69. Springer.

Prechelt, L. (1998). Automatic Early Stopping Using Cross Validation: Quantifying the

Criteria. Neural Networks, 11(4), 761–767.

Quinlan, J. R. (1986). Induction of Decision Trees. Machine Learning, 1, 81–106.

Quinlan, J. R. (1987). Simplifying Decision Trees. International Journal of Man-Machine

Studies, 27, 221–234.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

R Development Core Team (2005). R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing. ISBN 3-900051-07-0.

Raileanu, L. E. and Stoffel, K. (2004). Theoretical Comparison between the Gini Index and

Information Gain Critera. Annals of Mathematics and Artificial Intelligence, 41, 77–93.

156

Rastogi, R. and Shim, K. (1998). PUBLIC: A Decision Tree Classifier that Integrates Building

and Pruning. In A. Gupta, O. Shmueli, and J. Widom (Eds.), Proceedings of the 24th VLDB

Conference, 404–415.

Reed, R. D. and Marks, R. J. (1999). Neural Smithing: Supervised Learning in Feedforward

Artificial Neural Networks. MIT Press.

Riedmiller, M. and Braun, H. (1993). A Direct Adaptive Method fo Faster Backpropagation

Learning: The RPROP Algorithm. In Proceedings of the IEEE International Conference

on Neural Networks, 586–591. IEEE Press.

Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain. Psychological Review, 65, 386–408.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning Internal Representations

by Error Propagation. In D. Rumelhart and J. McClelland (Eds.), Parallel Distributed

Processing: Explorations in the Microstructures of Cognition, Volume 1. MIT Press.

Sethi, I. K. (1990). Entropy Nets: From Decision Trees to Neural Networks. Proceedings of

the IEEE, 78(10), 1605–1613.

Setiono, R. and Lu, H. (1996). Symbolic Representation of Neural Networks. IEEE Com-

puter, 29(3), 71–77.

Shafer, J., Agrawal, R., and Mehta, M. (1996). SPRINT: A Scalable Parallel Classifier for

Data Mining. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L. Sarda (Eds.),

Proceedings of the 22nd VLDB Conference, 544–555.

Shavlik, J. (1994). A Framework for Combining Symbolic and Neural Learning. Machine

Learning, 14, 321–331.

Shavlik, J. and Towell, G. (1989). An Approach to Combining Explanation-based and Neural

Learning Algorithms. Connection Science, 1(3), 231–254. Special Issue: Hybrid Systems

(Symbolic/Connectionist).

Shavlik, J. W. and Dietterich, T. G. (1990). Readings in Machine Learning. Morgan

Kaufmann.

Swingler, K. (1996). Applying Neural Networks: A Practical Guide. Academic Press.

Taha, I. and Ghosh, J. (1999). Symbolic Interpreation of Artificial Neural Networks. IEEE

Transactions on Knowledge and Data Engineering, 11(3), 448–463.

157

Therneau, T. M. and Atkinson, B. (2005). rpart: Recursive Partitioning. R package version

3.1-27.

Towell, G. and Shavlik, J. (1993). Extracting Refined Rules from Knowledge-based Neural

Networks. Machine Learning, 13, 71–101.

Utgoff, P. E. and Brodley, C. (1990). An Incremental Method for Finding Multivariate Splits

for Decision Trees. In Proceedings of the Seventh International Conference on Machine

Learning, 58–65.

Vapnik, V. (1979). Estimation of Dependencies Based on Empirical Data. Moscow: Nauka.

Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-Verlag.

Weiss, S. M. and Indurkhya, N. (1997). Predictive Data Mining : A Practical Guide. Morgan

Kaufmann.

Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the

Behavioral Sciences. Ph. D. thesis, Harvard University.

Widrow, B. and Hoff, M. E. (1960). Adaptive Switching Circuits. In 1960 IRE WESCON

Convention Record.

Witten, I. H. and Frank, E. (1999). Data Mining: Practical Machine Learning Tools and

Techniques with Java Implementations. Morgan Kaufmann.

Yang, Y. and Webb, G. I. (2002). A Comparative Study of Discretization Methods for

Naive-Bayes Classifiers. In Proceedings of PKAW 2002, the 2002 Pacific Rim Knowledge

Acquisition Workshop, 159–173.

Zaki, M., Ho, C., and Agrawal, R. (1998). Parallel Classification for Data Mining on

Shared-Memory Multiprocessors. Technical report, IBM Almaden Reseach Center.

Zhou, X., Wang, X., Dougherty, E., Russ, D., and Suh, E. (2004). Gene Clustering based on

Clusterwide Mutual Information. Journal of Computational Biology, 11(1), 147–61.

158

Appendix A

C++ and C Source Code

159

A
.1

T
he

r
a
c
e

Pr
og

ra
m

A
.1

.1
G

lo
ba

lc
on

fig
ur

at
io

n
fil

e
/
/

-
*
-
c
+
+
-
*
-

#
i
f
n
d
e
f

C
O
N
F
I
G
_
H

#
d
e
f
i
n
e

C
O
N
F
I
G
_
H

#
i
n
c
l
u
d
e

<
s
t
r
i
n
g
>

#
i
n
c
l
u
d
e

<
i
o
s
t
r
e
a
m
>

u
s
i
n
g

n
a
m
e
s
p
a
c
e

s
t
d
;

/
/

t
h
e

b
i
g
g
e
s
t

l
i
n
e

o
f

t
e
x
t

w
e
’
r
e

e
v
e
r

g
o
i
n
g

t
o

d
e
a
l

w
i
t
h
.

/
/

o
n
e

d
a
y

I
’
l
l

r
e
s
e
t

t
h
i
s

a
s

a
g
l
o
b
a
l

v
a
r
i
a
b
l
e

t
o

b
e

s
e
t

o
n

t
h
e

/
/

c
o
m
m
a
n
d

l
i
n
e
.

#
d
e
f
i
n
e

M
A
X
S
T
R
I
N
G

2
5
6

/
/

s
o
m
e
t
i
m
e
s

w
e

w
a
n
t

t
o

p
r
i
n
t

o
u
t

r
u
l
e
s

n
e
g
a
t
e
d
.

d
e
c
s
i
o
n
_
t
r
e
e
s

a
n
d

d
e
c
i
s
i
o
n
s

/
/

b
o
t
h

n
e
e
d

t
o

k
n
o
w

a
b
o
u
t

t
h
i
s

f
l
a
g
.

#
d
e
f
i
n
e

N
E
G
A
T
E

1

/
/

W
h
e
n

w
e

r
e
a
d

i
n

t
r
e
e
s

f
r
o
m

a
f
i
l
e
,

w
e

n
e
e
d

t
o

k
n
o
w

w
h
e
t
h
e
r

w
e
’
r
e

/
/

g
o
i
n
g

t
o

r
e
a
d

l
o
t
s

o
f

t
r
e
e
s

(
i
n

w
h
i
c
h

c
a
s
e

w
e

a
r
e

l
o
o
k
i
n
g

f
o
r

"
#
"

/
/

c
h
a
r
a
c
t
e
r
s

t
o

s
e
p
a
r
a
t
e

t
r
e
e
s
)

o
r

j
u
s
t

o
n
e

(
i
n

w
h
i
c
h

c
a
s
e

w
e

w
i
l
l

/
/

l
o
o
k

f
o
r

t
h
e

e
n
d

o
f

f
i
l
e
.

#
d
e
f
i
n
e

M
U
L
T
I

0
#
d
e
f
i
n
e

N
O
T
_
M
U
L
T
I

1

/
/

E
r
r
o
r

h
a
n
d
l
i
n
g

i
n
l
i
n
e

v
o
i
d

F
A
T
A
L
(
s
t
r
i
n
g

m
e
s
s
a
g
e
)

{
c
e
r
r

<
<

(
m
e
s
s
a
g
e
)

<
<

e
n
d
l
;

e
x
i
t
(
1
)
;

}
i
n
l
i
n
e

v
o
i
d

W
A
R
N
I
N
G
(
s
t
r
i
n
g

m
e
s
s
a
g
e
)

{
c
e
r
r

<
<

(
m
e
s
s
a
g
e
)

<
<

e
n
d
l
;

}

#
e
n
d
i
f

A
.1

.2
T

he
m
e
t
a
d
a
t
a

C
la

ss
Sp

ec
ifi

ca
tio

n
/
/

-
*
-
c
+
+
-
*
-

#
i
f
n
d
e
f

M
E
T
A
D
A
T
A

#
d
e
f
i
n
e

M
E
T
A
D
A
T
A

#
i
n
c
l
u
d
e

<
s
t
r
i
n
g
>

#
i
n
c
l
u
d
e

<
v
e
c
t
o
r
>

u
s
i
n
g

n
a
m
e
s
p
a
c
e

s
t
d
;

c
l
a
s
s

m
e
t
a
d
a
t
a

{

p
r
o
t
e
c
t
e
d
:

v
e
c
t
o
r
<
i
n
t
>

o
r
d
e
r
s
;

/
/

h
o
w

m
a
n
y

c
a
t
e
g
o
r
i
e
s

i
n

e
a
c
h

a
t
t
r
i
b
u
t
e

(
0

f
o
r

n
u
m
e
r
i
c
)

v
e
c
t
o
r
<
s
t
r
i
n
g
>

l
a
b
e
l
_
n
a
m
e
s
;

/
/

t
h
e

s
t
r
i
n
g

r
e
p
r
e
s
e
n
t
a
t
i
o
n

o
f

t
h
e

c
l
a
s
s

l
a
b
e
l
s

v
e
c
t
o
r
<
s
t
r
i
n
g
>

a
t
t
r
i
b
u
t
e
_
n
a
m
e
s
;

/
/

t
h
e

s
t
r
i
n
g

r
e
p
r
e
s
e
n
t
a
t
i
o
n

o
f

t
h
e

a
t
t
r
i
b
u
t
e

n
a
m
e
s

p
u
b
l
i
c
:

m
e
t
a
d
a
t
a
(
c
o
n
s
t

c
h
a
r
*
f
i
l
e
n
a
m
e
)
;

/
/

c
o
n
s
t
r
u
c
t
o
r
:

w
i
l
l

o
p
e
n

t
h
e

f
i
l
e

p
a
s
s
e
d

a
s

"
f
i
l
e
n
a
m
e
"

/
/

a
n
d

r
e
t
u
r
n

a
m
e
t
a
d
a
t
a

o
b
j
e
c
t
.

/
/

N
O
T
E
:

a
t
t
r
i
b
u
t
e
s

a
n
d

c
l
a
s
s
e
s

a
r
e

l
o
g
i
c
a
l
l
y

n
u
m
b
e
r
e
d

f
r
o
m

1
.

/
/

N
O
T
E
:

a
l
l

q
u
e
r
i
e
s

o
n

a
t
t
r
i
b
u
t
e
/
c
l
a
s
s

n
a
m
e
s
/
n
u
m
b
e
r
s

c
a
n

r
a
i
s
e

/
/

a
f
a
t
a
l

e
r
r
o
r

i
f

t
h
e

n
a
m
e

d
o
e
s

n
o
t

e
x
i
s
t

o
r

t
h
e

n
u
m
b
e
r

/
/

o
u
t

o
f

r
a
n
g
e
.

T
h
i
s

w
i
l
l

c
a
l
l

t
h
e

F
A
T
A
L

r
o
u
t
i
n
e

i
n

c
o
n
f
i
g
.
h
.

i
n
t

s
h
o
w
_
o
r
d
e
r
(
i
n
t

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
)
;

i
n
t

s
h
o
w
_
o
r
d
e
r
(
s
t
r
i
n
g

a
t
t
r
i
b
u
t
e
_
n
a
m
e
)
;

/
/

g
i
v
e
n

a
n

a
t
t
r
i
b
u
t
e

n
u
m
b
e
r
,

r
e
t
u
r
n

i
t
s

"
o
r
d
e
r
"

(
i
.
e
.

h
o
w

m
a
n
y

/
/

c
a
t
e
g
o
r
i
e
s
,

0
f
o
r

n
u
m
e
r
i
c
)
.

s
t
r
i
n
g

s
h
o
w
_
a
t
t
r
i
b
u
t
e
_
n
a
m
e
(
i
n
t

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
)
;

/
/

r
e
t
u
r
n

t
h
e

a
t
t
r
i
b
u
t
e
’
s

n
a
m
e
,

g
i
v
e
n

i
t
s

n
u
m
b
e
r

s
t
r
i
n
g

s
h
o
w
_
l
a
b
e
l
_
n
a
m
e
(
i
n
t

w
h
i
c
h
_
l
a
b
e
l
)
;

/
/

r
e
t
u
r
n

t
h
e

l
a
b
e
l
’
s

n
a
m
e
,

g
i
v
e
n

i
t
s

n
u
m
b
e
r

i
n
t

s
h
o
w
_
a
t
t
r
i
b
u
t
e
_
n
u
m
b
e
r
(
s
t
r
i
n
g
&

a
t
t
r
i
b
u
t
e
_
n
a
m
e
)
;

/
/

r
e
t
u
r
n

a
n

a
t
t
r
i
b
u
t
e
’
s

n
u
m
b
e
r
,

g
i
v
e
n

i
t
s

n
a
m
e

i
n
t

s
h
o
w
_
l
a
b
e
l
_
n
u
m
b
e
r
(
s
t
r
i
n
g
&

l
a
b
e
l
_
n
a
m
e
)
;

/
/

r
e
t
u
r
n

a
l
a
b
e
l
’
s

n
u
m
b
e
r
,

g
i
v
e
n

i
t
s

n
a
m
e

i
n
t

s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)

{
r
e
t
u
r
n

l
a
b
e
l
_
n
a
m
e
s
.
s
i
z
e
(
)
;

}
/
/

h
o
w

m
a
n
y

c
l
a
s
s

l
a
b
e
l
s
?

i
n
t

s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
a
t
t
r
i
b
u
t
e
s
(
)

{
r
e
t
u
r
n

a
t
t
r
i
b
u
t
e
_
n
a
m
e
s
.
s
i
z
e
(
)
;

}
/
/

h
o
w

m
a
n
y

a
t
t
r
i
b
u
t
e
s
?

}
;

#
e
n
d
i
f

Im
pl

em
en

ta
tio

n
#
i
n
c
l
u
d
e

"
c
o
n
f
i
g
.
h
"

#
i
n
c
l
u
d
e

"
m
e
t
a
d
a
t
a
.
h
"

#
i
n
c
l
u
d
e

<
f
s
t
r
e
a
m
>

#
i
n
c
l
u
d
e

<
c
t
y
p
e
.
h
>

#
i
n
c
l
u
d
e

<
s
t
d
i
o
.
h
>

#
i
n
c
l
u
d
e

<
s
t
d
l
i
b
.
h
>

/
* *

C
o
n
s
t
r
u
c
t
o
r
:

o
p
e
n

t
h
e

f
i
l
e

s
p
e
c
i
f
i
e
d

b
y

f
i
l
e
n
a
m
e
.

*
R
e
a
d

t
h
r
o
u
g
h

t
h
e

f
i
l
e
,

p
l
a
c
i
n
g

l
a
b
e
l

a
n
d

a
t
t
r
i
b
u
t
e

n
a
m
e

i
n
f
o
r
m
a
t
i
o
n

*
i
n
t
o

t
h
e

a
p
p
r
o
p
r
i
a
t
e

v
e
c
t
o
r
s
.

* *
/

m
e
t
a
d
a
t
a
:
:
m
e
t
a
d
a
t
a
(
c
o
n
s
t

c
h
a
r
*
f
i
l
e
n
a
m
e
)

{
i
f
s
t
r
e
a
m

i
n
f
i
l
e
(
f
i
l
e
n
a
m
e
)
;

i
f

(
!
i
n
f
i
l
e
)

160

F
A
T
A
L
(
"
m
e
t
a
d
a
t
a
:

c
o
u
l
d
n
’
t

f
i
n
d

c
o
n
f
i
g

f
i
l
e
"
)
;

i
n
t

i
n
t
_
d
u
m
p
,

o
r
d
e
r
;

c
h
a
r

n
a
m
e
[
M
A
X
S
T
R
I
N
G
]
,

s
t
r
i
n
g
_
d
u
m
p
[
M
A
X
S
T
R
I
N
G
]
;

c
h
a
r

l
i
n
e
[
M
A
X
S
T
R
I
N
G
]
;

/
/
s
t
r
i
n
g

t
o

r
e
a
d

l
i
n
e

i
n
t
o

i
n
t

i
s
_
m
e
t
a
d
a
t
a

=
0
;

/
/

W
o
r
k

o
u
t

h
o
w

m
a
n
y

a
t
t
r
i
b
u
t
e
s

a
n
d

l
a
b
e
l
s

w
h
i
l
e

(
i
n
f
i
l
e
.
g
e
t
l
i
n
e
(
l
i
n
e
,

M
A
X
S
T
R
I
N
G
)
)

{
i
f

(
i
s
d
i
g
i
t
(
l
i
n
e
[
0
]
)
)

/
/

w
e

h
a
v
e

a
n

a
t
t
r
i
b
u
t
e

n
a
m
e

{
/
/

B
r
e
a
k

u
p

s
t
r
i
n
g
,

p
l
a
c
e

i
n
t
o

v
e
c
t
o
r
s
.

2
n
d

w
o
r
d

i
s

n
a
m
e
,

3
r
d

/
/

w
o
r
d

i
s

o
r
d
e
r
.

i
f

(
s
s
c
a
n
f
(
l
i
n
e
,

"
%
d

%
s

%
d
"
,

&
i
n
t
_
d
u
m
p
,

n
a
m
e
,

&
o
r
d
e
r
)

!
=

3
)

F
A
T
A
L
(
"
m
e
t
a
d
a
t
a
:

c
o
n
f
i
g

f
i
l
e

n
o
t

w
e
l
l

f
o
r
m
e
d
"
)
;

a
t
t
r
i
b
u
t
e
_
n
a
m
e
s
.
p
u
s
h
_
b
a
c
k
(
n
a
m
e
)
;

o
r
d
e
r
s
.
p
u
s
h
_
b
a
c
k
(
o
r
d
e
r
)
;

}
e
l
s
e

i
f

(
l
i
n
e
[
0
]

=
=

’
%
’
)

{
/
/

W
e

h
a
v
e

a
l
a
b
e
l

n
a
m
e
.

i
f

(
s
s
c
a
n
f
(
l
i
n
e
,

"
%
s

%
s
"
,

s
t
r
i
n
g
_
d
u
m
p
,

n
a
m
e
)

!
=

2
)

F
A
T
A
L
(
"
m
e
t
a
d
a
t
a
:

c
o
n
f
i
g

f
i
l
e

n
o
t

w
e
l
l

f
o
r
m
e
d
"
)
;

l
a
b
e
l
_
n
a
m
e
s
.
p
u
s
h
_
b
a
c
k
(
n
a
m
e
)
;

i
s
_
m
e
t
a
d
a
t
a
+
+
;

}
}

i
f

(
!
i
s
_
m
e
t
a
d
a
t
a
)

F
A
T
A
L
(
"
m
e
t
a
d
a
t
a
:

f
i
l
e

d
o
e
s

n
o
t

s
e
e
m

t
o

b
e

a
c
o
n
f
i
g

f
i
l
e
"
)
;

} /
* *

A
c
c
e
s
s
o
r
:

t
e
l
l

t
h
e

o
r
d
e
r

o
f

a
n

a
t
t
r
i
b
u
t
e
,

g
i
v
e
n

i
t
s

i
n
d
e
x

n
u
m
b
e
r

*
A

Z
e
r
o

r
e
t
u
r
n

i
n
d
i
c
a
t
e
s

t
h
e

a
t
t
r
i
b
u
t
e

i
s

n
u
m
e
r
i
c
,

a
n
u
m
b
e
r

a
b
o
v
e

*
z
e
r
o

t
h
a
t

i
t

i
s

c
a
t
e
g
o
r
i
c
a
l

o
f

o
r
d
e
r

(
r
e
t
u
r
n

v
a
l
u
e
)
.

* *
C
a
n

b
e

u
s
e
d

t
o

d
e
t
e
r
m
i
n
e

w
h
e
t
h
e
r

a
n

a
t
t
r
i
b
u
t
e

i
s

c
a
t
e
g
o
r
i
c
a
l

o
r

n
u
m
e
r
i
c
!

*
/

i
n
t

m
e
t
a
d
a
t
a
:
:
s
h
o
w
_
o
r
d
e
r
(
i
n
t

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
)

{
i
f

(
(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

>
o
r
d
e
r
s
.
s
i
z
e
(
)
)

|
|

(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

<
1
)
)

F
A
T
A
L
(
"
m
e
t
a
d
a
t
a
:
:
s
h
o
w
_
o
r
d
e
r
:

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

o
u
t

o
f

r
a
n
g
e
"
)
;

r
e
t
u
r
n
(
o
r
d
e
r
s
[
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

-
1
]
)
;

} i
n
t

m
e
t
a
d
a
t
a
:
:
s
h
o
w
_
o
r
d
e
r
(
s
t
r
i
n
g

a
t
t
r
i
b
u
t
e
_
n
a
m
e
)

{
i
n
t

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

=
s
h
o
w
_
a
t
t
r
i
b
u
t
e
_
n
u
m
b
e
r
(
a
t
t
r
i
b
u
t
e
_
n
a
m
e
)
;

i
f

(
(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

>
o
r
d
e
r
s
.
s
i
z
e
(
)
)

|
|

(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

<
1
)
)

F
A
T
A
L
(
"
m
e
t
a
d
a
t
a
:
:
s
h
o
w
_
o
r
d
e
r
:

a
t
t
r
i
b
u
t
e
_
n
a
m
e

d
o
e
s

n
o
t

e
x
i
s
t
"
)
;

r
e
t
u
r
n
(
o
r
d
e
r
s
[
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

-
1
]
)
;

} /
* *

A
c
c
e
s
s
o
r
:

t
e
l
l

t
h
e

n
a
m
e

o
f

a
n

a
t
t
r
i
b
u
t
e
,

g
i
v
e
n

i
t
s

i
n
d
e
x

n
u
m
b
e
r

*
/

s
t
r
i
n
g

m
e
t
a
d
a
t
a
:
:
s
h
o
w
_
a
t
t
r
i
b
u
t
e
_
n
a
m
e
(
i
n
t

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
)

{
i
f

(
(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

>
o
r
d
e
r
s
.
s
i
z
e
(
)
)

|
|

(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

<
1
)
)

F
A
T
A
L
(
"
m
e
t
a
d
a
t
a
:
:
s
h
o
w
_
a
t
t
r
i
b
u
t
e
_
n
a
m
e
:

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

o
u
t

o
f

r
a
n
g
e
"
)
;

r
e
t
u
r
n
(
a
t
t
r
i
b
u
t
e
_
n
a
m
e
s
[
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

-
1
]
)
;

} /
* *

A
c
c
e
s
s
o
r
:

t
e
l
l

t
h
e

n
a
m
e

o
f

a
l
a
b
e
l
,

g
i
v
e
n

i
t
s

i
n
d
e
x

n
u
m
b
e
r

*
/

s
t
r
i
n
g

m
e
t
a
d
a
t
a
:
:
s
h
o
w
_
l
a
b
e
l
_
n
a
m
e
(
i
n
t

w
h
i
c
h
_
l
a
b
e
l
)

{
i
f

(
(
w
h
i
c
h
_
l
a
b
e
l

>
l
a
b
e
l
_
n
a
m
e
s
.
s
i
z
e
(
)
)

|
|

(
w
h
i
c
h
_
l
a
b
e
l

<
1
)
)

F
A
T
A
L
(
"
m
e
t
a
d
a
t
a
:
:
s
h
o
w
_
l
a
b
e
l
_
n
a
m
e
:

w
h
i
c
h
_
l
a
b
e
l

o
u
t

o
f

r
a
n
g
e
"
)
;

r
e
t
u
r
n
(
l
a
b
e
l
_
n
a
m
e
s
[
w
h
i
c
h
_
l
a
b
e
l

-
1
]
)
;

} /
* *

A
C
C
E
S
S
O
R
:

t
e
l
l

t
h
e

n
u
m
b
e
r

o
f

a
n

a
t
t
r
i
b
u
t
e
,

g
i
v
e
n

i
t
s

n
a
m
e
.

*
/

i
n
t

m
e
t
a
d
a
t
a
:
:
s
h
o
w
_
a
t
t
r
i
b
u
t
e
_
n
u
m
b
e
r
(
s
t
r
i
n
g
&

a
t
t
r
i
b
u
t
e
_
n
a
m
e
)

{
f
o
r

(
i
n
t

i
=

0
;

i
<

a
t
t
r
i
b
u
t
e
_
n
a
m
e
s
.
s
i
z
e
(
)
;

i
+
+
)

i
f

(
a
t
t
r
i
b
u
t
e
_
n
a
m
e
s
[
i
]

=
=

a
t
t
r
i
b
u
t
e
_
n
a
m
e
)

r
e
t
u
r
n
(
i

+
1
)
;

F
A
T
A
L
(
"
m
e
t
a
d
a
t
a
:
:
s
h
o
w
_
a
t
t
r
i
b
u
t
e
_
n
u
m
b
e
r
:

a
t
t
r
i
b
u
t
e
_
n
a
m
e

d
o
e
s

n
o
t

e
x
i
s
t
"
)
;

r
e
t
u
r
n
(
-
1
)
;

} /
* *

A
C
C
E
S
S
O
R
:

t
e
l
l

t
h
e

n
u
m
b
e
r

o
f

a
l
a
b
e
l
,

g
i
v
e
n

i
t
s

n
a
m
e
.

*
/

i
n
t

m
e
t
a
d
a
t
a
:
:
s
h
o
w
_
l
a
b
e
l
_
n
u
m
b
e
r
(
s
t
r
i
n
g
&

l
a
b
e
l
_
n
a
m
e
)

{
f
o
r

(
i
n
t

i
=

0
;

i
<

l
a
b
e
l
_
n
a
m
e
s
.
s
i
z
e
(
)
;

i
+
+
)

i
f

(
l
a
b
e
l
_
n
a
m
e
s
[
i
]

=
=

l
a
b
e
l
_
n
a
m
e
)

r
e
t
u
r
n
(
i

+
1
)
;

F
A
T
A
L
(
"
m
e
t
a
d
a
t
a
:
:
s
h
o
w
_
l
a
b
e
l
_
n
u
m
b
e
r
:

l
a
b
e
l
_
n
a
m
e

d
o
e
s

n
o
t

e
x
i
s
t
"
)
;

r
e
t
u
r
n
(
-
1
)
;

} A
.1

.3
T

he
t
u
p
l
e

C
la

ss
Sp

ec
ifi

ca
tio

n
/
/

-
*
-
c
+
+
-
*
-

#
i
f
n
d
e
f

T
U
P
L
E
_
H

#
d
e
f
i
n
e

T
U
P
L
E
_
H

#
i
n
c
l
u
d
e

"
d
e
c
i
s
i
o
n
.
h
"

#
i
n
c
l
u
d
e

"
m
e
t
a
d
a
t
a
.
h
"

#
i
n
c
l
u
d
e

<
v
e
c
t
o
r
>

#
i
n
c
l
u
d
e

<
s
t
r
i
n
g
>

/
/

F
i
r
s
t
,

d
e
f
i
n
e

a
t
t
r
i
b
u
t
e
s

a
s

b
e
i
n
g

e
i
t
h
e
r

n
u
m
e
r
i
c

o
r

c
a
t
e
g
o
r
i
c
a
l
.

/
/

I
n

e
i
t
h
e
r

c
a
s
e
,

w
e

a
l
w
a
y
s

n
e
e
d

a
m
e
m
b
e
r

f
u
n
t
i
o
n

"
m
e
e
t
s

c
o
n
d
i
t
i
o
n
"

/
/

t
o

t
e
s
t

i
f

a
t
u
p
l
e

h
a
s

a
c
e
r
t
a
i
n

f
e
a
t
u
r
e

o
r

n
o
t
.

161

c
l
a
s
s

a
t
t
r
i
b
u
t
e
{

p
u
b
l
i
c
:

v
i
r
t
u
a
l

b
o
o
l

m
e
e
t
s
_
c
o
n
d
i
t
i
o
n
(
d
e
c
i
s
i
o
n
&

d
)

=
0
;

v
i
r
t
u
a
l

v
o
i
d

s
e
t
_
d
a
t
a
(
i
n
t

v
a
l
u
e
)

{
}

v
i
r
t
u
a
l

v
o
i
d

s
e
t
_
d
a
t
a
(
f
l
o
a
t

v
a
l
u
e
)

{
}

v
i
r
t
u
a
l

f
l
o
a
t

s
h
o
w
_
d
a
t
a
(
)

{
}

}
;

c
l
a
s
s

n
u
m
e
r
i
c
_
a
t
t
r
i
b
u
t
e

:
p
u
b
l
i
c

a
t
t
r
i
b
u
t
e
{

p
u
b
l
i
c
:

v
o
i
d

s
e
t
_
d
a
t
a
(
f
l
o
a
t

v
a
l
u
e
)

{
d
a
t
a

=
v
a
l
u
e
;

}
b
o
o
l

m
e
e
t
s
_
c
o
n
d
i
t
i
o
n
(
d
e
c
i
s
i
o
n
&

d
)
;

f
l
o
a
t

s
h
o
w
_
d
a
t
a
(
)

{
r
e
t
u
r
n

d
a
t
a
;

}
p
r
o
t
e
c
t
e
d
:

f
l
o
a
t

d
a
t
a
;

}
;

c
l
a
s
s

c
a
t
e
g
o
r
i
c
a
l
_
a
t
t
r
i
b
u
t
e

:
p
u
b
l
i
c

a
t
t
r
i
b
u
t
e
{

p
u
b
l
i
c
:

v
o
i
d

s
e
t
_
d
a
t
a
(
i
n
t

v
a
l
u
e
)

{
d
a
t
a

=
v
a
l
u
e
;

}
b
o
o
l

m
e
e
t
s
_
c
o
n
d
i
t
i
o
n
(
d
e
c
i
s
i
o
n
&

d
)
;

f
l
o
a
t

s
h
o
w
_
d
a
t
a
(
)

{
r
e
t
u
r
n

(
f
l
o
a
t
)
d
a
t
a
;

}
p
r
o
t
e
c
t
e
d
:

i
n
t

d
a
t
a
;

}
;

c
l
a
s
s

t
u
p
l
e
{

p
r
o
t
e
c
t
e
d
:

v
e
c
t
o
r
<
a
t
t
r
i
b
u
t
e
*
>

d
a
t
a
;

/
/

s
t
o
r
e

p
o
i
n
t
e
r
s

t
o

a
t
t
i
b
u
t
e
s
,

s
o

w
e

c
a
n

a
c
c
e
s
s

t
h
e
i
r

v
i
r
t
u
a
l

f
u
n
c
t
i
o
n
s

i
n
t

l
a
b
e
l
;

/
/

t
h
e

c
l
a
s
s

l
a
b
e
l

f
o
r

t
h
e

t
u
p
l
e

c
a
n

b
e

a
n

i
n
t
e
g
e
r

p
u
b
l
i
c
:

t
u
p
l
e
(
m
e
t
a
d
a
t
a
&

m
d
)
;

/
/

c
o
n
s
t
r
u
c
t
o
r
;

r
e
q
u
i
r
e
s

a
m
e
t
a
d
a
t
a

o
b
j
e
c
t

s
o

t
h
a
t

i
t

k
n
o
w
s

h
o
w

b
i
g

a
/
/

t
u
p
l
e

t
o

c
o
n
s
t
r
u
c
t

a
n
d

o
f

w
h
a
t

c
o
m
p
o
s
i
t
i
o
n

o
f

a
t
t
r
i
b
u
t
e
s

˜
t
u
p
l
e
(
)
;

/
/

d
e
s
t
r
u
c
t
o
r
;

c
a
n
’
t

h
a
v
e

r
o
g
u
e

a
t
t
r
i
b
u
t
e

p
o
i
n
t
e
r
s

a
r
o
u
n
d

t
h
e

p
l
a
c
e
!

v
o
i
d

l
o
a
d
(
s
t
r
i
n
g
&

l
i
n
e
,

m
e
t
a
d
a
t
a
&

m
d
)
;

/
/

g
i
v
e
n

t
h
a
t

w
e

h
a
v
e

a
l
i
n
e

o
f

a
f
i
l
e
,

l
o
a
d

i
t

i
n
t
o

a
t
u
p
l
e

b
o
o
l

m
e
e
t
s
_
c
o
n
d
i
t
i
o
n
(
d
e
c
i
s
i
o
n
&

d
)
;

/
/

a
s

w
e

d
r
o
p

t
u
p
l
e
s

t
h
r
o
u
g
h

t
r
e
e
s
,

w
e

n
e
e
d

t
o

b
e

a
b
l
e

t
o

t
e
l
l

i
f

i
t

/
/

m
e
e
t
s

o
r

v
i
o
l
a
t
e
s

t
h
e

d
e
c
i
s
i
o
n

a
t

e
a
c
h

n
o
d
e

(
i
.
e
.

w
h
e
t
h
e
r

w
e

/
/

s
h
o
u
l
d

g
o

l
e
f
t

o
r

r
i
g
h
t
)
.

f
r
i
e
n
d

o
s
t
r
e
a
m
&

o
p
e
r
a
t
o
r
<
<

(
o
s
t
r
e
a
m
&

o
,

c
o
n
s
t

t
u
p
l
e
&

t
)
;

/
/

o
u
t
p
u
t

f
o
r

t
u
p
l
e
s

i
n
t

s
h
o
w
_
l
a
b
e
l
(
)

{
r
e
t
u
r
n

l
a
b
e
l
;

}
/
/

n
e
e
d

t
o

b
e

a
b
l
e

t
o

c
h
e
c
k

t
h
e

t
u
p
l
e
’
s

c
l
a
s
s

l
a
b
e
l

t
o

s
e
e

i
f

t
h
e

t
r
e
e

/
/

c
l
a
s
s
i
f
i
e
d

i
t

c
o
r
r
e
c
t
l
y

}
;

#
e
n
d
i
f

Im
pl

em
en

ta
tio

n
#
i
n
c
l
u
d
e

"
t
u
p
l
e
.
h
"

#
i
n
c
l
u
d
e

<
s
t
r
s
t
r
e
a
m
>

#
i
n
c
l
u
d
e

<
i
o
m
a
n
i
p
>

/
* *

b
o
o
l

n
u
m
e
r
i
c
_
a
t
t
r
i
b
u
t
e
:
:
m
e
e
t
s
_
c
o
n
d
i
t
i
o
n
(
d
e
c
i
s
i
o
n
&

d
)

*
A

n
u
m
e
r
i
c

a
t
t
r
i
b
u
t
e

m
e
e
t
s

t
h
e

c
o
n
d
i
t
i
o
n

i
m
p
o
s
e
d

b
y

a
d
e
c
i
s
i
o
n

*
o
n

t
h
e

d
e
c
i
s
i
o
n

t
r
e
e

I
F
F

i
t

i
s

l
e
s
s

t
h
a
n

t
h
e

t
h
r
e
s
h
o
l
d

s
t
o
r
e
d

*
i
n

t
h
e

d
e
c
i
s
i
o
n

o
b
j
e
c
t
.

*
/

b
o
o
l

n
u
m
e
r
i
c
_
a
t
t
r
i
b
u
t
e
:
:
m
e
e
t
s
_
c
o
n
d
i
t
i
o
n
(
d
e
c
i
s
i
o
n
&

d
)

{
i
f

(
d
a
t
a

<
d
.
s
h
o
w
_
t
h
r
e
s
h
o
l
d
(
)
)

r
e
t
u
r
n

t
r
u
e
;

e
l
s
e
r
e
t
u
r
n

f
a
l
s
e
;

} /
* *

b
o
o
l

c
a
t
e
g
o
r
i
c
a
l
_
a
t
t
r
i
b
u
t
e
:
:
m
e
e
t
s
_
c
o
n
d
i
t
i
o
n
(
d
e
c
i
s
i
o
n
&

d
)

*
A

c
a
t
e
g
o
r
i
c
a
l

a
t
t
r
i
b
u
t
e

m
e
e
t
s

t
h
e

c
o
n
d
i
t
i
o
n

i
m
p
o
s
e
d

b
y

a
d
e
c
i
s
i
o
n

*
o
n

t
h
e

d
e
c
i
s
i
o
n

t
r
e
e

I
F
F

i
t

i
s

I
N

t
h
e

s
u
b
s
e
t

s
p
e
c
i
f
i
e
d

*
b
y

t
h
e

d
e
c
i
s
i
o
n

o
b
j
e
c
t
.

*
/

b
o
o
l

c
a
t
e
g
o
r
i
c
a
l
_
a
t
t
r
i
b
u
t
e
:
:
m
e
e
t
s
_
c
o
n
d
i
t
i
o
n
(
d
e
c
i
s
i
o
n
&

d
)

{
i
n
t

s
u
b
s
e
t

=
d
.
s
h
o
w
_
s
u
b
s
e
t
(
)
;

f
o
r

(
i
n
t

i
=

1
;

i
<

d
a
t
a
;

i
+
+
)

s
u
b
s
e
t

/
=

2
;

i
f

(
s
u
b
s
e
t

%
2
)

r
e
t
u
r
n

t
r
u
e
;

e
l
s
e
r
e
t
u
r
n

f
a
l
s
e
;

} /
* *

C
O
N
S
T
R
U
C
T
O
R

*
s
e
t

u
p

a
v
e
c
t
o
r

o
f

a
t
t
r
i
b
u
t
e

p
o
i
n
t
e
r
s

o
f

t
h
e

r
i
g
h
t

s
i
z
e

a
n
d

o
r
d
e
r

*
a
s

s
p
e
c
i
f
i
e
d

b
y

t
h
e

m
e
t
a
d
a
t
a

o
b
j
e
c
t
.

*
/

t
u
p
l
e
:
:
t
u
p
l
e
(
m
e
t
a
d
a
t
a
&

m
d
)

{
f
o
r
(
i
n
t

i
=

1
;

i
<
=

m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
a
t
t
r
i
b
u
t
e
s
(
)
;

i
+
+
)

{
i
f

(
m
d
.
s
h
o
w
_
o
r
d
e
r
(
i
)
)

/
/

c
a
t
e
g
o
r
i
c
a
l
_
a
t
t
r
i
b
u
t
e

d
a
t
a
.
p
u
s
h
_
b
a
c
k
(
n
e
w

c
a
t
e
g
o
r
i
c
a
l
_
a
t
t
r
i
b
u
t
e
)
;

e
l
s
e

/
/

n
u
m
e
r
i
c

a
t
t
r
i
b
u
t
e

d
a
t
a
.
p
u
s
h
_
b
a
c
k
(
n
e
w

n
u
m
e
r
i
c
_
a
t
t
r
i
b
u
t
e
)
;

}
/
/

o
n
e

m
o
r
e

f
o
r

t
h
e

c
l
a
s
s

l
a
b
e
l
;

l
a
b
e
l

=
0
;

}

162

/
* *

D
E
S
T
R
U
C
T
O
R

*
g
e
t

r
i
d

o
f

a
l
l

t
h
e

a
t
t
r
i
b
u
t
e
s

t
h
a
t

t
h
e

p
o
i
n
t
e
r
s

i
n

t
h
e

v
e
c
t
o
r

a
r
e

*
p
o
i
n
t
i
n
g

t
o
.

*
/

t
u
p
l
e
:
:
˜
t
u
p
l
e
(
)

{
f
o
r
(
i
n
t

i
=

0
;

i
<

d
a
t
a
.
s
i
z
e
(
)
;

i
+
+
)

d
e
l
e
t
e

d
a
t
a
[
i
]
;

} /
* *

M
U
T
A
T
O
R

*
g
i
v
e
n

a
l
i
n
e

f
r
o
m

a
f
i
l
e
,

l
o
a
d

u
p

a
t
u
p
l
e
.

*
/

v
o
i
d

t
u
p
l
e
:
:
l
o
a
d
(
s
t
r
i
n
g
&

l
i
n
e
,

m
e
t
a
d
a
t
a
&

m
d
)

{
i
s
t
r
s
t
r
e
a
m

b
u
f
f
e
r
(
l
i
n
e
.
d
a
t
a
(
)
,

l
i
n
e
.
l
e
n
g
t
h
(
)
)
;

f
l
o
a
t

f
l
o
a
t
_
v
a
l
u
e
;

i
n
t

i
n
t
_
v
a
l
u
e
;

f
o
r

(
i
n
t

i
=

1
;

i
<
=

m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
a
t
t
r
i
b
u
t
e
s
(
)
;

i
+
+
)

{
i
f

(
m
d
.
s
h
o
w
_
o
r
d
e
r
(
i
)
)

/
/

c
a
t
e
g
o
r
i
c
a
l

a
t
t
r
i
b
u
t
e

{
b
u
f
f
e
r

>
>

i
n
t
_
v
a
l
u
e
;

d
a
t
a
[
i

-
1
]
-
>
s
e
t
_
d
a
t
a
(
i
n
t
_
v
a
l
u
e
)
;

}
e
l
s
e

{
b
u
f
f
e
r

>
>

f
l
o
a
t
_
v
a
l
u
e
;

d
a
t
a
[
i

-
1
]
-
>
s
e
t
_
d
a
t
a
(
f
l
o
a
t
_
v
a
l
u
e
)
;

}
}

/
/

o
n
e

m
o
r
e

f
o
r

t
h
e

c
l
a
s
s

l
a
b
e
l
;

b
u
f
f
e
r

>
>

l
a
b
e
l
;

} /
* *

A
C
C
E
S
S
O
R

*
g
i
v
e
n

a
d
e
c
i
s
i
o
n
,

d
o
e
s

t
h
e

t
u
p
l
e

h
a
v
e

a
f
e
a
t
u
r
e

w
h
i
c
h

m
e
e
t
s

t
h
e

*
d
e
c
i
s
i
o
n
’
s

c
o
n
d
i
t
i
o
n
?

*
/

b
o
o
l

t
u
p
l
e
:
:
m
e
e
t
s
_
c
o
n
d
i
t
i
o
n
(
d
e
c
i
s
i
o
n
&

d
)

{
r
e
t
u
r
n
(
d
a
t
a
[
d
.
s
h
o
w
_
a
t
t
r
i
b
u
t
e
(
)

-
1
]
-
>
m
e
e
t
s
_
c
o
n
d
i
t
i
o
n
(
d
)
)
;

} /
* *

o
u
t
p
u
t

f
o
r

t
u
p
l
e
s
.

*
/

o
s
t
r
e
a
m
&

o
p
e
r
a
t
o
r
<
<

(
o
s
t
r
e
a
m
&

o
,

c
o
n
s
t

t
u
p
l
e
&

t
)

{
f
o
r

(
i
n
t

i
=

0
;

i
<

t
.
d
a
t
a
.
s
i
z
e
(
)
;

i
+
+
)

o
<
<

s
e
t
w
(
4
)

<
<

t
.
d
a
t
a
[
i
]
-
>
s
h
o
w
_
d
a
t
a
(
)

<
<

"
"
;

o
<
<

t
.
l
a
b
e
l
;

r
e
t
u
r
n

o
;

} A
.1

.4
T

he
d
e
c
i
s
i
o
n

C
la

ss
Sp

ec
ifi

ca
tio

n
/
/
-
*
-
c
+
+
-
*
-

#
i
f
n
d
e
f

D
E
C
I
S
I
O
N

#
d
e
f
i
n
e

D
E
C
I
S
I
O
N

#
i
n
c
l
u
d
e
<
s
t
r
i
n
g
>

#
i
n
c
l
u
d
e

"
m
e
t
a
d
a
t
a
.
h
"

c
l
a
s
s

d
e
c
i
s
i
o
n
{

p
r
o
t
e
c
t
e
d

:

i
n
t

p
u
r
e
;

/
/

a
d
e
c
i
s
i
o
n

o
n

a
t
r
e
e

n
o
d
e

c
a
n

e
i
t
h
e
r

b
e

a
d
e
c
i
s
i
o
n
,

o
r

a
l
a
b
e
l

/
/

i
n
d
i
c
a
t
i
n
g

t
h
a
t

t
h
e

n
o
d
e

i
s

p
u
r
e
;

t
h
i
s

i
n
t
e
g
e
r

i
s

s
e
t

t
o

0
i
n

/
/

t
h
e

f
i
r
s
t

c
a
s
e
,

o
r

t
h
e

n
u
m
b
e
r

o
f

t
h
e

l
a
b
e
l

i
n

t
h
e

s
e
c
o
n
d
.

i
n
t

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
;

/
/

w
h
i
c
h

a
t
t
r
i
b
u
t
e

s
h
o
u
l
d

w
e

b
e

"
d
e
c
i
d
i
n
g
"

o
n
?

i
n
t

s
u
b
s
e
t
;

/
/

i
f

t
h
e

d
e
c
i
s
i
o
n

i
s

o
n

a
c
a
t
e
g
o
r
i
c
a
l

a
t
t
r
i
b
u
t
e
,

w
h
a
t

s
u
b
s
e
t

s
h
o
u
l
d

/
/

t
h
e

a
t
t
r
i
b
u
t
e

b
e

i
n
?

s
t
o
r
e
d

a
s

a
n

i
n
t
e
g
e
r

b
i
t
-
v
e
c
t
o
r

f
l
o
a
t

t
h
r
e
s
h
o
l
d
;

/
/

i
f

t
h
e

d
e
c
i
s
i
o
n

i
s

o
n

a
c
o
n
t
i
n
u
o
u
s

a
t
t
r
i
b
u
t
e
,

w
h
a
t

i
s

t
h
e

t
h
r
e
s
h
o
l
d

/
/

v
a
l
u
e

t
h
a
t

i
t

m
u
s
t

b
e

u
n
d
e
r
?

i
n
t

h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s
;

/
/

h
o
w

m
a
n
y

e
x
a
m
p
l
e
s

t
h
i
s

d
e
c
i
s
i
o
n

w
i
l
l

"
s
e
e
"

b
y

t
h
e

t
i
m
e

t
h
e
y

/
/

a
r
e

d
r
o
p
p
e
d

t
h
r
o
u
g
h

t
h
e

t
r
e
e
;

u
s
e
f
u
l

f
o
r

p
r
u
n
i
n
g

i
n
t

h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
;

/
/

i
f

n
o
t

p
u
r
e
,

w
h
i
c
h

c
l
a
s
s

i
s

m
o
s
t

n
u
m
e
r
o
u
s
?

f
l
o
a
t

p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
;

/
/

h
o
w

p
u
r
e

a
r
e

w
e
?

p
u
b
l
i
c

:

d
e
c
i
s
i
o
n
(
)
;

/
/

c
o
n
s
t
r
u
c
t
o
r
;

r
e
t
u
r
n
s

a
d
e
c
i
s
i
o
n

w
i
t
h

e
v
e
r
y
t
h
i
n
g

s
e
t

t
o

0

s
t
r
i
n
g

t
o
_
s
t
r
i
n
g
(
m
e
t
a
d
a
t
a
&

m
d
,

i
n
t

n
e
g
a
t
e
_
f
l
a
g

=
0
)
;

/
/

c
o
n
v
e
r
t

t
h
e

d
e
c
i
s
i
o
n

t
o

a
s
t
r
i
n
g

r
e
p
r
e
s
e
n
t
a
t
i
o
n

i
n
t

i
s
_
p
u
r
e
(
)

{
r
e
t
u
r
n

p
u
r
e
;

}
/
/

w
i
l
l

b
e

a
p
o
s
i
t
i
v
e

v
a
l
u
e

i
f

t
h
e

d
e
c
i
s
i
o
n

h
a
s

r
e
g
i
s
t
e
r
e
d

a
s

"
p
u
r
e
"
;

/
/

f
u
r
t
h
e
r
,

w
i
l
l

b
e

t
h
e

c
l
a
s
s

i
n

w
h
i
c
h

i
t

i
s

p
u
r
e
;

0
f
o
r

n
o
t

p
u
r
e

v
o
i
d

s
e
t
_
p
u
r
e
(
i
n
t

v
a
l
u
e
)

{
p
u
r
e

=
v
a
l
u
e
;

}
v
o
i
d

s
e
t
_
s
u
b
s
e
t
(
i
n
t

v
a
l
u
e
)

{
s
u
b
s
e
t

=
v
a
l
u
e
;

}

163

v
o
i
d

s
e
t
_
t
h
r
e
s
h
o
l
d
(
f
l
o
a
t

v
a
l
u
e
)

{
t
h
r
e
s
h
o
l
d

=
v
a
l
u
e
;

}
v
o
i
d

s
e
t
_
a
t
t
r
i
b
u
t
e
(
i
n
t

v
a
l
u
e
)

{
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

=
v
a
l
u
e
;

}
v
o
i
d

s
e
t
_
h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s
(
i
n
t

v
a
l
u
e
)

{
h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s

=
v
a
l
u
e
;

}
v
o
i
d

s
e
t
_
h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
(
i
n
t

v
a
l
u
e
)

{
h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n

=
v
a
l
u
e
;

}
v
o
i
d

s
e
t
_
p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
(
f
l
o
a
t

v
a
l
u
e
)

{
p
r
o
p
o
r
t
i
o
n
_
p
u
r
e

=
v
a
l
u
e
;

}
/
/

r
o
u
t
i
n
e
s

f
o
r

s
e
t
t
i
n
g

t
h
e

v
a
l
u
e
s

h
e
l
d

w
i
t
h
i
n

t
h
e

d
e
c
i
s
i
o
n

i
n
t

s
h
o
w
_
a
t
t
r
i
b
u
t
e
(
)

{
r
e
t
u
r
n

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
;

}
i
n
t

s
h
o
w
_
s
u
b
s
e
t
(
)

{
r
e
t
u
r
n

s
u
b
s
e
t
;

}
i
n
t

s
h
o
w
_
h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s
(
)

{
r
e
t
u
r
n

h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s
;

}
i
n
t

s
h
o
w
_
h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
(
)

{
r
e
t
u
r
n

h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
;

}
f
l
o
a
t

s
h
o
w
_
t
h
r
e
s
h
o
l
d
(
)

{
r
e
t
u
r
n

t
h
r
e
s
h
o
l
d
;

}
f
l
o
a
t

s
h
o
w
_
p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
(
)

{
r
e
t
u
r
n

p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
;

}
/
/

r
o
u
t
i
n
e
s

f
o
r

e
x
a
m
i
n
i
n
g

a
d
e
c
i
s
i
o
n

}
;

#
e
n
d
i
f

Im
pl

em
en

ta
tio

n
#
i
n
c
l
u
d
e

"
c
o
n
f
i
g
.
h
"

#
i
n
c
l
u
d
e

"
d
e
c
i
s
i
o
n
.
h
"

#
i
n
c
l
u
d
e

<
s
t
d
i
o
.
h
>

/
* *

C
O
N
S
T
R
U
C
T
O
R

*
/

d
e
c
i
s
i
o
n
:
:
d
e
c
i
s
i
o
n
(
)

{
p
u
r
e

=
0
;

s
u
b
s
e
t

=
0
;

t
h
r
e
s
h
o
l
d

=
0
.
0
;

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

=
0
;

h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n

=
0
;

p
r
o
p
o
r
t
i
o
n
_
p
u
r
e

=
0
.
0
;

h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s

=
0
;

} /
* *

A
C
C
E
S
S
O
R
:

p
r
o
d
u
c
e

a
s
t
r
i
n
g

r
e
p
r
e
s
e
n
t
i
n
g

t
h
e

d
e
c
i
s
i
o
n

a
s

i
t

w
o
u
l
d

a
p
p
e
a
r

*
i
n

t
h
e

d
e
c
i
s
i
o
n

t
r
e
e

o
r

i
n

a
s
e
t

o
f

r
u
l
e
s
.

N
e
e
d
s

t
o

r
e
f
e
r

t
o

a
m
e
t
a
d
a
t
a

*
o
b
j
e
c
t

s
o

t
h
a
t

i
t

h
a
s

a
c
c
e
s
s

t
o

a
t
t
r
i
b
u
t
e

n
a
m
e
s
,

e
t
c
.

*
T
h
e

n
e
g
a
t
e

f
l
a
g

t
e
l
l
s

t
h
e

m
e
t
h
o
d

t
o

p
r
o
d
u
c
e

t
h
e

r
e
v
e
r
s
e

d
e
c
i
s
i
o
n
.

*
/

s
t
r
i
n
g

d
e
c
i
s
i
o
n
:
:
t
o
_
s
t
r
i
n
g
(
m
e
t
a
d
a
t
a
&

m
d
,

i
n
t

n
e
g
a
t
e
_
f
l
a
g
)

{
c
h
a
r

b
u
f
f
e
r
[
M
A
X
S
T
R
I
N
G
]
;

s
t
r
i
n
g

v
a
l
u
e
;

i
f

(
p
u
r
e
)

r
e
t
u
r
n

m
d
.
s
h
o
w
_
l
a
b
e
l
_
n
a
m
e
(
p
u
r
e
)
;

i
f

(
!
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
)

r
e
t
u
r
n

(
"
(
b
l
a
n
k

d
e
c
i
s
i
o
n
)
"
)
;

i
f

(
!
m
d
.
s
h
o
w
_
o
r
d
e
r
(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
)
)

/
/

t
y
p
e

i
s

n
u
m
e
r
i
c

{
i
f

(
n
e
g
a
t
e
_
f
l
a
g
)

s
n
p
r
i
n
t
f
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
,

"
>
=

%
.
5
f
"
,

t
h
r
e
s
h
o
l
d
)
;

e
l
s
e

s
n
p
r
i
n
t
f
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
,

"
<

%
.
5
f
"
,

t
h
r
e
s
h
o
l
d
)
;

r
e
t
u
r
n

m
d
.
s
h
o
w
_
a
t
t
r
i
b
u
t
e
_
n
a
m
e
(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
)

+
s
t
r
i
n
g
(
b
u
f
f
e
r
)
;

}
e
l
s
e

/
/

t
y
p
e

i
s

c
a
t
e
g
o
r
i
c
a
l

{
v
a
l
u
e
.
i
n
s
e
r
t
(
0
,

m
d
.
s
h
o
w
_
a
t
t
r
i
b
u
t
e
_
n
a
m
e
(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
)
)
;

i
f

(
n
e
g
a
t
e
_
f
l
a
g
)

v
a
l
u
e

+
=

"
n
o
t

i
n

{
"
;

e
l
s
e

v
a
l
u
e

+
=

"
i
n

{
"
;

i
n
t

c
o
u
n
t
_
d
o
w
n

=
s
u
b
s
e
t
;

i
n
t

c
o
u
n
t
_
u
p

=
0
;

w
h
i
l
e

(
c
o
u
n
t
_
d
o
w
n

>
0
)

{
i
f

(
c
o
u
n
t
_
d
o
w
n

%
2
)

{
s
n
p
r
i
n
t
f
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
,

"
%
d
,
"
,

+
+
c
o
u
n
t
_
u
p
)
;

v
a
l
u
e

+
=

s
t
r
i
n
g
(
b
u
f
f
e
r
)
;

}
e
l
s
e
+
+
c
o
u
n
t
_
u
p
;

c
o
u
n
t
_
d
o
w
n

/
=

2
;

}
v
a
l
u
e
[
v
a
l
u
e
.
l
e
n
g
t
h
(
)

-
1
]

=
’
}
’
;

r
e
t
u
r
n

v
a
l
u
e
;

}
} A

.1
.5

T
he

h
i
s
t
o
g
r
a
m

C
la

ss
Sp

ec
ifi

ca
tio

n
/
/

-
*
-
c
+
+
-
*
-

#
i
f
n
d
e
f

H
I
S
T
O
G
R
A
M

#
d
e
f
i
n
e

H
I
S
T
O
G
R
A
M

#
i
n
c
l
u
d
e

<
v
e
c
t
o
r
>

c
l
a
s
s

h
i
s
t
o
g
r
a
m
{

p
r
o
t
e
c
t
e
d
:

v
e
c
t
o
r
<
i
n
t
>

a
b
o
v
e
;

/
/

H
o
w

m
a
n
y

i
t
e
m
s

w
e
’
v
e

s
e
e
n

A
B
O
V
E

t
h
e

c
u
r
r
e
n
t

v
a
l
u
e

v
e
c
t
o
r
<
i
n
t
>

b
e
l
o
w
;

/
/

H
o
w

m
a
n
y

i
t
e
m
s

w
e
’
v
e

s
e
e
n

B
E
L
O
W

t
h
e

c
u
r
r
e
n
t

v
a
l
u
e

i
n
t

t
o
t
a
l
_
a
b
o
v
e
;

i
n
t

t
o
t
a
l
_
b
e
l
o
w
;

i
n
t

t
o
t
a
l
_
i
t
e
m
s
;

p
u
b
l
i
c
:

h
i
s
t
o
g
r
a
m
(
)
;

/
/

c
o
n
s
t
r
u
c
t
o
r

h
i
s
t
o
g
r
a
m
(
i
n
t

n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
)
;

164

/
/

c
o
n
s
t
r
u
c
t
o
r

f
o
r

a
h
i
s
t
o
g
r
a
m

o
f

k
n
o
w
n

s
i
z
e

v
o
i
d

i
n
c
r
e
m
e
n
t
_
a
b
o
v
e
(
i
n
t

w
h
i
c
h
_
c
l
a
s
s
)
;

/
/

w
h
e
n

w
e

c
r
e
a
t
e

t
h
e

h
i
s
t
o
g
r
a
m

f
o
r

t
h
e

f
i
r
s
t

t
i
m
e
,

w
e

u
s
e

t
h
i
s

f
u
n
c
t
i
o
n

/
/

t
o

c
o
u
n
t

t
h
e

n
u
m
b
e
r

o
f

c
l
a
s
s
e
s
;

t
h
e
y

a
l
l

g
o

i
n
t
o

t
h
e

"
a
b
o
v
e
"

v
e
c
t
o
r

/
/

s
i
n
c
e

w
e

h
a
v
e
n
’
t

"
s
e
e
n
"

a
n
y
t
h
i
n
g

i
n

t
h
e

a
t
t
r
i
b
u
t
e

l
i
s
t
s

y
e
t
.

v
o
i
d

s
w
a
p
(
)
;

/
/

s
w
i
t
c
h

‘
a
b
o
v
e
’

v
a
l
u
e

w
i
t
h

‘
b
e
l
o
w
’

v
a
l
u
e

f
o
r

e
a
c
h

n
e
w

a
t
t
r
i
b
u
t
e

v
o
i
d

u
p
d
a
t
e
(
i
n
t

w
h
i
c
h
_
c
l
a
s
s
)
;

/
/

e
a
c
h

t
i
m
e

w
e

s
e
e

a
c
l
a
s
s
,

w
e

i
n
c
r
e
m
e
n
t

t
h
e

"
b
e
l
o
w
"

v
e
c
t
o
r

f
o
r

t
h
a
t

/
/

c
l
a
s
s

a
n
d

d
e
c
r
e
m
e
n
t

t
h
e

"
a
b
o
v
e
"

v
e
c
t
o
r
.

f
l
o
a
t

g
i
n
i
(
)
;

/
/

c
a
l
c
u
l
a
t
e

t
h
e

g
i
n
i

f
o
r

t
h
e

c
u
r
r
e
n
t

d
i
s
t
r
i
b
u
t
i
o
n

o
f

"
a
b
o
v
e
"

a
n
d

"
b
e
l
o
w
"

i
n
t

i
s
_
p
u
r
e
(
f
l
o
a
t

p
u
r
i
t
y
,

i
n
t

m
i
n
_
p
a
r
t
i
t
i
o
n
)
;

/
/

i
f

t
h
e

p
a
r
t
i
t
i
o
n

i
s

p
u
r
e
,

r
e
t
u
r
n

w
h
i
c
h

a
t
t
r
i
b
u
t
e

i
t

i
s

p
u
r
e

i
n
,

e
l
s
e

0

i
n
t

s
h
o
w
_
t
o
t
a
l
_
i
t
e
m
s
(
)

{
r
e
t
u
r
n

t
o
t
a
l
_
i
t
e
m
s
;

}
/
/

h
o
w

m
a
n
y

i
t
e
m
s

a
l
t
o
g
e
t
h
e
r

i
n

t
h
e

h
i
s
t
o
g
r
a
m
?

i
n
t

s
h
o
w
_
h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
(
)
;

/
/

w
h
i
c
h

c
l
a
s
s

i
s

b
i
g
g
e
s
t
?

f
l
o
a
t

p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
(
)
;

/
/

h
o
w

p
u
r
e

a
r
e

w
e

a
t

a
n
y

t
i
m
e
?

v
o
i
d

p
r
i
n
t
(
)
;

/
/

f
o
r

d
e
b
u
g
g
i
n
g

p
u
r
p
o
s
e
s

}
;

#
e
n
d
i
f

Im
pl

em
en

ta
tio

n
#
i
n
c
l
u
d
e

"
c
o
n
f
i
g
.
h
"

#
i
n
c
l
u
d
e

"
h
i
s
t
o
g
r
a
m
.
h
"

/
* *

C
O
N
S
T
R
U
C
T
O
R

*
/

h
i
s
t
o
g
r
a
m
:
:
h
i
s
t
o
g
r
a
m
(
)

{
t
o
t
a
l
_
a
b
o
v
e

=
0
;

t
o
t
a
l
_
b
e
l
o
w

=
0
;

t
o
t
a
l
_
i
t
e
m
s

=
0
;

} /
* *

C
O
N
S
T
R
U
C
T
O
R

f
o
r

h
i
s
t
o
g
r
a
m

o
f

k
n
o
w
n

s
i
z
e
.

*
/

h
i
s
t
o
g
r
a
m
:
:
h
i
s
t
o
g
r
a
m
(
i
n
t

h
o
w
_
m
a
n
y
_
c
l
a
s
s
e
s
)

{
t
o
t
a
l
_
a
b
o
v
e

=
0
;

t
o
t
a
l
_
b
e
l
o
w

=
0
;

t
o
t
a
l
_
i
t
e
m
s

=
0
;

/
/
a
b
o
v
e

=
v
e
c
t
o
r
<
i
n
t
>
(
h
o
w
_
m
a
n
y
_
c
l
a
s
s
e
s
,

0
)
;

/
/
b
e
l
o
w

=
v
e
c
t
o
r
<
i
n
t
>
(
h
o
w
_
m
a
n
y
_
c
l
a
s
s
e
s
,

0
)
;

f
o
r

(
i
n
t

i
=

0
;

i
<

h
o
w
_
m
a
n
y
_
c
l
a
s
s
e
s
;

i
+
+
)

{
a
b
o
v
e
.
p
u
s
h
_
b
a
c
k
(
0
)
;

b
e
l
o
w
.
p
u
s
h
_
b
a
c
k
(
0
)
;

}
} /
* *

M
u
t
a
t
o
r
:

w
h
e
n

w
e

a
r
e

b
u
i
l
d
i
n
g

a
n
e
w

h
i
s
t
o
g
r
a
m
,

w
e

a
d
d

u
p

h
o
w

m
a
n
y

*
o
f

e
a
c
h

c
l
a
s
s

w
e

s
e
e
.

*
/

v
o
i
d

h
i
s
t
o
g
r
a
m
:
:
i
n
c
r
e
m
e
n
t
_
a
b
o
v
e
(
i
n
t

w
h
i
c
h
_
c
l
a
s
s
)

{
t
o
t
a
l
_
a
b
o
v
e
+
+
;

t
o
t
a
l
_
i
t
e
m
s
+
+
;

a
b
o
v
e
[
w
h
i
c
h
_
c
l
a
s
s

-
1
]
+
+
;

} /
* *

M
u
t
a
t
o
r
:

a
t

t
h
e

e
n
d

o
f

e
a
c
h

a
t
t
r
i
b
u
t
e

s
c
a
n
,

w
e

s
w
a
p

w
h
a
t

w
e

h
a
v
e

s
e
e
n

*
i
n

t
h
e

a
b
o
v
e

a
n
d

b
e
l
o
w

v
e
c
t
o
r
s
.

*
/

v
o
i
d

h
i
s
t
o
g
r
a
m
:
:
s
w
a
p
(
)

{
a
b
o
v
e
.
s
w
a
p
(
b
e
l
o
w
)
;

t
o
t
a
l
_
a
b
o
v
e

=
t
o
t
a
l
_
b
e
l
o
w
;

t
o
t
a
l
_
b
e
l
o
w

=
0
;

} /
* *

g
i
n
i
(
)

r
e
t
u
r
n
s

t
h
e

g
i
n
i

i
n
d
e
x

b
a
s
e
d

o
n

t
h
e

c
u
r
r
e
n
t

s
t
a
t
e

o
f

t
h
e

a
b
o
v
e

*
a
n
d

b
e
l
o
w

v
e
c
t
o
r
s
.

I
t

w
i
l
l

d
o

s
o

f
o
r

a
n
y

n
u
m
b
e
r

o
f

c
l
a
s
s

l
a
b
e
l
s
.

*
R
e
s
u
l
t
s

s
h
o
u
l
d

b
e

b
e
t
w
e
e
n

0
a
n
d

0
.
5
.

*
/

f
l
o
a
t

h
i
s
t
o
g
r
a
m
:
:
g
i
n
i
(
)

{
f
l
o
a
t

t
e
m
p

=
1
.
0
,

r
e
s
u
l
t

=
0
.
0
,

r
f

=
0
.
0
;

i
n
t

i
;

i
f

(
t
o
t
a
l
_
b
e
l
o
w

!
=

0
)

{
f
o
r

(
i

=
0
;

i
<

b
e
l
o
w
.
s
i
z
e
(
)
;

i
+
+
)

i
f

(
b
e
l
o
w
[
i
]

!
=

0
)

{
r
f

=
(
f
l
o
a
t
)
b
e
l
o
w
[
i
]

/
(
f
l
o
a
t
)
t
o
t
a
l
_
b
e
l
o
w
;

t
e
m
p

-
=

r
f
*

r
f
;

}
r
e
s
u
l
t

+
=

t
e
m
p
*

t
o
t
a
l
_
b
e
l
o
w
;

t
e
m
p

=
1
.
0
;

}

i
f

(
t
o
t
a
l
_
a
b
o
v
e

!
=

0
)

{
f
o
r

(
i

=
0
;

i
<

a
b
o
v
e
.
s
i
z
e
(
)
;

i
+
+
)

i
f

(
a
b
o
v
e
[
i
]

!
=

0
)

{

165

r
f

=
(
f
l
o
a
t
)
a
b
o
v
e
[
i
]

/
(
f
l
o
a
t
)
t
o
t
a
l
_
a
b
o
v
e
;

t
e
m
p

-
=

r
f

*
r
f
;

}
r
e
s
u
l
t

+
=

t
e
m
p
*

t
o
t
a
l
_
a
b
o
v
e
;

}

r
e
t
u
r
n
(
r
e
s
u
l
t

/
t
o
t
a
l
_
i
t
e
m
s
)
;

} /
* *

A
C
C
E
S
S
O
R
:

c
a
l
c
u
l
a
t
e

t
h
e

p
u
r
i
t
y

o
f

a
p
a
r
t
i
t
i
o
n

r
e
p
r
e
s
e
n
t
e
d

b
y

a
h
i
s
t
o
g
r
a
m
.

*
R
e
t
u
r
n
s

t
h
e

i
n
d
e
x

o
f

t
h
e

a
t
t
r
i
b
u
t
e

t
h
a
t

i
s

p
u
r
e
,

o
r

Z
e
r
o
.

*
D
o
e
s

a
W
A
R
N
I
N
G

i
f

y
o
u

t
r
y

t
o

c
a
l
l

i
t

a
f
t
e
r

p
r
o
c
e
s
s
i
n
g

r
o
w
s
.

*
D
o
e
s

a
F
A
T
A
L

i
f

y
o
u

c
a
l
l

i
t

w
i
t
h

n
o

i
t
e
m
s

i
n

t
h
e

h
i
s
t
o
g
r
a
m
.

*
/

i
n
t

h
i
s
t
o
g
r
a
m
:
:
i
s
_
p
u
r
e
(
f
l
o
a
t

p
u
r
i
t
y
,

i
n
t

m
i
n
_
p
a
r
t
i
t
i
o
n
)

{
/
/

F
a
t
a
l

e
r
r
o
r

i
f

n
o

i
t
e
m
s

i
n

h
i
s
t
o
g
r
a
m

i
f

(
t
o
t
a
l
_
i
t
e
m
s

=
=

0
)

F
A
T
A
L
(
"
h
i
s
t
o
g
r
a
m
:
:
i
s
_
p
u
r
e
:

n
o

i
t
e
m
s

i
n

h
i
s
t
o
g
r
a
m
.
"
)
;

/
/

W
a
r
n
i
n
g

i
f

c
a
l
l
e
d

a
f
t
e
r

p
r
o
c
e
s
s
i
n
g

a
n
y

r
o
w
s

i
f

(
t
o
t
a
l
_
b
e
l
o
w

>
0
)

W
A
R
N
I
N
G
(
"
h
i
s
t
o
g
r
a
m
:
:
i
s
_
p
u
r
e
:

c
a
l
l
e
d

a
f
t
e
r

r
o
w

p
r
o
c
e
s
s
i
n
g
.
"
)
;

/
/

O
t
h
e
r
w
i
s
e
,

f
i
n
d

t
h
e

m
a
x
i
m
u
m

c
l
a
s
s

r
e
p
r
e
s
e
n
t
a
t
i
o
n

i
n
t

w
h
i
c
h
,

m
o
s
t

=
0
;

f
l
o
a
t

r
e
s
u
l
t
;

f
o
r

(
i
n
t

i
=

0
;

i
<

a
b
o
v
e
.
s
i
z
e
(
)
;

i
+
+
)

{
i
f

(
a
b
o
v
e
[
i
]

>
m
o
s
t
)

{
w
h
i
c
h

=
i
;

m
o
s
t

=
a
b
o
v
e
[
i
]
;

}
}

i
f

(
t
o
t
a
l
_
i
t
e
m
s

<
=

m
i
n
_
p
a
r
t
i
t
i
o
n
)

r
e
t
u
r
n

w
h
i
c
h

+
1
;

r
e
s
u
l
t

=
(
f
l
o
a
t
)
a
b
o
v
e
[
w
h
i
c
h
]

/
(
f
l
o
a
t
)
t
o
t
a
l
_
i
t
e
m
s
;

i
f

(
r
e
s
u
l
t

>
=

p
u
r
i
t
y
)

r
e
t
u
r
n

w
h
i
c
h

+
1
;

e
l
s
e
r
e
t
u
r
n

0
;

} /
* *

A
C
C
E
S
S
O
R
:

t
e
l
l

w
h
i
c
h

c
l
a
s
s

i
s

m
o
s
t

s
t
r
o
n
g
l
y

r
e
p
r
e
s
e
n
t
e
d

i
n

t
h
e

h
i
s
t
o
g
r
a
m
.

*
V
e
r
y

s
i
m
i
l
a
r

t
o

i
s
_
p
u
r
e
,

b
u
t

w
i
l
l

a
l
w
a
y
s

r
e
t
u
r
n

a
p
o
s
i
t
i
v
e

v
a
l
u
e
.

*
/

i
n
t

h
i
s
t
o
g
r
a
m
:
:
s
h
o
w
_
h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
(
)

{
/
/

F
a
t
a
l

e
r
r
o
r

i
f

n
o

i
t
e
m
s

i
n

h
i
s
t
o
g
r
a
m

i
f

(
t
o
t
a
l
_
i
t
e
m
s

=
=

0
)

F
A
T
A
L
(
"
h
i
s
t
o
g
r
a
m
:
:
s
h
o
w
_
h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
:

n
o

i
t
e
m
s

i
n

h
i
s
t
o
g
r
a
m
.
"
)
;

/
/

O
t
h
e
r
w
i
s
e
,

f
i
n
d

t
h
e

m
a
x
i
m
u
m

c
l
a
s
s

r
e
p
r
e
s
e
n
t
a
t
i
o
n

i
n
t

w
h
i
c
h
,

m
o
s
t

=
0
;

f
o
r

(
i
n
t

i
=

0
;

i
<

a
b
o
v
e
.
s
i
z
e
(
)
;

i
+
+
)

{
i
f

(
a
b
o
v
e
[
i
]

+
b
e
l
o
w
[
i
]

>
m
o
s
t
)

{
w
h
i
c
h

=
i
;

m
o
s
t

=
a
b
o
v
e
[
i
]

+
b
e
l
o
w
[
i
]
;

}
}

r
e
t
u
r
n

w
h
i
c
h

+
1
;

} /
* *

A
C
C
E
S
S
O
R
:

A
t

a
n
y

g
i
v
e
n

t
i
m
e
,

t
h
e

h
i
s
t
o
g
r
a
m

c
a
n

b
e

s
a
i
d

t
o

b
e

"
x

%
p
u
r
e
"

*
i
n

w
h
a
t
e
v
e
r

c
l
a
s
s

h
a
s

t
h
e

h
i
g
h
e
s
t

r
e
p
r
e
s
e
n
t
a
t
i
o
n
.

T
h
i
s

f
u
n
c
t
i
o
n

r
e
t
u
r
n
s

*
t
h
e

v
a
l
u
e

x
.

*
/

f
l
o
a
t

h
i
s
t
o
g
r
a
m
:
:
p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
(
)

{
i
f

(
t
o
t
a
l
_
i
t
e
m
s

=
=

0
)

r
e
t
u
r
n

0
.
0
;

/
/

O
t
h
e
r
w
i
s
e
,

f
i
n
d

t
h
e

m
a
x
i
m
u
m

c
l
a
s
s

r
e
p
r
e
s
e
n
t
a
t
i
o
n

i
n
t

m
o
s
t

=
0
;

f
o
r

(
i
n
t

i
=

0
;

i
<

a
b
o
v
e
.
s
i
z
e
(
)
;

i
+
+
)

i
f

(
a
b
o
v
e
[
i
]

+
b
e
l
o
w
[
i
]

>
m
o
s
t
)

m
o
s
t

=
a
b
o
v
e
[
i
]

+
b
e
l
o
w
[
i
]
;

r
e
t
u
r
n

(
f
l
o
a
t
)
m
o
s
t

/
(
f
l
o
a
t
)
t
o
t
a
l
_
i
t
e
m
s
;

} /
* *

M
U
T
A
T
O
R
:

E
v
e
r
y

t
i
m
e

w
e

s
e
e

a
r
o
w
,

w
e

u
p
d
a
t
e

t
h
e

h
i
s
t
g
r
a
m
.

T
o
t
a
l

a
b
o
v
e

*
a
n
d

a
b
o
v
e
[
l
a
b
e
l
]

a
r
e

d
e
c
r
e
m
e
n
t
e
d
,

t
o
t
a
l

b
e
l
o
w

a
n
d

b
e
l
o
w
[
l
a
b
e
l
]

i
n
c
r
e
m
e
n
t
e
d
.

*
/

v
o
i
d

h
i
s
t
o
g
r
a
m
:
:
u
p
d
a
t
e
(
i
n
t

w
h
i
c
h
_
c
l
a
s
s
)

{
a
b
o
v
e
[
w
h
i
c
h
_
c
l
a
s
s

-
1
]
-
-
;

t
o
t
a
l
_
a
b
o
v
e
-
-
;

b
e
l
o
w
[
w
h
i
c
h
_
c
l
a
s
s

-
1
]
+
+
;

t
o
t
a
l
_
b
e
l
o
w
+
+
;

} A
.1

.6
T

he
c
o
u
n
t
m
a
t
r
i
x

C
la

ss
Sp

ec
ifi

ca
tio

n
/
/

-
*
-
c
+
+
-
*
-

#
i
f
n
d
e
f

C
O
U
N
T
_
M
A
T
R
I
X

#
d
e
f
i
n
e

C
O
U
N
T
_
M
A
T
R
I
X

#
i
n
c
l
u
d
e
<
v
e
c
t
o
r
>

c
l
a
s
s

c
o
u
n
t
_
m
a
t
r
i
x
{

166

p
r
o
t
e
c
t
e
d
:

v
e
c
t
o
r
<
v
e
c
t
o
r
<
i
n
t
>

>
d
e
t
a
i
l
s
;

/
/

a
m
a
t
r
i
x

o
f

(
o
r
d
e
r
)

r
o
w
s

b
y

(
n
_
c
l
a
s
s
e
s
)

n
c
o
l
s
.

i
n
t

t
o
t
a
l
_
i
t
e
m
s
;

p
u
b
l
i
c
:

c
o
u
n
t
_
m
a
t
r
i
x
(
)
;

/
/

c
o
n
s
t
r
u
c
t
o
r

v
o
i
d

r
e
s
e
t
(
i
n
t

o
r
d
e
r
,

i
n
t

n
u
m
_
o
f
_
c
l
a
s
s
e
s
)
;

/
/

s
o

w
e

c
a
n

u
s
e

t
h
e

s
a
m
e

c
o
u
n
t

m
a
t
r
i
x

f
o
r

a
t
t
r
i
b
u
t
e
s

o
f

d
i
f
f
e
r
i
n
g

o
r
d
e
r
s

i
n
t

b
e
s
t
_
g
i
n
i
(
f
l
o
a
t
&

c
a
n
d
i
d
a
t
e
_
g
i
n
i
)
;

/
/

r
e
t
u
r
n

t
h
e

s
u
b
s
e
t

w
h
i
c
h

p
r
o
d
u
c
e
s

t
h
e

s
m
a
l
l
e
s
t

d
i
v
e
r
s
i
t
y

v
o
i
d

i
n
c
r
e
m
e
n
t
(
i
n
t

c
a
t
e
g
o
r
y
,

i
n
t

l
a
b
e
l
)
;

/
/

e
v
e
r
y

t
i
m
e

w
e

s
e
e

a
p
a
r
t
i
u
l
a
r

l
a
b
e
l

a
s
s
o
c
i
a
t
e
d

w
i
t
h

a
p
a
r
t
i
c
u
l
a
r

/
/

c
a
t
e
g
o
r
y
,

i
n
c
r
e
m
e
n
t

t
h
a
t

p
a
r
t

o
f

t
h
e

c
o
u
n
t

m
a
t
r
i
x

f
l
o
a
t

g
i
n
i
(
i
n
t

s
u
b
s
e
t
)
;

/
/

s
u
b
s
e
t

i
s

a
b
i
n
a
r
y

v
e
c
t
o
r
;

e
g

5
=

s
u
b
s
e
t

1
0
1

/
/

g
i
n
i

r
e
t
u
r
n
s

t
h
e

d
i
v
e
r
s
i
t
y

p
r
o
d
u
c
e
d

b
y

s
p
p
l
i
t
t
i
n
g

o
n

t
h
e

s
u
b
s
e
t

}
;

#
e
n
d
i
f

Im
pl

em
en

ta
tio

n
#
i
n
c
l
u
d
e

"
c
o
n
f
i
g
.
h
"

#
i
n
c
l
u
d
e

"
c
o
u
n
t
_
m
a
t
r
i
x
.
h
"

#
i
n
c
l
u
d
e

<
m
a
t
h
.
h
>

/
* *

C
O
N
S
T
R
U
C
T
O
R

*
/

c
o
u
n
t
_
m
a
t
r
i
x
:
:
c
o
u
n
t
_
m
a
t
r
i
x
(
)

{
t
o
t
a
l
_
i
t
e
m
s

=
0
;

} /
* *

M
U
T
A
T
O
R
:

r
e
-
i
n
i
t
i
a
l
i
s
e

a
c
o
u
n
t

m
a
t
r
i
x

t
o

a
d
i
f
f
e
r
e
n
t

s
i
z
e
.

*
/

v
o
i
d

c
o
u
n
t
_
m
a
t
r
i
x
:
:
r
e
s
e
t
(
i
n
t

o
r
d
e
r
,

i
n
t

n
u
m
_
o
f
_
c
l
a
s
s
e
s
)

{
/
/

m
a
k
e

s
u
r
e

w
e

h
a
v
e

a
c
l
e
a
r

v
e
c
t
o
r

d
e
t
a
i
l
s
.
e
r
a
s
e
(
d
e
t
a
i
l
s
.
b
e
g
i
n
(
)
,

d
e
t
a
i
l
s
.
e
n
d
(
)
)
;

v
e
c
t
o
r
<
i
n
t
>

i
n
i
t
i
a
l
i
s
e
r
;

f
o
r

(
i
n
t

i
=

0
;

i
<

n
u
m
_
o
f
_
c
l
a
s
s
e
s
;

i
+
+
)

i
n
i
t
i
a
l
i
s
e
r
.
p
u
s
h
_
b
a
c
k
(
0
)
;

/
/

l
o
a
d

t
h
e

v
e
c
t
o
r

w
i
t
h

z
e
r
o
e
d

v
e
c
t
o
r
s

o
f

l
e
n
g
t
h

n
u
m
_
o
f
_
c
l
a
s
s
e
s

/
/

f
o
r

(
i
n
t

i
=

0
;

i
<

o
r
d
e
r
;

i
+
+
)

/
/

d
e
t
a
i
l
s
.
p
u
s
h
_
b
a
c
k
(
v
e
c
t
o
r
<
i
n
t
>
(
n
u
m
_
o
f
_
c
l
a
s
s
e
s
,

0
)
)
;

f
o
r

(
i
n
t

i
=

0
;

i
<

o
r
d
e
r
;

i
+
+
)

d
e
t
a
i
l
s
.
p
u
s
h
_
b
a
c
k
(
v
e
c
t
o
r
<
i
n
t
>
(
i
n
i
t
i
a
l
i
s
e
r
)
)
;

t
o
t
a
l
_
i
t
e
m
s

=
0
;

} /
* *

M
U
T
A
T
O
R
:

e
a
c
h

t
i
m
e

w
e

s
e
e

a
l
a
b
e
l

b
e
l
o
n
g
i
n
g

t
o

a
c
a
t
e
g
o
r
i
c
a
l

a
t
t
r
i
b
u
t
e
,

*
w
e

i
n
c
r
e
m
e
n
t

t
h
a
t

c
a
t
e
g
o
r
y

i
n

t
h
e

m
a
t
r
i
x
.

*
/

v
o
i
d

c
o
u
n
t
_
m
a
t
r
i
x
:
:
i
n
c
r
e
m
e
n
t
(
i
n
t

c
a
t
e
g
o
r
y
,

i
n
t

l
a
b
e
l
)

{
/
/

c
h
e
c
k

f
o
r

e
r
r
o
r

c
o
n
d
i
t
i
o
n
s

i
f

(
c
a
t
e
g
o
r
y

>
d
e
t
a
i
l
s
.
s
i
z
e
(
)

|
|

c
a
t
e
g
o
r
y

<
1
)

F
A
T
A
L
(
"
c
o
u
n
t
_
m
a
t
r
i
x
:
:
i
n
c
r
e
m
e
n
t
:

c
a
t
e
g
o
r
y

o
u
t

o
f

b
o
u
n
d
s
.
"
)
;

i
f

(
l
a
b
e
l

>
d
e
t
a
i
l
s
[
0
]
.
s
i
z
e
(
)

|
|

l
a
b
e
l

<
1
)

F
A
T
A
L
(
"
c
o
u
n
t
_
m
a
t
r
i
x
:
:
i
n
c
r
e
m
e
n
t
:

l
a
b
e
l

o
u
t

o
f

b
o
u
n
d
s
.
"
)
;

(
d
e
t
a
i
l
s
[
c
a
t
e
g
o
r
y

-
1
]
[
l
a
b
e
l

-
1
]
)
+
+
;

t
o
t
a
l
_
i
t
e
m
s
+
+
;

} /
* *

A
C
C
E
S
S
O
R
:

g
i
n
i
(
)

c
a
l
c
u
l
a
t
e
s

t
h
e

g
i
n
i

i
n
d
e
x

o
f

s
u
b
s
e
t

i
t

i
s

p
a
s
s
e
d
.

* *
/

f
l
o
a
t

c
o
u
n
t
_
m
a
t
r
i
x
:
:
g
i
n
i
(
i
n
t

s
u
b
s
e
t
)

{
i
n
t

t
h
e
_
s
u
b
s
e
t
[
d
e
t
a
i
l
s
.
s
i
z
e
(
)
]
;

i
n
t

i
n
d
e
x

=
0
,

t
e
m
p
_
r
i
g
h
t

=
0
,

t
e
m
p
_
l
e
f
t

=
0
;

i
n
t

t
o
t
a
l
_
r
i
g
h
t

=
0
,

t
o
t
a
l
_
l
e
f
t

=
0
;

f
l
o
a
t

g
i
n
i
_
l
e
f
t

=
1
.
0
,

g
i
n
i
_
r
i
g
h
t

=
1
.
0
,

r
f
;

f
l
o
a
t

r
e
s
u
l
t
;

f
o
r

(
i
n
t

i
=

0
;

i
<

d
e
t
a
i
l
s
.
s
i
z
e
(
)
;

i
+
+
)

t
h
e
_
s
u
b
s
e
t
[
i
]

=
0
;

w
h
i
l
e

(
s
u
b
s
e
t

>
0
)

{
i
f

(
s
u
b
s
e
t

%
2

!
=

0
)

{
t
h
e
_
s
u
b
s
e
t
[
i
n
d
e
x
]

=
1
;

f
o
r

(
i
n
t

i
=

0
;

i
<

d
e
t
a
i
l
s
[
0
]
.
s
i
z
e
(
)
;

i
+
+
)

t
o
t
a
l
_
l
e
f
t

+
=

d
e
t
a
i
l
s
[
i
n
d
e
x
]
[
i
]
;

}
s
u
b
s
e
t

/
=

2
;

i
n
d
e
x
+
+
;

}

t
o
t
a
l
_
r
i
g
h
t

=
t
o
t
a
l
_
i
t
e
m
s

-
t
o
t
a
l
_
l
e
f
t
;

f
o
r

(
i
n
t

i
=

0
;

i
<

d
e
t
a
i
l
s
[
0
]
.
s
i
z
e
(
)
;

i
+
+
)

{
f
o
r

(
i
n
t

j
=

0
;

j
<

d
e
t
a
i
l
s
.
s
i
z
e
(
)
;

j
+
+
)

{
i
f

(
t
h
e
_
s
u
b
s
e
t
[
j
]

=
=

1
)

t
e
m
p
_
l
e
f
t

+
=

d
e
t
a
i
l
s
[
j
]
[
i
]
;

e
l
s
e
t
e
m
p
_
r
i
g
h
t

+
=

d
e
t
a
i
l
s
[
j
]
[
i
]
;

167

}
r
f

=
(
f
l
o
a
t
)
t
e
m
p
_
l
e
f
t

/
(
f
l
o
a
t
)
t
o
t
a
l
_
l
e
f
t
;

r
f

*
=

r
f
;

g
i
n
i
_
l
e
f
t

-
=

r
f
;

r
f

=
(
f
l
o
a
t
)
t
e
m
p
_
r
i
g
h
t

/
(
f
l
o
a
t
)
t
o
t
a
l
_
r
i
g
h
t
;

r
f

*
=

r
f
;

g
i
n
i
_
r
i
g
h
t

-
=

r
f
;

t
e
m
p
_
l
e
f
t

=
0
;

t
e
m
p
_
r
i
g
h
t

=
0
;

}

r
e
s
u
l
t

=
(
(
t
o
t
a
l
_
l
e
f
t

*
g
i
n
i
_
l
e
f
t
)

+
(
t
o
t
a
l
_
r
i
g
h
t

*
g
i
n
i
_
r
i
g
h
t
)
)
;

r
e
t
u
r
n
(
r
e
s
u
l
t

/
t
o
t
a
l
_
i
t
e
m
s
)
;

} /
* *

A
C
C
E
S
S
O
R
:

b
e
s
t
_
g
i
n
i
(
)

r
e
t
u
r
n
s

t
h
e

s
u
b
s
e
t

w
h
i
c
h

h
a
s

t
h
e

s
m
a
l
l
e
s
t

g
i
n
i

i
n
d
e
x
,

*
a
n
d

a
l
t
e
r
s

t
h
e

c
a
n
d
i
d
a
t
e

g
i
n
i

v
a
l
u
e

p
a
s
s
e
d

i
n

t
o

i
t
.

T
h
e

c
a
l
l
e
r

c
a
n

*
s
u
b
s
e
q
u
e
n
t
l
y

t
e
s
t

w
h
e
t
h
e
r

t
h
e

c
a
n
d
i
d
a
t
e

v
a
l
u
e

i
s

s
u
f
f
i
c
i
e
n
t
l
y

s
m
a
l
l

t
h
a
t

*
t
h
e

s
u
b
s
e
t

s
h
o
u
l
d

b
e

a
d
o
p
t
e
d

a
s

t
h
e

b
e
s
t

s
p
l
i
t

c
r
i
t
e
r
i
o
n
.

*
/

i
n
t

c
o
u
n
t
_
m
a
t
r
i
x
:
:
b
e
s
t
_
g
i
n
i
(
f
l
o
a
t
&

c
a
n
d
i
d
a
t
e
_
g
i
n
i
)

{
i
n
t

t
r
i
e
s

=
(
i
n
t
)
p
o
w
(
2
,

d
e
t
a
i
l
s
.
s
i
z
e
(
)

-
1
)
;

f
l
o
a
t

c
u
r
r
e
n
t
_
g
i
n
i
;

i
n
t

b
e
s
t
_
s
u
b
s
e
t

=
0
;

c
a
n
d
i
d
a
t
e
_
g
i
n
i

=
1
0
0
0
0
.
0
;

i
f

(
d
e
t
a
i
l
s
.
s
i
z
e
(
)

<
1
2
)

{
/
/

T
h
e

o
r
d
e
r

o
f

t
h
e

a
t
t
r
i
b
u
t
e

i
s

s
m
a
l
l

e
n
o
u
g
h

t
h
a
t

w
e

c
a
n

t
e
s
t

e
v
e
r
y

/
/

p
o
s
s
i
b
l
e

g
i
n
i

v
a
l
u
e
.

f
o
r

(
i
n
t

i
=

1
;

i
<

t
r
i
e
s
;

i
+
+
)

{
c
u
r
r
e
n
t
_
g
i
n
i

=
g
i
n
i
(
i
)
;

i
f

(
c
u
r
r
e
n
t
_
g
i
n
i

<
c
a
n
d
i
d
a
t
e
_
g
i
n
i
)

{
b
e
s
t
_
s
u
b
s
e
t

=
i
;

c
a
n
d
i
d
a
t
e
_
g
i
n
i

=
c
u
r
r
e
n
t
_
g
i
n
i
;

}
}

r
e
t
u
r
n

b
e
s
t
_
s
u
b
s
e
t
;

}
e
l
s
e
/
/

W
e

t
r
y

t
o

g
r
e
e
d
i
l
y

i
n
d
u
c
e

t
h
e

b
e
s
t

g
i
n
i

b
e
c
a
u
s
e

w
e

d
o
n
’
t

w
a
n
t

t
o

t
r
y

/
/

c
a
l
c
u
l
a
t
i
n
g

2
ˆ
n

o
f

t
h
e
m
!

{
b
e
s
t
_
s
u
b
s
e
t

=
0
;

t
r
i
e
s

+
=

1
;

i
n
t

i
m
p
r
o
v
e
d
;

d
o

{
i
m
p
r
o
v
e
d

=
0
;

f
o
r

(
i
n
t

i
=

1
;

i
<

t
r
i
e
s
;

i
*
=

2
)

{
i
f

(
!
(
b
e
s
t
_
s
u
b
s
e
t

&
i
)
)

{
c
u
r
r
e
n
t
_
g
i
n
i

=
g
i
n
i
(
b
e
s
t
_
s
u
b
s
e
t

+
i
)
;

i
f

(
c
u
r
r
e
n
t
_
g
i
n
i

<
c
a
n
d
i
d
a
t
e
_
g
i
n
i
)

{
b
e
s
t
_
s
u
b
s
e
t

+
=

i
;

c
a
n
d
i
d
a
t
e
_
g
i
n
i

=
c
u
r
r
e
n
t
_
g
i
n
i
;

i
m
p
r
o
v
e
d
+
+
;

}
}

}
}

w
h
i
l
e

(
i
m
p
r
o
v
e
d
)
;

r
e
t
u
r
n

b
e
s
t
_
s
u
b
s
e
t
;

}
} A

.1
.7

T
he

d
e
c
i
s
i
o
n
t
r
e
e

C
la

ss
Sp

ec
ifi

ca
tio

n
/
/
-
*
-
c
+
+
-
*
-

#
i
f
n
d
e
f

D
E
C
I
S
I
O
N
_
T
R
E
E

#
d
e
f
i
n
e

D
E
C
I
S
I
O
N
_
T
R
E
E

#
i
n
c
l
u
d
e

"
c
o
n
f
i
g
.
h
"

#
i
n
c
l
u
d
e

"
d
e
c
i
s
i
o
n
.
h
"

#
i
n
c
l
u
d
e

"
m
e
t
a
d
a
t
a
.
h
"

#
i
n
c
l
u
d
e

"
t
u
p
l
e
.
h
"

#
i
n
c
l
u
d
e

<
l
i
s
t
>

#
i
n
c
l
u
d
e

<
s
t
r
i
n
g
>

#
i
n
c
l
u
d
e

<
f
s
t
r
e
a
m
>

#
i
n
c
l
u
d
e

<
s
e
t
>

c
l
a
s
s

d
e
c
i
s
i
o
n
_
t
r
e
e

{

/
/

b
r
e
a
d
t
h
_
g
r
o
w
e
r
s

a
n
d

d
e
p
t
h
_
g
r
o
w
e
r
s

a
r
e

s
o
r
t

o
f

l
i
k
e

"
p
o
t
s
"

i
n

w
h
i
c
h

/
/

t
o

g
r
o
w

t
r
e
e
s
.

f
r
i
e
n
d

c
l
a
s
s

b
r
e
a
d
t
h
_
g
r
o
w
e
r
;

f
r
i
e
n
d

c
l
a
s
s

d
e
p
t
h
_
g
r
o
w
e
r
;

p
r
o
t
e
c
t
e
d
:

d
e
c
i
s
i
o
n

t
h
e
_
d
e
c
i
s
i
o
n
;

d
e
c
i
s
i
o
n
_
t
r
e
e

*
l
e
f
t
;

d
e
c
i
s
i
o
n
_
t
r
e
e

*
r
i
g
h
t
;

v
o
i
d

t
o
_
r
u
l
e
s
_
a
u
x
(
l
i
s
t
<
s
t
r
i
n
g
>
&

r
u
l
e
,

s
t
r
i
n
g
&

r
u
l
e
_
s
e
t
,

m
e
t
a
d
a
t
a
&

m
d
)
;

/
/

a
u
x
i
l
l
i
a
r
y

f
u
n
c
t
i
o
n

f
o
r

t
o
_
r
u
l
e
s

p
u
b
l
i
c
:

d
e
c
i
s
i
o
n
_
t
r
e
e
(
)

{
l
e
f
t

=
r
i
g
h
t

=
0
;

}
/
/

c
o
n
s
t
r
u
c
t
o
r

v
i
r
t
u
a
l

d
e
c
i
s
i
o
n
_
t
r
e
e
*
n
e
w
_
t
r
e
e
(
)

{
r
e
t
u
r
n

n
e
w

d
e
c
i
s
i
o
n
_
t
r
e
e
;

}
/
/

t
h
i
s

g
i
v
e
s

u
s

a
"
v
i
r
t
u
a
l
"

c
o
n
s
t
r
u
c
t
o
r
,

s
o

t
h
a
t

i
f

w
e

h
a
v
e

a
/
/

l
i
s
t

o
f

t
r
e
e

p
o
i
n
t
e
r
s
,

w
e

c
a
n

c
o
n
s
t
r
u
c
t

n
o
r
m
a
l

t
r
e
e
s
,

p
r
u
n
a
b
l
e

t
r
e
e
s
,

/
/

w
h
a
t
e
v
e
r

w
e

w
a
n
t

d
e
p
e
n
d
i
n
g

o
n

w
h
a
t

t
y
p
e

o
f

p
o
i
n
t
e
r

i
t

i
s
!

d
e
c
i
s
i
o
n
_
t
r
e
e
(
d
e
c
i
s
i
o
n
_
t
r
e
e
&

s
o
u
r
c
e
)
;

168

/
/

c
o
p
y

c
o
n
s
t
r
u
c
t
o
r

v
o
i
d

o
p
e
r
a
t
o
r
=
(
d
e
c
i
s
i
o
n
_
t
r
e
e
&

s
o
u
r
c
e
)
;

/
/

a
s
s
i
g
n
m
e
n
t

c
o
n
s
t
r
u
c
t
o
r

˜
d
e
c
i
s
i
o
n
_
t
r
e
e
(
)

{
d
e
l
e
t
e

l
e
f
t
;

d
e
l
e
t
e

r
i
g
h
t
;

}
/
/

d
e
s
t
r
u
c
t
o
r
;

c
a
n
’
t

h
a
v
e

d
a
n
g
l
y

t
r
e
e

p
o
i
n
t
e
r
s

t
a
k
i
n
g

u
p

m
e
m
o
r
y
!

s
t
r
i
n
g

t
o
_
s
t
r
i
n
g
(
m
e
t
a
d
a
t
a
&

m
d
)
;

/
/

c
o
n
v
e
r
t

t
h
e

t
r
e
e

t
o

a
s
t
r
i
n
g

r
e
p
r
e
s
e
n
t
a
t
i
o
n

s
t
r
i
n
g

t
o
_
r
u
l
e
s
(
m
e
t
a
d
a
t
a
&

m
d
)
;

/
/

c
o
n
v
e
r
t

t
h
e

t
r
e
e

t
o

a
s
t
r
i
n
g

r
e
p
r
e
s
e
n
t
a
t
i
o
n

i
n

E
n
g
l
i
s
h

v
o
i
d

s
t
o
r
e
(
d
e
c
i
s
i
o
n

d
)

{
t
h
e
_
d
e
c
i
s
i
o
n

=
d
;

}
/
/

s
t
o
r
e

T
H
I
S

d
e
c
i
s
i
o
n

a
t

T
H
I
S

t
r
e
e

n
o
d
e

i
n
t

t
e
r
m
i
n
a
l
s
(
)
;

/
/

h
o
w

b
i
g

i
s

t
h
e

t
r
e
e
?

i
n
t

c
l
a
s
s
i
f
y
(
t
u
p
l
e
&

t
)
;

/
/

g
i
v
e
n

a
t
u
p
l
e
,

w
h
a
t

c
l
a
s
s

d
o
e
s

t
h
e

t
r
e
e

s
a
y

i
t

i
s
?

v
o
i
d

m
a
k
e
_
d
e
c
i
s
i
o
n
_
l
i
s
t
(
m
e
t
a
d
a
t
a
&

m
d
,

s
e
t
<
s
t
r
i
n
g
,

l
e
s
s
<
s
t
r
i
n
g
>

>
&

d
e
c
i
s
i
o
n
_
s
e
t
)
;

/
/

s
i
m
p
l
y

p
r
o
d
u
c
e
s

a
l
i
s
t

o
f

a
l
l

t
h
e

u
n
i
q
u
e

d
e
c
i
s
i
o
n
s

i
n

t
h
e

t
r
e
e

}
;

/
/

a
"
g
r
o
w
e
r
"

i
s

l
i
k
e

a
p
o
t

i
n

w
h
i
c
h

w
e

g
r
o
w

t
r
e
e
s
;

s
o
m
e
t
i
m
e
s

w
e

/
/

g
r
o
w

t
h
e
m

d
e
p
t
h

f
i
r
s
t

(
l
i
k
e

w
h
e
n

w
e

r
e
a
d

t
h
e
m

i
n

f
r
o
m

f
i
l
e
s
,

/
/

s
o
m
e
t
i
m
e
s

b
r
e
a
d
t
h

f
i
r
s
t

(
l
i
k
e

w
h
e
n

w
e

i
n
d
u
c
e

t
h
e
m

f
r
o
m

d
a
t
a
)
.

c
l
a
s
s

g
r
o
w
e
r

{
p
u
b
l
i
c
:

g
r
o
w
e
r
(
)

{
}

g
r
o
w
e
r
(
d
e
c
i
s
i
o
n
_
t
r
e
e
&

t
)
;

v
o
i
d

s
t
a
r
t
(
d
e
c
i
s
i
o
n
_
t
r
e
e
&

t
)
;

v
i
r
t
u
a
l

v
o
i
d

g
r
o
w
(
d
e
c
i
s
i
o
n

d
)

=
0
;

p
r
o
t
e
c
t
e
d
:

d
e
c
i
s
i
o
n
_
t
r
e
e

*
t
h
e
_
t
r
e
e
;

l
i
s
t
<
d
e
c
i
s
i
o
n
_
t
r
e
e
*
>

t
h
e
_
l
i
s
t
;

}
;

/
/

b
r
e
a
d
t
h
_
g
r
o
w
e
r

a
n
d

d
e
p
t
h
_
g
r
o
w
e
r

a
r
e

s
u
b
c
l
a
s
s
e
s

o
f

g
r
o
w
e
r
.

/
/

s
i
n
c
e

g
r
o
w
(
)

i
s

p
u
r
e

v
i
r
t
u
a
l
,

w
e

H
A
V
E

t
o

o
v
e
r
r
i
d
e

i
t

b
o
t
h

t
i
m
e
s
.

c
l
a
s
s

b
r
e
a
d
t
h
_
g
r
o
w
e
r

:
p
u
b
l
i
c

g
r
o
w
e
r

{
p
u
b
l
i
c
:

b
r
e
a
d
t
h
_
g
r
o
w
e
r
(
)

:
g
r
o
w
e
r
(
)

{
}

b
r
e
a
d
t
h
_
g
r
o
w
e
r
(
d
e
c
i
s
i
o
n
_
t
r
e
e
&

t
)

:
g
r
o
w
e
r
(
t
)

{
}

v
o
i
d

g
r
o
w
(
d
e
c
i
s
i
o
n

d
)
;

}
;

c
l
a
s
s

d
e
p
t
h
_
g
r
o
w
e
r

:
p
u
b
l
i
c

g
r
o
w
e
r

{
p
u
b
l
i
c
:

d
e
p
t
h
_
g
r
o
w
e
r
(
)

:
g
r
o
w
e
r
(
)

{
}

d
e
p
t
h
_
g
r
o
w
e
r
(
d
e
c
i
s
i
o
n
_
t
r
e
e
&

t
)

:
g
r
o
w
e
r
(
t
)

{
}

v
o
i
d

g
r
o
w
(
d
e
c
i
s
i
o
n

d
)
;

v
o
i
d

r
e
s
t
o
r
e
_
f
r
o
m
_
f
i
l
e
(
i
s
t
r
e
a
m
&

s
o
u
r
c
e
,

m
e
t
a
d
a
t
a
&

m
d
,

i
n
t

f
l
a
g

=
N
O
T
_
M
U
L
T
I
)
;

}
;

#
e
n
d
i
f

Im
pl

em
en

ta
tio

n
#
i
n
c
l
u
d
e

"
d
e
c
i
s
i
o
n
_
t
r
e
e
.
h
"

#
i
n
c
l
u
d
e

<
s
t
d
i
o
.
h
>

#
i
n
c
l
u
d
e

<
s
t
r
s
t
r
e
a
m
>

#
i
n
c
l
u
d
e

<
a
l
g
o
r
i
t
h
m
>

#
i
n
c
l
u
d
e

<
m
a
t
h
.
h
>

/
* *

C
O
N
S
T
R
U
C
T
O
R
:

A
c
t
u
a
l
l
y

t
h
e

c
o
n
s
t
r
u
c
t
o
r

i
s

e
a
s
y
,

a
n
d

i
s

d
o
n
e

i
n

*
d
e
c
i
s
i
o
n
_
t
r
e
e
.
h
.

T
h
i
s

i
s

t
h
e

c
o
p
y

c
o
n
s
t
r
u
c
t
o
r
,

w
h
i
c
h

r
e
c
u
r
s
i
v
e
l
y

c
o
p
i
e
s

*
a

d
e
c
i
s
i
o
n
_
t
r
e
e

(
s
o
u
r
c
e
)

t
o

a
n
o
t
h
e
r
.

*
/

d
e
c
i
s
i
o
n
_
t
r
e
e
:
:
d
e
c
i
s
i
o
n
_
t
r
e
e
(
d
e
c
i
s
i
o
n
_
t
r
e
e
&

s
o
u
r
c
e
)

{
t
h
e
_
d
e
c
i
s
i
o
n

=
s
o
u
r
c
e
.
t
h
e
_
d
e
c
i
s
i
o
n
;

i
f

(
s
o
u
r
c
e
.
l
e
f
t
)

l
e
f
t

=
n
e
w

d
e
c
i
s
i
o
n
_
t
r
e
e
(
*
s
o
u
r
c
e
.
l
e
f
t
)
;

i
f

(
s
o
u
r
c
e
.
r
i
g
h
t
)

r
i
g
h
t

=
n
e
w

d
e
c
i
s
i
o
n
_
t
r
e
e
(
*
s
o
u
r
c
e
.
r
i
g
h
t
)
;

} /
* *

O
P
E
R
A
T
O
R
:

A
S
S
I
G
N
M
E
N
T
:

L
o
o
k
s

v
e
r
y

s
i
m
i
l
a
r

t
o

t
h
e

c
o
p
y

c
o
n
s
t
r
u
c
t
o
r
!

* *
/

v
o
i
d

d
e
c
i
s
i
o
n
_
t
r
e
e
:
:
o
p
e
r
a
t
o
r
=
(
d
e
c
i
s
i
o
n
_
t
r
e
e
&

s
o
u
r
c
e
)

{
t
h
e
_
d
e
c
i
s
i
o
n

=
s
o
u
r
c
e
.
t
h
e
_
d
e
c
i
s
i
o
n
;

i
f

(
s
o
u
r
c
e
.
l
e
f
t
)

l
e
f
t

=
n
e
w

d
e
c
i
s
i
o
n
_
t
r
e
e
(
*
s
o
u
r
c
e
.
l
e
f
t
)
;

i
f

(
s
o
u
r
c
e
.
r
i
g
h
t
)

r
i
g
h
t

=
n
e
w

d
e
c
i
s
i
o
n
_
t
r
e
e
(
*
s
o
u
r
c
e
.
r
i
g
h
t
)
;

} /
* *

d
u
m
p

t
h
e

d
e
c
i
s
i
o
n

t
r
e
e

a
s

a
s
t
r
i
n
g
.

T
h
i
s

i
s

a
p
r
e
-
o
r
d
e
r

t
r
a
v
e
r
s
e
.

*
/

s
t
r
i
n
g

d
e
c
i
s
i
o
n
_
t
r
e
e
:
:
t
o
_
s
t
r
i
n
g
(
m
e
t
a
d
a
t
a
&

m
d
)

{
c
h
a
r

b
u
f
f
e
r
[
M
A
X
S
T
R
I
N
G
]
;

s
t
r
i
n
g

v
a
l
u
e
,

l
e
f
t
_
v
a
l
u
e
,

r
i
g
h
t
_
v
a
l
u
e
;

s
n
p
r
i
n
t
f
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
,

"
%
.
5
f

%
d
\
n
"
,

t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
(
)
,

t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s
(
)
)
;

v
a
l
u
e

+
=

t
h
e
_
d
e
c
i
s
i
o
n
.
t
o
_
s
t
r
i
n
g
(
m
d
)

+
"

"
+

m
d
.
s
h
o
w
_
l
a
b
e
l
_
n
a
m
e
(
t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
(
)
)

+
s
t
r
i
n
g
(
b
u
f
f
e
r
)
;

i
f

(
l
e
f
t
)

l
e
f
t
_
v
a
l
u
e

=
l
e
f
t
-
>
t
o
_
s
t
r
i
n
g
(
m
d
)
;

i
f

(
r
i
g
h
t
)

r
i
g
h
t
_
v
a
l
u
e

=
r
i
g
h
t
-
>
t
o
_
s
t
r
i
n
g
(
m
d
)
;

r
e
t
u
r
n

(
v
a
l
u
e

+
l
e
f
t
_
v
a
l
u
e

+
r
i
g
h
t
_
v
a
l
u
e
)
;

169

} /
* *

d
u
m
p

t
h
e

d
e
c
i
s
i
o
n

t
r
e
e

a
s

a
s
e
t

o
f

r
u
l
e
s
.

*
/

s
t
r
i
n
g

d
e
c
i
s
i
o
n
_
t
r
e
e
:
:
t
o
_
r
u
l
e
s
(
m
e
t
a
d
a
t
a
&

m
d
)

{
l
i
s
t
<
s
t
r
i
n
g
>

r
u
l
e
;

s
t
r
i
n
g

r
u
l
e
_
s
e
t
;

r
u
l
e
.
p
u
s
h
_
b
a
c
k
(
t
h
e
_
d
e
c
i
s
i
o
n
.
t
o
_
s
t
r
i
n
g
(
m
d
)
)
;

l
e
f
t
-
>
t
o
_
r
u
l
e
s
_
a
u
x
(
r
u
l
e
,

r
u
l
e
_
s
e
t
,

m
d
)
;

r
u
l
e
.
e
r
a
s
e
(
r
u
l
e
.
b
e
g
i
n
(
)
)
;

r
u
l
e
.
p
u
s
h
_
b
a
c
k
(
t
h
e
_
d
e
c
i
s
i
o
n
.
t
o
_
s
t
r
i
n
g
(
m
d
,

N
E
G
A
T
E
)
)
;

r
i
g
h
t
-
>
t
o
_
r
u
l
e
s
_
a
u
x
(
r
u
l
e
,

r
u
l
e
_
s
e
t
,

m
d
)
;

r
e
t
u
r
n

r
u
l
e
_
s
e
t
;

} /
* *

a
u
x
i
l
l
i
a
r
y

f
u
n
c
t
i
o
n

f
o
r

t
o
_
r
u
l
e
s

*
/

v
o
i
d

d
e
c
i
s
i
o
n
_
t
r
e
e
:
:
t
o
_
r
u
l
e
s
_
a
u
x
(
l
i
s
t
<
s
t
r
i
n
g
>
&

r
u
l
e
,

s
t
r
i
n
g
&

r
u
l
e
_
s
e
t
,

m
e
t
a
d
a
t
a
&

m
d
)

{
i
f

(
!
l
e
f
t
)

{
l
i
s
t
<
s
t
r
i
n
g
>
:
:
i
t
e
r
a
t
o
r

i
t
r
(
r
u
l
e
.
b
e
g
i
n
(
)
)
;

r
u
l
e
_
s
e
t

+
=

"
i
f

"
+
*
i
t
r

+
"
\
n
"
;

w
h
i
l
e

(
+
+
i
t
r

!
=

r
u
l
e
.
e
n
d
(
)
)

r
u
l
e
_
s
e
t

+
=

"
a
n
d

"
+
*
i
t
r

+
"
\
n
"
;

r
u
l
e
_
s
e
t

+
=

"
t
h
e
n

l
a
b
e
l

i
s

"
+

t
h
e
_
d
e
c
i
s
i
o
n
.
t
o
_
s
t
r
i
n
g
(
m
d
)

+
"
\
n
\
n
"
;

}
e
l
s
e
{

r
u
l
e
.
p
u
s
h
_
b
a
c
k
(
t
h
e
_
d
e
c
i
s
i
o
n
.
t
o
_
s
t
r
i
n
g
(
m
d
)
)
;

l
e
f
t
-
>
t
o
_
r
u
l
e
s
_
a
u
x
(
r
u
l
e
,

r
u
l
e
_
s
e
t
,

m
d
)
;

r
u
l
e
.
p
o
p
_
b
a
c
k
(
)
;

r
u
l
e
.
p
u
s
h
_
b
a
c
k
(
t
h
e
_
d
e
c
i
s
i
o
n
.
t
o
_
s
t
r
i
n
g
(
m
d
,

N
E
G
A
T
E
)
)
;

r
i
g
h
t
-
>
t
o
_
r
u
l
e
s
_
a
u
x
(
r
u
l
e
,

r
u
l
e
_
s
e
t
,

m
d
)
;

r
u
l
e
.
p
o
p
_
b
a
c
k
(
)
;

}
} /
* *

I
N
I
T
I
A
L
I
S
E
R

f
o
r

t
h
e

g
r
o
w
e
r

c
l
a
s
s

*
/

v
o
i
d

g
r
o
w
e
r
:
:
s
t
a
r
t
(
d
e
c
i
s
i
o
n
_
t
r
e
e
&

t
)

{
t
h
e
_
t
r
e
e

=
&
t
;

t
h
e
_
l
i
s
t
.
p
u
s
h
_
b
a
c
k
(
t
h
e
_
t
r
e
e
)
;

} /
* *

C
O
N
S
T
R
U
C
T
O
R
:

t
o

b
e

u
s
e
d

i
f

w
e

w
a
n
t

t
o

s
k
i
p

t
h
e

"
s
t
a
r
t
"

i
n
i
t
i
a
l
i
s
e
r

*
/

g
r
o
w
e
r
:
:
g
r
o
w
e
r
(
d
e
c
i
s
i
o
n
_
t
r
e
e
&

t
)

{
t
h
e
_
t
r
e
e

=
&
t
;

t
h
e
_
l
i
s
t
.
p
u
s
h
_
b
a
c
k
(
t
h
e
_
t
r
e
e
)
;

} /
* *

T
h
e

‘
b
r
e
a
d
t
h

g
r
o
w
e
r
’

o
b
j
e
c
t

g
r
o
w
s

t
h
e

t
r
e
e

u
s
i
n
g

a
q
u
e
u
e

t
o

*
s
t
o
r
e

f
o
r
t
h
-
c
o
m
i
n
g

n
o
d
e
s
.

T
h
e

q
u
e
u
e

i
s

i
n

f
a
c
t

a
n

S
T
L

l
i
s
t
.

*
/

v
o
i
d

b
r
e
a
d
t
h
_
g
r
o
w
e
r
:
:
g
r
o
w
(
d
e
c
i
s
i
o
n

d
)

{
i
f

(
t
h
e
_
l
i
s
t
.
e
m
p
t
y
(
)
)

F
A
T
A
L
(
"
b
r
e
a
d
t
h
_
g
r
o
w
e
r
:
:
g
r
o
w
(
)
:

t
r
i
e
d

t
o

g
r
o
w

t
r
e
e

w
i
t
h

e
m
p
t
y

q
u
e
u
e
.
"
)
;

e
l
s
e
{

t
h
e
_
l
i
s
t
.
f
r
o
n
t
(
)
-
>
s
t
o
r
e
(
d
)
;

i
f

(
!
d
.
i
s
_
p
u
r
e
(
)
)

{
t
h
e
_
l
i
s
t
.
f
r
o
n
t
(
)
-
>
l
e
f
t

=
t
h
e
_
l
i
s
t
.
f
r
o
n
t
(
)
-
>
n
e
w
_
t
r
e
e
(
)
;

t
h
e
_
l
i
s
t
.
f
r
o
n
t
(
)
-
>
r
i
g
h
t

=
t
h
e
_
l
i
s
t
.
f
r
o
n
t
(
)
-
>
n
e
w
_
t
r
e
e
(
)
;

t
h
e
_
l
i
s
t
.
p
u
s
h
_
b
a
c
k
(
t
h
e
_
l
i
s
t
.
f
r
o
n
t
(
)
-
>
l
e
f
t
)
;

t
h
e
_
l
i
s
t
.
p
u
s
h
_
b
a
c
k
(
t
h
e
_
l
i
s
t
.
f
r
o
n
t
(
)
-
>
r
i
g
h
t
)
;

}
t
h
e
_
l
i
s
t
.
p
o
p
_
f
r
o
n
t
(
)
;

}
} /
* *

T
h
e

‘
d
e
p
t
h

g
r
o
w
e
r
’

o
b
j
e
c
t

g
r
o
w
s

t
h
e

t
r
e
e

u
s
i
n
g

a
s
t
a
c
k

t
o

*
s
t
o
r
e

f
o
r
t
h
-
c
o
m
i
n
g

n
o
d
e
s
.

T
h
e

s
t
a
c
k

i
s

i
n

f
a
c
t

a
n

S
T
L

l
i
s
t
.

*
/

v
o
i
d

d
e
p
t
h
_
g
r
o
w
e
r
:
:
g
r
o
w
(
d
e
c
i
s
i
o
n

d
)

{
i
f

(
t
h
e
_
l
i
s
t
.
e
m
p
t
y
(
)
)

F
A
T
A
L
(
"
d
e
p
t
h
_
g
r
o
w
e
r
:
:
g
r
o
w
(
)
:

t
r
i
e
d

t
o

g
r
o
w

t
r
e
e

w
i
t
h

e
m
p
t
y

s
t
a
c
k
.
"
)
;

e
l
s
e
{

t
h
e
_
l
i
s
t
.
b
a
c
k
(
)
-
>
s
t
o
r
e
(
d
)
;

i
f

(
!
d
.
i
s
_
p
u
r
e
(
)
)

{
d
e
c
i
s
i
o
n
_
t
r
e
e

*
t
e
m
p

=
t
h
e
_
l
i
s
t
.
b
a
c
k
(
)
;

t
h
e
_
l
i
s
t
.
p
o
p
_
b
a
c
k
(
)
;

t
e
m
p
-
>
l
e
f
t

=
t
e
m
p
-
>
n
e
w
_
t
r
e
e
(
)
;

t
e
m
p
-
>
r
i
g
h
t

=
t
e
m
p
-
>
n
e
w
_
t
r
e
e
(
)
;

t
h
e
_
l
i
s
t
.
p
u
s
h
_
b
a
c
k
(
t
e
m
p
-
>
r
i
g
h
t
)
;

t
h
e
_
l
i
s
t
.
p
u
s
h
_
b
a
c
k
(
t
e
m
p
-
>
l
e
f
t
)
;

}
e
l
s
e

t
h
e
_
l
i
s
t
.
p
o
p
_
b
a
c
k
(
)
;

}
} /
* *

c
l
a
s
s
i
f
y
(
)

t
a
k
e
s

a
t
u
p
l
e

a
n
d

d
e
s
c
e
n
d
s

t
h
e

t
r
e
e

t
o

g
i
v
e

i
t

a
c
l
a
s
s
i
f
i
c
a
t
i
o
n

*
l
a
b
e
l
.

*
/

i
n
t

d
e
c
i
s
i
o
n
_
t
r
e
e
:
:
c
l
a
s
s
i
f
y
(
t
u
p
l
e
&

t
)

{

170

/
/

i
f

w
e

h
a
v
e

r
e
a
c
h
e
d

a
l
e
a
f
,

r
e
t
u
r
n

t
h
e

c
l
a
s
s

l
a
b
e
l
.

i
f

(
l
e
f
t

=
=

0
)

/
/

r
i
g
h
t

w
i
l
l

a
l
s
o

b
e

n
u
l
l

r
e
t
u
r
n
(
t
h
e
_
d
e
c
i
s
i
o
n
.
i
s
_
p
u
r
e
(
)
)
;

e
l
s
e

i
f

(
t
.
m
e
e
t
s
_
c
o
n
d
i
t
i
o
n
(
t
h
e
_
d
e
c
i
s
i
o
n
)
)

/
/

g
o

l
e
f
t

r
e
t
u
r
n
(
l
e
f
t
-
>
c
l
a
s
s
i
f
y
(
t
)
)
;

e
l
s
e
r
e
t
u
r
n
(
r
i
g
h
t
-
>
c
l
a
s
s
i
f
y
(
t
)
)
;

} /
* *

M
U
T
A
T
O
R
:

u
s
e

t
h
e

d
e
p
t
h
_
g
r
o
w
e
r

t
o

g
r
o
w

a
t
r
e
e

f
r
o
m

f
i
l
e
.

*
O
n
l
y

o
n
e

t
r
e
e

i
s

e
x
p
e
c
t
e
d

f
r
o
m

t
h
e

f
i
l
e
.

T
h
e

g
r
o
w
e
r

w
i
l
l

*
k
e
e
p

t
r
y
i
n
g

t
o

g
r
o
w

t
h
e

t
r
e
e

u
n
t
i
l

t
h
e

e
n
d

o
f

t
h
e

f
i
l
e
.

*
/

v
o
i
d

d
e
p
t
h
_
g
r
o
w
e
r
:
:
r
e
s
t
o
r
e
_
f
r
o
m
_
f
i
l
e
(
i
s
t
r
e
a
m
&

s
o
u
r
c
e
,

m
e
t
a
d
a
t
a
&

m
d
,

i
n
t

f
l
a
g
)

{
c
h
a
r

b
u
f
f
e
r
[
M
A
X
S
T
R
I
N
G
]
;

s
t
r
i
n
g

l
i
n
e
,

f
i
r
s
t
_
w
o
r
d
,

s
i
g
n
,

l
a
b
e
l
,

h
i
g
h
e
s
t
_
r
e
p
;

d
e
c
i
s
i
o
n

d
;

f
l
o
a
t

t
h
r
e
s
h
o
l
d
,

a
c
c
u
r
a
c
y
;

i
n
t

n
u
m
b
e
r
_
o
f
_
e
x
a
m
p
l
e
s
,

a
t
t
r
i
b
u
t
e
;

w
h
i
l
e

(
g
e
t
l
i
n
e
(
s
o
u
r
c
e
,

l
i
n
e
)
)

{
i
f

(
f
l
a
g

=
=

M
U
L
T
I

&
&

l
i
n
e
[
0
]

=
=

’
#
’
)

r
e
t
u
r
n
;

i
s
t
r
s
t
r
e
a
m

b
u
f
f
e
r
(
l
i
n
e
.
d
a
t
a
(
)
,

l
i
n
e
.
l
e
n
g
t
h
(
)
)
;

b
u
f
f
e
r

>
>

f
i
r
s
t
_
w
o
r
d

>
>

s
i
g
n
;

/
/

i
f

f
i
r
s
t
_
w
o
r
d

=
=

s
i
g
n
,

w
e

h
a
v
e

a
t
e
r
m
i
n
a
l

n
o
d
e

i
f

(
f
i
r
s
t
_
w
o
r
d

=
=

s
i
g
n
)

{
d
.
s
e
t
_
p
u
r
e
(
m
d
.
s
h
o
w
_
l
a
b
e
l
_
n
u
m
b
e
r
(
f
i
r
s
t
_
w
o
r
d
)
)
;

l
a
b
e
l

=
s
i
g
n
;

}
/
/

i
f

t
h
e

s
i
g
n

i
s

"
<
"

w
e

h
a
v
e

a
n
u
m
e
r
i
c

a
t
t
r
i
b
u
t
e

e
l
s
e

i
f

(
s
i
g
n

=
=

"
<
"
)

{
d
.
s
e
t
_
a
t
t
r
i
b
u
t
e
(
m
d
.
s
h
o
w
_
a
t
t
r
i
b
u
t
e
_
n
u
m
b
e
r
(
f
i
r
s
t
_
w
o
r
d
)
)
;

b
u
f
f
e
r

>
>

t
h
r
e
s
h
o
l
d

>
>

l
a
b
e
l
;

d
.
s
e
t
_
t
h
r
e
s
h
o
l
d
(
t
h
r
e
s
h
o
l
d
)
;

}
/
/

o
t
h
e
r
w
i
s
e

i
t
’
s

c
a
t
e
g
o
r
i
c
a
l
:

c
o
n
v
e
r
t

{
x
,
y
,
z
}

t
o

i
n
t
e
g
e
r

s
u
b
s
e
t

e
l
s
e

{
i
n
t

i
_
s
u
b
s
e
t

=
0
,

m
e
m
b
e
r
;

s
t
r
i
n
g

s
_
s
u
b
s
e
t
;

b
u
f
f
e
r

>
>

s
_
s
u
b
s
e
t

>
>

l
a
b
e
l
;

r
e
p
l
a
c
e
(
s
_
s
u
b
s
e
t
.
b
e
g
i
n
(
)
,

s
_
s
u
b
s
e
t
.
e
n
d
(
)
,

’
,
’
,

’
’
)
;

r
e
p
l
a
c
e
(
s
_
s
u
b
s
e
t
.
b
e
g
i
n
(
)
,

s
_
s
u
b
s
e
t
.
e
n
d
(
)
,

’
{
’
,

’
’
)
;

r
e
p
l
a
c
e
(
s
_
s
u
b
s
e
t
.
b
e
g
i
n
(
)
,

s
_
s
u
b
s
e
t
.
e
n
d
(
)
,

’
}
’
,

’
’
)
;

i
s
t
r
s
t
r
e
a
m

i
s
_
s
u
b
s
e
t
(
s
_
s
u
b
s
e
t
.
d
a
t
a
(
)
,

s
_
s
u
b
s
e
t
.
l
e
n
g
t
h
(
)
)
;

w
h
i
l
e

(
i
s
_
s
u
b
s
e
t

>
>

m
e
m
b
e
r
)

i
_
s
u
b
s
e
t

+
=

(
i
n
t
)
p
o
w
(
2
,

m
e
m
b
e
r

-
1
)
;

d
.
s
e
t
_
a
t
t
r
i
b
u
t
e
(
m
d
.
s
h
o
w
_
a
t
t
r
i
b
u
t
e
_
n
u
m
b
e
r
(
f
i
r
s
t
_
w
o
r
d
)
)
;

d
.
s
e
t
_
s
u
b
s
e
t
(
i
_
s
u
b
s
e
t
)
;

}
/
/

i
n

a
n
y

c
a
s
e
,

w
e

n
e
e
d

t
h
e

a
c
c
u
r
a
c
y

a
n
d

n
u
m
b
e
r

o
f

e
x
a
m
p
l
e
s

b
u
f
f
e
r

>
>

a
c
c
u
r
a
c
y

>
>

n
u
m
b
e
r
_
o
f
_
e
x
a
m
p
l
e
s
;

/
/

t
h
e
n

w
e

n
e
e
d

t
o

s
e
t

u
p

t
h
e

r
e
s
t

o
f

t
h
e

d
e
c
i
s
i
o
n

n
o
d
e

d
.
s
e
t
_
h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
(
m
d
.
s
h
o
w
_
l
a
b
e
l
_
n
u
m
b
e
r
(
l
a
b
e
l
)
)
;

d
.
s
e
t
_
p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
(
a
c
c
u
r
a
c
y
)
;

d
.
s
e
t
_
h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s
(
n
u
m
b
e
r
_
o
f
_
e
x
a
m
p
l
e
s
)
;

/
/

n
o
w

g
r
o
w

t
h
e

t
r
e
e

u
s
i
n
g

t
h
e

d
e
c
i
s
i
o
n

t
h
i
s
-
>
g
r
o
w
(
d
)
;

/
/

r
e
s
e
t

t
h
e

p
u
r
i
t
y

f
l
a
g

r
e
a
d
y

f
o
r

t
h
e

n
e
x
t

l
i
n
e

o
f

i
n
p
u
t

d
.
s
e
t
_
p
u
r
e
(
0
)
;

}
} /
* *

A
C
C
E
S
S
O
R

(
s
o
r
t

o
f
)

*
v
o
i
d

m
a
k
e
_
d
e
c
i
s
i
o
n
_
l
i
s
t
(
s
e
t
<
s
t
r
i
n
g
,

l
e
s
s
<
s
t
r
i
n
g
>

>
d
e
c
i
s
i
o
n
_
s
e
t
)

*
/

v
o
i
d

d
e
c
i
s
i
o
n
_
t
r
e
e
:
:
m
a
k
e
_
d
e
c
i
s
i
o
n
_
l
i
s
t
(
m
e
t
a
d
a
t
a
&

m
d
,

s
e
t
<
s
t
r
i
n
g
,

l
e
s
s
<
s
t
r
i
n
g
>

>
&

d
e
c
i
s
i
o
n
_
s
e
t
)

{
i
f

(
l
e
f
t
)

{
d
e
c
i
s
i
o
n
_
s
e
t
.
i
n
s
e
r
t
(
t
h
e
_
d
e
c
i
s
i
o
n
.
t
o
_
s
t
r
i
n
g
(
m
d
)
)
;

d
e
c
i
s
i
o
n
_
s
e
t
.
i
n
s
e
r
t
(
t
h
e
_
d
e
c
i
s
i
o
n
.
t
o
_
s
t
r
i
n
g
(
m
d
,

N
E
G
A
T
E
)
)
;

l
e
f
t
-
>
m
a
k
e
_
d
e
c
i
s
i
o
n
_
l
i
s
t
(
m
d
,

d
e
c
i
s
i
o
n
_
s
e
t
)
;

r
i
g
h
t
-
>
m
a
k
e
_
d
e
c
i
s
i
o
n
_
l
i
s
t
(
m
d
,

d
e
c
i
s
i
o
n
_
s
e
t
)
;

}
} /
/

v
o
i
d

d
e
c
i
s
i
o
n
_
t
r
e
e
:
:
m
a
k
e
_
l
i
t
e
r
a
l
_
l
i
s
t
(
m
e
t
a
d
a
t
a
&

m
d
,

/
/

l
i
s
t
<
l
i
t
e
r
a
l
*
>
&

/
/

l
i
t
e
r
a
l
_
l
i
s
t
)

/
/

{
/
/

i
f

(
l
e
f
t
)

/
/

{
/
/

l
i
t
e
r
a
l
_
l
i
s
t
.
p
u
s
h
_
b
a
c
k
(
n
e
w

l
i
t
e
r
a
l
(
t
h
e
_
d
e
c
i
s
i
o
n
.
t
o
_
s
t
r
i
n
g
(
m
d
)
,

/
/

t
h
e
_
d
e
c
i
s
i
o
n
.
t
o
_
s
t
r
i
n
g
(
m
d
)
,

N
E
G
A
T
E
)
)
;

/
/

l
e
f
t
-
>
m
a
k
e
_
d
e
c
i
s
i
o
n
_
l
i
s
t
(
m
d
,

l
i
t
e
r
a
l
_
l
i
s
t
)
;

/
/

r
i
g
h
t
-
>
m
a
k
e
_
d
e
c
i
s
i
o
n
_
l
i
s
t
(
m
d
,

l
i
t
e
r
a
l
_
l
i
s
t
)
;

/
/

}
/
/

}

/
* *

A
C
C
E
S
S
O
R
:

h
o
w

b
i
g

i
s

o
u
r

t
r
e
e
?

*
/

i
n
t

d
e
c
i
s
i
o
n
_
t
r
e
e
:
:
t
e
r
m
i
n
a
l
s
(
)

{
i
f

(
!
l
e
f
t
)

r
e
t
u
r
n

1
;

e
l
s
e
r
e
t
u
r
n

(
l
e
f
t
-
>
t
e
r
m
i
n
a
l
s
(
)

+
r
i
g
h
t
-
>
t
e
r
m
i
n
a
l
s
(
)
)
;

} A
.1

.8
T

he
c
l
a
s
s
i
f
i
e
r

C
la

ss
Sp

ec
ifi

ca
tio

n
/
/
-
*
-
c
+
+
-
*
-

#
i
f
n
d
e
f

C
L
A
S
S
I
F
I
E
R

#
d
e
f
i
n
e

C
L
A
S
S
I
F
I
E
R

171

#
i
n
c
l
u
d
e

<
f
s
t
r
e
a
m
.
h
>

#
i
n
c
l
u
d
e

"
c
o
n
f
i
g
.
h
"

#
i
n
c
l
u
d
e

"
d
e
c
i
s
i
o
n
_
t
r
e
e
.
h
"

#
i
n
c
l
u
d
e

"
m
e
t
a
d
a
t
a
.
h
"

#
i
n
c
l
u
d
e

"
h
i
s
t
o
g
r
a
m
.
h
"

#
i
n
c
l
u
d
e

"
s
t
r
i
n
g
.
h
"

c
l
a
s
s

c
l
a
s
s
i
f
i
e
r

{

p
r
o
t
e
c
t
e
d
:

m
e
t
a
d
a
t
a

m
d
;

/
/

o
n
e

c
l
a
s
s
i
f
i
e
r

o
b
j
e
c
t

p
e
r

d
a
t
a
b
a
s
e
,

o
n
e

m
e
t
a
d
a
t
a

o
b
j
e
c
t

p
e
r

c
l
a
s
s
i
f
i
e
r

f
l
o
a
t

d
e
s
i
r
e
d
_
p
u
r
i
t
y
;

/
/

h
o
w

p
u
r
e

d
o

w
e

r
e
q
u
i
r
e

n
o
d
e
s

t
o

b
e
?

i
n
t

m
i
n
i
m
u
m
_
s
i
z
e
_
p
a
r
t
i
t
i
o
n
;

/
/

h
o
w

s
m
a
l
l

d
o

w
e

r
e
q
u
i
r
e

n
o
d
e
s

t
o

b
e
?

d
e
c
i
s
i
o
n
_
t
r
e
e

t
h
e
_
t
r
e
e
;

/
/

t
h
e

t
r
e
e

w
e
’
r
e

b
u
i
l
d
i
n
g

b
r
e
a
d
t
h
_
g
r
o
w
e
r

t
h
e
_
g
r
o
w
e
r
;

/
/

t
h
e

p
o
t

w
e

g
r
o
w

i
t

i
n

f
s
t
r
e
a
m

l
e
f
t
0
;

f
s
t
r
e
a
m

r
i
g
h
t
0
;

f
s
t
r
e
a
m

l
e
f
t
1
;

f
s
t
r
e
a
m

r
i
g
h
t
1
;

/
/

t
h
e

4
o
p
e
n

f
i
l
e
s

o
u
r

a
t
t
r
i
b
u
t
e

l
i
s
t
s

a
r
e

i
n

l
i
s
t
<
h
i
s
t
o
g
r
a
m
>

l
e
f
t
_
h
i
s
t
o
g
r
a
m
s
;

l
i
s
t
<
h
i
s
t
o
g
r
a
m
>

r
i
g
h
t
_
h
i
s
t
o
g
r
a
m
s
;

/
/

t
h
e

c
u
r
r
e
n
t

s
e
t

o
f

h
i
s
t
o
g
r
a
m
s

w
h
i
c
h

w
e
r
e

o
n

a
l
e
f
t
/
r
i
g
h
t

b
r
a
n
c
h

/
/

d
u
r
i
n
g

t
h
e

l
a
s
t

r
u
n

t
h
r
o
u
g
h

t
h
e

a
t
t
r
i
b
u
t
e

l
i
s
t
s

l
i
s
t
<
d
e
c
i
s
i
o
n
>

l
e
f
t
_
d
e
c
i
s
i
o
n
s
;

l
i
s
t
<
d
e
c
i
s
i
o
n
>

r
i
g
h
t
_
d
e
c
i
s
i
o
n
s
;

/
/

t
h
e

c
u
r
r
e
n
t

s
e
t

o
f

d
e
c
i
s
i
o
n
s

w
h
i
c
h

w
e
r
e

o
n

a
l
e
f
t
/
r
i
g
h
t

b
r
a
n
c
h

/
/

d
u
r
i
n
g

t
h
e

l
a
s
t

r
u
n

t
h
r
o
u
g
h

t
h
e

a
t
t
r
i
b
u
t
e

l
i
s
t
s

v
o
i
d

c
a
l
c
u
l
a
t
e
_
s
p
l
i
t
_
p
o
i
n
t
s
(
f
s
t
r
e
a
m
&

f
r
o
m
,

l
i
s
t
<
h
i
s
t
o
g
r
a
m
>
&

h
i
s
t
o
g
r
a
m
s
,

l
i
s
t
<
d
e
c
i
s
i
o
n
>
&

d
e
c
i
s
i
o
n
s
)
;

/
/

r
u
n

t
h
r
o
u
g
h

a
n

a
t
t
r
i
b
u
t
e

l
i
s
t

a
n
d

f
i
n
d

t
h
e

b
e
s
t

s
p
l
i
t

p
o
i
n
t
,

/
/

p
o
s
s
i
b
l
y

f
o
r

s
e
v
e
r
a
l

p
a
r
t
i
t
i
o
n
s

v
o
i
d

g
r
o
w
_
t
r
e
e
_
l
e
v
e
l
(
)
;

/
/

h
a
v
i
n
g

c
a
l
c
u
l
a
t
e
d

t
h
e

s
p
l
i
t

p
o
i
n
t
s

a
n
d

l
o
a
d
e
d

u
p

t
h
e

l
i
s
t

o
f

d
e
c
i
s
i
o
n
s
,

/
/

g
r
o
w

t
h
e

t
r
e
e

w
i
t
h

t
h
e
m

v
o
i
d

p
a
r
t
i
t
i
o
n
_
f
i
l
e
s
(
f
s
t
r
e
a
m
&

f
r
o
m
_
l
e
f
t
,

f
s
t
r
e
a
m
&

f
r
o
m
_
r
i
g
h
t
,

f
s
t
r
e
a
m
&

t
o
_
l
e
f
t
,

f
s
t
r
e
a
m
&

t
o
_
r
i
g
h
t
)
;

/
/

h
a
v
i
n
g

g
r
o
w
n

t
h
e

t
r
e
e
,

s
p
l
i
t

u
p

t
h
e

a
t
t
r
i
b
u
t
e

l
i
s
t
s

a
c
c
o
r
d
i
n
g

t
o

/
/

t
h
e

d
e
c
i
s
i
o
n
s

v
o
i
d

p
r
o
c
e
s
s
_
f
i
l
e
s
(
i
n
t

t
r
e
e
_
l
e
v
e
l
)
;

/
/

d
o

a
c
a
l
c
u
l
a
t
e
/
g
r
o
w
/
p
a
r
t
i
t
i
o
n

c
y
c
l
e

p
u
b
l
i
c
:

c
l
a
s
s
i
f
i
e
r
(
m
e
t
a
d
a
t
a
&

m
,

f
l
o
a
t

p
u
r
i
t
y

=
1
.
0
,

i
n
t

m
i
n
_
p
a
r
t
i
t
i
o
n

=
1
)
;

/
/

c
o
n
s
t
r
u
c
t
o
r

d
e
c
i
s
i
o
n
_
t
r
e
e
&

s
h
o
w
_
t
r
e
e
(
)

{
r
e
t
u
r
n

t
h
e
_
t
r
e
e
;

}
/
/

l
e
t

o
t
h
e
r

o
b
j
e
c
t
s

l
o
o
k

a
t

t
h
e

t
r
e
e

v
o
i
d

b
u
i
l
d
_
c
l
a
s
s
i
f
i
e
r
(
)
;

/
/

r
u
n

t
h
r
o
u
g
h

t
h
e

a
t
t
r
i
b
u
t
e

l
i
s
t
s
,

c
a
l
l
i
n
g

p
o
r
c
e
s
s
_
f
i
l
e
s
(
)

u
n
t
i
l

t
h
e

/
/

t
r
e
e

i
s

b
u
i
l
t

}
;

#
e
n
d
i
f

Im
pl

em
en

ta
tio

n
#
i
n
c
l
u
d
e

"
c
l
a
s
s
i
f
i
e
r
.
h
"

#
i
n
c
l
u
d
e

<
s
t
d
i
o
.
h
>

#
i
n
c
l
u
d
e

<
u
n
i
s
t
d
.
h
>

#
i
n
c
l
u
d
e

<
s
e
t
>

#
i
n
c
l
u
d
e

"
c
o
u
n
t
_
m
a
t
r
i
x
.
h
"

/
* *

C
O
N
S
T
R
U
C
T
O
R

*
/

c
l
a
s
s
i
f
i
e
r
:
:
c
l
a
s
s
i
f
i
e
r
(
m
e
t
a
d
a
t
a
&

m
,

f
l
o
a
t

p
u
r
i
t
y
,

i
n
t

m
i
n
_
p
a
r
t
i
t
i
o
n
)

:
m
d
(
m
)
,

d
e
s
i
r
e
d
_
p
u
r
i
t
y
(
p
u
r
i
t
y
)
,

m
i
n
i
m
u
m
_
s
i
z
e
_
p
a
r
t
i
t
i
o
n
(
m
i
n
_
p
a
r
t
i
t
i
o
n
)

{
l
e
f
t
0
.
o
p
e
n
(
"
l
e
f
t
0
"
,

i
o
s
:
:
i
n
|
i
o
s
:
:
o
u
t
)
;

l
e
f
t
1
.
o
p
e
n
(
"
l
e
f
t
1
"
,

i
o
s
:
:
i
n
|
i
o
s
:
:
o
u
t
)
;

r
i
g
h
t
0
.
o
p
e
n
(
"
r
i
g
h
t
0
"
,

i
o
s
:
:
i
n
|
i
o
s
:
:
o
u
t
)
;

r
i
g
h
t
1
.
o
p
e
n
(
"
r
i
g
h
t
1
"
,

i
o
s
:
:
i
n
|
i
o
s
:
:
o
u
t
)
;

t
h
e
_
g
r
o
w
e
r
.
s
t
a
r
t
(
t
h
e
_
t
r
e
e
)
;

} /
* *

b
u
i
l
d
_
c
l
a
s
s
i
f
e
r
(
)

i
s

t
h
e

‘
m
a
i
n

l
o
o
p
’

o
f

t
h
e

c
l
a
s
s
i
f
i
e
r
.

*
T
o

i
n
i
t
i
a
l
i
s
e

t
h
e

p
r
o
c
e
s
s
,

w
e

c
a
l
c
u
l
a
t
e

a
s
p
l
i
t
-
p
o
i
n
t

o
n

*
l
e
f
t
0
,

g
r
o
w

t
h
e

f
i
r
s
t

l
e
v
e
l

o
f

t
h
e

t
r
e
e
,

a
n
d

p
a
r
t
i
t
i
o
n

l
e
f
t
0

i
n
t
o

*
l
e
f
t
1

a
n
d

r
i
g
h
t
1
.

*
T
h
e
n

w
e

c
a
l
l

p
r
o
c
e
s
s
_
f
i
l
e
s
(
)

u
n
t
i
l

t
h
e

h
i
s
t
o
g
r
a
m

q
u
e
u
e
s

a
r
e

e
m
p
t
y
,

w
h
i
c
h

*
o
n
l
y

h
a
p
p
e
n
s

w
h
e
n

a
l
l

l
e
a
v
e
s

o
f

t
h
e

t
r
e
e

a
r
e

‘
p
u
r
e
’
.

*
/

v
o
i
d

c
l
a
s
s
i
f
i
e
r
:
:
b
u
i
l
d
_
c
l
a
s
s
i
f
i
e
r
(
)

{
i
n
t

t
r
e
e
_
l
e
v
e
l

=
0
;

h
i
s
t
o
g
r
a
m

h
(
m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)
)
;

c
h
a
r

b
u
f
f
e
r
[
M
A
X
S
T
R
I
N
G
]
;

f
l
o
a
t

v
a
l
u
e
;

i
n
t

l
a
b
e
l
;

/
/

g
o

t
h
r
o
u
g
h

l
e
f
t
0

a
n
d

w
o
r
k

o
u
t

h
o
w

m
a
n
y

o
f

e
a
c
h

c
l
a
s
s

l
a
b
e
l

l
e
f
t
0
.
g
e
t
l
i
n
e
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
)
;

l
e
f
t
0
.
g
e
t
l
i
n
e
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
)
;

w
h
i
l
e

(
b
u
f
f
e
r
[
0
]

!
=

’
@
’

&
&

b
u
f
f
e
r
[
0
]

!
=

’
#
’
)

{
s
s
c
a
n
f
(
b
u
f
f
e
r
,

"
%
f

%
d
"
,

&
v
a
l
u
e
,

&
l
a
b
e
l
)
;

172

h
.
i
n
c
r
e
m
e
n
t
_
a
b
o
v
e
(
l
a
b
e
l
)
;

l
e
f
t
0
.
g
e
t
l
i
n
e
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
)
;

}

/
/

r
e
w
i
n
d

l
e
f
t
0
.
s
e
e
k
g
(
i
o
s
:
:
b
e
g
)
;

l
e
f
t
0
.
c
l
e
a
r
(
)
;

/
/

p
u
t

t
h
e

g
e
n
e
r
a
t
e
d

h
i
s
t
o
g
r
a
m

o
n

t
h
e

l
e
f
t
_
h
i
s
t
o
g
r
a
m
s

q
u
e
u
e

l
e
f
t
_
h
i
s
t
o
g
r
a
m
s
.
p
u
s
h
_
b
a
c
k
(
h
)
;

/
/

n
o
w

d
o

a
s
i
n
g
l
e

r
u
n

t
h
r
o
u
g
h

t
h
e

c
a
l
c
/
g
r
o
w
/
p
a
r
t
i
t
i
o
n

c
y
c
l
e

c
a
l
c
u
l
a
t
e
_
s
p
l
i
t
_
p
o
i
n
t
s
(
l
e
f
t
0
,

l
e
f
t
_
h
i
s
t
o
g
r
a
m
s
,

l
e
f
t
_
d
e
c
i
s
i
o
n
s
)
;

t
h
e
_
g
r
o
w
e
r
.
g
r
o
w
(
l
e
f
t
_
d
e
c
i
s
i
o
n
s
.
f
r
o
n
t
(
)
)
;

p
a
r
t
i
t
i
o
n
_
f
i
l
e
s
(
l
e
f
t
0
,

r
i
g
h
t
0
,

l
e
f
t
1
,

r
i
g
h
t
1
)
;

/
/

r
e
w
i
n
d

t
h
e

n
e
w

p
a
r
t
i
t
i
o
n
s
.

T
h
e

o
l
d

o
n
e

i
s

a
l
r
e
a
d
y

r
e
w
o
u
n
d

i
n

t
h
e

/
/

p
a
r
t
i
t
i
o
n
_
f
i
l
e
s

m
e
t
h
o
d

l
e
f
t
1
.
s
e
e
k
p
(
i
o
s
:
:
b
e
g
)
;

l
e
f
t
1
.
s
e
e
k
g
(
i
o
s
:
:
b
e
g
)
;

l
e
f
t
1
.
c
l
e
a
r
(
)
;

r
i
g
h
t
1
.
s
e
e
k
p
(
i
o
s
:
:
b
e
g
)
;
r
i
g
h
t
1
.
s
e
e
k
g
(
i
o
s
:
:
b
e
g
)
;

r
i
g
h
t
1
.
c
l
e
a
r
(
)
;

/
/

n
o
w

w
e

c
a
l
l

p
r
o
c
e
s
s
_
f
i
l
e
s

u
n
t
i
l

o
u
r

h
i
s
t
o
g
r
a
m

q
u
e
u
e
s

a
r
e

e
m
p
t
y

w
h
i
l
e

(
!
l
e
f
t
_
h
i
s
t
o
g
r
a
m
s
.
e
m
p
t
y
(
)

&
&

!
r
i
g
h
t
_
h
i
s
t
o
g
r
a
m
s
.
e
m
p
t
y
(
)

)
p
r
o
c
e
s
s
_
f
i
l
e
s
(
+
+
t
r
e
e
_
l
e
v
e
l
)
;

} v
o
i
d

c
l
a
s
s
i
f
i
e
r
:
:
p
r
o
c
e
s
s
_
f
i
l
e
s
(
i
n
t

t
r
e
e
_
l
e
v
e
l
)

{
/
/

a
s
s
i
g
n

d
i
r
e
c
t
i
o
n

o
f

p
a
r
t
i
t
i
o
n
i
n
g

f
s
t
r
e
a
m
&

f
r
o
m
_
l
e
f
t

=
(
t
r
e
e
_
l
e
v
e
l

%
2
)

?
l
e
f
t
1

:
l
e
f
t
0
;

f
s
t
r
e
a
m
&

f
r
o
m
_
r
i
g
h
t

=
(
t
r
e
e
_
l
e
v
e
l

%
2
)

?
r
i
g
h
t
1

:
r
i
g
h
t
0
;

f
s
t
r
e
a
m
&

t
o
_
l
e
f
t

=
(
t
r
e
e
_
l
e
v
e
l

%
2
)

?
l
e
f
t
0

:
l
e
f
t
1
;

f
s
t
r
e
a
m
&

t
o
_
r
i
g
h
t

=
(
t
r
e
e
_
l
e
v
e
l

%
2
)

?
r
i
g
h
t
0

:
r
i
g
h
t
1
;

/
/

g
o

t
h
r
o
u
g
h

t
h
e

c
a
l
c
/
g
r
o
w
/
p
a
r
t
i
t
i
o
n

c
y
c
l
e

c
a
l
c
u
l
a
t
e
_
s
p
l
i
t
_
p
o
i
n
t
s
(
f
r
o
m
_
l
e
f
t
,

l
e
f
t
_
h
i
s
t
o
g
r
a
m
s
,

l
e
f
t
_
d
e
c
i
s
i
o
n
s
)
;

c
a
l
c
u
l
a
t
e
_
s
p
l
i
t
_
p
o
i
n
t
s
(
f
r
o
m
_
r
i
g
h
t
,

r
i
g
h
t
_
h
i
s
t
o
g
r
a
m
s
,

r
i
g
h
t
_
d
e
c
i
s
i
o
n
s
)
;

g
r
o
w
_
t
r
e
e
_
l
e
v
e
l
(
)
;

p
a
r
t
i
t
i
o
n
_
f
i
l
e
s
(
f
r
o
m
_
l
e
f
t
,

f
r
o
m
_
r
i
g
h
t
,

t
o
_
l
e
f
t
,

t
o
_
r
i
g
h
t
)
;

/
/

w
e

U
S
E
D

t
o

t
r
u
n
c
a
t
e

t
h
e

f
i
l
e
s

s
o

w
e

c
o
u
l
d

v
i
s
u
a
l
l
y

/
/

i
n
s
p
e
c
t

t
h
e
n

l
a
t
e
r
;

C
+
+

w
o
n
’
t

l
e
t

u
s

d
o

t
h
i
s

a
n
y

m
o
r
e
.

/
/
f
t
r
u
n
c
a
t
e
(
t
o
_
l
e
f
t
.
r
d
b
u
f
(
)
-
>
f
d
(
)
,

t
o
_
l
e
f
t
.
t
e
l
l
p
(
)
)
;

/
/
f
t
r
u
n
c
a
t
e
(
t
o
_
r
i
g
h
t
.
r
d
b
u
f
(
)
-
>
f
d
(
)
,

t
o
_
r
i
g
h
t
.
t
e
l
l
p
(
)
)
;

/
/

r
e
w
i
n
d

t
h
e

N
E
W

p
a
r
t
i
t
i
o
n
s

-
/
/

t
h
e

o
l
d

p
a
r
t
i
t
i
o
n
s

a
r
e

a
l
r
e
a
d
y

r
e
w
o
u
n
d
.

t
o
_
l
e
f
t
.
s
e
e
k
p
(
i
o
s
:
:
b
e
g
)
;

t
o
_
l
e
f
t
.
s
e
e
k
g
(
i
o
s
:
:
b
e
g
)
;

t
o
_
l
e
f
t
.
c
l
e
a
r
(
)
;

t
o
_
r
i
g
h
t
.
s
e
e
k
p
(
i
o
s
:
:
b
e
g
)
;

t
o
_
r
i
g
h
t
.
s
e
e
k
g
(
i
o
s
:
:
b
e
g
)
;

t
o
_
r
i
g
h
t
.
c
l
e
a
r
(
)
;

} /
* *

c
a
l
c
u
l
a
t
e
_
s
p
l
i
t
_
p
o
i
n
t
s
(
)

p
a
r
s
e
s

a
f
i
l
e

o
f

p
a
r
t
i
t
i
o
n
s
.

I
t

p
a
r
s
e
s

a
s

m
a
n
y

*
p
a
r
t
i
t
i
o
n
s

a
s

t
h
e
r
e

a
r
e

h
i
s
t
o
g
r
a
m
s

i
n

t
h
e

l
i
s
t

o
f

h
i
s
t
o
g
r
a
m
s

p
a
s
s
e
d

t
o

i
t

*
a
s

a
p
a
r
a
m
e
t
e
r
.

F
o
r

e
a
c
h

p
a
r
t
i
t
i
o
n

i
t

e
i
t
h
e
r

c
a
l
c
u
l
a
t
e
s

t
h
e

b
e
s
t

s
p
l
i
t

*
p
o
i
n
t
,

o
r

i
t

r
e
g
i
s
t
e
r
s

t
h
a
t

t
h
e

p
a
r
t
i
t
i
o
n

i
s

p
u
r
e
.

I
n

e
i
t
h
e
r

c
a
s
e
,

i
t

f
o
r
m
s

*
t
h
e

a
p
p
r
o
p
r
i
a
t
e

d
e
c
i
s
i
o
n

a
n
d

p
l
a
c
e
s

i
t

i
n

t
h
e

d
e
c
i
s
i
o
n
s

l
i
s
t
.

*
/

v
o
i
d

c
l
a
s
s
i
f
i
e
r
:
:
c
a
l
c
u
l
a
t
e
_
s
p
l
i
t
_
p
o
i
n
t
s
(
f
s
t
r
e
a
m
&

f
r
o
m
,

l
i
s
t
<
h
i
s
t
o
g
r
a
m
>
&

h
i
s
t
o
g
r
a
m
s
,

l
i
s
t
<
d
e
c
i
s
i
o
n
>
&

d
e
c
i
s
i
o
n
s
)

{
c
h
a
r

b
u
f
f
e
r
[
M
A
X
S
T
R
I
N
G
]
;

d
e
c
i
s
i
o
n

d
;

i
n
t

p
u
r
i
t
y
;

i
n
t

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

=
0
;

f
l
o
a
t

v
a
l
u
e
,

p
r
e
v
i
o
u
s
_
v
a
l
u
e
;

i
n
t

l
a
b
e
l
,

c
a
t
e
g
o
r
y
;

f
l
o
a
t

s
m
a
l
l
e
s
t
_
g
i
n
i

=
1
0
0
.
0
;

f
l
o
a
t

c
u
r
r
e
n
t
_
g
i
n
i
;

i
n
t

c
u
r
r
e
n
t
_
o
r
d
e
r
;

i
n
t

c
o
u
n
t
;

c
o
u
n
t
_
m
a
t
r
i
x

c
m
;

c
e
r
r

<
<

"
c
a
l
c
u
l
a
t
i
n
g

s
p
l
i
t

p
o
i
n
t
s
"

<
<

e
n
d
l
;

w
h
i
l
e

(
!
h
i
s
t
o
g
r
a
m
s
.
e
m
p
t
y
(
)
)

{
/
/

c
h
e
c
k

h
i
s
t
o
g
r
a
m

f
o
r

p
u
r
i
t
y
.

I
f

p
u
r
e
,

m
a
r
k

i
n

d
e
c
i
s
i
o
n

a
n
d

m
o
v
e

o
n

/
/

t
o

n
e
x
t

p
a
r
t
i
t
i
o
n
.

p
u
r
i
t
y

=
h
i
s
t
o
g
r
a
m
s
.
f
r
o
n
t
(
)
.
i
s
_
p
u
r
e
(
d
e
s
i
r
e
d
_
p
u
r
i
t
y
,

m
i
n
i
m
u
m
_
s
i
z
e
_
p
a
r
t
i
t
i
o
n
)
;

i
f

(
p
u
r
i
t
y
)

{
c
e
r
r

<
<

"
n
o

s
p
l
i
t
:

p
u
r
e

n
o
d
e

"
<
<

e
n
d
l
;

d
.
s
e
t
_
p
u
r
e
(
p
u
r
i
t
y
)
;

d
o
f
r
o
m
.
g
e
t
l
i
n
e
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
)
;

w
h
i
l
e

(
b
u
f
f
e
r
[
0
]

!
=

’
#
’
)
;

}
e
l
s
e

{
/
/

f
i
r
s
t

r
e
a
d

f
r
o
m
.
g
e
t
l
i
n
e
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
)
;

w
h
i
l
e

(
b
u
f
f
e
r
[
0
]

!
=

’
#
’
)

{
i
f

(
b
u
f
f
e
r
[
0
]

=
=

’
@
’
)

/
/

s
t
a
r
t

o
f

n
e
w

a
t
t
r
i
b
u
t
e

{
/
/

w
e

o
n
l
y

d
o

a
’
s
w
a
p
’

i
f

w
e

a
r
e
n
’
t

a
b
o
u
t

t
o

s
e
e

/
/

t
h
e

f
i
r
s
t

a
t
t
r
i
b
u
t
e
.

i
f

(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
)

h
i
s
t
o
g
r
a
m
s
.
f
r
o
n
t
(
)
.
s
w
a
p
(
)
;

+
+
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
;

c
u
r
r
e
n
t
_
o
r
d
e
r

=
m
d
.
s
h
o
w
_
o
r
d
e
r
(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
)
;

i
f

(
c
u
r
r
e
n
t
_
o
r
d
e
r
)

c
m
.
r
e
s
e
t
(
c
u
r
r
e
n
t
_
o
r
d
e
r
,

m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)
)
;

c
o
u
n
t

=
0
;

}
e
l
s
e

/
/

r
e
g
u
l
a
r

l
i
n
e

o
f

p
a
r
t
i
t
i
o
n

{
c
e
r
r

<
<

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

<
<

"
"

<
<

+
+
c
o
u
n
t

<
<

’
\
r
’
;

i
f

(
!
c
u
r
r
e
n
t
_
o
r
d
e
r
)

/
/
n
u
m
e
r
i
c

a
t
t
r
i
b
u
t
e

{
p
r
e
v
i
o
u
s
_
v
a
l
u
e

=
v
a
l
u
e
;

s
s
c
a
n
f
(
b
u
f
f
e
r
,

"
%
f

%
d
"
,

&
v
a
l
u
e
,

&
l
a
b
e
l
)
;

}
e
l
s
e
{

s
s
c
a
n
f
(
b
u
f
f
e
r
,

"
%
d

%
d
"
,

&
c
a
t
e
g
o
r
y
,

&
l
a
b
e
l
)
;

}

173

/
/

i
f

t
h
i
s

i
s

a
n
u
m
e
r
i
c

a
t
t
r
i
b
u
t
e
,

m
a
k
e

s
u
r
e

i
t

h
a
s

c
h
a
n
g
e
d

/
/

s
i
n
c
e

t
h
e

l
a
s
t

o
n
e
,

a
n
d

i
f

s
o

c
a
l
c
u
l
a
t
e

i
t
s

g
i
n
i
.

i
f

(
!
c
u
r
r
e
n
t
_
o
r
d
e
r

&
&

c
o
u
n
t

!
=

1
&
&

p
r
e
v
i
o
u
s
_
v
a
l
u
e

!
=

v
a
l
u
e
)

{
c
u
r
r
e
n
t
_
g
i
n
i

=
h
i
s
t
o
g
r
a
m
s
.
f
r
o
n
t
(
)
.
g
i
n
i
(
)
;

i
f

(
c
u
r
r
e
n
t
_
g
i
n
i

<
s
m
a
l
l
e
s
t
_
g
i
n
i
)

{
s
m
a
l
l
e
s
t
_
g
i
n
i

=
c
u
r
r
e
n
t
_
g
i
n
i
;

d
.
s
e
t
_
a
t
t
r
i
b
u
t
e
(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
)
;

d
.
s
e
t
_
t
h
r
e
s
h
o
l
d
(
v
a
l
u
e
)
;

}
}

/
/

e
l
s
e

i
f

t
h
e

n
e
x
t

c
h
a
r
a
c
t
e
r

i
s

a
’
#
’

o
r

a
n

’
@
’

A
N
D

/
/

t
h
i
s

i
s

a
c
a
t
e
g
o
r
i
c
a
l

a
t
t
r
i
b
u
t
e
,

c
a
l
c
u
l
a
t
e

i
t
s

b
e
s
t
_
g
i
n
i

e
l
s
e

i
f

(
c
u
r
r
e
n
t
_
o
r
d
e
r
)

{
c
m
.
i
n
c
r
e
m
e
n
t
(
c
a
t
e
g
o
r
y
,

l
a
b
e
l
)
;

i
f

(
f
r
o
m
.
p
e
e
k
(
)

=
=

’
#
’

|
|

f
r
o
m
.
p
e
e
k
(
)

=
=

’
@
’
)

{
i
n
t

c
a
n
d
i
d
a
t
e
_
s
u
b
s
e
t

=
c
m
.
b
e
s
t
_
g
i
n
i
(
c
u
r
r
e
n
t
_
g
i
n
i
)
;

i
f

(
c
u
r
r
e
n
t
_
g
i
n
i

<
s
m
a
l
l
e
s
t
_
g
i
n
i
)

{
s
m
a
l
l
e
s
t
_
g
i
n
i

=
c
u
r
r
e
n
t
_
g
i
n
i
;

d
.
s
e
t
_
a
t
t
r
i
b
u
t
e
(
w
h
i
c
h
_
a
t
t
r
i
b
u
t
e
)
;

d
.
s
e
t
_
s
u
b
s
e
t
(
c
a
n
d
i
d
a
t
e
_
s
u
b
s
e
t
)
;

}
}

}
/
/

u
p
d
a
t
e

t
h
e

h
i
s
t
o
g
r
a
m

h
i
s
t
o
g
r
a
m
s
.
f
r
o
n
t
(
)
.
u
p
d
a
t
e
(
l
a
b
e
l
)
;

}
/
/

s
e
c
o
n
d

r
e
a
d

f
r
o
m
.
g
e
t
l
i
n
e
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
)
;

}
}

/
/

d
o

a
n

e
n
d
-
o
f
-
p
a
r
t
i
t
i
o
n

t
i
d
y
u
p

d
.
s
e
t
_
h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
(
h
i
s
t
o
g
r
a
m
s
.
f
r
o
n
t
(
)
.
s
h
o
w
_
h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
(
)
)
;

d
.
s
e
t
_
h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s
(
h
i
s
t
o
g
r
a
m
s
.
f
r
o
n
t
(
)
.
s
h
o
w
_
t
o
t
a
l
_
i
t
e
m
s
(
)
)
;

d
.
s
e
t
_
p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
(
h
i
s
t
o
g
r
a
m
s
.
f
r
o
n
t
(
)
.
p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
(
)
)
;

c
e
r
r

<
<

"
p
o
i
n
t

c
a
l
c
u
l
a
t
e
d
:

"
<
<

d
.
t
o
_
s
t
r
i
n
g
(
m
d
)

<
<

e
n
d
l
;

d
e
c
i
s
i
o
n
s
.
p
u
s
h
_
b
a
c
k
(
d
)
;

w
h
i
c
h
_
a
t
t
r
i
b
u
t
e

=
0
;

d
.
s
e
t
_
p
u
r
e
(
0
)
;

h
i
s
t
o
g
r
a
m
s
.
p
o
p
_
f
r
o
n
t
(
)
;

s
m
a
l
l
e
s
t
_
g
i
n
i

=
1
0
0
;

c
o
u
n
t

=
0
;

}
/
/

w
h
i
l
e

h
i
s
t
o
g
r
a
m
s
.
e
m
p
t
y
(
)

/
/

r
e
w
i
n
d

i
n
p
u
t

f
i
l
e

f
r
o
m
.
s
e
e
k
p
(
i
o
s
:
:
b
e
g
)
,

f
r
o
m
.
s
e
e
k
g
(
i
o
s
:
:
b
e
g
)
;

f
r
o
m
.
c
l
e
a
r
(
)
;

} /
* *

g
r
o
w
_
t
r
e
e
_
l
e
v
e
l
(
)

p
e
e
k
s

t
h
r
o
u
g
h

e
a
c
h

d
e
c
i
s
i
o
n

q
u
e
u
e

a
n
d

b
u
i
l
d
s

a
d
e
c
i
s
i
o
n

*
t
r
e
e

a
c
c
o
r
d
i
n
g

t
o

t
h
e

q
u
e
u
e
s
.

I
t

s
h
o
u
l
d

b
e

c
a
l
l
e
d

i
n

b
e
t
w
e
e
n

c
a
l
l
s

t
o

*
c
a
l
c
u
l
a
t
e
_
s
p
l
i
t
_
p
o
i
n
t
s
(
)

a
n
d

p
a
r
t
i
t
i
o
n
_
f
i
l
e
s
(
)
.

*
/

v
o
i
d

c
l
a
s
s
i
f
i
e
r
:
:
g
r
o
w
_
t
r
e
e
_
l
e
v
e
l
(
)

{
l
i
s
t
<
d
e
c
i
s
i
o
n
>
:
:
i
t
e
r
a
t
o
r

l
e
f
t
(
l
e
f
t
_
d
e
c
i
s
i
o
n
s
.
b
e
g
i
n
(
)
)
;

l
i
s
t
<
d
e
c
i
s
i
o
n
>
:
:
i
t
e
r
a
t
o
r

r
i
g
h
t
(
r
i
g
h
t
_
d
e
c
i
s
i
o
n
s
.
b
e
g
i
n
(
)
)
;

w
h
i
l
e

(
l
e
f
t

!
=

l
e
f
t
_
d
e
c
i
s
i
o
n
s
.
e
n
d
(
)
)

{
t
h
e
_
g
r
o
w
e
r
.
g
r
o
w
(
*
l
e
f
t
+
+
)
;

t
h
e
_
g
r
o
w
e
r
.
g
r
o
w
(
*
r
i
g
h
t
+
+
)
;

}
} /
* *

p
a
r
t
i
t
i
o
n
_
f
i
l
e
s
(
)

s
p
l
i
t
s

f
i
l
e
s

b
a
s
e
d

o
n

t
h
e

q
u
e
u
e

o
f

d
e
c
i
s
i
o
n
s

p
a
s
s
e
d

*
a
s

a
p
a
r
a
m
e
t
e
r
.

*
/

v
o
i
d

c
l
a
s
s
i
f
i
e
r
:
:
p
a
r
t
i
t
i
o
n
_
f
i
l
e
s
(
f
s
t
r
e
a
m
&

f
r
o
m
_
l
e
f
t
,

f
s
t
r
e
a
m
&

f
r
o
m
_
r
i
g
h
t
,

f
s
t
r
e
a
m
&

t
o
_
l
e
f
t
,

f
s
t
r
e
a
m
&

t
o
_
r
i
g
h
t
)

{
s
t
r
e
a
m
p
o
s

p
o
s
;

i
n
t

p
r
o
g
r
e
s
s

=
0
;

c
h
a
r

b
u
f
f
e
r
[
M
A
X
S
T
R
I
N
G
]
;

f
l
o
a
t

v
a
l
u
e
;

i
n
t

l
a
b
e
l
,

r
o
w
;

i
n
t

c
a
t
e
g
o
r
y
;

i
n
t

o
r
d
e
r
;

l
i
s
t
<
d
e
c
i
s
i
o
n
>

*
d
e
c
i
s
i
o
n
s

=
&
l
e
f
t
_
d
e
c
i
s
i
o
n
s
;

l
i
s
t
<
d
e
c
i
s
i
o
n
>

*
n
e
x
t
_
d
e
c
i
s
i
o
n
s

=
&
r
i
g
h
t
_
d
e
c
i
s
i
o
n
s
;

f
s
t
r
e
a
m

*
f
r
o
m

=
&
f
r
o
m
_
l
e
f
t
;

f
s
t
r
e
a
m

*
n
e
x
t
_
f
r
o
m

=
&
f
r
o
m
_
r
i
g
h
t
;

c
e
r
r

<
<

"
p
a
r
t
i
t
i
o
n
i
n
g

f
i
l
e
s
"

<
<

e
n
d
l
;

d
o
{

p
o
s

=
(
*
f
r
o
m
)
.
t
e
l
l
g
(
)
;

p
r
o
g
r
e
s
s

=
0
;

i
f

(
(
*
d
e
c
i
s
i
o
n
s
)
.
f
r
o
n
t
(
)
.
i
s
_
p
u
r
e
(
)
)

{
c
e
r
r

<
<

"
n
o

p
a
r
t
i
t
i
o
n
:

p
u
r
e

n
o
d
e

"
<
<

e
n
d
l
;

d
o
(
*
f
r
o
m
)
.
g
e
t
l
i
n
e
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
)
;

w
h
i
l
e

(
b
u
f
f
e
r
[
0
]

!
=

’
#
’
)
;

}
e
l
s
e

{
c
e
r
r

<
<

"
s
p
l
i
t
t
i
n
g

o
n

"
<
<

(
*
d
e
c
i
s
i
o
n
s
)
.
f
r
o
n
t
(
)
.
t
o
_
s
t
r
i
n
g
(
m
d
)

<
<

e
n
d
l
;

/
/

f
i
n
d

t
h
e

a
p
p
r
o
p
r
i
a
t
e

a
t
t
r
i
b
u
t
e
,

b
u
i
l
d

a
p
r
o
b
e

a
n
d

t
h
e

t
w
o

n
e
w

/
/

h
i
s
t
o
g
r
a
m
s
.

s
e
t
<
i
n
t
,
l
e
s
s
<
i
n
t
>

>
t
h
e
_
p
r
o
b
e
;

h
i
s
t
o
g
r
a
m

r
h
(
m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)
)
;

h
i
s
t
o
g
r
a
m

l
h
(
m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)
)
;

f
o
r

(
i
n
t

i
=

0
;

i
<

(
*
d
e
c
i
s
i
o
n
s
)
.
f
r
o
n
t
(
)
.
s
h
o
w
_
a
t
t
r
i
b
u
t
e
(
)
;

i
+
+
)

{
d
o

(
*
f
r
o
m
)
.
g
e
t
l
i
n
e
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
)
;

w
h
i
l
e

(
b
u
f
f
e
r
[
0
]

!
=

’
@
’
)
;

}

/
/

o
n
e

m
o
r
e

t
o

g
e
t

t
o

a
r
o
w

o
f

d
a
t
a

(
*
f
r
o
m
)
.
g
e
t
l
i
n
e
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
)
;

i
f

(
m
d
.
s
h
o
w
_
o
r
d
e
r
(
(
*
d
e
c
i
s
i
o
n
s
)
.
f
r
o
n
t
(
)
.
s
h
o
w
_
a
t
t
r
i
b
u
t
e
(
)
)
)

174

/
/

w
e

h
a
v
e

a
c
a
t
e
g
o
r
i
c
a
l

a
t
t
r
i
b
u
t
e

{
i
n
t

s
u
b
s
e
t
,

p
r
e
v
i
o
u
s
_
c
a
t
e
g
o
r
y

=
0
;

s
s
c
a
n
f
(
b
u
f
f
e
r
,

"
%
d

%
d

%
d
"
,

&
c
a
t
e
g
o
r
y
,

&
l
a
b
e
l
,

&
r
o
w
)
;

w
h
i
l
e

(
(
b
u
f
f
e
r
[
0
]

!
=

’
#
’
)

&
&

(
b
u
f
f
e
r
[
0
]

!
=

’
@
’
)
)

{
/
/

i
f

t
h
e

c
a
t
e
g
o
r
y

i
s

‘
i
n
’

t
h
e

s
u
b
s
e
t
,

p
u
t

i
t

i
n

t
h
e

/
/

p
r
o
b
e

a
n
d

i
n
c
r
e
m
e
n
t

t
h
e

l
e
f
t

h
i
s
t
o
g
r
a
m
,

o
t
h
e
r
w
i
s
e

/
/

j
u
s
t

i
n
c
r
e
m
e
n
t

t
h
e

r
i
g
h
t

h
i
s
t
o
g
r
a
m
.

i
f

(
c
a
t
e
g
o
r
y

!
=

p
r
e
v
i
o
u
s
_
c
a
t
e
g
o
r
y
)

{
s
u
b
s
e
t

=
(
*
d
e
c
i
s
i
o
n
s
)
.
f
r
o
n
t
(
)
.
s
h
o
w
_
s
u
b
s
e
t
(
)
;

f
o
r

(
i
n
t

i
=

1
;

i
<

c
a
t
e
g
o
r
y
;

i
+
+
)

s
u
b
s
e
t

/
=

2
;

}
i
f

(
s
u
b
s
e
t

%
2

=
=

1
)

{
t
h
e
_
p
r
o
b
e
.
i
n
s
e
r
t
(
r
o
w
)
;

l
h
.
i
n
c
r
e
m
e
n
t
_
a
b
o
v
e
(
l
a
b
e
l
)
;

}
e
l
s
e
{

r
h
.
i
n
c
r
e
m
e
n
t
_
a
b
o
v
e
(
l
a
b
e
l
)
;

}
p
r
e
v
i
o
u
s
_
c
a
t
e
g
o
r
y

=
c
a
t
e
g
o
r
y
;

(
*
f
r
o
m
)
.
g
e
t
l
i
n
e
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
)
;

s
s
c
a
n
f
(
b
u
f
f
e
r
,

"
%
d

%
d

%
d
"
,

&
c
a
t
e
g
o
r
y
,

&
l
a
b
e
l
,

&
r
o
w
)
;

}
}

e
l
s
e

/
/

w
e

h
a
v
e

a
n
u
m
e
r
i
c
a
l

a
t
t
r
i
b
u
t
e

{
s
s
c
a
n
f
(
b
u
f
f
e
r
,

"
%
f

%
d

%
d
"
,

&
v
a
l
u
e
,

&
l
a
b
e
l
,

&
r
o
w
)
;

w
h
i
l
e

(
b
u
f
f
e
r
[
0
]

!
=

’
#
’

&
&

b
u
f
f
e
r
[
0
]

!
=

’
@
’
)

{
i
f

(
v
a
l
u
e

<
(
*
d
e
c
i
s
i
o
n
s
)
.
f
r
o
n
t
(
)
.
s
h
o
w
_
t
h
r
e
s
h
o
l
d
(
)
)

{
t
h
e
_
p
r
o
b
e
.
i
n
s
e
r
t
(
r
o
w
)
;

l
h
.
i
n
c
r
e
m
e
n
t
_
a
b
o
v
e
(
l
a
b
e
l
)
;

}
e
l
s
e
{

r
h
.
i
n
c
r
e
m
e
n
t
_
a
b
o
v
e
(
l
a
b
e
l
)
;

}
(
*
f
r
o
m
)
.
g
e
t
l
i
n
e
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
)
;

s
s
c
a
n
f
(
b
u
f
f
e
r
,

"
%
f

%
d

%
d
"
,

&
v
a
l
u
e
,

&
l
a
b
e
l
,

&
r
o
w
)
;

}
}

l
e
f
t
_
h
i
s
t
o
g
r
a
m
s
.
p
u
s
h
_
b
a
c
k
(
l
h
)
;

r
i
g
h
t
_
h
i
s
t
o
g
r
a
m
s
.
p
u
s
h
_
b
a
c
k
(
r
h
)
;

/
/

g
o

b
a
c
k

t
o

t
h
e

s
t
a
r
t

o
f

t
h
e

p
a
r
t
i
t
i
o
n

(
*
f
r
o
m
)
.
s
e
e
k
g
(
p
o
s
)
;

/
/

n
o
w

p
a
r
t
i
t
i
o
n

a
c
c
o
r
d
i
n
g

t
o

t
h
e

p
r
o
b
e

d
o

{ c
e
r
r

<
<

+
+
p
r
o
g
r
e
s
s

<
<

"
\
r
"
;

(
*
f
r
o
m
)
.
g
e
t
l
i
n
e
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
)
;

i
f

(
(
b
u
f
f
e
r
[
0
]

=
=

’
@
’
)

|
|

(
b
u
f
f
e
r
[
0
]

=
=

’
#
’
)
)

{

t
o
_
l
e
f
t

<
<

b
u
f
f
e
r

<
<

e
n
d
l
;

t
o
_
r
i
g
h
t

<
<

b
u
f
f
e
r

<
<

e
n
d
l
;

}
e
l
s
e

{ s
s
c
a
n
f
(
b
u
f
f
e
r
,

"
%
f

%
d

%
d
"
,

&
v
a
l
u
e
,

&
l
a
b
e
l
,

&
r
o
w
)
;

i
f

(
t
h
e
_
p
r
o
b
e
.
f
i
n
d
(
r
o
w
)

!
=

t
h
e
_
p
r
o
b
e
.
e
n
d
(
)
)

t
o
_
l
e
f
t

<
<

b
u
f
f
e
r

<
<

e
n
d
l
;

e
l
s
e

t
o
_
r
i
g
h
t

<
<

b
u
f
f
e
r

<
<

e
n
d
l
;

}
}

w
h
i
l
e

(
b
u
f
f
e
r
[
0
]

!
=

’
#
’
)
;

}
/
/

p
o
p

t
h
e

d
e
c
i
s
i
o
n
s

q
u
e
u
e

(
*
d
e
c
i
s
i
o
n
s
)
.
p
o
p
_
f
r
o
n
t
(
)
;

/
/

s
w
a
p

t
h
e

f
i
l
e

a
n
d

d
e
c
i
s
i
o
n
s

q
u
e
u
e

f
o
r

t
h
e

n
e
x
t

r
u
n

l
i
s
t
<
d
e
c
i
s
i
o
n
>
*
t
e
m
p
_
d

=
d
e
c
i
s
i
o
n
s
;

d
e
c
i
s
i
o
n
s

=
n
e
x
t
_
d
e
c
i
s
i
o
n
s
;

n
e
x
t
_
d
e
c
i
s
i
o
n
s

=
t
e
m
p
_
d
;

f
s
t
r
e
a
m

*
t
e
m
p
_
f

=
f
r
o
m
;

f
r
o
m

=
n
e
x
t
_
f
r
o
m
;

n
e
x
t
_
f
r
o
m

=
t
e
m
p
_
f
;

}
w
h
i
l
e

(
!
r
i
g
h
t
_
d
e
c
i
s
i
o
n
s
.
e
m
p
t
y
(
)
)
;

/
/
r
e
w
i
n
d

t
h
e

i
n
p
u
t

f
i
l
e
s

f
r
o
m
_
l
e
f
t
.
s
e
e
k
p
(
i
o
s
:
:
b
e
g
)
,

f
r
o
m
_
l
e
f
t
.
s
e
e
k
g
(
i
o
s
:
:
b
e
g
)
;

f
r
o
m
_
l
e
f
t
.
c
l
e
a
r
(
)
;

f
r
o
m
_
r
i
g
h
t
.
s
e
e
k
p
(
i
o
s
:
:
b
e
g
)
,

f
r
o
m
_
r
i
g
h
t
.
s
e
e
k
g
(
i
o
s
:
:
b
e
g
)
;

f
r
o
m
_
r
i
g
h
t
.
c
l
e
a
r
(
)
;

} A
.1

.9
r
a
c
e

BA
SH

sc
ri

pt
da

ta
ba

se
pr

ep
ro

ce
ss

or
#
!
/
b
i
n
/
s
h

#
T
h
i
s

i
s

t
h
e

p
r
e
p
r
o
c
e
s
o
r

f
o
r

r
a
c
e
.

#
I
n
p
u
t
:

a
d
a
t
a
b
a
s
e

w
i
t
h

n
o

m
i
s
s
i
g
n

a
t
t
r
i
b
u
t
e
s
,

e
a
c
h

r
o
w

i
n

t
h
e

f
o
r
m

#
a

b
c

d
.
.
.

x
#

w
h
e
r
e

x
i
s

a
c
l
a
s
s

l
a
b
e
l
.

#
O
u
t
p
u
t
:

a
s
e
t

o
f

a
t
t
r
i
b
u
t
e

l
i
s
t
s
;

e
a
c
h

r
o
w

i
n

t
h
e

f
o
r
m

#
a
t
t
r
i
b
u
t
e

c
l
a
s
s
_
l
a
b
e
l

r
o
w
_
n
u
m
b
e
r

#
s
o
r
t
e
d

b
y

a
t
t
r
i
b
u
t
e
.

E
a
c
h

a
t
t
r
i
b
u
t
e

i
s

s
e
p
a
r
a
t
e
d

b
y

"
@
a
t
t
n
"

w
h
e
r
e

#
n

i
s

t
h
e

a
t
t
r
i
b
u
t
e

n
u
m
b
e
r
.

T
h
e

f
i
l
e

i
s

e
n
d
e
d

w
i
t
h

a
"
#
"
.

S
E
C
O
N
D
S
=
0
;

r
m

-
r
f

a
t
t
*
;

a
w
k

’ B
E
G
I
N

{
O
R
S
=
"
"
;

p
r
i
n
t

"
p
r
o
c
e
s
s
i
n
g

r
o
w
:
\
n
"

>
"
/
d
e
v
/
s
t
d
e
r
r
"

}
{

p
r
i
n
t

N
R

"
\
r
"

>
"
/
d
e
v
/
s
t
d
e
r
r
"

f
o
r

(
i

=
1
;

i
<

N
F
;

i
+
+
)

p
r
i
n
t

$
i

"
\
t
"

$
N
F

"
\
t
"

N
R

"
\
n
"

>
"
a
t
t
"
i
;

} E
N
D

{
p
r
i
n
t

"
\
n
"

>
"
/
d
e
v
/
s
t
d
e
r
r
"

}
’

$
1

175

r
m

-
r
f

l
e
f
t
0

l
e
f
t
1

r
i
g
h
t
0

r
i
g
h
t
1
;

t
o
u
c
h

l
e
f
t
0

l
e
f
t
1

r
i
g
h
t
0

r
i
g
h
t
1
;

f
o
r

a
t
t
r
i
b
u
t
e

i
n

‘
/
b
i
n
/
l
s

a
t
t
*

|
s
o
r
t

-
n

+
0
.
3
‘
;

d
o

e
c
h
o

-
n
e

"
s
o
r
t
i
n
g

"
$
a
t
t
r
i
b
u
t
e

"
\
r
"

>
/
d
e
v
/
s
t
d
e
r
r

e
c
h
o

"
@
"
$
a
t
t
r
i
b
u
t
e

>
>

l
e
f
t
0
;

s
o
r
t

-
n

$
a
t
t
r
i
b
u
t
e

>
>

l
e
f
t
0
;

d
o
n
e
;

e
c
h
o

"
#
"

>
>

l
e
f
t
0

e
c
h
o

-
n
e

"
\
n
"

>
/
d
e
v
/
s
t
d
e
r
r

e
c
h
o

"
p
r
e
p
r
o
c
e
s
s
i
n
g

d
o
n
e
:

"
$
S
E
C
O
N
D
S

"
s
e
c
o
n
d
s

e
l
a
p
s
e
d
"
>

/
d
e
v
/
s
t
d
e
r
r

r
m

-
r
f

a
t
t
*
;

T
he

r
a
c
e

pr
og

ra
m

#
i
n
c
l
u
d
e

<
i
o
s
t
r
e
a
m
>

#
i
n
c
l
u
d
e

"
c
o
n
f
i
g
.
h
"

#
i
n
c
l
u
d
e

"
c
l
a
s
s
i
f
i
e
r
.
h
"

#
i
n
c
l
u
d
e

<
u
n
i
s
t
d
.
h
>

v
o
i
d

u
s
a
g
e
(
)

{
c
e
r
r

<
<

"
u
s
a
g
e
:

r
a
c
e

[
-
h
]
[
-
m

<
m
i
n
i
m
u
m

p
a
r
t
i
t
i
o
n

s
i
z
e
>
]
[
-
p

<
p
u
r
i
t
y
>
]

"
<
<

"
<
c
o
n
f
i
g

f
i
l
e
>

<
d
a
t
a
b
a
s
e

f
i
l
e
>
"

<
<

e
n
d
l
;

} v
o
i
d

h
e
l
p
(
)

{
c
e
r
r

<
<

"
o
p
t
i
o
n
s
:

-
h
:

t
h
i
s

h
e
l
p
"

<
<

e
n
d
l

<
<

"
-
m

m
i
n
_
s
i
z
e

(
i
n
t
e
g
e
r
)
:

d
o
n
’
t

l
e
t

p
a
r
t
i
t
i
o
n
s

g
e
t
"

<
<

"
s
m
a
l
l
e
r

t
h
a
n

<
m
i
n
_
s
i
z
e
>
"

<
<

e
n
d
l

<
<

"
-
p

p
u
r
i
t
y

(
f
l
o
a
t
)
:

a
p
a
r
t
i
t
i
o
n

i
s

p
u
r
e

w
h
e
n

<
p
u
r
i
t
y
>
"

<
<

"
o
f

i
t
s

m
e
m
b
e
r
s

a
r
e
\
n

o
f

a
c
e
r
t
a
i
n

"
<
<

"
c
l
a
s
s

(
0
.
0

<
p
u
r
i
t
y

<
=

1
.
0
>
"

<
<

e
n
d
l
;

} i
n
t

m
a
i
n
(
i
n
t

a
r
g
c
,

c
h
a
r
*
a
r
g
v
[
]
)

{

/
/

o
p
t
i
o
n

p
r
o
c
e
s
s
i
n
g

f
l
o
a
t

d
e
s
i
r
e
d
_
p
u
r
i
t
y

=
1
.
0
;

i
n
t

m
i
n
i
m
u
m
_
s
i
z
e
_
p
a
r
t
i
t
i
o
n

=
1
;

c
h
a
r

o
p
t
i
o
n

=
g
e
t
o
p
t
(
a
r
g
c
,

a
r
g
v
,

"
h
m
:
p
:
"
)
;

w
h
i
l
e

(
o
p
t
i
o
n

!
=

E
O
F
)

{
s
w
i
t
c
h

(
o
p
t
i
o
n
)

{
c
a
s
e

’
h
’

:
u
s
a
g
e
(
)
;

h
e
l
p
(
)
;

e
x
i
t
(
0
)
;
c
a
s
e

’
m
’

:
m
i
n
i
m
u
m
_
s
i
z
e
_
p
a
r
t
i
t
i
o
n

=
a
t
o
i
(
o
p
t
a
r
g
)
;

i
f

(
m
i
n
i
m
u
m
_
s
i
z
e
_
p
a
r
t
i
t
i
o
n

<
1
)

F
A
T
A
L
(
"
M
i
n
i
m
u
m

s
i
z
e

o
f

p
a
r
t
i
t
i
o
n
s

c
a
n
n
o
t

b
e

<
1
"
)
;

b
r
e
a
k
;
c
a
s
e

’
p
’

:

d
e
s
i
r
e
d
_
p
u
r
i
t
y

=
a
t
o
f
(
o
p
t
a
r
g
)
;

i
f

(
d
e
s
i
r
e
d
_
p
u
r
i
t
y

<
0

|
|

d
e
s
i
r
e
d
_
p
u
r
i
t
y

>
1
)

F
A
T
A
L
(
"
P
u
r
i
t
y

m
u
s
t

b
e

b
e
t
w
e
e
n

0
.
0

a
n
d

1
.
0
"
)
;

b
r
e
a
k
;
} o
p
t
i
o
n

=
g
e
t
o
p
t
(
a
r
g
c
,

a
r
g
v
,

"
h
m
:
p
:
"
)
;

}

/
/

f
a
t
a
l

e
r
r
o
r

i
f

t
h
e
r
e

a
r
e
n
’
t

t
w
o

f
i
l
e
s

o
n

t
h
e

c
o
m
m
a
n
d

l
i
n
e

i
f

(
a
r
g
c

-
o
p
t
i
n
d

!
=

2
)

F
A
T
A
L
(
"
r
a
c
e
:

m
u
s
t

s
p
e
c
i
f
y

2
f
i
l
e
s
-
-
-
c
o
n
f
i
g

f
i
l
e

+
d
a
t
a
b
a
s
e

f
i
l
e
"
)
;

/
/

r
u
n

t
h
e

p
r
e
s
p
r
i
n
t

s
c
r
i
p
t
.

s
t
r
i
n
g

s
=

"
p
r
e
s
p
r
i
n
t

"
;

s
+
=

a
r
g
v
[
o
p
t
i
n
d

+
1
]
;

s
y
s
t
e
m
(
s
.
d
a
t
a
(
)
)
;

/
/

p
i
c
k

u
p

t
h
e

m
e
t
a
d
a
t
a

s
p
e
c
i
f
i
e
d

o
n

t
h
e

c
o
m
m
a
n
d

l
i
n
e

m
e
t
a
d
a
t
a

m
d
(
a
r
g
v
[
o
p
t
i
n
d
]
)
;

/
/

n
o
w

i
n
i
t
i
a
l
i
s
e

a
c
l
a
s
s
i
f
i
e
r

o
b
j
e
c
t
,

r
u
n

i
t

a
n
d

s
e
n
d

t
h
e

t
r
e
e

t
o

s
t
d
o
u
t

c
l
a
s
s
i
f
i
e
r

c
(
m
d
,

d
e
s
i
r
e
d
_
p
u
r
i
t
y
,

m
i
n
i
m
u
m
_
s
i
z
e
_
p
a
r
t
i
t
i
o
n
)
;

c
.
b
u
i
l
d
_
c
l
a
s
s
i
f
i
e
r
(
)
;

c
o
u
t

<
<

c
.
s
h
o
w
_
t
r
e
e
(
)
.
t
o
_
s
t
r
i
n
g
(
m
d
)
;

} A
.2

T
he

p
r
u
n
e
r

Pr
og

ra
m

Sp
ec

ifi
ca

tio
n

/
/
-
*
-
c
+
+
-
*
-

#
i
f
n
d
e
f

P
R
U
N
E
R
_
H

#
d
e
f
i
n
e

P
R
U
N
E
R
_
H

#
i
n
c
l
u
d
e

"
d
e
c
i
s
i
o
n
_
t
r
e
e
.
h
"

c
l
a
s
s

p
r
u
n
a
b
l
e
_
t
r
e
e

:
p
u
b
l
i
c

d
e
c
i
s
i
o
n
_
t
r
e
e
{

p
r
i
v
a
t
e
:

f
l
o
a
t

c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
;

/
/

t
h
i
s

i
s

t
h
e

"
a
l
p
h
a
"

v
a
l
u
e

d
e
s
c
r
i
b
e
d

i
n

C
A
R
T

p
u
b
l
i
c
:

p
r
u
n
a
b
l
e
_
t
r
e
e
(
)

:
d
e
c
i
s
i
o
n
_
t
r
e
e
(
)

{
}

/
/

a
p
r
u
n
a
b
l
e

t
r
e
e

i
s

a
s
u
b
c
l
a
s
s

o
f

a
n
o
r
m
a
l

d
e
c
i
s
i
o
n

t
r
e
e

v
i
r
t
u
a
l

d
e
c
i
s
i
o
n
_
t
r
e
e
*
n
e
w
_
t
r
e
e
(
)

{
r
e
t
u
r
n

n
e
w

p
r
u
n
a
b
l
e
_
t
r
e
e
;

}
/
/

g
i
v
e
n

a
d
e
c
i
s
i
o
n

t
r
e
e

p
o
i
n
t
e
r
,

w
e

c
a
n

c
o
n
s
t
r
u
c
t

a
p
r
u
n
a
b
l
e

t
r
e
e

/
/

o
f
f

o
f

i
t

176

v
o
i
d

r
e
d
u
c
e
_
t
o
_
T
1
(
b
o
o
l

t
o
p
_
o
f
_
t
r
e
e

=
t
r
u
e
,

i
n
t

t
o
t
a
l
_
e
x
a
m
p
l
e
s

=
0
)
;

/
/

c
r
e
a
t
e

t
h
e

T
1

t
r
e
e

a
s

d
e
s
c
r
i
b
e
d

i
n

C
A
R
T

v
o
i
d

i
n
i
t
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
_
v
a
l
u
e
s
(
)
;

/
/

s
e
t

t
h
e

i
n
i
t
i
a
l

a
l
p
h
a

v
a
l
u
e
s

f
l
o
a
t

f
i
n
d
_
s
m
a
l
l
e
s
t
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
(
)
;

/
/

f
i
n
d

t
h
e

a
l
p
h
a

v
a
l
u
e

w
e
a
k
e
s
t

b
r
a
n
c
h

o
f

t
h
e

t
r
e
e

v
o
i
d

s
n
i
p
_
w
e
a
k
e
s
t
_
l
i
n
k
(
f
l
o
a
t

v
a
l
u
e
)
;

/
/

s
n
i
p

t
h
e

b
r
a
n
c
h

w
h
i
c
h

h
a
s

t
h
i
s

a
l
p
h
a

v
a
l
u
e

f
l
o
a
t

b
r
a
n
c
h
_
c
o
s
t
(
)
;

/
/

a
f
u
n
c
t
i
o
n

o
f

e
a
c
h

n
o
d
e
’
s

m
i
s
c
l
a
s
s
i
f
i
c
a
t
i
o
n

r
a
t
e

f
l
o
a
t

s
h
o
w
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
(
)

{
r
e
t
u
r
n

c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
;

}
/
/

a
c
c
e
s
s
o
r

s
t
r
i
n
g

s
h
o
w
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
_
v
a
l
u
e
s
(
)
;

/
/

f
o
r

d
e
b
u
g
g
i
n
g

p
u
r
p
o
s
e
s

f
l
o
a
t

c
o
s
t
(
i
n
t

t
o
t
a
l
_
e
x
a
m
p
l
e
s
)
;

/
/

c
a
l
c
u
l
a
t
e

c
o
s
t

o
f

t
r
e
e

g
i
v
e
n

h
o
w

m
a
n
y

t
r
a
i
n
i
n
g

e
x
a
m
p
l
e
s

t
h
e
r
e

a
r
e

i
n
t

t
e
r
m
i
n
a
l
s
(
)
;

/
/

f
o
r

s
o
m
e

r
e
a
s
o
n
,

e
g
c
s

t
h
r
o
w
s

a
n

i
n
t
e
r
n
a
l

c
o
m
p
i
l
e
r

e
r
r
o
r

i
f

t
h
i
s

i
s
n
’
t

h
e
r
e
,

/
/

e
v
e
n

t
h
o
u
g
h

t
h
e
r
e

i
s

a
l
r
e
a
d
y

a
p
e
r
f
e
c
t
l
y

g
o
o
d

t
e
r
m
i
n
a
l
s
(
)

r
o
u
t
i
n
e

i
n

/
/

d
e
c
i
s
i
o
n
_
t
r
e
e

}
;

#
e
n
d
i
f

#
i
n
c
l
u
d
e

<
f
s
t
r
e
a
m
.
h
>

#
i
n
c
l
u
d
e

<
i
o
m
a
n
i
p
.
h
>

#
i
n
c
l
u
d
e

<
s
t
d
l
i
b
.
h
>

#
i
n
c
l
u
d
e

<
s
t
r
i
n
g
>

#
i
n
c
l
u
d
e

<
s
t
d
i
o
.
h
>

#
i
n
c
l
u
d
e

"
m
e
t
a
d
a
t
a
.
h
"

#
i
n
c
l
u
d
e

"
c
o
n
f
i
g
.
h
"

#
i
n
c
l
u
d
e

<
m
a
t
h
.
h
>

#
i
n
c
l
u
d
e

<
a
l
g
o
r
i
t
h
m
>

#
i
n
c
l
u
d
e

"
p
r
u
n
e
r
.
h
"

/
/

F
i
r
s
t
,

w
e

a
d
d

t
h
e

f
u
n
c
t
i
o
n
a
l
i
t
y

t
o

a
d
e
c
i
s
i
o
n

t
r
e
e

t
h
a
t

t
u
r
n
s

i
t

/
/

i
n
t
o

a
p
r
u
n
a
b
l
e

t
r
e
e
.

/
* *

A
C
C
E
S
S
O
R
:

t
e
r
m
i
n
a
l
s
(
)

r
e
t
u
r
n
s

t
h
e

n
u
m
b
e
r

o
f

t
e
r
m
i
n
a
l

n
o
d
e
s

*
h
a
n
g
i
n
g

o
f
f

t
h
e

c
u
r
r
e
n
t

n
o
d
e
.

*
/

i
n
t

p
r
u
n
a
b
l
e
_
t
r
e
e
:
:
t
e
r
m
i
n
a
l
s
(
)

{
i
f

(
!
l
e
f
t
)

r
e
t
u
r
n

1
;

e
l
s
e
r
e
t
u
r
n
(
(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
l
e
f
t
)
)
-
>
t
e
r
m
i
n
a
l
s
(
)

+
(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
r
i
g
h
t
)
)
-
>
t
e
r
m
i
n
a
l
s
(
)
)
;

} /
*

*
A
C
C
E
S
S
O
R
:

b
r
a
n
c
h
_
c
o
s
t
(
)

r
e
t
u
r
n
s

t
h
e

s
u
m

o
f

t
h
e

c
o
s
t
s

o
f

*
a
l
l

t
e
r
m
i
n
a
l

n
o
d
e
s

h
a
n
g
i
n
g

o
f
f

t
h
e

c
u
r
r
e
n
t

n
o
d
e
.

I
t

i
s

N
O
T

s
c
a
l
e
d

b
y

*
t
h
e

t
o
t
a
l

n
u
m
b
e
r

o
f

e
x
a
m
p
l
e
s

c
l
a
s
s
i
f
i
e
d

b
y

t
h
e

t
r
e
e

(
f
o
r

a
s
m
a
l
l

*
i
m
p
r
o
v
e
m
e
n
t

i
n

p
e
r
f
o
r
m
a
n
c
e
)
.

*
/

f
l
o
a
t

p
r
u
n
a
b
l
e
_
t
r
e
e
:
:
b
r
a
n
c
h
_
c
o
s
t
(
)

{
i
f

(
!
l
e
f
t
)

r
e
t
u
r
n
(
(
1
.
0

-
t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
(
)
)
*

t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s
(
)
)
;

e
l
s
e
r
e
t
u
r
n
(
(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
l
e
f
t
)
)
-
>
b
r
a
n
c
h
_
c
o
s
t
(
)

+
(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
r
i
g
h
t
)
)
-
>
b
r
a
n
c
h
_
c
o
s
t
(
)
)
;

} /
* *

M
U
T
A
T
O
R
:

w
e

n
e
e
d

a
n

i
n
i
t
i
a
l

s
e
t

o
f

a
l
p
h
a

v
a
l
u
e
s

t
o

w
o
r
k

o
u
t

*
t
h
e

f
i
r
s
t

l
i
n
k

t
o

s
n
i
p
.

*
/

v
o
i
d

p
r
u
n
a
b
l
e
_
t
r
e
e
:
:
i
n
i
t
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
_
v
a
l
u
e
s
(
)

{
i
f

(
!
l
e
f
t
)

c
o
s
t
_
c
o
m
p
l
e
x
i
t
y

=
1
0
0
0
0
0
0
0
0
.
0
;

e
l
s
e
{

c
o
s
t
_
c
o
m
p
l
e
x
i
t
y

=
(
(
1
.
0

-
t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
(
)
)
*

t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s
(
)

-
b
r
a
n
c
h
_
c
o
s
t
(
)
)

/
(
t
e
r
m
i
n
a
l
s
(
)

-
1
)
;

(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
l
e
f
t
)
)
-
>
i
n
i
t
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
_
v
a
l
u
e
s
(
)
;

(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
r
i
g
h
t
)
)
-
>
i
n
i
t
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
_
v
a
l
u
e
s
(
)
;

}
} /
* *

A
C
C
E
S
S
O
R
:

r
e
t
u
r
n

t
h
e

c
o
s
t

o
f

a
n
o
d
e

a
s

i
t

w
o
u
l
d

b
e

i
f

i
t

h
a
d

n
o

b
r
a
n
c
e
s

*
o
f
f

i
t
.

F
o
r

l
e
a
v
e
s
,

t
h
i
s

i
s

t
h
e

u
s
u
a
l

"
b
r
a
n
c
h

c
o
s
t
"
.

F
o
r

n
o
n
-
l
e
a
v
e
s
,

*
i
t

i
s

t
h
e

c
o
s
t

o
f

t
h
e

n
o
d
e

A
S

I
F

i
t

w
e
r
e

a
l
e
a
f
.

T
h
e

c
o
s
t

i
s

s
c
a
l
e
d

*
b
y

t
h
e

n
u
m
b
e
r

o
f

e
x
a
m
p
l
e
s

i
n

t
h
e

s
e
t
.

*
/

f
l
o
a
t

p
r
u
n
a
b
l
e
_
t
r
e
e
:
:
c
o
s
t
(
i
n
t

t
o
t
a
l
_
e
x
a
m
p
l
e
s
)

{
r
e
t
u
r
n
(
(
(
1
.
0

-
t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
(
)
)
*

t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s
(
)
)

/
t
o
t
a
l
_
e
x
a
m
p
l
e
s
)
;

} /
* *

M
U
T
A
T
O
R
:

b
e
f
o
r
e

w
e

c
a
n

s
t
a
r
t

c
a
l
c
u
l
a
t
i
n
g

t
h
e

w
e
a
k
e
s
t

l
i
n
k

a
c
c
o
r
d
i
n
g

t
o

*
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y

v
a
l
u
e
s
,

w
e

h
a
v
e

t
o

g
e
t

t
h
e

t
r
e
e

t
o

"
T
1
"

f
o
r
m

a
s

d
e
s
c
r
i
b
e
d

*
o
n

p
a
g
e

6
8

o
f

C
A
R
T
.

T
h
i
s

b
o
i
l
s

d
o
w
n

t
o

d
e
l
e
t
i
n
g

a
n
y

l
e
a
f

n
o
d
e
s

w
h
e
r
e

*
t
h
e

s
u
m

o
f

t
h
e

l
e
a
f

c
o
s
t
s

=
=

t
h
e

c
o
s
t

o
f

t
h
e
i
r

i
m
m
e
d
i
a
t
e

a
n
c
e
s
t
o
r
.

*
I
t

M
U
S
T

b
e

c
a
l
l
e
d

B
E
F
O
R
E

i
n
i
t
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
_
v
a
l
u
e
s
(
)
.

*
/

v
o
i
d

p
r
u
n
a
b
l
e
_
t
r
e
e
:
:
r
e
d
u
c
e
_
t
o
_
T
1
(
b
o
o
l

t
o
p
_
o
f
_
t
r
e
e
,

i
n
t

t
o
t
a
l
_
e
x
a
m
p
l
e
s
)

{
/
/

I
f

w
e

a
r
e

a
t

t
h
e

t
o
p

o
f

t
h
e

t
r
e
e
,

r
e
p
l
a
c
e

t
h
e

d
e
f
a
u
l
t

"
t
o
t
a
l
_
e
x
a
p
m
l
e
s
"

/
/

v
a
l
u
e

w
i
t
h

t
h
e

n
u
m
b
e
r

o
f

e
x
a
m
p
l
e
s

i
n

t
h
e

d
e
c
i
s
i
o
n
.

i
f

(
t
o
p
_
o
f
_
t
r
e
e
)

t
o
t
a
l
_
e
x
a
m
p
l
e
s

=
t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s
(
)
;

177

i
f

(
l
e
f
t
)

{
(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
l
e
f
t
)
)
-
>
r
e
d
u
c
e
_
t
o
_
T
1
(
f
a
l
s
e
,

t
o
t
a
l
_
e
x
a
m
p
l
e
s
)
;

(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
r
i
g
h
t
)
)
-
>
r
e
d
u
c
e
_
t
o
_
T
1
(
f
a
l
s
e
,
t
o
t
a
l
_
e
x
a
m
p
l
e
s
)
;

}

/
/

w
e

o
n
l
y

d
o

s
o
m
e
t
i
n
g

i
f

t
h
e

b
r
a
n
c
h

h
a
s

e
x
a
c
t
l
y

2
t
e
r
m
i
n
a
l

n
o
d
e
s

/
/

h
a
n
g
i
n
g

o
f
f

i
t

i
f

(
t
e
r
m
i
n
a
l
s
(
)

=
=

2
)

{
i
f

(
c
o
s
t
(
t
o
t
a
l
_
e
x
a
m
p
l
e
s
)

=
=

(
(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
l
e
f
t
)
)
-
>
c
o
s
t
(
t
o
t
a
l
_
e
x
a
m
p
l
e
s
)

+
(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
r
i
g
h
t
)
)
-
>
c
o
s
t
(
t
o
t
a
l
_
e
x
a
m
p
l
e
s
)
)
)

{
d
e
l
e
t
e

l
e
f
t
;

d
e
l
e
t
e

r
i
g
h
t
;

t
h
e
_
d
e
c
i
s
i
o
n
.
s
e
t
_
p
u
r
e
(
t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
(
)
)
;

l
e
f
t

=
0
;

r
i
g
h
t

=
0
;

}
}

} /
* *

A
C
C
E
S
S
O
R
:

s
e
a
r
c
h

t
h
e

t
r
e
e

f
o
r

t
h
e

s
m
a
l
l
e
s
t

c
o
s
t

c
o
m
p
l
e
x
i
t
y

v
a
l
u
e
.

*
W
e

s
i
m
p
l
y

r
e
t
u
r
n

t
h
e

v
a
l
u
e
,

s
i
n
c
e

w
e

c
a
n

g
e
t

b
a
c
k

t
h
e
r
e

*
o
n

a
d
e
p
t
h
-
f
i
r
s
t

t
r
a
v
e
r
s
e
.

W
h
y

d
o
n
’
t

w
e

s
i
m
p
l
y

r
e
t
u
n

t
h
e

t
r
e
e
?

*
B
e
c
a
u
s
e

w
e

n
e
e
d

t
o

a
d
j
u
s
t

t
h
e

c
o
s
t
_
c
o
m
p
l
e
x
i
t
i
e
s

o
n

w
a
y

b
a
c
k

U
P

*
o
u
t

o
f

t
h
e

s
n
i
p
p
i
n
g

r
o
u
t
i
n
e
.

*
/

f
l
o
a
t

p
r
u
n
a
b
l
e
_
t
r
e
e
:
:
f
i
n
d
_
s
m
a
l
l
e
s
t
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
(
)

{
i
f

(
!
l
e
f
t
)

r
e
t
u
r
n

1
0
0
0
0
0
0
0
0
.
0
;

f
l
o
a
t

l
c
c

=
(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
l
e
f
t
)
)
-
>
f
i
n
d
_
s
m
a
l
l
e
s
t
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
(
)
;

f
l
o
a
t

r
c
c

=
(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
r
i
g
h
t
)
)
-
>
f
i
n
d
_
s
m
a
l
l
e
s
t
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
(
)
;

i
f

(
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y

<
l
c
c
)

r
e
t
u
r
n

(
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y

<
r
c
c

?
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y

:
r
c
c
)
;

e
l
s
e
r
e
t
u
r
n

(
l
c
c

<
r
c
c

?
l
c
c

:
r
c
c
)
;

} /
* *

A
C
C
E
S
S
O
R
:

d
u
m
p
s

t
h
e

c
o
s
t

c
o
m
p
l
e
x
i
t
i
e
s

a
s

a
s
t
r
i
n
g
.

* *
/

s
t
r
i
n
g

p
r
u
n
a
b
l
e
_
t
r
e
e
:
:
s
h
o
w
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
_
v
a
l
u
e
s
(
)

{
c
h
a
r

b
u
f
f
e
r
[
M
A
X
S
T
R
I
N
G
]
;

s
t
r
i
n
g

v
a
l
u
e
,

l
e
f
t
_
v
a
l
u
e
,

r
i
g
h
t
_
v
a
l
u
e
;

s
n
p
r
i
n
t
f
(
b
u
f
f
e
r
,

M
A
X
S
T
R
I
N
G
,

"
%
f
\
n
"
,

c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
)
;

v
a
l
u
e

+
=

s
t
r
i
n
g
(
b
u
f
f
e
r
)
;

i
f

(
l
e
f
t
)

l
e
f
t
_
v
a
l
u
e

=
(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
l
e
f
t
)
)
-
>
s
h
o
w
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
_
v
a
l
u
e
s
(
)
;

i
f

(
r
i
g
h
t
)

r
i
g
h
t
_
v
a
l
u
e

=
(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
r
i
g
h
t
)
)
-
>
s
h
o
w
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
_
v
a
l
u
e
s
(
)
;

r
e
t
u
r
n

(
v
a
l
u
e

+
l
e
f
t
_
v
a
l
u
e

+
r
i
g
h
t
_
v
a
l
u
e
)
;

} /
* *

M
U
T
A
T
O
R
:

w
e

d
e
f
i
n
e

t
h
e

"
w
e
a
k
e
s
t

l
i
n
k
"

o
f

t
h
e

t
r
e
e

a
c
c
o
r
d
i
n
g

t
o

C
A
R
T
,

*
p
a
g
e

6
8
.

s
n
i
p
_
w
e
a
k
e
s
t
_
l
i
n
k

f
i
n
d
s

t
h
e

a
p
p
r
o
p
r
i
a
t
e

b
r
a
n
c
h

a
n
d

c
a
l
l
s

*
t
h
e

d
e
s
t
r
u
c
t
o
r

o
n

e
v
e
r
y
t
h
i
n
g

b
e
l
o
w

i
t
.

c
o
s
t
_
c
o
m
p
l
e
x
i
t
y

v
a
l
u
e
s

a
r
e

*
r
e
a
s
s
i
g
n
e
d

o
n

t
h
e

w
a
y

b
a
c
k

u
p
.

*
/

v
o
i
d

p
r
u
n
a
b
l
e
_
t
r
e
e
:
:
s
n
i
p
_
w
e
a
k
e
s
t
_
l
i
n
k
(
f
l
o
a
t

v
a
l
u
e
)

{
i
f

(
v
a
l
u
e

=
=

c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
)

/
/

d
o

o
u
r

t
h
i
n
g

{
d
e
l
e
t
e

l
e
f
t
;

d
e
l
e
t
e

r
i
g
h
t
;

t
h
e
_
d
e
c
i
s
i
o
n
.
s
e
t
_
p
u
r
e
(
t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
h
i
g
h
e
s
t
_
r
e
p
r
e
s
e
n
t
a
t
i
o
n
(
)
)
;

c
o
s
t
_
c
o
m
p
l
e
x
i
t
y

=
1
0
0
0
0
0
0
0
0
.
0
;

l
e
f
t

=
0
;

r
i
g
h
t

=
0
;

}
e
l
s
e

/
/

o
t
h
e
r
w
i
s
e

k
e
e
p

s
e
a
r
c
h
i
n
g

{
i
f

(
l
e
f
t
)

(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
l
e
f
t
)
)
-
>
s
n
i
p
_
w
e
a
k
e
s
t
_
l
i
n
k
(
v
a
l
u
e
)
;

i
f

(
r
i
g
h
t
)

(
s
t
a
t
i
c
_
c
a
s
t
<
p
r
u
n
a
b
l
e
_
t
r
e
e
*
>
(
r
i
g
h
t
)
)
-
>
s
n
i
p
_
w
e
a
k
e
s
t
_
l
i
n
k
(
v
a
l
u
e
)
;

}
/
/

o
n

t
h
e

w
a
y

o
u
t
,

s
e
t

n
e
w

c
o
s
t
_
c
o
m
p
l
e
x
i
t
y

f
o
r

b
r
a
n
c
h

n
o
d
e
s

i
f

(
l
e
f
t
)

{
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y

=
(
(
1
.
0

-
t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
p
r
o
p
o
r
t
i
o
n
_
p
u
r
e
(
)
)
*

t
h
e
_
d
e
c
i
s
i
o
n
.
s
h
o
w
_
h
o
w
_
m
a
n
y
_
e
x
a
m
p
l
e
s
(
)

-
b
r
a
n
c
h
_
c
o
s
t
(
)
)

/
(
t
e
r
m
i
n
a
l
s
(
)

-
1
)
;

}
} /
* *

N
o
w

t
h
e

m
a
i
n

p
r
u
n
e
r

p
r
o
g
r
a
m

i
s

a
c
t
u
a
l
l
y

v
e
r
y

e
a
s
y
;

j
u
s
t

k
e
e
p

f
i
n
d
i
n
g

t
h
e

*
w
e
a
k
e
s
t

l
i
n
k

a
n
d

s
n
i
p
p
i
n
g

i
t

u
n
t
i
l

y
o
u

r
u
n

o
u
t

o
f

n
o
d
e
s
.

P
u
t

a
"
#
"

*
a
f
t
e
r

e
a
c
h

o
n
e
.

*
/

i
n
t

m
a
i
n
(
i
n
t

a
r
g
c
,

c
h
a
r
*
a
r
g
v
[
]
)

{
i
f

(
a
r
g
c

!
=

2
)

{
F
A
T
A
L
(
"
p
r
u
n
e
r
:

r
e
q
u
i
r
e
s

1
a
r
g
;

a
c
o
n
f
i
g

f
i
l
e
.
"
)
;

}

s
t
r
i
n
g

l
i
n
e
;

m
e
t
a
d
a
t
a

m
d
(
a
r
g
v
[
1
]
)
;

p
r
u
n
a
b
l
e
_
t
r
e
e

p
t
;

d
e
p
t
h
_
g
r
o
w
e
r

d
g
(
p
t
)
;

/
/

f
i
r
s
t

r
e
b
u
i
l
d

t
h
e

t
r
e
e

d
g
.
r
e
s
t
o
r
e
_
f
r
o
m
_
f
i
l
e
(
c
i
n
,

m
d
)
;

/
/

s
t
a
r
t

p
r
u
n
i
n
g

p
r
o
c
e
s
s

178

p
t
.
r
e
d
u
c
e
_
t
o
_
T
1
(
)
;

p
t
.
i
n
i
t
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
_
v
a
l
u
e
s
(
)
;

c
o
u
t

<
<

p
t
.
t
o
_
s
t
r
i
n
g
(
m
d
)

<
<

"
#
"

<
<

e
n
d
l
;

f
o
r

(
i
n
t

i
=

1
;

p
t
.
t
e
r
m
i
n
a
l
s
(
)

>
2
;

i
+
+
)

{
f
l
o
a
t

s
c
c

=
p
t
.
f
i
n
d
_
s
m
a
l
l
e
s
t
_
c
o
s
t
_
c
o
m
p
l
e
x
i
t
y
(
)
;

p
t
.
s
n
i
p
_
w
e
a
k
e
s
t
_
l
i
n
k
(
s
c
c
)
;

c
o
u
t

<
<

p
t
.
t
o
_
s
t
r
i
n
g
(
m
d
)

<
<

"
#
"

<
<

e
n
d
l
;

}
} A

.3
T

he
t
e
s
t
e
r

Pr
og

ra
m

#
i
n
c
l
u
d
e

"
c
o
n
f
i
g
.
h
"

#
i
n
c
l
u
d
e

<
f
s
t
r
e
a
m
.
h
>

#
i
n
c
l
u
d
e

<
v
e
c
t
o
r
>

#
i
n
c
l
u
d
e

<
s
t
r
s
t
r
e
a
m
>

#
i
n
c
l
u
d
e

"
d
e
c
i
s
i
o
n
_
t
r
e
e
.
h
"

#
i
n
c
l
u
d
e

"
t
u
p
l
e
.
h
"

#
i
n
c
l
u
d
e

<
i
o
m
a
n
i
p
.
h
>

#
i
n
c
l
u
d
e

<
s
t
r
i
n
g
>

#
i
n
c
l
u
d
e

<
m
a
t
h
.
h
>

/
* *

T
h
e

t
e
s
t
e
r

t
a
k
e
s

m
u
l
t
i
p
l
e

t
r
e
e
s

o
n

t
h
e

s
t
d

i
n
p
u
t
,

f
i
n
d
s

t
h
e

b
e
s
t

t
r
e
e

f
o
r

*
t
h
e

t
e
s
t

d
a
t
a

a
n
d

s
e
n
d
s

i
t

t
o

s
t
d
o
u
t
.

*
/

i
n
t

m
a
i
n
(
i
n
t

a
r
g
c
,

c
h
a
r
*
a
r
g
v
[
]
)

{
m
e
t
a
d
a
t
a

m
d
(
a
r
g
v
[
1
]
)
;

t
u
p
l
e

t
(
m
d
)
;

s
t
r
i
n
g

l
i
n
e
;

i
f
s
t
r
e
a
m

d
b
f
i
l
e
(
a
r
g
v
[
2
]
)
;

v
e
c
t
o
r
<
d
e
c
i
s
i
o
n
_
t
r
e
e
*
>

d
t
p
_
v
e
c
t
o
r
;

d
e
c
i
s
i
o
n
_
t
r
e
e

*
d
t
p

=
n
e
w

d
e
c
i
s
i
o
n
_
t
r
e
e
;

d
e
p
t
h
_
g
r
o
w
e
r

d
g
;

d
g
.
s
t
a
r
t
(
*
d
t
p
)
;

f
l
o
a
t

c
o
r
r
e
c
t

=
0
.
0
;

f
l
o
a
t

c
a
n
d
i
d
a
t
e
_
c
o
r
r
e
c
t

=
0
.
0
;

f
l
o
a
t

s
t
d
e
r
r
;

i
n
t

b
e
s
t
_
t
r
e
e

=
0
;

f
l
o
a
t

c
a
n
d
i
d
a
t
e
_
s
t
d
e
r
r
;

/
/

f
i
r
s
t

r
e
a
d

d
g
.
r
e
s
t
o
r
e
_
f
r
o
m
_
f
i
l
e
(
c
i
n
,

m
d
,

M
U
L
T
I
)
;

w
h
i
l
e

(
c
i
n
)

{
d
t
p
_
v
e
c
t
o
r
.
p
u
s
h
_
b
a
c
k
(
d
t
p
)
;

d
t
p

=
n
e
w

d
e
c
i
s
i
o
n
_
t
r
e
e
;

d
g
.
s
t
a
r
t
(
*
d
t
p
)
;

/
/

s
e
c
o
n
d

r
e
a
d

d
g
.
r
e
s
t
o
r
e
_
f
r
o
m
_
f
i
l
e
(
c
i
n
,

m
d
,

M
U
L
T
I
)
;

}

c
e
r
r

<
<

d
t
p
_
v
e
c
t
o
r
.
s
i
z
e
(
)

<
<

"
t
r
e
e
s

e
v
a
l
u
a
t
e
d
:
"

<
<

e
n
d
l
;

f
o
r

(
i
n
t

i
=

0
;

i
<

d
t
p
_
v
e
c
t
o
r
.
s
i
z
e
(
)
;

i
+
+
)

{
i
n
t

r
i
g
h
t

=
0
,

w
r
o
n
g

=
0
,

t
o
t
a
l

=
0
;

w
h
i
l
e

(
g
e
t
l
i
n
e
(
d
b
f
i
l
e
,

l
i
n
e
)
)

{
i
s
t
r
s
t
r
e
a
m

b
u
f
f
e
r
(
l
i
n
e
.
d
a
t
a
(
)
,

l
i
n
e
.
l
e
n
g
t
h
(
)
)
;

t
.
l
o
a
d
(
l
i
n
e
,

m
d
)
;

i
f

(
d
t
p
_
v
e
c
t
o
r
[
i
]
-
>
c
l
a
s
s
i
f
y
(
t
)

=
=

t
.
s
h
o
w
_
l
a
b
e
l
(
)
)

r
i
g
h
t
+
+
;

e
l
s
e
w
r
o
n
g
+
+
;

t
o
t
a
l
+
+
;

}

c
a
n
d
i
d
a
t
e
_
c
o
r
r
e
c
t

=
(
f
l
o
a
t
)
r
i
g
h
t

/
(
f
l
o
a
t
)
t
o
t
a
l
;

c
a
n
d
i
d
a
t
e
_
s
t
d
e
r
r

=
s
q
r
t
(
(
c
a
n
d
i
d
a
t
e
_
c
o
r
r
e
c
t
*

(
1
.
0

-
c
a
n
d
i
d
a
t
e
_
c
o
r
r
e
c
t
)
)

/
t
o
t
a
l
)
;

i
f

(
c
a
n
d
i
d
a
t
e
_
c
o
r
r
e
c
t

>
=

c
o
r
r
e
c
t

&
&

d
t
p
_
v
e
c
t
o
r
[
i
]
-
>
t
e
r
m
i
n
a
l
s
(
)

!
=

1
)

{
b
e
s
t
_
t
r
e
e

=
i
+
1
;

c
o
r
r
e
c
t

=
c
a
n
d
i
d
a
t
e
_
c
o
r
r
e
c
t
;

s
t
d
e
r
r

=
c
a
n
d
i
d
a
t
e
_
s
t
d
e
r
r
;

}

c
e
r
r
.
p
r
e
c
i
s
i
o
n
(
4
)
;

c
e
r
r
.
s
e
t
f
(
i
o
s
:
:
f
i
x
e
d
,

i
o
s
:
:
f
l
o
a
t
f
i
e
l
d
)
;

c
e
r
r

<
<

"
t
r
e
e

"
<
<

s
e
t
w
(
3
)

<
<

i
+
1

<
<

"
"

<
<

s
e
t
w
(
6
)

<
<

r
i
g
h
t

<
<

"
c
o
r
r
e
c
t

"
<
<

c
a
n
d
i
d
a
t
e
_
c
o
r
r
e
c
t

<
<

"
"

<
<

c
a
n
d
i
d
a
t
e
_
s
t
d
e
r
r

<
<

e
n
d
l
;

d
b
f
i
l
e
.
c
l
e
a
r
(
)
;

d
b
f
i
l
e
.
s
e
e
k
g
(
0
,

i
o
s
:
:
b
e
g
)
;

}
c
o
u
t

<
<

"
b
e
s
t

"
<
<

b
e
s
t
_
t
r
e
e

<
<

"
"

<
<

1
.
0

-
c
o
r
r
e
c
t

<
<

"
#
"

<
<

e
n
d
l
;

} Im
pl

em
en

ta
tio

n

A
.4

T
he

r
u
l
e
s

Pr
og

ra
m

#
i
n
c
l
u
d
e

<
i
o
s
t
r
e
a
m
.
h
>

#
i
n
c
l
u
d
e

<
s
t
r
i
n
g
>

#
i
n
c
l
u
d
e

<
i
o
m
a
n
i
p
.
h
>

#
i
n
c
l
u
d
e

"
m
l
p
_
m
e
t
a
d
a
t
a
.
h
"

#
i
n
c
l
u
d
e

"
d
e
c
i
s
i
o
n
_
t
r
e
e
.
h
"

#
i
n
c
l
u
d
e

"
c
o
n
f
i
g
.
h
"

#
i
n
c
l
u
d
e

<
s
e
t
>

#
i
n
c
l
u
d
e

<
v
e
c
t
o
r
>

#
i
n
c
l
u
d
e

<
s
t
r
s
t
r
e
a
m
>

#
i
n
c
l
u
d
e

<
u
n
i
s
t
d
.
h
>

#
i
n
c
l
u
d
e

<
a
l
g
o
r
i
t
h
m
>

#
d
e
f
i
n
e

W
E
I
G
H
T
S

1

179

#
d
e
f
i
n
e

D
N
F

2

/
* *

p
r
i
n
t

a
u
s
a
g
e

m
e
s
s
a
g
e

*
/

v
o
i
d

u
s
a
g
e
(
)

{
c
o
u
t

<
<

"
\
n
u
s
a
g
e
:

r
u
l
e
s

[
-
d

-
w

-
s

<
s
i
g
m
a
_
v
a
l
u
e
>

-
b

<
b
e
t
a
_
v
a
l
u
e
>

-
h
]
\

<
c
o
n
f
i
g
_
f
i
l
e
>
"

<
<

e
n
d
l
;

} /
* *

p
r
i
n
t

a
h
e
l
p

m
e
s
s
a
g
e

*
/

v
o
i
d

h
e
l
p
(
)

{
c
o
u
t

<
<

"
\
n
T
h
e

\
"
r
u
l
e
s
\
"

p
r
o
g
r
a
m

r
e
a
d
s

a
t
r
e
e

o
n

s
t
d
i
n

a
n
d

o
u
t
p
u
t
s

e
i
t
h
e
r
\
n
"

<
<

"
D
N
F

r
u
l
e
s

o
r

a
n

i
n
i
t
i
a
l

m
l
p

a
r
c
h
i
t
e
c
t
u
r
e

(
d
e
f
a
u
l
t
)
.
\
n
\
n
"

<
<

"
o
p
t
i
o
n
s
:

-
b

<
v
a
l
u
e
>

s
e
t

b
e
t
a

t
o

<
v
a
l
u
e
>
"

<
<

e
n
d
l

<
<

"
(
b
e
t
a

i
s

t
h
e

\
"
s
m
a
l
l
\
"

v
a
l
u
e

c
l
o
s
e

t
o

z
e
r
o

f
o
r

l
o
w
\

c
o
n
n
e
c
t
i
o
n

w
e
i
g
h
t
s
)
"

<
<

e
n
d
l

<
<

"
-
d

o
u
t
p
u
t

r
u
l
e
s

i
n

D
N
F
"

<
<

e
n
d
l

<
<

"
-
h

t
h
i
s

h
e
l
p
"

<
<

e
n
d
l

<
<

"
-
s

<
v
a
l
u
e
>

s
e
t

s
i
g
m
a

t
o

<
v
a
l
u
e
>
"

<
<

e
n
d
l

<
<

"
(
s
i
g
m
a

i
s

t
h
e

v
a
l
u
e

f
o
r

s
t
r
o
n
g

c
o
n
n
e
c
t
i
o
n

w
e
i
g
h
t
s
)
"

<
<

e
n
d
l

<
<

"
-
w

o
u
t
p
u
t

m
l
p

a
r
c
h
i
t
e
c
t
u
r
e
\
n
"

<
<

e
n
d
l
;

} i
n
t

m
a
i
n
(
i
n
t

a
r
g
c
,

c
h
a
r
*
a
r
g
v
[
]
)

{
i
n
t

o
u
t
p
u
t

=
W
E
I
G
H
T
S
;

/
/

s
i
g
m
a

a
n
d

b
e
t
a

v
a
l
u
e
s

d
e
f
a
u
l
t

t
o

t
h
o
s
e

s
u
g
g
e
s
t
e
d

b
y

B
a
n
e
r
j
e
e

f
l
o
a
t

s
i
g
m
a

=
5
.
0
;

f
l
o
a
t

b
e
t
a

=
0
.
0
2
5
;

c
h
a
r

*
o
p
t
s
t
r
i
n
g

=
"
b
:
d
h
s
:
w
"
;

c
h
a
r

o
p
t
i
o
n

=
g
e
t
o
p
t
(
a
r
g
c
,

a
r
g
v
,

o
p
t
s
t
r
i
n
g
)
;

w
h
i
l
e

(
o
p
t
i
o
n

!
=

E
O
F
)

{
s
w
i
t
c
h

(
o
p
t
i
o
n
)
{

c
a
s
e

’
b
’

:
b
e
t
a

=
a
t
o
f
(
o
p
t
a
r
g
)
;

b
r
e
a
k
;
c
a
s
e

’
d
’

:
o
u
t
p
u
t

=
D
N
F
;

b
r
e
a
k
;
c
a
s
e

’
h
’

:
u
s
a
g
e
(
)
;

h
e
l
p
(
)
;

e
x
i
t
(
0
)
;

c
a
s
e

’
s
’

:
s
i
g
m
a

=
a
t
o
f
(
o
p
t
a
r
g
)
;

c
a
s
e

’
w
’

:
o
u
t
p
u
t

=
W
E
I
G
H
T
S
;

b
r
e
a
k
;
}

o
p
t
i
o
n

=
g
e
t
o
p
t
(
a
r
g
c
,

a
r
g
v
,

o
p
t
s
t
r
i
n
g
)
;

}

s
t
r
i
n
g

l
i
n
e
;

m
l
p
_
m
e
t
a
d
a
t
a

m
d
(
a
r
g
v
[
o
p
t
i
n
d
]
)
;

d
e
c
i
s
i
o
n
_
t
r
e
e

d
t
;

d
e
p
t
h
_
g
r
o
w
e
r

d
g
;

d
g
.
s
t
a
r
t
(
d
t
)
;

/
/

f
i
r
s
t

r
e
b
u
i
l
d

t
h
e

t
r
e
e

d
g
.
r
e
s
t
o
r
e
_
f
r
o
m
_
f
i
l
e
(
c
i
n
,

m
d
)
;

/
/

m
a
k
e

a
l
i
s
t

o
f

a
l
l

t
h
e

u
n
i
q
u
e

d
e
c
i
s
i
o
n
s

s
e
t
<
s
t
r
i
n
g
,

l
e
s
s
<
s
t
r
i
n
g
>

>
d
e
c
i
s
i
o
n
_
l
i
s
t
;

d
t
.
m
a
k
e
_
d
e
c
i
s
i
o
n
_
l
i
s
t
(
m
d
,

d
e
c
i
s
i
o
n
_
l
i
s
t
)
;

i
n
t

d
i
s
j
u
n
c
t
i
o
n
_
s
i
z
e
s
[
m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)
]
;

f
o
r

(
i
n
t

i
=

0
;

i
<

m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)
;

i
+
+
)

d
i
s
j
u
n
c
t
i
o
n
_
s
i
z
e
s
[
i
]

=
0
;

/
/

m
a
k
e

a
l
i
s
t

o
f

t
h
e

c
o
n
j
u
n
c
t
i
o
n
s
.

/
/

w
e

m
a
k
e

t
h
e

l
i
s
t

o
f

d
i
s
j
u
n
c
t
i
o
n
s

h
e
r
e

t
o
o
,

s
i
n
c
e

w
e

a
r
e

a
l
r
e
a
d
y

d
o
i
n
g

t
h
e

/
/

w
o
r
k

o
f

s
i
m
p
l
i
f
y
i
n
g

e
a
c
h

r
u
l
e
.

s
e
t
<
s
t
r
i
n
g
,

l
e
s
s
<
s
t
r
i
n
g
>

>
c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
;

v
e
c
t
o
r
<
s
t
r
i
n
g
>

d
i
s
j
u
n
c
t
i
o
n
_
l
i
s
t
;

f
o
r

(
i
n
t

i
=

0
;

i
<

m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)
;

i
+
+
)

d
i
s
j
u
n
c
t
i
o
n
_
l
i
s
t
.
p
u
s
h
_
b
a
c
k
(
"
"
)
;

i
n
t

s
t
a
r
t
_
p
o
s

=
0
,

e
n
d
_
p
o
s

=
0
,

s
t
a
r
t
_
w
o
r
d

=
0
,

e
n
d
_
w
o
r
d

=
0
;

s
t
r
i
n
g

c
o
n
j
u
n
c
t
i
o
n
s

=
d
t
.
t
o
_
r
u
l
e
s
(
m
d
)
;

s
t
r
i
n
g

c
o
n
j
u
n
c
t
;

w
h
i
l
e

(
s
t
a
r
t
_
p
o
s

<
c
o
n
j
u
n
c
t
i
o
n
s
.
l
e
n
g
t
h
(
)

&
&

s
t
a
r
t
_
p
o
s

>
=

0
)

{
e
n
d
_
p
o
s

=
c
o
n
j
u
n
c
t
i
o
n
s
.
f
i
n
d
(
"
\
n
\
n
"
,

s
t
a
r
t
_
p
o
s
)
;

/
/

B
e
f
o
r
e

w
e

p
l
a
c
e

t
h
e

c
o
n
j
u
n
c
t
i
o
n

i
n

t
h
e

l
i
s
t
,

w
e

/
/

r
e
m
o
v
e

r
e
d
u
n
d
a
n
t

d
e
c
i
s
i
o
n
s

f
r
o
m

e
a
c
h

c
o
n
j
u
n
c
t
i
o
n
.

F
o
r

i
n
s
t
a
n
c
e
,

/
/

i
f

x
<

1
0

i
s

i
n

t
h
e
r
e
,

w
e

d
o
n
’
t

a
l
s
o

n
e
e
d

x
<

2
0

c
o
n
j
u
n
c
t

=
c
o
n
j
u
n
c
t
i
o
n
s
.
s
u
b
s
t
r
(
s
t
a
r
t
_
p
o
s
,

e
n
d
_
p
o
s

-
s
t
a
r
t
_
p
o
s
)
;

c
o
n
j
u
n
c
t

+
=

"
\
n
"
;

i
n
t

c
_
s
t
a
r
t

=
0
,

c
_
e
n
d

=
0
;

i
n
t

w
_
s
t
a
r
t

=
0
,

w
_
e
n
d

=
0
;

i
n
t

f
o
u
n
d
,

s
i
g
n
;

w
h
i
l
e

(
c
_
s
t
a
r
t

>
=

0
&
&

c
_
s
t
a
r
t

<
c
o
n
j
u
n
c
t
.
l
e
n
g
t
h
(
)
)

{
c
_
e
n
d

=
c
o
n
j
u
n
c
t
.
f
i
n
d
(
"
\
n
"
,

c
_
s
t
a
r
t
)
;

w
_
s
t
a
r
t

=
c
o
n
j
u
n
c
t
.
f
i
n
d
(
"

"
,

c
_
s
t
a
r
t
)

+
1
;

w
_
e
n
d

=
c
o
n
j
u
n
c
t
.
f
i
n
d
(
"

"
,

w
_
s
t
a
r
t
)
;

f
o
u
n
d

=
c
o
n
j
u
n
c
t
.
f
i
n
d
(
c
o
n
j
u
n
c
t
.
s
u
b
s
t
r
(
w
_
s
t
a
r
t
,

w
_
e
n
d

-
w
_
s
t
a
r
t
)
,

c
_
e
n
d
)
;

i
f

(
f
o
u
n
d

>
0
)

{
/
/

c
h
e
c
k

f
o
r

s
a
m
e

s
i
g
n

f
o
u
n
d

=
c
o
n
j
u
n
c
t
.
f
i
n
d
(
"

"
,

f
o
u
n
d
)

+
1
;

s
i
g
n

=
c
o
n
j
u
n
c
t
.
f
i
n
d
(
"

"
,

w
_
s
t
a
r
t
)

+
1
;

i
f

(
c
o
n
j
u
n
c
t
[
f
o
u
n
d
]

=
=

c
o
n
j
u
n
c
t
[
s
i
g
n
]
)

c
o
n
j
u
n
c
t
.
e
r
a
s
e
(
c
_
s
t
a
r
t
,

(
c
_
e
n
d

-
c
_
s
t
a
r
t
)

+
1
)
;

e
l
s
e

c
_
s
t
a
r
t

=
c
_
e
n
d

+
1
;

}

180

e
l
s
e
c
_
s
t
a
r
t

=
c
_
e
n
d

+
1
;

}
/
/

p
u
t

t
h
e

s
i
m
p
l
i
f
i
e
d

c
o
n
j
u
n
c
t

i
n

t
h
e

c
o
n
j
u
n
c
t
i
o
n

l
i
s
t
.

/
/

i
t
’
s

p
o
s
s
i
b
l
e

t
h
a
t

w
e

h
a
v
e

r
e
m
o
v
e
d

t
h
e

f
i
r
s
t

d
e
c
i
s
i
o
n

w
i
t
h

i
t
s

/
/

l
e
a
d
i
n
g

’
i
f
’
,

i
n

w
h
i
c
h

c
a
s
e

w
e

s
h
o
u
l
d

c
h
a
n
g
e

t
h
e

l
e
a
d
i
n
g

’
a
n
d
’

t
o

’
i
f
’

i
f

(
c
o
n
j
u
n
c
t
[
0
]

=
=

’
a
’
)

{
c
o
n
j
u
n
c
t
.
e
r
a
s
e
(
0
,

1
)
;

c
o
n
j
u
n
c
t
[
0
]

=
’
i
’
;

c
o
n
j
u
n
c
t
[
1
]

=
’
f
’
;

}
c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
.
i
n
s
e
r
t
(
c
o
n
j
u
n
c
t
)
;

/
/

w
e

n
e
e
d

t
o

k
n
o
w

w
h
a
t

l
a
b
e
l

w
e

a
r
e

d
e
a
l
i
n
g

w
i
t
h

s
o

t
h
a
t

w
e

k
n
o
w

w
h
e
r
e

/
/

t
o

p
u
t

i
t

i
n

t
h
e

d
i
s
j
u
n
c
t
i
o
n
_
l
i
s
t

w
_
s
t
a
r
t

=
c
o
n
j
u
n
c
t
.
f
i
n
d
(
"

i
s

"
)

+
4
;

w
_
e
n
d

=
c
o
n
j
u
n
c
t
.
f
i
n
d
(
"
\
n
"
,

w
_
s
t
a
r
t
)
;

s
t
r
i
n
g

w
h
a
t
_
l
a
b
e
l

=
c
o
n
j
u
n
c
t
.
s
u
b
s
t
r
(
w
_
s
t
a
r
t
,

w
_
e
n
d

-
w
_
s
t
a
r
t
)
;

i
n
t

l
a
b
e
l
_
n
u
m
b
e
r

=
m
d
.
s
h
o
w
_
l
a
b
e
l
_
n
u
m
b
e
r
(
w
h
a
t
_
l
a
b
e
l
)

-
1
;

d
i
s
j
u
n
c
t
i
o
n
_
l
i
s
t
[
l
a
b
e
l
_
n
u
m
b
e
r
]

+
=

c
o
n
j
u
n
c
t

+
"
\
n
"
;

d
i
s
j
u
n
c
t
i
o
n
_
s
i
z
e
s
[
l
a
b
e
l
_
n
u
m
b
e
r
]
+
+
;

s
t
a
r
t
_
p
o
s

=
e
n
d
_
p
o
s

+
2
;

}

/
/

N
o
w

w
e

h
a
v
e

a
l
i
s
t

o
f

c
o
n
j
u
n
c
t
i
o
n
s

a
n
d

d
i
s
j
u
n
c
t
i
o
n
s
,

s
o

/
* *

B
E
G
I
N

M
A
T
R
I
X

P
R
O
D
U
C
T
I
O
N

*
/

/
/

F
i
r
s
t
,

s
e
t

u
p

t
h
e

f
o
l
l
o
w
i
n
g

m
a
t
r
i
c
e
s
:

/
/

f
o
r

b
e
t
w
e
e
n

l
a
y
e
r
s

1
a
n
d

2
:

n
(
2
)

X
n
(
1
)

+
1

f
l
o
a
t

m
a
t
r
i
x
1
[
d
e
c
i
s
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)
]
[
m
d
.
n
_
f
i
r
s
t
_
l
a
y
e
r
(
)
]
;

f
o
r

(
i
n
t

i
=

0
;

i
<

d
e
c
i
s
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)
;

i
+
+
)

f
o
r

(
i
n
t

j
=

0
;

j
<
=

m
d
.
n
_
f
i
r
s
t
_
l
a
y
e
r
(
)
;

j
+
+
)

{
i
n
t

s
i
g
n

=
(
r
a
n
d
o
m
(
)

%
2
)

?
1

:
-
1
;

m
a
t
r
i
x
1
[
i
]
[
j
]

=
b
e
t
a
*

s
i
g
n
;

}

/
/

f
o
r

b
e
t
w
e
e
n

l
a
y
e
r
s

2
a
n
d

3
:

n
(
3
)

X
n
(
2
)

+
1

f
l
o
a
t

m
a
t
r
i
x
2
[
c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)
]
[
d
e
c
i
s
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)

+
1
]
;

f
o
r

(
i
n
t

i
=

0
;

i
<

c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)
;

i
+
+
)

f
o
r

(
i
n
t

j
=

0
;

j
<
=

d
e
c
i
s
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)
;

j
+
+
)

{
i
n
t

s
i
g
n

=
(
r
a
n
d
o
m
(
)

%
2
)

?
1

:
-
1
;

m
a
t
r
i
x
2
[
i
]
[
j
]

=
b
e
t
a
*

s
i
g
n
;

}

/
/

f
o
r

b
e
t
w
e
e
n

l
a
y
e
r
s

3
a
n
d

4
:

n
(
4
)

X
n
(
3
)

+
1

f
l
o
a
t

m
a
t
r
i
x
3
[
m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)
]
[
c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)

+
1
]
;

f
o
r

(
i
n
t

i
=

0
;

i
<

m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)
;

i
+
+
)

f
o
r

(
i
n
t

j
=

0
;

j
<
=

c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)
;

j
+
+
)

{
i
n
t

s
i
g
n

=
(
r
a
n
d
o
m
(
)

%
2
)

?
1

:
-
1
;

m
a
t
r
i
x
3
[
i
]
[
j
]

=
b
e
t
a
*

s
i
g
n
;

}

/
/

W
h
a
t

w
e

d
o

h
e
r
e

d
e
p
e
n
d
s

o
n

w
h
e
t
h
e
r

w
e

a
r
e

c
o
n
n
e
c
t
i
n
g

b
a
c
k

t
o

a
n
u
m
e
r
i
c
a
l

/
/

a
t
t
r
i
b
u
t
e

n
o
d
e

o
r

a
c
a
t
e
g
o
r
i
c
a
l

a
t
t
r
i
b
u
t
e

n
o
d
e
.

/
/

F
o
r

e
a
c
h

d
e
c
i
s
i
o
n

i
n

t
h
e

d
e
c
i
s
i
o
n

l
i
s
t
,

w
e

c
o
n
n
e
c
t

b
a
c
k

t
o

a
s
i
n
g
l
e

/
/

l
a
y
e
r

1
n
o
d
e

i
f

t
h
e

d
e
c
i
s
i
o
n

i
s

b
a
s
e
d

o
n

a
n
u
m
e
r
i
c
a
l

a
t
t
r
i
b
u
t
e
;

/
/

w
h
e
t
h
e
r

t
h
e

d
e
c
i
s
i
o
n

i
s

"
<
"

o
r

"
>
=
"

d
e
t
e
r
m
i
n
e
s

s
i
g
n

o
f

w
e
i
g
h
t
.

/
/

T
h
e

b
i
a
s

f
o
r

e
a
c
h

s
u
c
h

d
e
c
i
s
i
o
n

n
o
d
e

i
s

(
+
-
)
s
i
g
m
a
*

v
a
l
u
e
.

/
/

I
f

t
h
e

d
e
c
i
s
i
o
n

i
s

b
a
s
e
d

o
n

a
c
a
t
e
g
o
r
i
c
a
l

a
t
t
r
i
b
u
t
e
,

w
e

h
a
v
e

t
o

c
o
n
n
e
c
t

/
/

b
a
c
k

t
o

a
l
l

n
o
d
e
s

r
e
p
r
e
s
e
n
t
i
n
g

t
h
e

c
a
t
e
g
o
r
y
.

W
h
e
t
h
e
r

t
h
e

d
e
c
i
s
i
o
n

i
s

/
/

"
i
n
"

o
r

"
n
o
t

i
n
"

d
e
t
e
r
m
i
n
e
s

w
h
e
t
h
e
r

w
e

c
o
n
n
e
c
t

w
i
t
h

+
s
i
g
m
a

o
r

b
e
t
a
.

/
/

T
h
e

b
i
a
s

f
o
r

t
h
e
s
e

n
o
d
e
s

i
s

a
l
w
a
y
s

-
s
i
g
m
a
/
2
.

s
e
t
<
s
t
r
i
n
g
,

l
e
s
s
<
s
t
r
i
n
g
>

>
:
:
i
t
e
r
a
t
o
r

d
l
i
(
d
e
c
i
s
i
o
n
_
l
i
s
t
.
b
e
g
i
n
(
)
)
;

i
n
t

c
o
u
n
t

=
0
;

w
h
i
l
e

(
d
l
i

!
=

d
e
c
i
s
i
o
n
_
l
i
s
t
.
e
n
d
(
)
)

{
i
s
t
r
s
t
r
e
a
m

b
u
f
f
e
r
(
d
l
i
-
>
d
a
t
a
(
)
,

d
l
i
-
>
l
e
n
g
t
h
(
)
)
;

s
t
r
i
n
g

a
t
t
r
i
b
u
t
e
,

o
p
_
t
y
p
e
,

c
a
t
_
s
e
t
;

f
l
o
a
t

v
a
l
u
e
;

i
n
t

i
n
p
u
t
_
n
u
m
,

s
i
g
n
;

b
u
f
f
e
r

>
>

a
t
t
r
i
b
u
t
e

>
>

o
p
_
t
y
p
e
;

i
n
p
u
t
_
n
u
m

=
m
d
.
w
h
i
c
h
_
i
n
p
u
t
(
a
t
t
r
i
b
u
t
e
)
;

i
f

(
o
p
_
t
y
p
e
[
0
]

=
=

’
i
’

|
|

o
p
_
t
y
p
e
[
0
]

=
=

’
n
’
)

/
/

c
a
t
e
g
o
r
i
c
a
l

a
t
t
r
i
b
u
t
e

{
b
o
o
l

i
n

=
t
r
u
e
;

/
/

p
u
t

t
h
e

s
e
t

o
f

c
a
t
e
g
o
r
i
e
s

i
n
t
o

c
a
t
_
s
e
t

b
u
f
f
e
r

>
>

c
a
t
_
s
e
t
;

/
/

w
e

m
i
g
h
t

n
e
e
d

t
o

g
e
t

r
i
d

o
f

a
n

i
n
i
t
i
a
l

"
n
o
t
"

i
f

(
c
a
t
_
s
e
t
[
0
]

!
=

’
{
’
)

{
b
u
f
f
e
r

>
>

c
a
t
_
s
e
t
;

i
n

=
f
a
l
s
e
;

}
/
/

g
e
t

r
i
d

o
f

t
h
e

s
e
t
-
n
o
t
a
t
i
o
n

f
o
r
m
a
t
t
i
n
g

r
e
p
l
a
c
e
(
c
a
t
_
s
e
t
.
b
e
g
i
n
(
)
,

c
a
t
_
s
e
t
.
e
n
d
(
)
,

’
,
’
,

’
’
)
;

r
e
p
l
a
c
e
(
c
a
t
_
s
e
t
.
b
e
g
i
n
(
)
,

c
a
t
_
s
e
t
.
e
n
d
(
)
,

’
{
’
,

’
’
)
;

r
e
p
l
a
c
e
(
c
a
t
_
s
e
t
.
b
e
g
i
n
(
)
,

c
a
t
_
s
e
t
.
e
n
d
(
)
,

’
}
’
,

’
’
)
;

/
/

p
u
t

t
h
e

c
a
t
_
s
e
t

i
n
t
o

a
n

i
s
t
r
s
t
r
e
a
m

f
o
r

e
a
s
y

/
/

d
u
m
p
i
n
g

i
n
t
o

a
"
m
e
m
b
e
r
"

v
a
r
i
a
b
l
e

i
s
t
r
s
t
r
e
a
m

i
s
_
c
a
t
_
s
e
t
(
c
a
t
_
s
e
t
.
d
a
t
a
(
)
,

c
a
t
_
s
e
t
.
l
e
n
g
t
h
(
)
)
;

i
n
t

m
e
m
b
e
r
;

s
e
t
<
i
n
t
,

l
e
s
s
<
i
n
t
>

>
i
n
t
_
c
a
t
_
s
e
t
;

/
/

n
o
w

p
u
t

a
l
l

t
h
e

c
a
t
e
g
o
r
i
e
s

i
n

t
h
e

c
a
t
_
s
e
t

i
n
t
o

a
n

S
T
L

s
e
t

/
/

f
o
r

a
n

e
a
s
y

"
i
n
c
l
u
s
i
o
n
"

t
e
s
t

w
h
i
l
e

(
i
s
_
c
a
t
_
s
e
t

>
>

m
e
m
b
e
r
)

i
n
t
_
c
a
t
_
s
e
t
.
i
n
s
e
r
t
(
m
e
m
b
e
r
)
;

/
/

"
f
i
n
i
s
h
"

i
s

a
l
o
o
p

v
a
r
i
a
b
l
e
:

w
e

w
a
n
t

t
o

l
o
o
p

/
/

b
e
t
w
e
e
n

t
h
e

s
t
a
r
t

a
n
d

e
n
d

o
f

t
h
e

n
e
t
w
o
r
k

i
n
p
u
t
s

t
h
a
t

/
/

r
e
p
r
e
s
e
n
t

t
h
e

c
a
t
e
g
o
r
i
c
a
l

a
t
t
r
i
b
u
t
e

i
n
t

f
i
n
i
s
h

=
i
n
p
u
t
_
n
u
m

+
m
d
.
s
h
o
w
_
o
r
d
e
r
(
a
t
t
r
i
b
u
t
e
)
;

f
o
r

(
i
n
t

i
=

i
n
p
u
t
_
n
u
m
;

i
<

f
i
n
i
s
h
;

i
+
+
)

{
i
f

(
i
n
t
_
c
a
t
_
s
e
t
.
f
i
n
d
(
i

-
i
n
p
u
t
_
n
u
m

+
1
)

!
=

i
n
t
_
c
a
t
_
s
e
t
.
e
n
d
(
)
)

i
f

(
i
n
)

m
a
t
r
i
x
1
[
c
o
u
n
t
]
[
i
]

=
s
i
g
m
a
;

e
l
s
e

{
} e
l
s
e

i
f

(
!
i
n
)

m
a
t
r
i
x
1
[
c
o
u
n
t
]
[
i
]

=
s
i
g
m
a
;

}
/
/

s
e
t

t
h
e

b
i
a
s
.

m
a
t
r
i
x
1
[
c
o
u
n
t
]
[
m
d
.
n
_
f
i
r
s
t
_
l
a
y
e
r
(
)

-
1
]

=
-
s
i
g
m
a

/
2
.
0
;

}
e
l
s
e

/
/

c
o
n
t
i
n
u
o
u
s

a
t
t
r
i
b
u
t
e
:

o
n
l
y

o
n
e

i
n
p
u
t

t
o

s
e
t

181

{
b
u
f
f
e
r

>
>

v
a
l
u
e
;

s
i
g
n

=
o
p
_
t
y
p
e
[
0
]

=
=

’
<
’

?
1

:
-
1
;

/
/

s
e
t

t
h
e

w
e
i
g
h
t

a
n
d

t
h
e

b
i
a
s
.

m
a
t
r
i
x
1
[
c
o
u
n
t
]
[
i
n
p
u
t
_
n
u
m
]

=
-
s
i
g
n
*

s
i
g
m
a
;

m
a
t
r
i
x
1
[
c
o
u
n
t
]
[
m
d
.
n
_
f
i
r
s
t
_
l
a
y
e
r
(
)

-
1
]

=
s
i
g
n
*

s
i
g
m
a

*
v
a
l
u
e
;

}
d
l
i
+
+
;

c
o
u
n
t
+
+
;

}

/
/

F
o
r

e
a
c
h

c
o
n
j
u
n
c
t
i
o
n

i
n

t
h
e

l
i
s
t

o
f

c
o
n
j
u
n
c
t
i
o
n
s
:

/
/

t
h
e

b
i
a
s
e
s

a
r
e

e
a
s
y
,

b
e
c
a
u
s
e

t
h
e
y

a
r
e

j
u
s
t

a
f
u
n
c
t
i
o
n

o
f

h
o
w

m
a
n
y

/
/

"
a
n
d
s
"

t
h
e
r
e

a
r
e
.

T
h
e
n
,

f
o
r

e
a
c
h

d
e
c
i
s
i
o
n

i
n

t
h
e

l
i
s
t

o
f

d
e
c
i
s
i
o
n
s
,

/
/

i
f

i
t

(
o
r

i
t
s

n
e
g
a
t
i
o
n
)

i
s

i
n

t
h
e

c
o
n
j
u
n
c
t
i
o
n
,

s
e
t

a
n

a
p
p
r
o
p
r
i
a
t
e

w
e
i
g
h
t
.

s
e
t
<
s
t
r
i
n
g
,

l
e
s
s
<
s
t
r
i
n
g
>

>
:
:
i
t
e
r
a
t
o
r

c
l
i
;

c
o
u
n
t

=
0
;

f
o
r

(
c
l
i

=
c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
.
b
e
g
i
n
(
)
;

c
l
i

!
=

c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
.
e
n
d
(
)
;

c
l
i
+
+
)

{
i
n
t

w
_
s
t
a
r
t

=
0
,

l
i
t
e
r
a
l
_
c
o
u
n
t

=
0
;

/
/

n
o
w

w
e

n
e
e
d

t
o

f
i
g
u
r
e

o
u
t

w
h
i
c
h

n
u
m
b
e
r

d
e
c
i
s
i
o
n
s

w
e

n
e
e
d

t
o

c
o
n
n
e
c
t

/
/

t
o

i
n

t
h
e

w
e
i
g
h
t
s

m
a
t
r
i
x
.

F
o
r

n
o
w

w
e

w
i
l
l

d
o

t
h
i
s

t
h
e

u
g
l
y

w
a
y
:

/
/

t
r
a
v
e
r
s
i
n
g

t
h
e

d
e
c
i
s
i
o
n

s
e
t

f
o
r

e
a
c
h

i
t
e
m

i
n

e
a
c
h

c
o
n
j
u
n
c
t
i
o
n
.

i
n
t

c
_
s
t
a
r
t

=
0
;

i
n
t

c
_
e
n
d

=
0
;

w
h
i
l
e

(
c
_
s
t
a
r
t

>
=

0
&
&

c
_
s
t
a
r
t

<
c
l
i
-
>
l
e
n
g
t
h
(
)
)

{
c
_
e
n
d

=
c
l
i
-
>
f
i
n
d
(
"
\
n
"
,

c
_
s
t
a
r
t
)
;

/
/

B
r
e
a
k

i
f

w
e

h
a
v
e

r
e
a
c
h
e
d

t
h
e

e
n
d
.

i
n
t

w
_
e
n
d

=
c
l
i
-
>
f
i
n
d
(
"

"
,

c
_
s
t
a
r
t
)
;

i
f

(
c
l
i
-
>
s
u
b
s
t
r
(
c
_
s
t
a
r
t
,

w
_
e
n
d

-
c
_
s
t
a
r
t
)

=
=

"
t
h
e
n
"
)

b
r
e
a
k
;

/
/

F
i
r
s
t
,

s
h
a
v
e

o
f
f

t
h
e

"
i
f
"

o
r

"
a
n
d
"

c
_
s
t
a
r
t

=
c
l
i
-
>
f
i
n
d
(
"

"
,

c
_
s
t
a
r
t
)

+
1
;

i
n
t

d
_
c
o
u
n
t

=
0
;

d
l
i

=
d
e
c
i
s
i
o
n
_
l
i
s
t
.
b
e
g
i
n
(
)
;

w
h
i
l
e

(
*
d
l
i
+
+

!
=

c
l
i
-
>
s
u
b
s
t
r
(
c
_
s
t
a
r
t
,

c
_
e
n
d

-
c
_
s
t
a
r
t
)
)

d
_
c
o
u
n
t
+
+
;

/
/

d
_
c
o
u
n
t

s
h
o
u
l
d

n
o
w

b
e

t
h
e

n
u
m
b
e
r

i
n

t
h
e

d
e
c
i
s
i
o
n
_
l
i
s
t

t
h
a
t

w
e

n
e
e
d

m
a
t
r
i
x
2
[
c
o
u
n
t
]
[
d
_
c
o
u
n
t
]

=
s
i
g
m
a
;

c
_
s
t
a
r
t

=
c
_
e
n
d

+
1
;

l
i
t
e
r
a
l
_
c
o
u
n
t
+
+
;

}
/
/

s
e
t

b
i
a
s

t
o

-
s
i
g
m
a
(
2
n

-
1
)
/
2

m
a
t
r
i
x
2
[
c
o
u
n
t
]
[
d
e
c
i
s
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)
]

=
(
-
s
i
g
m
a
*

(
2

*
l
i
t
e
r
a
l
_
c
o
u
n
t

-
1
)
)

/
2
.
0
;

c
o
u
n
t
+
+
;

}

/
/

F
o
r

e
a
c
h

d
i
s
j
u
n
c
t
i
o
n

(
i
.
e
.
f
o
r

e
a
c
h

c
l
a
s
s

i
n

t
h
e

d
a
t
a
b
a
s
e
)

/
/

A
g
a
i
n

b
i
a
s
e
s

a
r
e

e
a
s
y
:

j
u
s
t

a
f
u
n
c
t
i
o
n

o
f

h
o
w

m
a
n
y

c
o
n
j
u
n
c
t
i
o
n
s

f
o
r

e
a
c
h

/
/

d
i
s
j
u
n
c
t
i
o
n
.

T
h
e
n
,

f
o
r

e
a
c
h

c
u
n
j
u
n
c
t
i
o
n
,

s
e
e

i
f

i
t

i
s

i
n

t
h
e

/
/

d
i
s
j
u
n
c
t
i
o
n
.

I
f

i
t

i
s
,

s
e
t

t
h
e

a
p
p
r
o
p
r
i
a
t
e

w
e
i
g
h
t
.

f
o
r

(
i
n
t

i
=

0
;

i
<

m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)
;

i
+
+
)

{
i
n
t

d
_
s
t
a
r
t

=
0
,

d
_
e
n
d

=
0
;

/
/

c
o
u
n
t

t
h
e

n
u
m
b
e
r

o
f

c
o
n
j
u
n
c
t
i
o
n
s

i
n

t
h
e

d
i
s
j
u
n
c
t
i
o
n

w
h
i
l
e

(
d
_
s
t
a
r
t

>
=

0
&
&

d
_
s
t
a
r
t

<
d
i
s
j
u
n
c
t
i
o
n
_
l
i
s
t
[
i
]
.
l
e
n
g
t
h
(
)
)

{
d
_
e
n
d

=
d
i
s
j
u
n
c
t
i
o
n
_
l
i
s
t
[
i
]
.
f
i
n
d
(
"
\
n
\
n
"
,

d
_
s
t
a
r
t
)

+
1
;

/
/

s
o

w
h
i
c
h

c
o
n
j
u
n
c
t
i
o
n

i
s

t
h
i
s
?

i
n
t

c
_
n
u
m
b
e
r

=
0
;

c
l
i

=
c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
.
b
e
g
i
n
(
)
;

w
h
i
l
e

(
*
c
l
i
+
+

!
=

d
i
s
j
u
n
c
t
i
o
n
_
l
i
s
t
[
i
]
.
s
u
b
s
t
r
(
d
_
s
t
a
r
t
,

d
_
e
n
d

-
d
_
s
t
a
r
t
)
)

c
_
n
u
m
b
e
r
+
+
;

m
a
t
r
i
x
3
[
i
]
[
c
_
n
u
m
b
e
r
]

=
s
i
g
m
a
;

d
_
s
t
a
r
t

=
d
_
e
n
d

+
1
;

}
m
a
t
r
i
x
3
[
i
]
[
c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)
]

=
-
s
i
g
m
a

/
2
.
0
;

}

i
f

(
o
u
t
p
u
t

=
=

D
N
F
)

{
f
o
r

(
i
n
t

i
=

0
;

i
<

m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)
;

i
+
+
)

{
c
o
u
t

<
<

d
i
s
j
u
n
c
t
i
o
n
_
l
i
s
t
[
i
]
;

c
o
u
t

<
<

"
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
\
n
"
;

}
}

e
l
s
e

i
f

(
o
u
t
p
u
t

=
=

W
E
I
G
H
T
S
)

{
f
o
r

(
i
n
t

i
=

0
;

i
<

d
e
c
i
s
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)
;

i
+
+
)

{
f
o
r

(
i
n
t

j
=

0
;

j
<

m
d
.
n
_
f
i
r
s
t
_
l
a
y
e
r
(
)
;

j
+
+
)

c
o
u
t

<
<

s
e
t
w
(
6
)

<
<

m
a
t
r
i
x
1
[
i
]
[
j
]

<
<

"
"
;

c
o
u
t

<
<

e
n
d
l
;

}

f
o
r

(
i
n
t

i
=

0
;

i
<

c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)
;

i
+
+
)

{
f
o
r

(
i
n
t

j
=

0
;

j
<
=

d
e
c
i
s
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)
;

j
+
+
)

c
o
u
t

<
<

s
e
t
w
(
6
)

<
<

m
a
t
r
i
x
2
[
i
]
[
j
]

<
<

"
"
;

c
o
u
t

<
<

e
n
d
l
;

}

f
o
r

(
i
n
t

i
=

0
;

i
<

m
d
.
s
h
o
w
_
n
u
m
b
e
r
_
o
f
_
c
l
a
s
s
e
s
(
)
;

i
+
+
)

{
f
o
r

(
i
n
t

j
=

0
;

j
<
=

c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)
;

j
+
+
)

c
o
u
t

<
<

s
e
t
w
(
6
)

<
<

m
a
t
r
i
x
3
[
i
]
[
j
]

<
<

"
"
;

c
o
u
t

<
<

e
n
d
l
;

}
c
e
r
r

<
<

m
d
.
n
_
f
i
r
s
t
_
l
a
y
e
r
(
)

-
1

<
<

"
"

<
<

d
e
c
i
s
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)

<
<

"
"

<
<

c
o
n
j
u
n
c
t
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)

<
<

"
"

<
<

d
i
s
j
u
n
c
t
i
o
n
_
l
i
s
t
.
s
i
z
e
(
)

<
<

e
n
d
l
;

}

e
x
i
t
(
0
)
;

} A
.5

T
he

m
l
p

Pr
og

ra
m

/
*

F
I
L
E
:

m
l
p
.
c

*
A
U
T
H
O
R
:

N
a
t
h
a
n

R
o
u
n
t
r
e
e

*
P
U
R
P
O
S
E
:

4
-
l
a
y
e
r

i
m
p
l
e
m
e
n
t
a
t
i
o
n

o
f

b
a
c
k
p
r
o
p

w
i
t
h

q
u
i
c
k
p
r
o
p

e
x
t
e
n
s
i
o
n
s
.

*
/

#
i
n
c
l
u
d
e

<
s
t
d
i
o
.
h
>

182

#
i
n
c
l
u
d
e

<
s
t
d
l
i
b
.
h
>

#
i
n
c
l
u
d
e

<
u
n
i
s
t
d
.
h
>

#
i
n
c
l
u
d
e

<
m
a
t
h
.
h
>

#
i
n
c
l
u
d
e

<
s
t
r
i
n
g
.
h
>

#
d
e
f
i
n
e

M
A
X
S
T
R
I
N
G

2
0
0
0

#
d
e
f
i
n
e

D
E
B
U
G

7

#
d
e
f
i
n
e

S
I
G
M
O
I
D
(
x
)

(
1
.
0
/
(
1
.
0

+
e
x
p
(
-
x
)
)
)

#
d
e
f
i
n
e

A
B
S
(
x
)

(
(
x

<
0
)

?
-
x

:
x
)

/
*

F
u
n
c
t
i
o
n

P
r
o
t
o
t
y
p
e
s
*
/

v
o
i
d

u
s
a
g
e
(
c
h
a
r

*
*
a
r
g
v
)
;

v
o
i
d

f
o
r
w
a
r
d
(
v
o
i
d
)
;

v
o
i
d

b
a
c
k
w
a
r
d
(
v
o
i
d
)
;

v
o
i
d

b
p
_
c
h
a
n
g
e
_
w
e
i
g
h
t
s
(
v
o
i
d
)
;

v
o
i
d

q
p
_
c
h
a
n
g
e
_
w
e
i
g
h
t
s
(
v
o
i
d
)
;

i
n
t

g
e
t
l
i
n
e
(
c
h
a
r

s
[
]
,

i
n
t

l
i
m
i
t
,

F
I
L
E
*
w
h
e
n
c
e
)
;

v
o
i
d

i
n
i
t
i
a
l
i
s
e
_
l
a
y
e
r
s
(
v
o
i
d
)
;

v
o
i
d

p
e
r
t
u
r
b
_
w
e
i
g
h
t
s
(
v
o
i
d
)
;

v
o
i
d

z
e
r
o
_
g
r
a
d
i
e
n
t
s
(
v
o
i
d
)
;

v
o
i
d

d
e
c
a
y
_
g
r
a
d
i
e
n
t
s
(
v
o
i
d
)
;

v
o
i
d

d
u
m
p
_
w
e
i
g
h
t
s
(
F
I
L
E
*
o
u
t
f
i
l
e
)
;

v
o
i
d

t
r
a
i
n
i
n
g
_
e
p
o
c
h
(
v
o
i
d
)
;

v
o
i
d

t
r
a
i
n
i
n
g
_
s
e
s
s
i
o
n
(
v
o
i
d
)
;

v
o
i
d

d
i
s
p
l
a
y
(
F
I
L
E
*
o
u
t
f
i
l
e
)
;

v
o
i
d

r
e
a
d
_
w
e
i
g
h
t
s
(
F
I
L
E
*
i
n
f
i
l
e
)
;

v
o
i
d

t
e
s
t
_
n
e
t
w
o
r
k
(
v
o
i
d
)
;

v
o
i
d

t
e
s
t
_
f
o
r
w
a
r
d
(
v
o
i
d
)
;

/
*

G
l
o
b
a
l

V
a
r
i
a
b
l
e
s
*
/

i
n
t

c
u
r
r
e
n
t
_
p
a
t
t
e
r
n

=
0
;

i
n
t

c
u
r
r
e
n
t
_
t
e
s
t
_
p
a
t
t
e
r
n

=
0
;

i
n
t

g
l
o
b
a
l
_
e
r
r
o
r

=
0
;

i
n
t

t
e
s
t
_
g
l
o
b
a
l
_
e
r
r
o
r

=
0
;

f
l
o
a
t

s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r

=
0
.
0
;

f
l
o
a
t

t
e
s
t
_
s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r

=
0
.
0
;

f
l
o
a
t

*
*
w
e
i
g
h
t
s
1
2
;

/
*

w
e
i
g
h
t
s

b
e
t
w
e
e
n

l
a
y
e
r
s

1
a
n
d

2
*
/

f
l
o
a
t

*
*
w
e
i
g
h
t
s
2
3
;

/
*

w
e
i
g
h
t
s

b
e
t
w
e
e
n

l
a
y
e
r
s

2
a
n
d

3
*
/

f
l
o
a
t

*
*
w
e
i
g
h
t
s
3
4
;

/
*

w
e
i
g
h
t
s

b
e
t
w
e
e
n

l
a
y
e
r
s

3
a
n
d

4
*
/

f
l
o
a
t

*
*
g
r
a
d
i
e
n
t
s
1
2
;

/
*

w
e
i
g
h
t

c
h
a
n
g
e
s

t
o

b
e

m
a
d
e

b
e
t
w
e
e
n

l
a
y
e
r
s

1
a
n
d

2
*
/

f
l
o
a
t

*
*
g
r
a
d
i
e
n
t
s
2
3
;

/
*

w
e
i
g
h
t

c
h
a
n
g
e
s

t
o

b
e

m
a
d
e

b
e
t
w
e
e
n

l
a
y
e
r
s

2
a
n
d

3
*
/

f
l
o
a
t

*
*
g
r
a
d
i
e
n
t
s
3
4
;

/
*

w
e
i
g
h
t

c
h
a
n
g
e
s

t
o

b
e

m
a
d
e

b
e
t
w
e
e
n

l
a
y
e
r
s

3
a
n
d

4
*
/

f
l
o
a
t

*
*
p
g
r
a
d
i
e
n
t
s
1
2
;

/
*

c
h
a
n
g
e
s

m
a
d
e

l
a
s
t

e
p
o
c
h

b
e
t
w
e
e
n

l
a
y
e
r
s

1
a
n
d

2
*
/

f
l
o
a
t

*
*
p
g
r
a
d
i
e
n
t
s
2
3
;

/
*

c
h
a
n
g
e
s

m
a
d
e

l
a
s
t

e
p
o
c
h

b
e
t
w
e
e
n

l
a
y
e
r
s

2
a
n
d

3
*
/

f
l
o
a
t

*
*
p
g
r
a
d
i
e
n
t
s
3
4
;

/
*

c
h
a
n
g
e
s

m
a
d
e

l
a
s
t

e
p
o
c
h

b
e
t
w
e
e
n

l
a
y
e
r
s

3
a
n
d

4
*
/

f
l
o
a
t

*
*
a
c
t
u
a
l
_
c
h
a
n
g
e
s
1
2
;

/
*

s
a
v
e

t
h
e

l
a
s
t

c
h
a
n
g
e

m
a
d
e

i
n

t
h
e
s
e

m
a
t
r
i
c
e
s
*
/

f
l
o
a
t

*
*
a
c
t
u
a
l
_
c
h
a
n
g
e
s
2
3
;

/
*

f
o
r

q
u
i
c
k
p
r
o
p

*
/

f
l
o
a
t

*
*
a
c
t
u
a
l
_
c
h
a
n
g
e
s
3
4
;

f
l
o
a
t

*
l
a
y
e
r
1
;

/
*

l
a
y
e
r

o
f

i
n
p
u
t

u
n
i
t
s

*
/

f
l
o
a
t

*
l
a
y
e
r
2
;

/
*

f
i
r
s
t

l
a
y
e
r

o
f

h
i
d
d
e
n

u
n
i
t
s

*
/

f
l
o
a
t

*
l
a
y
e
r
3
;

/
*

s
e
c
o
n
d

l
a
y
e
r

o
f

h
i
d
d
e
n

u
n
i
t
s
*
/

f
l
o
a
t

*
l
a
y
e
r
4
;

/
*

l
a
y
e
r

o
f

o
u
t
p
u
t

u
n
i
t
s

*
/

f
l
o
a
t

*
l
a
y
e
r
2
e
r
r
o
r
s
;

/
*

e
r
r
o
r

t
e
r
m
s

f
o
r

s
e
c
o
n
d

l
a
y
e
r

o
f

h
i
d
d
e
n

u
n
i
t
s
*
/

f
l
o
a
t

*
l
a
y
e
r
3
e
r
r
o
r
s
;

/
*

e
r
r
o
r

t
e
r
m
s

f
o
r

t
h
i
r
d

l
a
y
e
r

o
f

h
i
d
d
e
n

u
n
i
t
s

*
/

f
l
o
a
t

*
l
a
y
e
r
4
e
r
r
o
r
s
;

/
*

e
r
r
o
r

t
e
r
m
s

f
o
r

o
u
t
p
u
t

l
a
y
e
r

*
/

c
h
a
r

l
o
g
f
i
l
e
n
a
m
e
[
M
A
X
S
T
R
I
N
G
]
;

c
h
a
r

w
e
i
g
h
t
_
d
u
m
p
_
f
i
l
e
n
a
m
e
[
M
A
X
S
T
R
I
N
G
]
;

c
h
a
r

d
a
t
a
f
i
l
e
n
a
m
e
[
M
A
X
S
T
R
I
N
G
]
;

c
h
a
r

w
e
i
g
h
t
s
f
i
l
e
n
a
m
e
[
M
A
X
S
T
R
I
N
G
]
;

c
h
a
r

t
e
s
t
f
i
l
e
n
a
m
e
[
M
A
X
S
T
R
I
N
G
]
;

F
I
L
E

*
l
o
g
f
i
l
e
;

F
I
L
E

*
d
a
t
a
f
i
l
e
;

F
I
L
E

*
w
e
i
g
h
t
s
f
i
l
e
;

F
I
L
E

*
t
e
s
t
f
i
l
e
;

F
I
L
E

*
w
e
i
g
h
t
d
u
m
p
f
i
l
e
;

/
*

I
n
p
u
t
/
o
u
t
p
u
t

m
a
p
p
i
n
g
s
*
/

f
l
o
a
t

*
*
i
n
p
u
t
s
;

i
n
t

*
o
u
t
p
u
t
s
;

/
*

o
u
t
p
u
t
s

a
r
e

c
l
a
s
s
e
s
,

s
o

i
n
t
e
g
e
r

c
a
t
e
g
o
r
i
e
s
*
/

/
*

T
e
s
t
f
i
l
e

I
n
p
u
t
/
o
u
t
p
u
t

m
a
p
p
i
n
g
s
*
/

f
l
o
a
t

*
*
t
i
n
p
u
t
s
;

i
n
t
*
t
o
u
t
p
u
t
s
;

/
*

I
m
p
o
r
t
a
n
t

c
o
n
s
t
a
n
t
s
*
/

f
l
o
a
t

l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t

=
0
.
1
;

f
l
o
a
t

m
o
m
e
n
t
u
m

=
0
.
9
;

f
l
o
a
t

f
l
a
t
s
p
o
t
_
o
f
f
s
e
t

=
0
.
1
;

f
l
o
a
t

m
a
x
_
s
t
e
p

=
1
.
7
5
;

f
l
o
a
t

e
r
r
o
r
_
t
h
r
e
s
h
o
l
d

=
0
.
4
;

f
l
o
a
t

d
e
c
a
y

=
-
0
.
0
0
0
1
;

i
n
t

l
a
y
e
r
1
s
i
z
e
,

l
a
y
e
r
2
s
i
z
e
,

l
a
y
e
r
3
s
i
z
e
,

l
a
y
e
r
4
s
i
z
e
;

i
n
t

n
u
m
_
p
a
t
t
e
r
n
s
;

i
n
t

n
u
m
_
t
e
s
t
_
p
a
t
t
e
r
n
s
;

i
n
t

r
a
n
d
o
m
_
s
e
e
d

=
0
;

/
*

P
r
o
g
r
a
m

b
e
h
a
v
i
o
u
r
*
/

i
n
t

q
u
i
c
k

=
0
;

i
n
t

u
s
i
n
g
_
w
e
i
g
h
t
s

=
0
;

i
n
t

m
a
x
_
e
p
o
c
h
s

=
1
0
0
0
0
;

i
n
t

l
e
a
v
e
_
o
n
_
d
i
s
k

=
0
;

i
n
t

l
o
g
_
s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r

=
0
;

i
n
t

t
e
s
t

=
0
;

i
n
t

d
o
_
d
u
m
p
_
w
e
i
g
h
t
s

=
0
;

/
* *

v
o
i
d

u
s
a
g
e
(
c
h
a
r
*
*
a
r
g
v
)

*
P
r
i
n
t

a
u
s
a
g
e

m
e
s
s
a
g
e

t
o

t
h
e

s
c
r
e
e
n

*
/

v
o
i
d

u
s
a
g
e
(
c
h
a
r

*
*
a
r
g
v
)

{
p
r
i
n
t
f
(
"
\
n
u
s
a
g
e
:

%
s

[
o
p
t
i
o
n
s
]

<
i
n
t
>

<
i
n
t
>

<
i
n
t
>

<
i
n
t
>

<
f
i
l
e
>
\
n
"
,

a
r
g
v
[
0
]
)
;

p
r
i
n
t
f
(
"

w
h
e
r
e

t
h
e

f
o
u
r

i
n
t
e
g
e
r
s

a
r
e

t
h
e

s
i
z
e
s

o
f

l
a
y
e
r
s

1
-
-
4
\
n
"
)
;

p
r
i
n
t
f
(
"

a
n
d

<
f
i
l
e
>

i
s

t
h
e

f
i
l
e

o
f

c
l
a
s
s
i
f
i
c
a
t
i
o
n

p
a
t
t
e
r
n
s
.
\
n
\
n
"
)
;

p
r
i
n
t
f
(
"
o
p
t
i
o
n
s
:
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
c

<
i
n
t
>

s
e
t

l
e
a
r
n
i
n
g

c
o
n
s
t
a
n
t

t
o

<
i
n
t
>

(
d
e
f
a
u
l
t

0
.
1
)
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
d

l
e
a
v
e

p
a
t
t
e
r
n

f
i
l
e

o
n

d
i
s
k

(
n
o
t

i
m
p
l
e
m
e
n
t
e
d
)
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
f

<
f
i
l
e
>

l
e
a
v
e

t
r
a
i
n
e
d

w
e
i
g
h
t
s

i
n

f
i
l
e
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
h

t
h
i
s

m
e
s
s
a
g
e
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
l

<
f
i
l
e
>

s
e
t

l
o
g
f
i
l
e

t
o

<
f
i
l
e
>

(
d
e
f
a
u
l
t

\
"
l
o
g
f
i
l
e
\
"
)
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
m

<
f
l
o
a
t
>

s
e
t

m
o
m
e
n
t
u
m

t
e
r
m

t
o

<
f
l
o
a
t
>

(
d
e
f
a
u
l
t

0
.
9
)
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
n

<
i
n
t
>

t
r
a
i
n

f
o
r

a
m
a
x
i
m
u
m

o
f

<
i
n
t
>

e
p
o
c
h
s
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
o

<
f
l
o
a
t
>

u
s
e

a
f
l
a
t
s
p
o
t

o
f
f
s
e
t

o
f

<
f
l
o
a
t
>

(
d
e
f
a
u
l
t

0
.
1
)
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
q

u
s
e

q
u
i
c
k
p
r
o
p

l
e
a
r
n
i
n
g

a
l
g
o
r
i
t
h
m
\
n
"
)
;

183

p
r
i
n
t
f
(
"
\
t
-
r

<
i
n
t
>

s
e
t

r
a
n
d
o
m

s
e
e
d

t
o

<
i
n
t
>

(
d
e
f
a
u
l
t

0
)
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
s

<
f
l
o
a
t
>

s
e
t

m
a
x

s
t
e
p

i
n

q
u
i
c
k
p
r
o
p

t
o

<
f
l
o
a
t
>

(
d
e
f
a
u
l
t

1
.
7
5
)
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
t

<
f
i
l
e
>

u
s
e

<
f
i
l
e
>

a
s

a
v
a
l
i
d
a
t
i
o
n

t
e
s
t

f
i
l
e
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
w

<
f
i
l
e
>

u
s
e

i
n
i
t
i
a
l

w
e
i
g
h
t
s

f
r
o
m

<
f
i
l
e
>
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
x

l
o
g

s
u
m

o
f

s
q
u
a
r
e
d

e
r
r
o
r

(
d
e
f
a
u
l
t
:

w
r
o
n
g

c
l
a
s
s
e
s
)
\
n
"
)
;

p
r
i
n
t
f
(
"
\
t
-
z

<
f
l
o
a
t
>

u
s
e

w
e
i
g
h
t

d
e
c
a
y

o
f

<
f
l
o
a
t
>

(
d
e
f
a
u
l
t

-
0
.
0
0
0
1
)
\
n
\
n
"
)
;

} /
* *

i
n
t

g
e
t
l
i
n
e
(
c
h
a
r

s
[
]
,

i
n
t

l
i
m
i
t
,

F
I
L
E
*
w
h
e
n
c
e
)

*
T
h
i
s

f
u
n
c
t
i
o
n

r
e
a
d
s

a
t

m
o
s
t

‘
l
i
m
i
t

-
1
’

c
h
a
r
a
c
t
e
r
s

i
n
t
o

s
[
]
.

*
I
t

w
i
l
l

s
t
o
p

w
h
e
n

i
t

r
e
a
c
h
e
s

a
n
e
w
l
i
n
e

o
r

e
n
d
-
o
f
-
i
n
p
u
t
.

*
I
t

t
e
r
m
i
n
a
t
e
s

t
h
e

s
t
r
i
n
g

w
i
t
h

’
\
0
’
,

r
e
p
l
a
c
i
n
g

t
h
e

n
e
w
l
i
n
e

i
f

*
n
e
c
e
s
s
a
r
y
.

*
T
h
i
s

f
u
n
c
t
i
o
n

i
s

a
m
o
d
i
f
i
c
a
t
i
o
n

o
f

‘
g
e
t
l
i
n
e
’
,

f
o
u
n
d

o
n

p
a
g
e

2
9

*
o
f

K
e
r
n
i
g
h
a
n

a
n
d

R
i
t
c
h
i
e
’
s

‘
T
h
e

C
P
r
o
g
r
a
m
m
i
n
g

L
a
n
g
u
a
g
e
’
.

*
/

i
n
t

g
e
t
l
i
n
e
(
c
h
a
r

s
[
]
,

i
n
t

l
i
m
i
t
,

F
I
L
E
*
w
h
e
n
c
e
)

{
i
n
t

c
,

i
=

0
;

/
*

l
o
o
p

u
n
t
i
l

E
O
F

o
r

n
e
w
l
i
n
e
*
/

w
h
i
l
e

(
(
c

=
g
e
t
c
(
w
h
e
n
c
e
)
)

!
=

E
O
F

&
&

c
!
=

’
\
n
’
)

{
/
*

o
n
l
y

r
e
a
d

c
h
a
r
a
c
t
e
r
s

i
n
t
o

s
i
f

l
i
m
i
t

h
a
s

n
o
t

b
e
e
n

r
e
a
c
h
e
d
,
*
/

/
*

o
t
h
e
r
w
i
s
e

j
u
s
t

d
i
s
c
a
r
d

i
t
.

T
h
i
s

w
a
y

s
t
d
i
n

i
s

e
f
f
e
c
t
i
v
e
l
y

*
/

/
*

‘
f
l
u
s
h
e
d
’
.

*
/

i
f

(
-
-
l
i
m
i
t

>
0
)

s
[
i
+
+
]

=
c
;

i
f

(
l
i
m
i
t

=
=

0
)

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

"
W
a
r
n
i
n
g
:

i
n
p
u
t

t
r
u
n
c
a
t
e
d

t
o

l
e
n
g
t
h

%
d
:

%
s
\
n
"
,

i
,

s
)
;

}

/
*

I
n

a
n
y

c
a
s
e
,

t
e
r
m
i
n
a
t
e

t
h
e

s
t
r
i
n
g

w
i
t
h

a
N
U
L
L

c
h
a
r
a
c
t
e
r
*
/

/
*

(
n
o
t

‘
\
n
’
)

a
n
d

r
e
t
u
r
n

t
h
e

l
e
n
g
t
h

o
f

t
h
e

s
t
r
i
n
g
.

*
/

s
[
i
]

=
’
\
0
’
;

r
e
t
u
r
n
(
i
)
;

} /
* *

i
n
i
t
i
a
l
i
s
e
_
l
a
y
e
r
s
(
)

*
A
l
l
o
c
a
t
e

m
e
m
o
r
y

f
o
r

a
l
l

t
h
e

m
a
t
r
i
c
e
s
.

*
D
e
p
e
n
d
s

o
n

a
l
l

t
h
e

m
a
t
r
i
c
e
s

a
n
d

l
a
y
e
r
s

b
e
i
n
g

g
l
o
b
a
l

v
a
r
i
a
b
l
e
s
.

*
/

v
o
i
d

i
n
i
t
i
a
l
i
s
e
_
l
a
y
e
r
s
(
v
o
i
d
)

{
i
n
t

r
o
w
;

/
*

m
a
t
r
i
x

i
n
d
e
x
*
/

i
n
t

p
n

=
0
;

/
*

p
a
t
t
e
r
n

n
u
m
b
e
r
*
/

i
n
t

p
o
s
i
t
i
o
n
;

/
*

i
n

i
n
p
u
t

a
r
r
a
y
*
/

c
h
a
r

l
i
n
e
[
M
A
X
S
T
R
I
N
G
]
;

/
*

i
n
i
t
i
a
l
i
s
e

l
a
y
e
r
s
,

a
d
d
i
n
g

o
n
e

s
p
a
c
e

f
o
r

b
i
a
s

c
o
n
s
t
a
n
t

o
f

1
.
0
*
/

l
a
y
e
r
1

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
1
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

l
a
y
e
r
1
[
l
a
y
e
r
1
s
i
z
e
]

=
1
.
0
;

l
a
y
e
r
2

=
(
f
l
o
a
t

*
)
c
a
l
l
o
c
(
l
a
y
e
r
2
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

l
a
y
e
r
2
[
l
a
y
e
r
2
s
i
z
e
]

=
1
.
0
;

l
a
y
e
r
3

=
(
f
l
o
a
t

*
)
c
a
l
l
o
c
(
l
a
y
e
r
3
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

l
a
y
e
r
3
[
l
a
y
e
r
3
s
i
z
e
]

=
1
.
0
;

l
a
y
e
r
4

=
(
f
l
o
a
t

*
)
c
a
l
l
o
c
(
l
a
y
e
r
4
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

/
*

l
a
y
e
r
4

d
o
e
s
n
’
t

n
e
e
d

a
b
i
a
s

c
o
n
s
t
a
n
t
*
/

/
*

i
n
i
t
i
a
l
i
s
e

e
r
r
o
r

t
e
r
m

a
r
r
a
y
s
*
/

l
a
y
e
r
2
e
r
r
o
r
s

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
2
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

l
a
y
e
r
3
e
r
r
o
r
s

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
3
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

l
a
y
e
r
4
e
r
r
o
r
s

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
4
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

/
*

i
n
i
t
i
a
l
i
s
e

m
a
t
r
i
c
e
s
*
/

w
e
i
g
h
t
s
1
2

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
l
a
y
e
r
2
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
2
s
i
z
e
;

r
o
w
+
+
)

/
*

o
n
e

e
x
t
r
a

f
o
r

b
i
a
s
*
/

w
e
i
g
h
t
s
1
2
[
r
o
w
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
1
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

w
e
i
g
h
t
s
2
3

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
l
a
y
e
r
3
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
3
s
i
z
e
;

r
o
w
+
+
)

/
*

o
n
e

e
x
t
r
a

f
o
r

b
i
a
s
*
/

w
e
i
g
h
t
s
2
3
[
r
o
w
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
2
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

w
e
i
g
h
t
s
3
4

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
l
a
y
e
r
4
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
4
s
i
z
e
;

r
o
w
+
+
)

/
*

o
n
e

e
x
t
r
a

f
o
r

b
i
a
s
*
/

w
e
i
g
h
t
s
3
4
[
r
o
w
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
3
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

g
r
a
d
i
e
n
t
s
1
2

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
l
a
y
e
r
2
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
2
s
i
z
e
;

r
o
w
+
+
)

/
*

o
n
e

e
x
t
r
a

f
o
r

b
i
a
s
*
/

g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
1
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

g
r
a
d
i
e
n
t
s
2
3

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
l
a
y
e
r
3
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
3
s
i
z
e
;

r
o
w
+
+
)

/
*

o
n
e

e
x
t
r
a

f
o
r

b
i
a
s
*
/

g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
2
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

g
r
a
d
i
e
n
t
s
3
4

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
l
a
y
e
r
4
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
4
s
i
z
e
;

r
o
w
+
+
)

/
*

o
n
e

e
x
t
r
a

f
o
r

b
i
a
s
*
/

g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
3
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

p
g
r
a
d
i
e
n
t
s
1
2

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
l
a
y
e
r
2
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
2
s
i
z
e
;

r
o
w
+
+
)

/
*

o
n
e

e
x
t
r
a

f
o
r

b
i
a
s
*
/

p
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
1
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

p
g
r
a
d
i
e
n
t
s
2
3

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
l
a
y
e
r
3
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
3
s
i
z
e
;

r
o
w
+
+
)

/
*

o
n
e

e
x
t
r
a

f
o
r

b
i
a
s
*
/

p
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
2
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

p
g
r
a
d
i
e
n
t
s
3
4

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
l
a
y
e
r
4
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
4
s
i
z
e
;

r
o
w
+
+
)

/
*

o
n
e

e
x
t
r
a

f
o
r

b
i
a
s
*
/

p
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
3
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

a
c
t
u
a
l
_
c
h
a
n
g
e
s
1
2

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
l
a
y
e
r
2
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
2
s
i
z
e
;

r
o
w
+
+
)

/
*

o
n
e

e
x
t
r
a

f
o
r

b
i
a
s
*
/

a
c
t
u
a
l
_
c
h
a
n
g
e
s
1
2
[
r
o
w
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
1
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

184

a
c
t
u
a
l
_
c
h
a
n
g
e
s
2
3

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
l
a
y
e
r
3
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
3
s
i
z
e
;

r
o
w
+
+
)

/
*

o
n
e

e
x
t
r
a

f
o
r

b
i
a
s
*
/

a
c
t
u
a
l
_
c
h
a
n
g
e
s
2
3
[
r
o
w
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
2
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

a
c
t
u
a
l
_
c
h
a
n
g
e
s
3
4

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
l
a
y
e
r
4
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
4
s
i
z
e
;

r
o
w
+
+
)

/
*

o
n
e

e
x
t
r
a

f
o
r

b
i
a
s
*
/

a
c
t
u
a
l
_
c
h
a
n
g
e
s
3
4
[
r
o
w
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
3
s
i
z
e

+
1
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

/
*

n
e
e
d

t
o

c
o
u
n
t

i
n
p
u
t

m
a
p
p
i
n
g
s

i
f

n
o
t

l
e
a
v
i
n
g

o
n

d
i
s
k
*
/

i
f

(
!
l
e
a
v
e
_
o
n
_
d
i
s
k
)

{
w
h
i
l
e
(
g
e
t
l
i
n
e
(
l
i
n
e
,

s
i
z
e
o
f
(
l
i
n
e
)
,

d
a
t
a
f
i
l
e
)
)

p
n
+
+
;

n
u
m
_
p
a
t
t
e
r
n
s

=
p
n
;

r
e
w
i
n
d
(
d
a
t
a
f
i
l
e
)
;

/
*

a
l
l
o
c
a
t
e

s
p
a
c
e

f
o
r

i
n
p
u
t
s
*
/

i
n
p
u
t
s

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
n
u
m
_
p
a
t
t
e
r
n
s
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
p
n

=
0
;

p
n

<
n
u
m
_
p
a
t
t
e
r
n
s
;

p
n
+
+
)

i
n
p
u
t
s
[
p
n
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
1
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

o
u
t
p
u
t
s

=
(
i
n
t
*
)
c
a
l
l
o
c
(
p
n
,

s
i
z
e
o
f
(
i
n
t
)
)
;

/
*

r
e
a
d

i
n

i
n
p
u
t
/
o
u
t
p
u
t

p
a
t
t
e
r
n
s
*
/

f
o
r

(
p
n

=
0
;

p
n

<
n
u
m
_
p
a
t
t
e
r
n
s
;

p
n
+
+
)

{
g
e
t
l
i
n
e
(
l
i
n
e
,

s
i
z
e
o
f
(
l
i
n
e
)
,

d
a
t
a
f
i
l
e
)
;

s
s
c
a
n
f
(
s
t
r
t
o
k
(
l
i
n
e
,

"
\
t
"
)
,

"
%
f
"
,

&
i
n
p
u
t
s
[
p
n
]
[
0
]
)
;

f
o
r

(
p
o
s
i
t
i
o
n

=
1
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
1
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
s
s
c
a
n
f
(
s
t
r
t
o
k
(
N
U
L
L
,

"
\
t
"
)
,

"
%
f
"
,

&
i
n
p
u
t
s
[
p
n
]
[
p
o
s
i
t
i
o
n
]
)
;

}
s
s
c
a
n
f
(
s
t
r
t
o
k
(
N
U
L
L
,

"
\
t
"
)
,

"
%
d
"
,

&
o
u
t
p
u
t
s
[
p
n
]
)
;

}

/
*

i
f

u
s
i
n
g

a
t
e
s
t

f
i
l
e
,

r
e
a
d

i
n

t
e
s
t
f
i
l
e

i
/
o

p
a
t
t
e
r
n
s
*
/

i
f

(
t
e
s
t
)

{
p
n

=
0
;

w
h
i
l
e
(
g
e
t
l
i
n
e
(
l
i
n
e
,

s
i
z
e
o
f
(
l
i
n
e
)
,

t
e
s
t
f
i
l
e
)
)

p
n
+
+
;

n
u
m
_
t
e
s
t
_
p
a
t
t
e
r
n
s

=
p
n
;

r
e
w
i
n
d
(
t
e
s
t
f
i
l
e
)
;

/
*

a
l
l
o
c
a
t
e

s
p
a
c
e

f
o
r

i
n
p
u
t
s
*
/

t
i
n
p
u
t
s

=
(
f
l
o
a
t
*
*
)
c
a
l
l
o
c
(
n
u
m
_
t
e
s
t
_
p
a
t
t
e
r
n
s
,

s
i
z
e
o
f
(
f
l
o
a
t
*
)
)
;

f
o
r

(
p
n

=
0
;

p
n

<
n
u
m
_
t
e
s
t
_
p
a
t
t
e
r
n
s
;

p
n
+
+
)

t
i
n
p
u
t
s
[
p
n
]

=
(
f
l
o
a
t
*
)
c
a
l
l
o
c
(
l
a
y
e
r
1
s
i
z
e
,

s
i
z
e
o
f
(
f
l
o
a
t
)
)
;

t
o
u
t
p
u
t
s

=
(
i
n
t

*
)
c
a
l
l
o
c
(
p
n
,

s
i
z
e
o
f
(
i
n
t
)
)
;

/
*

r
e
a
d

i
n

i
n
p
u
t
/
o
u
t
p
u
t

p
a
t
t
e
r
n
s
*
/

f
o
r

(
p
n

=
0
;

p
n

<
n
u
m
_
t
e
s
t
_
p
a
t
t
e
r
n
s
;

p
n
+
+
)

{
g
e
t
l
i
n
e
(
l
i
n
e
,

s
i
z
e
o
f
(
l
i
n
e
)
,

t
e
s
t
f
i
l
e
)
;

s
s
c
a
n
f
(
s
t
r
t
o
k
(
l
i
n
e
,

"
\
t
"
)
,

"
%
f
"
,

&
t
i
n
p
u
t
s
[
p
n
]
[
0
]
)
;

f
o
r

(
p
o
s
i
t
i
o
n

=
1
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
1
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
s
s
c
a
n
f
(
s
t
r
t
o
k
(
N
U
L
L
,

"
\
t
"
)
,

"
%
f
"
,

&
t
i
n
p
u
t
s
[
p
n
]
[
p
o
s
i
t
i
o
n
]
)
;

}
s
s
c
a
n
f
(
s
t
r
t
o
k
(
N
U
L
L
,

"
\
t
"
)
,

"
%
d
"
,

&
t
o
u
t
p
u
t
s
[
p
n
]
)
;

}

}
}

} /
* *

v
o
i
d

r
e
a
d
_
w
e
i
g
h
t
s
(
F
I
L
E
*
i
n
f
i
l
e
)

*
R
e
a
d

w
e
i
g
h
t
s

f
r
o
m

i
n
f
i
l
e

i
n
t
o

w
e
i
g
h
t

m
a
t
r
i
c
e
s
.

*
D
e
p
e
n
d
s

o
n

i
n
i
t
i
a
l
i
s
e
_
l
a
y
e
r
s

h
a
v
i
n
g

b
e
e
n

c
a
l
l
e
d

a
l
r
e
a
d
y
.

*
/

v
o
i
d

r
e
a
d
_
w
e
i
g
h
t
s
(
F
I
L
E
*
i
n
f
i
l
e
)

{
i
n
t

i
,
j
;

c
h
a
r

l
i
n
e
[
M
A
X
S
T
R
I
N
G
]
;

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
2
s
i
z
e
;

i
+
+
)

{
g
e
t
l
i
n
e
(
l
i
n
e
,

s
i
z
e
o
f
(
l
i
n
e
)
,

i
n
f
i
l
e
)
;

w
e
i
g
h
t
s
1
2
[
i
]
[
0
]

=
a
t
o
f
(
s
t
r
t
o
k
(
l
i
n
e
,

"
\
t

"
)
)
;

f
o
r

(
j

=
1
;

j
<
=

l
a
y
e
r
1
s
i
z
e
;

j
+
+
)

w
e
i
g
h
t
s
1
2
[
i
]
[
j
]

=
a
t
o
f
(
s
t
r
t
o
k
(
N
U
L
L
,

"
\
t

"
)
)
;

}

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
3
s
i
z
e
;

i
+
+
)

{
g
e
t
l
i
n
e
(
l
i
n
e
,

s
i
z
e
o
f
(
l
i
n
e
)
,

i
n
f
i
l
e
)
;

w
e
i
g
h
t
s
2
3
[
i
]
[
0
]

=
a
t
o
f
(
s
t
r
t
o
k
(
l
i
n
e
,

"
\
t

"
)
)
;

f
o
r

(
j

=
1
;

j
<
=

l
a
y
e
r
2
s
i
z
e
;

j
+
+
)

w
e
i
g
h
t
s
2
3
[
i
]
[
j
]

=
a
t
o
f
(
s
t
r
t
o
k
(
N
U
L
L
,

"
\
t

"
)
)
;

}

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
4
s
i
z
e
;

i
+
+
)

{
g
e
t
l
i
n
e
(
l
i
n
e
,

s
i
z
e
o
f
(
l
i
n
e
)
,

i
n
f
i
l
e
)
;

w
e
i
g
h
t
s
3
4
[
i
]
[
0
]

=
a
t
o
f
(
s
t
r
t
o
k
(
l
i
n
e
,

"
\
t

"
)
)
;

f
o
r

(
j

=
1
;

j
<
=

l
a
y
e
r
3
s
i
z
e
;

j
+
+
)

w
e
i
g
h
t
s
3
4
[
i
]
[
j
]

=
a
t
o
f
(
s
t
r
t
o
k
(
N
U
L
L
,

"
\
t

"
)
)
;

}
} /
* *

v
o
i
d

d
u
m
p
_
w
e
i
g
h
t
s
(
F
I
L
E
*
o
u
t
f
i
l
e
)

*
S
i
m
p
l
y

p
r
i
n
t

o
u
t

a
l
l

t
h
e

w
e
i
g
h
t
s

a
n
d

b
i
a
s
e
s
.

*
/

v
o
i
d

d
u
m
p
_
w
e
i
g
h
t
s
(
F
I
L
E
*
o
u
t
f
i
l
e
)

{
i
n
t

i
,
j
;

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
2
s
i
z
e
;

i
+
+
)

{
f
o
r

(
j

=
0
;

j
<
=

l
a
y
e
r
1
s
i
z
e
;

j
+
+
)

f
p
r
i
n
t
f
(
o
u
t
f
i
l
e
,

"
%
1
0
.
7
f

"
,

w
e
i
g
h
t
s
1
2
[
i
]
[
j
]
)
;

f
p
r
i
n
t
f
(
o
u
t
f
i
l
e
,
"
\
n
"
)
;

}

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
3
s
i
z
e
;

i
+
+
)

{
f
o
r

(
j

=
0
;

j
<
=

l
a
y
e
r
2
s
i
z
e
;

j
+
+
)

f
p
r
i
n
t
f
(
o
u
t
f
i
l
e
,

"
%
1
0
.
7
f

"
,

w
e
i
g
h
t
s
2
3
[
i
]
[
j
]
)
;

f
p
r
i
n
t
f
(
o
u
t
f
i
l
e
,
"
\
n
"
)
;

}

185

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
4
s
i
z
e
;

i
+
+
)

{
f
o
r

(
j

=
0
;

j
<
=

l
a
y
e
r
3
s
i
z
e
;

j
+
+
)

f
p
r
i
n
t
f
(
o
u
t
f
i
l
e
,

"
%
1
0
.
7
f

"
,

w
e
i
g
h
t
s
3
4
[
i
]
[
j
]
)
;

f
p
r
i
n
t
f
(
o
u
t
f
i
l
e
,

"
\
n
"
)
;

}
} /
* *

v
o
i
d

f
o
r
w
a
r
d
(
v
o
i
d
)

*
F
e
e
d

t
h
e

c
u
r
r
e
n
t

p
a
t
t
e
r
n

f
o
r
w
a
r
d

t
h
r
o
u
g
h

t
h
e

n
e
t
w
o
r
k
.

*
/

v
o
i
d

f
o
r
w
a
r
d
(
v
o
i
d
)

{
i
n
t

p
o
s
i
t
i
o
n
,

i
n
c
o
m
i
n
g
;

f
l
o
a
t

s
u
m
;

/
*

C
o
p
y

t
h
e

c
u
r
r
e
n
t

p
a
t
t
e
r
n

i
n
t
o

l
a
y
e
r
1
.

*
/

/
*

C
o
p
y

f
r
o
m

m
e
m
o
r
y

i
f

n
o
t

l
e
a
v
i
n
g

o
n

d
i
s
k
,

o
t
h
e
r
w
i
s
e

r
e
a
d

i
n

f
r
o
m

f
i
l
e
.
*
/

/
*

R
e
m
e
m
b
e
r

t
h
a
t

l
a
y
e
r
1
[
l
a
y
e
r
1
s
i
z
e
]

i
s

i
n
i
t
i
a
l
i
s
e
d

t
o

1
.
0
.

*
/

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
1
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
l
a
y
e
r
1
[
p
o
s
i
t
i
o
n
]

=
i
n
p
u
t
s
[
c
u
r
r
e
n
t
_
p
a
t
t
e
r
n
]
[
p
o
s
i
t
i
o
n
]
;

}

/
*

F
e
e
d

f
o
r
w
a
r
d

f
r
o
m

l
a
y
e
r

1
t
o

l
a
y
e
r

2
*
/

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
2
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
s
u
m

=
0
.
0
;

f
o
r

(
i
n
c
o
m
i
n
g

=
0
;

i
n
c
o
m
i
n
g

<
=

l
a
y
e
r
1
s
i
z
e
;

i
n
c
o
m
i
n
g
+
+
)

s
u
m

+
=

l
a
y
e
r
1
[
i
n
c
o
m
i
n
g
]
*

w
e
i
g
h
t
s
1
2
[
p
o
s
i
t
i
o
n
]
[
i
n
c
o
m
i
n
g
]
;

l
a
y
e
r
2
[
p
o
s
i
t
i
o
n
]

=
S
I
G
M
O
I
D
(
s
u
m
)
;

}

/
*

F
e
e
d

f
o
r
w
a
r
d

f
r
o
m

l
a
y
e
r

2
t
o

l
a
y
e
r

3
*
/

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
3
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
s
u
m

=
0
.
0
;

f
o
r

(
i
n
c
o
m
i
n
g

=
0
;

i
n
c
o
m
i
n
g

<
=

l
a
y
e
r
2
s
i
z
e
;

i
n
c
o
m
i
n
g
+
+
)

s
u
m

+
=

l
a
y
e
r
2
[
i
n
c
o
m
i
n
g
]
*

w
e
i
g
h
t
s
2
3
[
p
o
s
i
t
i
o
n
]
[
i
n
c
o
m
i
n
g
]
;

l
a
y
e
r
3
[
p
o
s
i
t
i
o
n
]

=
S
I
G
M
O
I
D
(
s
u
m
)
;

}

/
*

F
e
e
d

f
o
r
w
a
r
d

f
r
o
m

l
a
y
e
r

3
t
o

l
a
y
e
r

4
*
/

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
4
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
s
u
m

=
0
.
0
;

f
o
r

(
i
n
c
o
m
i
n
g

=
0
;

i
n
c
o
m
i
n
g

<
=

l
a
y
e
r
3
s
i
z
e
;

i
n
c
o
m
i
n
g
+
+
)

s
u
m

+
=

l
a
y
e
r
3
[
i
n
c
o
m
i
n
g
]
*

w
e
i
g
h
t
s
3
4
[
p
o
s
i
t
i
o
n
]
[
i
n
c
o
m
i
n
g
]
;

l
a
y
e
r
4
[
p
o
s
i
t
i
o
n
]

=
S
I
G
M
O
I
D
(
s
u
m
)
;

}
} /
* *

v
o
i
d

t
e
s
t
_
f
o
r
w
a
r
d
(
v
o
i
d
)

*
F
e
e
d

t
h
e

c
u
r
r
e
n
t

t
e
s
t

p
a
t
t
e
r
n

f
o
r
w
a
r
d

t
h
r
o
u
g
h

t
h
e

n
e
t
w
o
r
k
,

*
p
l
u
s

c
h
e
c
k

e
r
r
o
r
.

*
/

v
o
i
d

t
e
s
t
_
f
o
r
w
a
r
d
(
v
o
i
d
)

{
i
n
t

p
o
s
i
t
i
o
n
,

i
n
c
o
m
i
n
g
;

f
l
o
a
t

s
u
m
,

d
e
s
i
r
e
d
_
a
c
t
i
v
a
t
i
o
n
,

h
i
g
h
e
s
t

=
0
.
0
;

i
n
t

i
n
c
o
r
r
e
c
t
_
c
l
a
s
s
i
f
i
c
a
t
i
o
n

=
0
;

i
n
t

c
l
a
s
s
i
f
i
c
a
t
i
o
n

=
0
;

/
*

C
o
p
y

t
h
e

c
u
r
r
e
n
t

t
e
s
t

p
a
t
t
e
r
n

i
n
t
o

l
a
y
e
r
1
.

*
/

/
*

C
o
p
y

f
r
o
m

m
e
m
o
r
y

i
f

n
o
t

l
e
a
v
i
n
g

o
n

d
i
s
k
,

o
t
h
e
r
w
i
s
e

r
e
a
d

i
n

f
r
o
m

f
i
l
e
.
*
/

/
*

R
e
m
e
m
b
e
r

t
h
a
t

l
a
y
e
r
1
[
l
a
y
e
r
1
s
i
z
e
]

i
s

i
n
i
t
i
a
l
i
s
e
d

t
o

1
.
0
.

*
/

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
1
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
l
a
y
e
r
1
[
p
o
s
i
t
i
o
n
]

=
t
i
n
p
u
t
s
[
c
u
r
r
e
n
t
_
t
e
s
t
_
p
a
t
t
e
r
n
]
[
p
o
s
i
t
i
o
n
]
;

}

/
*

F
e
e
d

f
o
r
w
a
r
d

f
r
o
m

l
a
y
e
r

1
t
o

l
a
y
e
r

2
*
/

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
2
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
s
u
m

=
0
.
0
;

f
o
r

(
i
n
c
o
m
i
n
g

=
0
;

i
n
c
o
m
i
n
g

<
=

l
a
y
e
r
1
s
i
z
e
;

i
n
c
o
m
i
n
g
+
+
)

s
u
m

+
=

l
a
y
e
r
1
[
i
n
c
o
m
i
n
g
]
*

w
e
i
g
h
t
s
1
2
[
p
o
s
i
t
i
o
n
]
[
i
n
c
o
m
i
n
g
]
;

l
a
y
e
r
2
[
p
o
s
i
t
i
o
n
]

=
S
I
G
M
O
I
D
(
s
u
m
)
;

}

/
*

F
e
e
d

f
o
r
w
a
r
d

f
r
o
m

l
a
y
e
r

2
t
o

l
a
y
e
r

3
*
/

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
3
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
s
u
m

=
0
.
0
;

f
o
r

(
i
n
c
o
m
i
n
g

=
0
;

i
n
c
o
m
i
n
g

<
=

l
a
y
e
r
2
s
i
z
e
;

i
n
c
o
m
i
n
g
+
+
)

s
u
m

+
=

l
a
y
e
r
2
[
i
n
c
o
m
i
n
g
]
*

w
e
i
g
h
t
s
2
3
[
p
o
s
i
t
i
o
n
]
[
i
n
c
o
m
i
n
g
]
;

l
a
y
e
r
3
[
p
o
s
i
t
i
o
n
]

=
S
I
G
M
O
I
D
(
s
u
m
)
;

}

/
*

F
e
e
d

f
o
r
w
a
r
d

f
r
o
m

l
a
y
e
r

3
t
o

l
a
y
e
r

4
*
/

/
*

+
a
c
c
u
m
u
l
a
t
e

e
r
r
o
r
*
/

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
4
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
d
e
s
i
r
e
d
_
a
c
t
i
v
a
t
i
o
n

=
(
t
o
u
t
p
u
t
s
[
c
u
r
r
e
n
t
_
t
e
s
t
_
p
a
t
t
e
r
n
]

-
1

=
=

p
o
s
i
t
i
o
n
)

?
1
.
0

:
0
.
0
;

s
u
m

=
0
.
0
;

f
o
r

(
i
n
c
o
m
i
n
g

=
0
;

i
n
c
o
m
i
n
g

<
=

l
a
y
e
r
3
s
i
z
e
;

i
n
c
o
m
i
n
g
+
+
)

s
u
m

+
=

l
a
y
e
r
3
[
i
n
c
o
m
i
n
g
]
*

w
e
i
g
h
t
s
3
4
[
p
o
s
i
t
i
o
n
]
[
i
n
c
o
m
i
n
g
]
;

l
a
y
e
r
4
[
p
o
s
i
t
i
o
n
]

=
S
I
G
M
O
I
D
(
s
u
m
)
;

i
f

(
l
a
y
e
r
4
[
p
o
s
i
t
i
o
n
]

>
h
i
g
h
e
s
t
)

{
c
l
a
s
s
i
f
i
c
a
t
i
o
n

=
p
o
s
i
t
i
o
n

+
1
;

h
i
g
h
e
s
t

=
l
a
y
e
r
4
[
p
o
s
i
t
i
o
n
]
;

}

t
e
s
t
_
s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r

+
=

(
d
e
s
i
r
e
d
_
a
c
t
i
v
a
t
i
o
n

-
l
a
y
e
r
4
[
p
o
s
i
t
i
o
n
]
)
*

(
d
e
s
i
r
e
d
_
a
c
t
i
v
a
t
i
o
n

-
l
a
y
e
r
4
[
p
o
s
i
t
i
o
n
]
)
;

}

i
f

(
c
l
a
s
s
i
f
i
c
a
t
i
o
n

!
=

t
o
u
t
p
u
t
s
[
c
u
r
r
e
n
t
_
t
e
s
t
_
p
a
t
t
e
r
n
]
)

t
e
s
t
_
g
l
o
b
a
l
_
e
r
r
o
r
+
+
;

} /
* *

v
o
i
d

b
a
c
k
w
a
r
d
(
v
o
i
d
)

*
P
r
o
p
a
g
a
t
e

e
r
r
o
r
s

b
a
c
k

t
h
r
o
u
g
h

t
h
e

m
l
p

a
c
c
o
r
d
i
n
g

*
t
o

t
h
e

c
u
r
r
e
n
t

p
a
t
t
e
r
n

n
u
m
b
e
r
.

186

*
/

v
o
i
d

b
a
c
k
w
a
r
d
(
v
o
i
d
)

{
i
n
t

p
o
s
i
t
i
o
n
,

p
l
,

n
l
;

/
*

c
u
r
r
e
n
t

u
n
i
t
,

P
r
e
v
i
o
u
s

L
a
y
e
r
,

N
e
x
t

L
a
y
e
r
*
/

f
l
o
a
t

s
u
m
,

d
e
s
i
r
e
d
,

h
i
g
h
e
s
t

=
0
.
0
;

i
n
t

i
n
c
o
r
r
e
c
t
_
c
l
a
s
s
i
f
i
c
a
t
i
o
n

=
0
;

i
n
t

c
l
a
s
s
i
f
i
c
a
t
i
o
n

=
0
;

/
*

c
a
l
c
u
l
a
t
e

o
u
t
p
u
t

e
r
r
o
r
s
*
/

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
4
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
/
*

d
o

w
e

W
A
N
T

t
h
i
s

o
u
t
p
u
t

u
n
i
t

t
o

b
e

a
c
t
i
v
e
?
*
/

d
e
s
i
r
e
d

=
(
(
o
u
t
p
u
t
s
[
c
u
r
r
e
n
t
_
p
a
t
t
e
r
n
]

-
1
)

=
=

p
o
s
i
t
i
o
n
)

?
1
.
0
0

:
0
.
0
0
;

l
a
y
e
r
4
e
r
r
o
r
s
[
p
o
s
i
t
i
o
n
]

=
d
e
s
i
r
e
d

-
l
a
y
e
r
4
[
p
o
s
i
t
i
o
n
]
;

/
*

i
f

(
A
B
S
(
l
a
y
e
r
4
e
r
r
o
r
s
[
p
o
s
i
t
i
o
n
]
)

>
=

e
r
r
o
r
_
t
h
r
e
s
h
o
l
d
)
*
/

/
*

i
n
c
o
r
r
e
c
t
_
c
l
a
s
s
i
f
i
c
a
t
i
o
n
+
+
;
*
/

i
f

(
l
a
y
e
r
4
[
p
o
s
i
t
i
o
n
]

>
h
i
g
h
e
s
t
)

{
c
l
a
s
s
i
f
i
c
a
t
i
o
n

=
p
o
s
i
t
i
o
n

+
1
;

h
i
g
h
e
s
t

=
l
a
y
e
r
4
[
p
o
s
i
t
i
o
n
]
;

}

i
f

(
l
o
g
_
s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r
)

s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r

+
=

l
a
y
e
r
4
e
r
r
o
r
s
[
p
o
s
i
t
i
o
n
]
*

l
a
y
e
r
4
e
r
r
o
r
s
[
p
o
s
i
t
i
o
n
]
;

l
a
y
e
r
4
e
r
r
o
r
s
[
p
o
s
i
t
i
o
n
]
*
=

(
f
l
a
t
s
p
o
t
_
o
f
f
s
e
t

+
(
l
a
y
e
r
4
[
p
o
s
i
t
i
o
n
]
*

(
1

-
l
a
y
e
r
4
[
p
o
s
i
t
i
o
n
]
)
)
)
;

f
o
r

(
p
l

=
0
;

p
l

<
=

l
a
y
e
r
3
s
i
z
e
;

p
l
+
+
)

g
r
a
d
i
e
n
t
s
3
4
[
p
o
s
i
t
i
o
n
]
[
p
l
]

+
=

l
a
y
e
r
4
e
r
r
o
r
s
[
p
o
s
i
t
i
o
n
]
*

l
a
y
e
r
3
[
p
l
]
;

}

/
*

i
f

(
i
n
c
o
r
r
e
c
t
_
c
l
a
s
s
i
f
i
c
a
t
i
o
n
)
*
/

/
*

g
l
o
b
a
l
_
e
r
r
o
r
+
+
;

*
/

i
f

(
c
l
a
s
s
i
f
i
c
a
t
i
o
n

!
=

o
u
t
p
u
t
s
[
c
u
r
r
e
n
t
_
p
a
t
t
e
r
n
]
)

g
l
o
b
a
l
_
e
r
r
o
r
+
+
;

/
*

c
a
l
c
u
l
a
t
e

c
h
a
n
g
e
s

f
o
r

w
e
i
g
h
t
s
2
3
*
/

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
3
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
/
*

T
h
e

e
r
r
o
r

t
e
r
m

f
o
r

e
a
c
h

u
n
i
t

d
e
p
e
n
d
s

o
n

t
h
e

e
r
r
o
r
*
/

/
*

t
e
r
m
s

o
f

A
L
L

t
h
e

u
n
i
t
s

i
t

f
e
e
d
s

i
n
t
o
.

*
/

s
u
m

=
0
.
0
;

f
o
r

(
n
l

=
0
;

n
l

<
l
a
y
e
r
4
s
i
z
e
;

n
l
+
+
)

s
u
m

+
=

l
a
y
e
r
4
e
r
r
o
r
s
[
n
l
]
*

w
e
i
g
h
t
s
3
4
[
n
l
]
[
p
o
s
i
t
i
o
n
]
;

s
u
m

*
=

(
f
l
a
t
s
p
o
t
_
o
f
f
s
e
t

+
(
l
a
y
e
r
3
[
p
o
s
i
t
i
o
n
]
*

(
1

-
l
a
y
e
r
3
[
p
o
s
i
t
i
o
n
]
)
)
)
;

l
a
y
e
r
3
e
r
r
o
r
s
[
p
o
s
i
t
i
o
n
]

=
s
u
m
;

f
o
r

(
p
l

=
0
;

p
l

<
=

l
a
y
e
r
2
s
i
z
e
;

p
l
+
+
)

g
r
a
d
i
e
n
t
s
2
3
[
p
o
s
i
t
i
o
n
]
[
p
l
]

+
=

s
u
m
*

l
a
y
e
r
2
[
p
l
]
;

}

/
*

c
a
l
c
u
l
a
t
e

c
h
a
n
g
e
s

f
o
r

w
e
i
g
h
t
s
1
2
*
/

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
2
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

{
/
*

T
h
e

e
r
r
o
r

t
e
r
m

f
o
r

e
a
c
h

u
n
i
t

d
e
p
e
n
d
s

o
n

t
h
e

e
r
r
o
r
*
/

/
*

t
e
r
m
s

o
f

A
L
L

t
h
e

u
n
i
t
s

i
t

f
e
e
d
s

i
n
t
o
.

*
/

s
u
m

=
0
.
0
;

f
o
r

(
n
l

=
0
;

n
l

<
l
a
y
e
r
3
s
i
z
e
;

n
l
+
+
)

s
u
m

+
=

l
a
y
e
r
3
e
r
r
o
r
s
[
n
l
]
*

w
e
i
g
h
t
s
2
3
[
n
l
]
[
p
o
s
i
t
i
o
n
]
;

s
u
m

*
=

(
f
l
a
t
s
p
o
t
_
o
f
f
s
e
t

+

(
l
a
y
e
r
2
[
p
o
s
i
t
i
o
n
]

*
(
1

-
l
a
y
e
r
2
[
p
o
s
i
t
i
o
n
]
)
)
)
;

l
a
y
e
r
2
e
r
r
o
r
s
[
p
o
s
i
t
i
o
n
]

=
s
u
m
;

f
o
r

(
p
l

=
0
;

p
l

<
=

l
a
y
e
r
1
s
i
z
e
;

p
l
+
+
)

g
r
a
d
i
e
n
t
s
1
2
[
p
o
s
i
t
i
o
n
]
[
p
l
]

+
=

s
u
m
*

l
a
y
e
r
1
[
p
l
]
;

}
} /
* *

v
o
i
d

b
p
_
c
h
a
n
g
e
_
w
e
i
g
h
t
s
(
v
o
i
d
)

*
L
o
o
p

t
h
r
o
u
g
h

t
h
e

g
r
a
d
i
e
n
t
s

c
a
l
c
u
l
a
t
e
d

a
n
d

a
c
t
u
a
l
l
y

m
a
k
e

t
h
e
m
.

*
/

v
o
i
d

b
p
_
c
h
a
n
g
e
_
w
e
i
g
h
t
s
(
v
o
i
d
)

{
i
n
t

r
o
w
,

c
o
l
;

f
l
o
a
t

*
*
t
e
m
p
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
2
s
i
z
e
;

r
o
w
+
+
)

f
o
r

(
c
o
l

=
0
;

c
o
l

<
=

l
a
y
e
r
1
s
i
z
e
;

c
o
l
+
+
)

w
e
i
g
h
t
s
1
2
[
r
o
w
]
[
c
o
l
]

+
=

l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t

*
(
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]

+
m
o
m
e
n
t
u
m

*
p
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
3
s
i
z
e
;

r
o
w
+
+
)

f
o
r

(
c
o
l

=
0
;

c
o
l

<
=

l
a
y
e
r
2
s
i
z
e
;

c
o
l
+
+
)

w
e
i
g
h
t
s
2
3
[
r
o
w
]
[
c
o
l
]

+
=

l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t

*
(
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]

+
m
o
m
e
n
t
u
m

*
p
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]
)
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
4
s
i
z
e
;

r
o
w
+
+
)

f
o
r

(
c
o
l

=
0
;

c
o
l

<
=

l
a
y
e
r
3
s
i
z
e
;

c
o
l
+
+
)

w
e
i
g
h
t
s
3
4
[
r
o
w
]
[
c
o
l
]

+
=

l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t

*
(
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]

+
m
o
m
e
n
t
u
m

*
p
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]
)
;

/
*

s
a
v
e

t
h
e

l
a
s
t

g
r
a
d
i
e
n
t
s
*
/

t
e
m
p

=
p
g
r
a
d
i
e
n
t
s
1
2
;

p
g
r
a
d
i
e
n
t
s
1
2

=
g
r
a
d
i
e
n
t
s
1
2
;

g
r
a
d
i
e
n
t
s
1
2

=
t
e
m
p
;

t
e
m
p

=
p
g
r
a
d
i
e
n
t
s
2
3
;

p
g
r
a
d
i
e
n
t
s
2
3

=
g
r
a
d
i
e
n
t
s
2
3
;

g
r
a
d
i
e
n
t
s
2
3

=
t
e
m
p
;

t
e
m
p

=
p
g
r
a
d
i
e
n
t
s
3
4
;

p
g
r
a
d
i
e
n
t
s
3
4

=
g
r
a
d
i
e
n
t
s
3
4
;

g
r
a
d
i
e
n
t
s
3
4

=
t
e
m
p
;

z
e
r
o
_
g
r
a
d
i
e
n
t
s
(
)
;

} /
* *

v
o
i
d

q
p
_
c
h
a
n
g
e
_
w
e
i
g
h
t
s
(
v
o
i
d
)

*
L
o
o
p

t
h
r
o
u
g
h

t
h
e

g
r
a
d
i
e
n
t
s

c
a
l
c
u
l
a
t
e
d

a
n
d

a
c
t
u
a
l
l
y

m
a
k
e

t
h
e
m
.

*
U
s
e

t
h
e

q
u
i
c
k
p
r
o
p

"
j
u
m
p
"

t
e
c
h
n
i
q
u
e
.

*
/

v
o
i
d

q
p
_
c
h
a
n
g
e
_
w
e
i
g
h
t
s
(
v
o
i
d
)

{
i
n
t

r
o
w
,

c
o
l
;

f
l
o
a
t

*
*
t
e
m
p
;

187

f
l
o
a
t

s
h
r
i
n
k
_
f
a
c
t
o
r

=
m
a
x
_
s
t
e
p

/
(
1
.
0

+
m
a
x
_
s
t
e
p
)
;

f
l
o
a
t

s
t
e
p
;

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
2
s
i
z
e
;

r
o
w
+
+
)

f
o
r

(
c
o
l

=
0
;

c
o
l

<
=

l
a
y
e
r
1
s
i
z
e
;

c
o
l
+
+
)

{
s
t
e
p

=
0
.
0
;

i
f

(
a
c
t
u
a
l
_
c
h
a
n
g
e
s
1
2
[
r
o
w
]
[
c
o
l
]

>
0
.
0
)

/
*

+
v
e

p
r
e
v
i
o
u
s

g
r
a
d
i
e
n
t
*
/

{
/
*

i
f

t
h
e

c
u
r
r
e
n
t

g
r
a
d
i
e
n
t

i
s

a
l
s
o

+
v
e
,

a
d
d

i
t

i
n
;

*
/

/
*

o
t
h
e
r
w
i
s
e
,

j
u
s
t

u
s
e

q
u
a
d
r
a
t
i
c

e
s
t
i
m
a
t
e

b
y

i
t
s
e
l
f
.
*
/

i
f

(
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]

>
0
.
0
)

s
t
e
p

+
=

l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t
*

g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]
;

/
*

i
f

g
r
a
d
i
e
n
t

i
s

l
a
r
g
e
r

t
h
a
n
,

=
t
o
,

o
r

a
l
m
o
s
t

=
t
o

*
/

/
*

t
h
e

p
r
e
v
i
o
u
s

g
r
a
d
i
e
n
t
,

t
a
k
e

t
h
e

m
a
x
_
s
t
e
p

s
t
e
p
.

*
/

i
f

(
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]

>
s
h
r
i
n
k
_
f
a
c
t
o
r
*

p
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]
)

s
t
e
p

+
=

m
a
x
_
s
t
e
p
*

a
c
t
u
a
l
_
c
h
a
n
g
e
s
1
2
[
r
o
w
]
[
c
o
l
]
;

e
l
s
e
/
*

u
s
e

q
u
a
d
r
a
t
i
c

e
s
t
i
m
a
t
e
.
*
/

s
t
e
p

+
=

a
c
t
u
a
l
_
c
h
a
n
g
e
s
1
2
[
r
o
w
]
[
c
o
l
]
*

(
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]

/
(
p
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]

-
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]
)
)
;

}
e
l
s
e

i
f

(
a
c
t
u
a
l
_
c
h
a
n
g
e
s
1
2
[
r
o
w
]
[
c
o
l
]

<
0
.
0
)

/
*

-
v
e

p
r
e
v
i
o
u
s

g
r
a
d
i
e
n
t
*
/

{
/
*

i
f

t
h
e

c
u
r
r
e
n
t

g
r
a
d
i
e
n
t

i
s

a
l
s
o

-
v
e
,

a
d
d

i
t

i
n
;

*
/

/
*

o
t
h
e
r
w
i
s
e
,

j
u
s
t

u
s
e

q
u
a
d
r
a
t
i
c

e
s
t
i
m
a
t
e

b
y

i
t
s
e
l
f
.
*
/

i
f

(
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]

<
0
.
0
)

s
t
e
p

+
=

l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t
*

g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]
;

/
*

i
f

g
r
a
d
i
e
n
t

i
s

l
e
s
s

t
h
a
n
,

=
t
o
,

o
r

a
l
m
o
s
t

=
t
o

*
/

/
*

t
h
e

p
r
e
v
i
o
u
s

g
r
a
d
i
e
n
t
,

t
a
k
e

t
h
e

m
a
x
_
s
t
e
p

s
t
e
p
.
*
/

i
f

(
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]

<
s
h
r
i
n
k
_
f
a
c
t
o
r
*
p
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]
)

s
t
e
p

+
=

m
a
x
_
s
t
e
p
*

a
c
t
u
a
l
_
c
h
a
n
g
e
s
1
2
[
r
o
w
]
[
c
o
l
]
;

e
l
s
e
/
*

u
s
e

q
u
a
d
r
a
t
i
c

e
s
t
i
m
a
t
e
.
*
/

s
t
e
p

+
=

a
c
t
u
a
l
_
c
h
a
n
g
e
s
1
2
[
r
o
w
]
[
c
o
l
]
*

(
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]

/
(
p
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]

-
g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]
)
)
;

}
e
l
s
e
/
*

f
l
a
t

a
r
e
a
:

j
u
s
t

u
s
e

l
e
a
r
n
i
n
g

c
o
n
s
t
a
n
t

t
i
m
e
s

g
r
a
d
i
e
n
t
*
/

{
s
t
e
p

=
l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t
*

g
r
a
d
i
e
n
t
s
1
2
[
r
o
w
]
[
c
o
l
]
;

}

/
*

n
o
w

m
a
k
e

t
h
e

a
c
t
u
a
l

c
h
a
n
g
e
s

a
n
d

r
e
m
e
m
b
e
r

t
h
e
m

f
o
r

n
e
x
t

t
i
m
e
.
*
/

a
c
t
u
a
l
_
c
h
a
n
g
e
s
1
2
[
r
o
w
]
[
c
o
l
]

=
s
t
e
p
;

w
e
i
g
h
t
s
1
2
[
r
o
w
]
[
c
o
l
]

+
=

s
t
e
p
;

}

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
3
s
i
z
e
;

r
o
w
+
+
)

f
o
r

(
c
o
l

=
0
;

c
o
l

<
=

l
a
y
e
r
2
s
i
z
e
;

c
o
l
+
+
)

{
s
t
e
p

=
0
.
0
;

i
f

(
a
c
t
u
a
l
_
c
h
a
n
g
e
s
2
3
[
r
o
w
]
[
c
o
l
]

>
0
.
0
)

/
*

+
v
e

p
r
e
v
i
o
u
s

g
r
a
d
i
e
n
t
*
/

{
/
*

i
f

t
h
e

c
u
r
r
e
n
t

g
r
a
d
i
e
n
t

i
s

a
l
s
o

+
v
e
,

a
d
d

i
t

i
n
;

*
/

/
*

o
t
h
e
r
w
i
s
e
,

j
u
s
t

u
s
e

q
u
a
d
r
a
t
i
c

e
s
t
i
m
a
t
e

b
y

i
t
s
e
l
f
.
*
/

i
f

(
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]

>
0
.
0
)

s
t
e
p

+
=

l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t
*

g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]
;

/
*

i
f

g
r
a
d
i
e
n
t

i
s

l
a
r
g
e
r

t
h
a
n
,

=
t
o
,

o
r

a
l
m
o
s
t

=
t
o

*
/

/
*

t
h
e

p
r
e
v
i
o
u
s

g
r
a
d
i
e
n
t
,

t
a
k
e

t
h
e

m
a
x
_
s
t
e
p

s
t
e
p
.

*
/

i
f

(
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]

>
s
h
r
i
n
k
_
f
a
c
t
o
r
*

p
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]
)

s
t
e
p

+
=

m
a
x
_
s
t
e
p
*

a
c
t
u
a
l
_
c
h
a
n
g
e
s
2
3
[
r
o
w
]
[
c
o
l
]
;

e
l
s
e
/
*

u
s
e

q
u
a
d
r
a
t
i
c

e
s
t
i
m
a
t
e
.
*
/

s
t
e
p

+
=

a
c
t
u
a
l
_
c
h
a
n
g
e
s
2
3
[
r
o
w
]
[
c
o
l
]
*

(
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]

/
(
p
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]

-
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]
)
)
;

}
e
l
s
e

i
f

(
a
c
t
u
a
l
_
c
h
a
n
g
e
s
2
3
[
r
o
w
]
[
c
o
l
]

<
0
.
0
)

/
*

-
v
e

p
r
e
v
i
o
u
s

g
r
a
d
i
e
n
t
*
/

{
/
*

i
f

t
h
e

c
u
r
r
e
n
t

g
r
a
d
i
e
n
t

i
s

a
l
s
o

-
v
e
,

a
d
d

i
t

i
n
;

*
/

/
*

o
t
h
e
r
w
i
s
e
,

j
u
s
t

u
s
e

q
u
a
d
r
a
t
i
c

e
s
t
i
m
a
t
e

b
y

i
t
s
e
l
f
.
*
/

i
f

(
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]

<
0
.
0
)

s
t
e
p

+
=

l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t
*

g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]
;

/
*

i
f

g
r
a
d
i
e
n
t

i
s

l
e
s
s

t
h
a
n
,

=
t
o
,

o
r

a
l
m
o
s
t

=
t
o

*
/

/
*

t
h
e

p
r
e
v
i
o
u
s

g
r
a
d
i
e
n
t
,

t
a
k
e

t
h
e

m
a
x
_
s
t
e
p

s
t
e
p
.
*
/

i
f

(
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]

<
s
h
r
i
n
k
_
f
a
c
t
o
r
*
p
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]
)

s
t
e
p

+
=

m
a
x
_
s
t
e
p
*

a
c
t
u
a
l
_
c
h
a
n
g
e
s
2
3
[
r
o
w
]
[
c
o
l
]
;

e
l
s
e
/
*

u
s
e

q
u
a
d
r
a
t
i
c

e
s
t
i
m
a
t
e
.
*
/

s
t
e
p

+
=

a
c
t
u
a
l
_
c
h
a
n
g
e
s
2
3
[
r
o
w
]
[
c
o
l
]
*

(
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]

/
(
p
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]

-
g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]
)
)
;

}
e
l
s
e
/
*

f
l
a
t

a
r
e
a
:

j
u
s
t

u
s
e

l
e
a
r
n
i
n
g

c
o
n
s
t
a
n
t

t
i
m
e
s

g
r
a
d
i
e
n
t
*
/

{
s
t
e
p

=
l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t
*

g
r
a
d
i
e
n
t
s
2
3
[
r
o
w
]
[
c
o
l
]
;

}

/
*

n
o
w

m
a
k
e

t
h
e

a
c
t
u
a
l

c
h
a
n
g
e
s

a
n
d

r
e
m
e
m
b
e
r

t
h
e
m

f
o
r

n
e
x
t

t
i
m
e
.
*
/

a
c
t
u
a
l
_
c
h
a
n
g
e
s
2
3
[
r
o
w
]
[
c
o
l
]

=
s
t
e
p
;

w
e
i
g
h
t
s
2
3
[
r
o
w
]
[
c
o
l
]

+
=

s
t
e
p
;

}

f
o
r

(
r
o
w

=
0
;

r
o
w

<
l
a
y
e
r
4
s
i
z
e
;

r
o
w
+
+
)

f
o
r

(
c
o
l

=
0
;

c
o
l

<
=

l
a
y
e
r
3
s
i
z
e
;

c
o
l
+
+
)

{
s
t
e
p

=
0
.
0
;

i
f

(
a
c
t
u
a
l
_
c
h
a
n
g
e
s
3
4
[
r
o
w
]
[
c
o
l
]

>
0
.
0
)

/
*

+
v
e

p
r
e
v
i
o
u
s

g
r
a
d
i
e
n
t
*
/

{
/
*

i
f

t
h
e

c
u
r
r
e
n
t

g
r
a
d
i
e
n
t

i
s

a
l
s
o

+
v
e
,

a
d
d

i
t

i
n
;

*
/

/
*

o
t
h
e
r
w
i
s
e
,

j
u
s
t

u
s
e

q
u
a
d
r
a
t
i
c

e
s
t
i
m
a
t
e

b
y

i
t
s
e
l
f
.
*
/

i
f

(
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]

>
0
.
0
)

s
t
e
p

+
=

l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t
*

g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]
;

/
*

i
f

g
r
a
d
i
e
n
t

i
s

l
a
r
g
e
r

t
h
a
n
,

=
t
o
,

o
r

a
l
m
o
s
t

=
t
o

*
/

/
*

t
h
e

p
r
e
v
i
o
u
s

g
r
a
d
i
e
n
t
,

t
a
k
e

t
h
e

m
a
x
_
s
t
e
p

s
t
e
p
.

*
/

i
f

(
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]

>
s
h
r
i
n
k
_
f
a
c
t
o
r
*

p
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]
)

s
t
e
p

+
=

m
a
x
_
s
t
e
p
*

a
c
t
u
a
l
_
c
h
a
n
g
e
s
3
4
[
r
o
w
]
[
c
o
l
]
;

e
l
s
e
/
*

u
s
e

q
u
a
d
r
a
t
i
c

e
s
t
i
m
a
t
e
.
*
/

s
t
e
p

+
=

a
c
t
u
a
l
_
c
h
a
n
g
e
s
3
4
[
r
o
w
]
[
c
o
l
]
*

(
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]

/
(
p
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]

-
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]
)
)
;

}
e
l
s
e

i
f

(
a
c
t
u
a
l
_
c
h
a
n
g
e
s
3
4
[
r
o
w
]
[
c
o
l
]

<
0
.
0
)

/
*

-
v
e

p
r
e
v
i
o
u
s

g
r
a
d
i
e
n
t
*
/

{
/
*

i
f

t
h
e

c
u
r
r
e
n
t

g
r
a
d
i
e
n
t

i
s

a
l
s
o

-
v
e
,

a
d
d

i
t

i
n
;

*
/

/
*

o
t
h
e
r
w
i
s
e
,

j
u
s
t

u
s
e

q
u
a
d
r
a
t
i
c

e
s
t
i
m
a
t
e

b
y

i
t
s
e
l
f
.
*
/

i
f

(
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]

<
0
.
0
)

s
t
e
p

+
=

l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t
*

g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]
;

188

/
*

i
f

g
r
a
d
i
e
n
t

i
s

l
e
s
s

t
h
a
n
,

=
t
o
,

o
r

a
l
m
o
s
t

=
t
o

*
/

/
*

t
h
e

p
r
e
v
i
o
u
s

g
r
a
d
i
e
n
t
,

t
a
k
e

t
h
e

m
a
x
_
s
t
e
p

s
t
e
p
.
*
/

i
f

(
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]

<
s
h
r
i
n
k
_
f
a
c
t
o
r
*
p
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]
)

s
t
e
p

+
=

m
a
x
_
s
t
e
p
*

a
c
t
u
a
l
_
c
h
a
n
g
e
s
3
4
[
r
o
w
]
[
c
o
l
]
;

e
l
s
e
/
*

u
s
e

q
u
a
d
r
a
t
i
c

e
s
t
i
m
a
t
e
.
*
/

s
t
e
p

+
=

a
c
t
u
a
l
_
c
h
a
n
g
e
s
3
4
[
r
o
w
]
[
c
o
l
]
*

(
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]

/
(
p
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]

-
g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]
)
)
;

}
e
l
s
e
/
*

f
l
a
t

a
r
e
a
:

j
u
s
t

u
s
e

l
e
a
r
n
i
n
g

c
o
n
s
t
a
n
t

t
i
m
e
s

g
r
a
d
i
e
n
t
*
/

{
s
t
e
p

=
l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t
*

g
r
a
d
i
e
n
t
s
3
4
[
r
o
w
]
[
c
o
l
]
;

}

/
*

n
o
w

m
a
k
e

t
h
e

a
c
t
u
a
l

c
h
a
n
g
e
s

a
n
d

r
e
m
e
m
b
e
r

t
h
e
m

f
o
r

n
e
x
t

t
i
m
e
.
*
/

a
c
t
u
a
l
_
c
h
a
n
g
e
s
3
4
[
r
o
w
]
[
c
o
l
]

=
s
t
e
p
;

w
e
i
g
h
t
s
3
4
[
r
o
w
]
[
c
o
l
]

+
=

s
t
e
p
;

}

/
*

s
a
v
e

t
h
e

l
a
s
t

g
r
a
d
i
e
n
t
s
*
/

t
e
m
p

=
p
g
r
a
d
i
e
n
t
s
1
2
;

p
g
r
a
d
i
e
n
t
s
1
2

=
g
r
a
d
i
e
n
t
s
1
2
;

g
r
a
d
i
e
n
t
s
1
2

=
t
e
m
p
;

t
e
m
p

=
p
g
r
a
d
i
e
n
t
s
2
3
;

p
g
r
a
d
i
e
n
t
s
2
3

=
g
r
a
d
i
e
n
t
s
2
3
;

g
r
a
d
i
e
n
t
s
2
3

=
t
e
m
p
;

t
e
m
p

=
p
g
r
a
d
i
e
n
t
s
3
4
;

p
g
r
a
d
i
e
n
t
s
3
4

=
g
r
a
d
i
e
n
t
s
3
4
;

g
r
a
d
i
e
n
t
s
3
4

=
t
e
m
p
;

d
e
c
a
y
_
g
r
a
d
i
e
n
t
s
(
)
;

} /
* *

v
o
i
d

t
r
a
i
n
i
n
g
_
e
p
o
c
h
(
v
o
i
d
)

*
L
o
o
p

t
h
r
o
u
g
h

a
l
l

t
h
e

p
a
t
t
e
r
n
s
,

t
h
e
n

r
u
n

a
b
a
t
c
h

u
p
d
a
t
e
.

*
/

v
o
i
d

t
r
a
i
n
i
n
g
_
e
p
o
c
h
(
v
o
i
d
)

{
g
l
o
b
a
l
_
e
r
r
o
r

=
0
;

s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r

=
0
.
0
;

f
o
r

(
c
u
r
r
e
n
t
_
p
a
t
t
e
r
n

=
0
;

c
u
r
r
e
n
t
_
p
a
t
t
e
r
n

<
n
u
m
_
p
a
t
t
e
r
n
s
;

c
u
r
r
e
n
t
_
p
a
t
t
e
r
n
+
+
)

{
f
o
r
w
a
r
d
(
)
;

b
a
c
k
w
a
r
d
(
)
;

}
i
f

(
q
u
i
c
k
)

q
p
_
c
h
a
n
g
e
_
w
e
i
g
h
t
s
(
)
;

e
l
s
e
b
p
_
c
h
a
n
g
e
_
w
e
i
g
h
t
s
(
)
;

} /
* *

v
o
i
d

d
i
s
p
l
a
y
(
F
I
L
E
*
o
u
t
f
i
l
e
)

*
D
i
s
p
l
a
y

t
h
e

r
e
s
u
l
t
s

f
o
r

a
l
l

p
a
t
t
e
r
n
s

*
/

v
o
i
d

d
i
s
p
l
a
y
(
F
I
L
E
*
o
u
t
f
i
l
e
)

{
i
n
t

p
o
s
i
t
i
o
n
;

f
o
r

(
c
u
r
r
e
n
t
_
p
a
t
t
e
r
n

=
0
;

c
u
r
r
e
n
t
_
p
a
t
t
e
r
n

<
n
u
m
_
p
a
t
t
e
r
n
s
;

c
u
r
r
e
n
t
_
p
a
t
t
e
r
n
+
+
)

{
f
o
r
w
a
r
d
(
)
;

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
1
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

f
p
r
i
n
t
f
(
o
u
t
f
i
l
e
,

"
%
1
0
.
7
f

"
,

l
a
y
e
r
1
[
p
o
s
i
t
i
o
n
]
)
;

f
p
r
i
n
t
f
(
o
u
t
f
i
l
e
,

"
:

"
)
;

f
o
r

(
p
o
s
i
t
i
o
n

=
0
;

p
o
s
i
t
i
o
n

<
l
a
y
e
r
4
s
i
z
e
;

p
o
s
i
t
i
o
n
+
+
)

f
p
r
i
n
t
f
(
o
u
t
f
i
l
e
,

"
%
1
0
.
7
f

"
,

l
a
y
e
r
4
[
p
o
s
i
t
i
o
n
]
)
;

f
p
r
i
n
t
f
(
o
u
t
f
i
l
e
,

"
\
n
"
)
;

}
} /
* *

v
o
i
d

t
e
s
t
_
n
e
t
w
o
r
k
(
v
o
i
d
)

*
F
e
e
d

e
v
e
r
y

t
e
s
t

p
a
t
t
e
r
n

f
o
r
w
a
r
d

a
n
d

c
a
l
c
u
l
a
t
e

t
h
e

e
r
r
o
r
.

*
/

v
o
i
d

t
e
s
t
_
n
e
t
w
o
r
k
(
v
o
i
d
)

{
t
e
s
t
_
s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r

=
0
.
0
;

t
e
s
t
_
g
l
o
b
a
l
_
e
r
r
o
r

=
0
;

f
o
r

(
c
u
r
r
e
n
t
_
t
e
s
t
_
p
a
t
t
e
r
n

=
0
;

c
u
r
r
e
n
t
_
t
e
s
t
_
p
a
t
t
e
r
n

<
n
u
m
_
t
e
s
t
_
p
a
t
t
e
r
n
s
;

c
u
r
r
e
n
t
_
t
e
s
t
_
p
a
t
t
e
r
n
+
+
)

t
e
s
t
_
f
o
r
w
a
r
d
(
)
;

} /
* *

v
o
i
d

t
r
a
i
n
i
n
g
_
s
e
s
s
i
o
n
(
v
o
i
d
)

*
K
e
e
p

r
u
n
n
i
n
g

t
r
a
i
n
i
n
g

e
p
o
c
h
s

u
n
t
i
l

s
o
m
e

e
r
r
o
r

c
r
i
t
e
r
i
o
n

i
s

m
e
t
.

*
/

v
o
i
d

t
r
a
i
n
i
n
g
_
s
e
s
s
i
o
n
(
v
o
i
d
)

{
i
n
t

e
p
o
c
h
s

=
0
;

g
l
o
b
a
l
_
e
r
r
o
r

=
1
;

w
h
i
l
e
(
g
l
o
b
a
l
_
e
r
r
o
r

&
&

e
p
o
c
h
s

<
m
a
x
_
e
p
o
c
h
s
)

{
i
f

(
t
e
s
t
)

t
e
s
t
_
n
e
t
w
o
r
k
(
)
;

t
r
a
i
n
i
n
g
_
e
p
o
c
h
(
)
;

i
f

(
!
(
e
p
o
c
h
s

%
1
0
0
)
)

f
p
r
i
n
t
f
(
s
t
d
e
r
r
,

"
e
p
o
c
h

%
5
d
,

e
r
r
o
r
s

%
5
d
\
n
"
,

e
p
o
c
h
s
,

g
l
o
b
a
l
_
e
r
r
o
r
)
;

i
f

(
l
o
g
_
s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r
)

{
i
f

(
t
e
s
t
)

f
p
r
i
n
t
f
(
l
o
g
f
i
l
e
,

"
%
f

%
f

%
f
\
n
"
,

s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r
,

t
e
s
t
_
s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r
,

(
f
l
o
a
t
)
t
e
s
t
_
g
l
o
b
a
l
_
e
r
r
o
r

/
(
f
l
o
a
t
)
n
u
m
_
t
e
s
t
_
p
a
t
t
e
r
n
s
)
;

e
l
s
e
f
p
r
i
n
t
f
(
l
o
g
f
i
l
e
,

"
%
f
\
n
"
,

s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r
)
;

}
e
l
s
e

{
i
f

(
t
e
s
t
)

189

f
p
r
i
n
t
f
(
l
o
g
f
i
l
e
,

"
%
d

%
d
\
n
"
,

g
l
o
b
a
l
_
e
r
r
o
r
,

t
e
s
t
_
g
l
o
b
a
l
_
e
r
r
o
r
)
;

e
l
s
e
f
p
r
i
n
t
f
(
l
o
g
f
i
l
e
,

"
%
d
\
n
"
,

g
l
o
b
a
l
_
e
r
r
o
r
)
;

}
e
p
o
c
h
s
+
+
;

}
} /
* *

v
o
i
d

p
e
r
t
u
r
b
_
w
e
i
g
h
t
s
(
v
o
i
d
)

*
"
b
u
m
p
"

a
l
l

t
h
e

w
e
i
g
h
t
s

b
y

a
s
m
a
l
l

r
a
n
d
o
m

n
u
m
b
e
r
.

*
/

v
o
i
d

p
e
r
t
u
r
b
_
w
e
i
g
h
t
s
(
v
o
i
d
)

{
i
n
t

i
,
j
;

s
r
a
n
d
4
8
(
r
a
n
d
o
m
_
s
e
e
d
)
;

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
2
s
i
z
e
;

i
+
+
)

f
o
r

(
j

=
0
;

j
<
=

l
a
y
e
r
1
s
i
z
e
;

j
+
+
)

w
e
i
g
h
t
s
1
2
[
i
]
[
j
]

+
=

0
.
3

-
d
r
a
n
d
4
8
(
)
*

0
.
6
;

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
3
s
i
z
e
;

i
+
+
)

f
o
r

(
j

=
0
;

j
<
=

l
a
y
e
r
2
s
i
z
e
;

j
+
+
)

w
e
i
g
h
t
s
2
3
[
i
]
[
j
]

+
=

0
.
3

-
d
r
a
n
d
4
8
(
)
*

0
.
6
;

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
4
s
i
z
e
;

i
+
+
)

f
o
r

(
j

=
0
;

j
<
=

l
a
y
e
r
3
s
i
z
e
;

j
+
+
)

w
e
i
g
h
t
s
3
4
[
i
]
[
j
]

+
=

0
.
3

-
d
r
a
n
d
4
8
(
)
*

0
.
6
;

} /
* *

v
o
i
d

z
e
r
o
_
g
r
a
d
i
e
n
t
s
(
v
o
i
d
)

*
Z
e
r
o

o
u
t

t
h
e

g
r
a
d
i
e
n
t

m
a
t
r
i
c
e
s

*
/

v
o
i
d

z
e
r
o
_
g
r
a
d
i
e
n
t
s
(
v
o
i
d
)

{
i
n
t

i
,
j
;

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
2
s
i
z
e
;

i
+
+
)

f
o
r

(
j

=
0
;

j
<
=

l
a
y
e
r
1
s
i
z
e
;

j
+
+
)

g
r
a
d
i
e
n
t
s
1
2
[
i
]
[
j
]

=
0
;

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
3
s
i
z
e
;

i
+
+
)

f
o
r

(
j

=
0
;

j
<
=

l
a
y
e
r
2
s
i
z
e
;

j
+
+
)

g
r
a
d
i
e
n
t
s
2
3
[
i
]
[
j
]

=
0
;

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
4
s
i
z
e
;

i
+
+
)

f
o
r

(
j

=
0
;

j
<
=

l
a
y
e
r
3
s
i
z
e
;

j
+
+
)

g
r
a
d
i
e
n
t
s
3
4
[
i
]
[
j
]

=
0
;

} /
* *

v
o
i
d

d
e
c
a
y
_
g
r
a
d
i
e
n
t
s
(
v
o
i
d
)

*
S
e
t

t
h
e

g
r
a
d
i
e
n
t

m
a
t
r
i
c
e
s

t
o

a
s
m
a
l
l

n
u
m
b
e
r

p
r
o
p
o
r
t
i
o
n
a
l

t
o

*
i
t
s

c
o
r
r
e
s
p
o
n
d
i
n
g

w
e
i
g
h
t
.

*
/

v
o
i
d

d
e
c
a
y
_
g
r
a
d
i
e
n
t
s
(
v
o
i
d
)

{
i
n
t

i
,
j
;

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
2
s
i
z
e
;

i
+
+
)

f
o
r

(
j

=
0
;

j
<
=

l
a
y
e
r
1
s
i
z
e
;

j
+
+
)

g
r
a
d
i
e
n
t
s
1
2
[
i
]
[
j
]

=
w
e
i
g
h
t
s
1
2
[
i
]
[
j
]
*

d
e
c
a
y
;

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
3
s
i
z
e
;

i
+
+
)

f
o
r

(
j

=
0
;

j
<
=

l
a
y
e
r
2
s
i
z
e
;

j
+
+
)

g
r
a
d
i
e
n
t
s
2
3
[
i
]
[
j
]

=
w
e
i
g
h
t
s
2
3
[
i
]
[
j
]
*

d
e
c
a
y
;

f
o
r

(
i

=
0
;

i
<

l
a
y
e
r
4
s
i
z
e
;

i
+
+
)

f
o
r

(
j

=
0
;

j
<
=

l
a
y
e
r
3
s
i
z
e
;

j
+
+
)

g
r
a
d
i
e
n
t
s
3
4
[
i
]
[
j
]

=
w
e
i
g
h
t
s
3
4
[
i
]
[
j
]
*

d
e
c
a
y
;

} /
* *

R
e
a
d

o
p
t
i
o
n
s
,

s
e
t

u
p

d
a
t
a

s
t
r
u
c
t
u
r
e
s
,

s
e
t

o
f
f

b
a
c
k
p
r
o
p
.

* *
/

i
n
t

m
a
i
n
(
i
n
t

a
r
g
c
,

c
h
a
r
*
a
r
g
v
[
]
)

{
c
o
n
s
t

c
h
a
r

*
o
p
t
s
t
r
i
n
g

=
"
c
:
d
f
:
h
l
:
m
:
n
:
o
:
q
r
:
s
:
t
:
w
:
x
z
:
"
;

c
h
a
r

o
p
t
i
o
n

=
g
e
t
o
p
t
(
a
r
g
c
,

a
r
g
v
,

o
p
t
s
t
r
i
n
g
)
;

s
n
p
r
i
n
t
f
(
l
o
g
f
i
l
e
n
a
m
e
,

s
i
z
e
o
f
(
l
o
g
f
i
l
e
n
a
m
e
)
,

"
l
o
g
f
i
l
e
"
)
;

w
h
i
l
e

(
o
p
t
i
o
n
!
=

E
O
F
)

{
s
w
i
t
c
h

(
o
p
t
i
o
n
)

{
c
a
s
e

’
c
’

:
l
e
a
r
n
i
n
g
_
c
o
n
s
t
a
n
t

=
a
t
o
f
(
o
p
t
a
r
g
)
;

b
r
e
a
k
;
c
a
s
e

’
d
’

:
l
e
a
v
e
_
o
n
_
d
i
s
k

=
1
;

c
a
s
e

’
f
’

:
d
o
_
d
u
m
p
_
w
e
i
g
h
t
s

=
1
;

s
n
p
r
i
n
t
f
(
w
e
i
g
h
t
_
d
u
m
p
_
f
i
l
e
n
a
m
e
,

s
i
z
e
o
f
(
w
e
i
g
h
t
_
d
u
m
p
_
f
i
l
e
n
a
m
e
)
,

"
%
s
"
,

o
p
t
a
r
g
)
;

b
r
e
a
k
;
c
a
s
e

’
h
’

:
u
s
a
g
e
(
a
r
g
v
)
;

e
x
i
t
(
E
X
I
T
_
S
U
C
C
E
S
S
)
;

c
a
s
e

’
l
’

:
s
n
p
r
i
n
t
f
(
l
o
g
f
i
l
e
n
a
m
e
,

s
i
z
e
o
f
(
l
o
g
f
i
l
e
n
a
m
e
)
,

"
%
s
"
,

o
p
t
a
r
g
)
;

b
r
e
a
k
;
c
a
s
e

’
m
’

:
m
o
m
e
n
t
u
m

=
a
t
o
f
(
o
p
t
a
r
g
)
;

b
r
e
a
k
;
c
a
s
e

’
n
’

:
m
a
x
_
e
p
o
c
h
s

=
a
t
o
i
(
o
p
t
a
r
g
)
;

b
r
e
a
k
;
c
a
s
e

’
o
’

:
f
l
a
t
s
p
o
t
_
o
f
f
s
e
t

=
a
t
o
f
(
o
p
t
a
r
g
)
;

b
r
e
a
k
;
c
a
s
e

’
q
’

:
q
u
i
c
k

=
1
;

m
o
m
e
n
t
u
m

=
0
.
0
;

b
r
e
a
k
;
c
a
s
e

’
r
’

:
r
a
n
d
o
m
_
s
e
e
d

=
a
t
o
i
(
o
p
t
a
r
g
)
;

190

b
r
e
a
k
;
c
a
s
e

’
s
’

:
m
a
x
_
s
t
e
p

=
a
t
o
f
(
o
p
t
a
r
g
)
;

b
r
e
a
k
;
c
a
s
e

’
t
’

:
t
e
s
t

=
1
;

s
n
p
r
i
n
t
f
(
t
e
s
t
f
i
l
e
n
a
m
e
,

s
i
z
e
o
f
(
t
e
s
t
f
i
l
e
n
a
m
e
)
,

"
%
s
"
,

o
p
t
a
r
g
)
;

b
r
e
a
k
;
c
a
s
e

’
w
’

:
s
n
p
r
i
n
t
f
(
w
e
i
g
h
t
s
f
i
l
e
n
a
m
e
,

s
i
z
e
o
f
(
w
e
i
g
h
t
s
f
i
l
e
n
a
m
e
)
,

"
%
s
"
,

o
p
t
a
r
g
)
;

u
s
i
n
g
_
w
e
i
g
h
t
s

=
1
;

b
r
e
a
k
;
c
a
s
e

’
x
’

:
l
o
g
_
s
u
m
_
s
q
u
a
r
e
d
_
e
r
r
o
r

=
1
;

b
r
e
a
k
;
c
a
s
e

’
z
’

:
d
e
c
a
y

=
a
t
o
f
(
o
p
t
a
r
g
)
;

b
r
e
a
k
;
} o
p
t
i
o
n

=
g
e
t
o
p
t
(
a
r
g
c
,

a
r
g
v
,

o
p
t
s
t
r
i
n
g
)
;

}

/
*

F
a
l
l

o
v
e
r

w
i
t
h

a
n

e
r
r
o
r

i
f

t
h
e

u
s
e
r

h
a
s
n
’
t

s
p
e
c
i
f
i
e
d

a
n
e
t
w
o
r
k
*
/

/
*

a
r
c
h
i
t
e
c
t
u
r
e

a
n
d

a
d
a
t
a

f
i
l
e
.

*
/

i
f

(
a
r
g
c

-
o
p
t
i
n
d

<
5
)

{
u
s
a
g
e
(
a
r
g
v
)
;

e
x
i
t
(
E
X
I
T
_
F
A
I
L
U
R
E
)
;

}

l
a
y
e
r
1
s
i
z
e

=
a
t
o
i
(
a
r
g
v
[
o
p
t
i
n
d
]
)
;

l
a
y
e
r
2
s
i
z
e

=
a
t
o
i
(
a
r
g
v
[
o
p
t
i
n
d

+
1
]
)
;

l
a
y
e
r
3
s
i
z
e

=
a
t
o
i
(
a
r
g
v
[
o
p
t
i
n
d

+
2
]
)
;

l
a
y
e
r
4
s
i
z
e

=
a
t
o
i
(
a
r
g
v
[
o
p
t
i
n
d

+
3
]
)
;

s
n
p
r
i
n
t
f
(
d
a
t
a
f
i
l
e
n
a
m
e
,

s
i
z
e
o
f
(
d
a
t
a
f
i
l
e
n
a
m
e
)
,

"
%
s
"
,

a
r
g
v
[
o
p
t
i
n
d

+
4
]
)
;

/
*

o
p
e
n

l
o
g
f
i
l
e
,

d
a
t
a
f
i
l
e

a
n
d
,

i
f

n
e
c
e
s
s
a
r
y
,

w
e
i
g
h
t
s
f
i
l
e
*
/

l
o
g
f
i
l
e

=
f
o
p
e
n
(
l
o
g
f
i
l
e
n
a
m
e
,

"
w
"
)
;

d
a
t
a
f
i
l
e

=
f
o
p
e
n
(
d
a
t
a
f
i
l
e
n
a
m
e
,

"
r
"
)
;

i
f

(
u
s
i
n
g
_
w
e
i
g
h
t
s
)

w
e
i
g
h
t
s
f
i
l
e

=
f
o
p
e
n
(
w
e
i
g
h
t
s
f
i
l
e
n
a
m
e
,

"
r
"
)
;

i
f

(
d
o
_
d
u
m
p
_
w
e
i
g
h
t
s
)

w
e
i
g
h
t
d
u
m
p
f
i
l
e

=
f
o
p
e
n
(
w
e
i
g
h
t
_
d
u
m
p
_
f
i
l
e
n
a
m
e
,

"
w
"
)
;

i
f

(
t
e
s
t
)

t
e
s
t
f
i
l
e

=
f
o
p
e
n
(
t
e
s
t
f
i
l
e
n
a
m
e
,

"
r
"
)
;

i
n
i
t
i
a
l
i
s
e
_
l
a
y
e
r
s
(
)
;

i
f

(
u
s
i
n
g
_
w
e
i
g
h
t
s
)

r
e
a
d
_
w
e
i
g
h
t
s
(
w
e
i
g
h
t
s
f
i
l
e
)
;

e
l
s
e
p
e
r
t
u
r
b
_
w
e
i
g
h
t
s
(
)
;

t
r
a
i
n
i
n
g
_
s
e
s
s
i
o
n
(
)
;

i
f

(
d
o
_
d
u
m
p
_
w
e
i
g
h
t
s
)

d
u
m
p
_
w
e
i
g
h
t
s
(
w
e
i
g
h
t
d
u
m
p
f
i
l
e
)
;

e
x
i
t
(
E
X
I
T
_
S
U
C
C
E
S
S
)
;

}

191

Appendix B

R Source Code

192

B
.1

C
od

e
fo

r
M

an
ip

ul
at

in
g

M
L

Ps
#

f
i
l
e
n
a
m
e
:

m
l
p
.
R

#
p
u
r
p
o
s
e
:

R
f
u
n
c
t
i
o
n
s

f
o
r

c
r
e
a
t
i
n
g

m
l
p
s

f
r
o
m

r
p
a
r
t
s

a
n
d

t
r
a
i
n
i
n
g

t
h
e
m

#
a
u
t
h
o
r
:

N
a
t
h
a
n

R
o
u
n
t
r
e
e

#
d
a
t
e
:

2
0
0
5

#
g
e
t

a
s
t
r
a
t
i
f
i
e
d

s
a
m
p
l
e

f
r
o
m

a
r
o
w
-
n
u
m
b
e
r
e
d

d
a
t
a
b
a
s
e

s
t
r
a
t
s
a
m
p
d
b

<
-

f
u
n
c
t
i
o
n
(
x
,

c
l
a
s
s
n
a
m
e
,

p
)

{
r
e
s
u
l
t

<
-

c
(
)

f
o
r

(
n

i
n

l
e
v
e
l
s
(
x
[
[
c
l
a
s
s
n
a
m
e
]
]
)
)

{
t
e
m
p

<
-

a
s
.
n
u
m
e
r
i
c
(
r
o
w
.
n
a
m
e
s
(
x
[
x
[
[
c
l
a
s
s
n
a
m
e
]
]

=
=

n
,
]
)
)

r
e
s
u
l
t

<
-

a
p
p
e
n
d
(
r
e
s
u
l
t
,

s
a
m
p
l
e
(
t
e
m
p
,

r
o
u
n
d
(
p
*

l
e
n
g
t
h
(
t
e
m
p
)
)
)
)

} r
e
t
u
r
n
(
r
e
s
u
l
t
)

} #
g
e
t

a
s
t
r
a
t
i
f
i
e
d

s
a
m
p
l
e

f
o
r

t
h
e

t
r
a
i
n
i
n
g

s
e
t

o
f

a
n

m
l
p

s
t
r
a
t
s
a
m
p
m
l
p

<
-

f
u
n
c
t
i
o
n
(
t
a
r
g
e
t
s
,

p
)

{
r
e
s
u
l
t

<
-

c
(
)

i
f

(
n
c
o
l
(
t
a
r
g
e
t
s
)

=
=

1
)

{
t
e
m
p

<
-

a
s
.
n
u
m
e
r
i
c
(
r
o
w
.
n
a
m
e
s
(

d
a
t
a
.
f
r
a
m
e
(
t
a
r
g
e
t
s
)
[
t
a
r
g
e
t
s

=
=

0
,
,
d
r
o
p
=
F
A
L
S
E
]
)
)

r
e
s
u
l
t

<
-

a
p
p
e
n
d
(
r
e
s
u
l
t
,

s
a
m
p
l
e
(
t
e
m
p
,

r
o
u
n
d
(
p
*

l
e
n
g
t
h
(
t
e
m
p
)
)
)
)

t
e
m
p

<
-

a
s
.
n
u
m
e
r
i
c
(
r
o
w
.
n
a
m
e
s
(

d
a
t
a
.
f
r
a
m
e
(
t
a
r
g
e
t
s
)
[
t
a
r
g
e
t
s

=
=

1
,
,
d
r
o
p
=
F
A
L
S
E
]
)
)

r
e
s
u
l
t

<
-

a
p
p
e
n
d
(
r
e
s
u
l
t
,

s
a
m
p
l
e
(
t
e
m
p
,

r
o
u
n
d
(
p
*

l
e
n
g
t
h
(
t
e
m
p
)
)
)
)

}
e
l
s
e

{
f
o
r

(
i

i
n

1
:
n
c
o
l
(
t
a
r
g
e
t
s
)
)

{
t
e
m
p

<
-

a
s
.
n
u
m
e
r
i
c
(
r
o
w
.
n
a
m
e
s
(

d
a
t
a
.
f
r
a
m
e
(
t
a
r
g
e
t
s
)
[
t
a
r
g
e
t
s
[
,
i
]

=
=

1
,
,
d
r
o
p
=
F
A
L
S
E
]
)
)

r
e
s
u
l
t

<
-

a
p
p
e
n
d
(
r
e
s
u
l
t
,

s
a
m
p
l
e
(
t
e
m
p
,

r
o
u
n
d
(
p
*

l
e
n
g
t
h
(
t
e
m
p
)
)
)
)

}
} r
e
t
u
r
n
(
r
e
s
u
l
t
)

} #
l
o
g
i
s
t
i
c

a
c
t
i
v
a
t
i
o
n

f
u
n
c
t
i
o
n

a
c
t
i
v

<
-

f
u
n
c
t
i
o
n
(
x
)

{
r
e
t
u
r
n
(
1

/
(
1

+
e
x
p
(
-
x
)
)
)

} #
f
u
n
c
t
i
o
n
a
l

p
r
o
g
r
a
m
m
i
n
g

s
u
p
p
o
r
t
:

z
i
p
w
i
t
h

f
o
r

2
l
i
s
t
s

m
a
p
2

<
-

f
u
n
c
t
i
o
n

(
x
,

y
,

F
U
N
)

{
i
f

(
i
s
.
c
h
a
r
a
c
t
e
r
(
F
U
N
)
)

F
U
N

<
-

g
e
t
(
F
U
N
,

e
n
v
i
r
=
s
y
s
.
p
a
r
e
n
t
(
)
,

m
o
d
e
=
"
f
u
n
c
t
i
o
n
"
)

r
e
t
u
r
n
(
l
a
p
p
l
y
(
s
e
q
(
a
l
o
n
g
=
x
)
,

f
u
n
c
t
i
o
n

(
i
)

F
U
N
(
x
[
[
i
]
]
,

y
[
[
i
]
]
)
)
)

} #
f
u
n
c
t
i
o
n
a
l

p
r
o
g
r
a
m
m
i
n
g

s
u
p
p
o
r
t
:

z
i
p
w
i
t
h

f
o
r

3
l
i
s
t
s

m
a
p
3

<
-

f
u
n
c
t
i
o
n

(
x
,

y
,

z
,

F
U
N
)

{
i
f

(
i
s
.
c
h
a
r
a
c
t
e
r
(
F
U
N
)
)

F
U
N

<
-

g
e
t
(
F
U
N
,

e
n
v
i
r
=
s
y
s
.
p
a
r
e
n
t
(
)
,

m
o
d
e
=
"
f
u
n
c
t
i
o
n
"
)

r
e
t
u
r
n
(
l
a
p
p
l
y
(
s
e
q
(
a
l
o
n
g
=
x
)
,

f
u
n
c
t
i
o
n

(
i
)

F
U
N
(
x
[
[
i
]
]
,

y
[
[
i
]
]
,

z
[
[
i
]
]
)
)
)

} #
s
h
o
r
t
e
s
t

f
e
e
d
-
f
o
r
w
a
r
d

i
n

t
h
e

w
e
s
t

f
f

<
-

f
u
n
c
t
i
o
n
(
v
,

m
l
)

{
i
f

(
i
s
.
n
u
l
l
(
m
l
[
[
1
]
]
)
)

v
e
l
s
e

R
e
c
a
l
l
(
a
c
t
i
v
(
c
b
i
n
d
(
1
,

v
)

%
*
%

m
l
[
[
1
]
]
)
,

m
l
[
2
:
l
e
n
g
t
h
(
m
l
)
]
)

} #
f
e
e
d
-
f
o
r
w
a
r
d
,

b
u
t

e
x
p
o
s
e

a
l
l

a
c
t
i
v
a
t
i
o
n
s

f
f
s
a
v
e

<
-

f
u
n
c
t
i
o
n
(
v
,

m
l
,

r
e
s
u
l
t
=
l
i
s
t
(
)
)

{
r
e
s
u
l
t
[
[
l
e
n
g
t
h
(
r
e
s
u
l
t
)
+
1
]
]

<
-

v
i
f

(
i
s
.
n
u
l
l
(
m
l
[
[
1
]
]
)
)

r
e
s
u
l
t
[
2
:
l
e
n
g
t
h
(
r
e
s
u
l
t
)
]

e
l
s
e

R
e
c
a
l
l
(
a
c
t
i
v
(
c
b
i
n
d
(
1
,

v
)

%
*
%

m
l
[
[
1
]
]
)
,

m
l
[
2
:
l
e
n
g
t
h
(
m
l
)
]
,

r
e
s
u
l
t
)

} #
c
a
l
c
u
l
a
t
e

b
a
c
k
p
r
o
p
a
g
a
t
e
d

e
r
r
o
r

t
e
r
m
s
*
p
e
r

w
e
i
g
h
t
*

b
p

<
-

f
u
n
c
t
i
o
n
(
v
,

m
l
,

t
a
r
g
e
t
s
,

o
f
f
s
e
t
=
0
.
0
)

{
a
c
t
s

<
-

f
f
s
a
v
e
(
v
,

m
l
)

n
l

<
-

l
e
n
g
t
h
(
a
c
t
s
)

e
r
r
s

<
-

l
i
s
t
(
)

d
s

<
-

l
i
s
t
(
)

e
r
r
s
[
[
n
l
]
]

<
-

(
t
a
r
g
e
t
s

-
a
c
t
s
[
[
n
l
]
]
)
*

(
a
c
t
s
[
[
n
l
]
]

*
(
1
.
0

-
a
c
t
s
[
[
n
l
]
]
)

+
o
f
f
s
e
t
)

f
o
r

(
x

i
n

(
n
l

-
1
)
:
1
)

{
d
s
[
[
x
+
1
]
]

<
-

t
(
c
b
i
n
d
(
1
.
0
,

a
c
t
s
[
[
x
]
]
)
)

%
*
%

e
r
r
s
[
[
x
+
1
]
]

e
r
r
s
[
[
x
]
]

<
-

(
a
c
t
s
[
[
x
]
]
*

(
1
.
0

-
a
c
t
s
[
[
x
]
]
)

+
o
f
f
s
e
t
)
*

(
e
r
r
s
[
[
x
+
1
]
]

%
*
%

t
(
m
l
[
[
x
+
1
]
]
[
2
:
d
i
m
(
m
l
[
[
x
+
1
]
]
)
[
1
]
,

1
:
d
i
m
(
m
l
[
[
x
+
1
]
]
)
[
2
]
]
)
)

} d
s
[
[
1
]
]

<
-

t
(
c
b
i
n
d
(
1
.
0
,

v
)
)

%
*
%

e
r
r
s
[
[
1
]
]

r
e
t
u
r
n
(
d
s
)

} #
g
r
a
d
i
e
n
t

d
e
s
c
e
n
t

w
i
t
h

m
o
m
e
n
t
u
m

g
d
m
o
m

<
-

f
u
n
c
t
i
o
n
(
d
b
,

m
l
,

t
a
r
g
e
t
s
,

l
c
=
1
/
n
r
o
w
(
d
b
)
,

m
o
m
=
0
.
9
,

n
=
3
0
0
0
,

s
t
o
p
=
1
0
)

{
c
o
u
n
t

<
-

0
b
e
s
t
e
p
o
c
h

<
-

0
#
s
t
o
p
p
i
n
g
s
e
t

<
-

s
a
m
p
l
e
(
n
r
o
w
(
d
b
)
,

n
r
o
w
(
d
b
)
/
4
)

s
t
o
p
p
i
n
g
s
e
t

<
-

s
t
r
a
t
s
a
m
p
m
l
p
(
t
a
r
g
e
t
s
,

0
.
2
5
)

g
l

<
-

l
a
p
p
l
y
(
m
l
,

f
u
n
c
t
i
o
n
(
x
)

x
*

0
.
0
)

b
e
s
t
w
e
i
g
h
t
s

<
-

m
l

t
r
a
i
n
i
n
g
e
r
r
o
r

<
-

t
a
r
g
e
t
s
[
-
s
t
o
p
p
i
n
g
s
e
t
,
]

-
f
f
(
d
b
[
-
s
t
o
p
p
i
n
g
s
e
t
,
]
,

m
l
)

t
e
s
t
e
r
r
o
r

<
-

t
a
r
g
e
t
s
[
s
t
o
p
p
i
n
g
s
e
t
,
]

-
f
f
(
d
b
[
s
t
o
p
p
i
n
g
s
e
t
,
]
,

m
l
)

b
e
s
t
e
r
r
o
r

<
-

s
u
m
(
t
e
s
t
e
r
r
o
r
*

t
e
s
t
e
r
r
o
r
)

c
u
r
r
e
n
t
e
r
r
o
r

<
-

b
e
s
t
e
r
r
o
r

s
t
o
p
p
e
r

<
-

0
w
h
i
l
e

(
!

i
s
.
n
a
n
(
t
r
a
i
n
i
n
g
e
r
r
o
r
)

&
&

a
n
y
(
a
b
s
(
t
r
a
i
n
i
n
g
e
r
r
o
r
)

>
0
.
4
)

&
&

!
i
s
.
n
a
n
(
b
e
s
t
e
r
r
o
r
)

&
&

b
e
s
t
e
r
r
o
r

>
0
.
1

&
&

c
o
u
n
t

<
n

&
&

s
t
o
p
p
e
r

<
s
t
o
p
)

{
c
o
u
n
t

<
-

c
o
u
n
t

+
1

c
a
t
(
s
u
m
(
t
r
a
i
n
i
n
g
e
r
r
o
r
*

t
r
a
i
n
i
n
g
e
r
r
o
r
)
,

s
u
m
(
t
e
s
t
e
r
r
o
r
*

t
e
s
t
e
r
r
o
r
)
,

l
c
,

c
o
u
n
t
,

n
,

"
\
r
"
)

g
l

<
-

m
a
p
2
(
b
p
(
d
b
[
-
s
t
o
p
p
i
n
g
s
e
t
,
]
,

m
l
,

t
a
r
g
e
t
s
[
-
s
t
o
p
p
i
n
g
s
e
t
,
]
)
,

l
a
p
p
l
y
(
g
l
,

f
u
n
c
t
i
o
n
(
a
)

m
o
m
*

a
)
,

’
+
’
)

m
l

<
-

m
a
p
2
(
m
l
,

l
a
p
p
l
y
(
g
l
,

f
u
n
c
t
i
o
n
(
a
)

l
c
*

a
)
,

’
+
’
)

t
r
a
i
n
i
n
g
e
r
r
o
r

<
-

t
a
r
g
e
t
s
[
-
s
t
o
p
p
i
n
g
s
e
t
,
]

-
f
f
(
d
b
[
-
s
t
o
p
p
i
n
g
s
e
t
,
]
,

m
l
)

t
e
s
t
e
r
r
o
r

<
-

t
a
r
g
e
t
s
[
s
t
o
p
p
i
n
g
s
e
t
,
]

-
f
f
(
d
b
[
s
t
o
p
p
i
n
g
s
e
t
,
]
,

m
l
)

n
e
w
e
r
r
o
r

<
-

s
u
m
(
t
e
s
t
e
r
r
o
r
*

t
e
s
t
e
r
r
o
r
)

i
f

(
n
e
w
e
r
r
o
r

>
c
u
r
r
e
n
t
e
r
r
o
r
)

{
s
t
o
p
p
e
r

<
-

s
t
o
p
p
e
r

+
1

193

}
e
l
s
e

{
s
t
o
p
p
e
r

<
-

0
} c
u
r
r
e
n
t
e
r
r
o
r

<
-

n
e
w
e
r
r
o
r

i
f

(
c
u
r
r
e
n
t
e
r
r
o
r

<
b
e
s
t
e
r
r
o
r
)

{
b
e
s
t
e
r
r
o
r

<
-

c
u
r
r
e
n
t
e
r
r
o
r

b
e
s
t
w
e
i
g
h
t
s

<
-

m
l

b
e
s
t
e
p
o
c
h

<
-

c
o
u
n
t

}
} c
a
t
(
s
u
m
(
t
r
a
i
n
i
n
g
e
r
r
o
r
*

t
r
a
i
n
i
n
g
e
r
r
o
r
)
,

s
u
m
(
t
e
s
t
e
r
r
o
r
*

t
e
s
t
e
r
r
o
r
)
,

l
c
,

c
o
u
n
t
,

n
,

"
\
n
"
)

r
e
t
u
r
n
(
l
i
s
t
(
b
e
s
t
w
e
i
g
h
t
s
,

c
o
u
n
t
,

b
e
s
t
e
p
o
c
h
,

t
r
a
i
n
i
n
g
e
r
r
o
r
*

t
r
a
i
n
i
n
g
e
r
r
o
r
)
)

} #
f
a
h
l
m
a
n
’
s

q
u
i
c
k
p
r
o
p

q
p
r
o
p

<
-

f
u
n
c
t
i
o
n
(
d
b
,

m
l
,

t
a
r
g
e
t
s
,

l
c
=
1
/
n
r
o
w
(
d
b
)
,

m
s
=
1
.
7
5
,

n
=
3
0
0
0
,

s
t
o
p
=
1
0
)

{
c
o
u
n
t

<
-

0
b
e
s
t
e
p
o
c
h

<
-

0
m
a
x
s
t
e
p

<
-

m
s

s
h
r
i
n
k
f
a
c
t
o
r

<
-

1
/

(
1

+
m
a
x
s
t
e
p
)

o
l
d
g
l

<
-

l
a
p
p
l
y
(
m
l
,

f
u
n
c
t
i
o
n
(
x
)

(
x
*

0
.
0
)
)

d
e
l
t
a
s

<
-

l
a
p
p
l
y
(
m
l
,

f
u
n
c
t
i
o
n
(
x
)

(
x
*

0
.
0
)
)

#
s
t
o
p
p
i
n
g
s
e
t

<
-

s
a
m
p
l
e
(
n
r
o
w
(
d
b
)
,

n
r
o
w
(
d
b
)
/
4
)

s
t
o
p
p
i
n
g
s
e
t

<
-

s
t
r
a
t
s
a
m
p
m
l
p
(
t
a
r
g
e
t
s
,

0
.
2
5
)

b
e
s
t
w
e
i
g
h
t
s

<
-

m
l

t
r
a
i
n
i
n
g
e
r
r
o
r

<
-

t
a
r
g
e
t
s
[
-
s
t
o
p
p
i
n
g
s
e
t
,
]

-
f
f
(
d
b
[
-
s
t
o
p
p
i
n
g
s
e
t
,
]
,

m
l
)

t
e
s
t
e
r
r
o
r

<
-

t
a
r
g
e
t
s
[
s
t
o
p
p
i
n
g
s
e
t
,
]

-
f
f
(
d
b
[
s
t
o
p
p
i
n
g
s
e
t
,
]
,

m
l
)

b
e
s
t
e
r
r
o
r

<
-

s
u
m
(
t
e
s
t
e
r
r
o
r
*

t
e
s
t
e
r
r
o
r
)

c
u
r
r
e
n
t
e
r
r
o
r

<
-

b
e
s
t
e
r
r
o
r

s
t
o
p
p
e
r

<
-

0
w
h
i
l
e

(
!

i
s
.
n
a
n
(
t
r
a
i
n
i
n
g
e
r
r
o
r
)

&
&

a
n
y
(
a
b
s
(
t
r
a
i
n
i
n
g
e
r
r
o
r
)

>
0
.
4
)

&
&

!
i
s
.
n
a
n
(
b
e
s
t
e
r
r
o
r
)

&
&

b
e
s
t
e
r
r
o
r

>
0
.
1

&
&

c
o
u
n
t

<
n

&
&

s
t
o
p
p
e
r

<
s
t
o
p

&
&

c
u
r
r
e
n
t
e
r
r
o
r

<
b
e
s
t
e
r
r
o
r
*

1
.
2
)

{
c
a
t
(
s
u
m
(
t
r
a
i
n
i
n
g
e
r
r
o
r
*

t
r
a
i
n
i
n
g
e
r
r
o
r
)
,

s
u
m
(
t
e
s
t
e
r
r
o
r
*

t
e
s
t
e
r
r
o
r
)
,

l
c
,

c
o
u
n
t
,

n
,

"
\
r
"
)

c
o
u
n
t

<
-

c
o
u
n
t

+
1

g
l

<
-

b
p
(
d
b
[
-
s
t
o
p
p
i
n
g
s
e
t
,
]
,

m
l
,

t
a
r
g
e
t
s
[
-
s
t
o
p
p
i
n
g
s
e
t
,
]
,

0
.
1
)

f
o
r

(
x

i
n

1
:
l
e
n
g
t
h
(
m
l
)
)

{
f
o
r

(
i

i
n

1
:
d
i
m
(
m
l
[
[
x
]
]
)
[
[
1
]
]
)

{
f
o
r

(
j

i
n

1
:
d
i
m
(
m
l
[
[
x
]
]
)
[
[
2
]
]
)

{
i
f

(
i
s
.
n
a
n
(
g
l
[
[
x
]
]
[
i
,
j
]
)
)

g
l
[
[
x
]
]
[
i
,
j
]

<
-

0
s
t
e
p

<
-

0
.
0

i
f

(
d
e
l
t
a
s
[
[
x
]
]
[
i
,
j
]

>
0
)

{
i
f

(
g
l
[
[
x
]
]
[
i
,
j
]

>
0
)

s
t
e
p

<
-

s
t
e
p

+
l
c
*

g
l
[
[
x
]
]
[
i
,
j
]

i
f

(
g
l
[
[
x
]
]
[
i
,
j
]

>
s
h
r
i
n
k
f
a
c
t
o
r
*

o
l
d
g
l
[
[
x
]
]
[
i
,
j
]
)

{
s
t
e
p

<
-

s
t
e
p

+
m
a
x
s
t
e
p
*

d
e
l
t
a
s
[
[
x
]
]
[
i
,
j
]

}
e
l
s
e

{
s
t
e
p

<
-

s
t
e
p

+
d
e
l
t
a
s
[
[
x
]
]
[
i
,
j
]
*

g
l
[
[
x
]
]
[
i
,
j
]

/
(
o
l
d
g
l
[
[
x
]
]
[
i
,
j
]

-
g
l
[
[
x
]
]
[
i
,
j
]
)

}
}

e
l
s
e

i
f

(
d
e
l
t
a
s
[
[
x
]
]
[
i
,
j
]

<
0
)

{
i
f

(
g
l
[
[
x
]
]
[
i
,
j
]

<
0
)

s
t
e
p

<
-

s
t
e
p

+
l
c

*
g
l
[
[
x
]
]
[
i
,
j
]

i
f

(
g
l
[
[
x
]
]
[
i
,
j
]

<
s
h
r
i
n
k
f
a
c
t
o
r
*
o
l
d
g
l
[
[
x
]
]
[
i
,
j
]
)

{
s
t
e
p

<
-

s
t
e
p

+
m
a
x
s
t
e
p
*
d
e
l
t
a
s
[
[
x
]
]
[
i
,
j
]

}
e
l
s
e

{
s
t
e
p

<
-

s
t
e
p

+
d
e
l
t
a
s
[
[
x
]
]
[
i
,
j
]
*

g
l
[
[
x
]
]
[
i
,
j
]

/
(
o
l
d
g
l
[
[
x
]
]
[
i
,
j
]

-
g
l
[
[
x
]
]
[
i
,
j
]
)

}
}

e
l
s
e

{
s
t
e
p

<
-

l
c

*
g
l
[
[
x
]
]
[
i
,
j
]

} d
e
l
t
a
s
[
[
x
]
]
[
i
,
j
]

<
-

s
t
e
p

m
l
[
[
x
]
]
[
i
,
j
]

<
-

m
l
[
[
x
]
]
[
i
,
j
]

+
s
t
e
p

o
l
d
g
l
[
[
x
]
]
[
i
,
j
]

<
-

g
l
[
[
x
]
]
[
i
,
j
]

}
}

} t
r
a
i
n
i
n
g
e
r
r
o
r

<
-

t
a
r
g
e
t
s
[
-
s
t
o
p
p
i
n
g
s
e
t
,
]

-
f
f
(
d
b
[
-
s
t
o
p
p
i
n
g
s
e
t
,
]
,

m
l
)

t
e
s
t
e
r
r
o
r

<
-

t
a
r
g
e
t
s
[
s
t
o
p
p
i
n
g
s
e
t
,
]

-
f
f
(
d
b
[
s
t
o
p
p
i
n
g
s
e
t
,
]
,

m
l
)

n
e
w
e
r
r
o
r

<
-

s
u
m
(
t
e
s
t
e
r
r
o
r
*

t
e
s
t
e
r
r
o
r
)

i
f

(
i
s
.
n
a
n
(
n
e
w
e
r
r
o
r
)
)

n
e
w
e
r
r
o
r

<
-

c
u
r
r
e
n
t
e
r
r
o
r

i
f

(
n
e
w
e
r
r
o
r

>
c
u
r
r
e
n
t
e
r
r
o
r
)

{
s
t
o
p
p
e
r

<
-

s
t
o
p
p
e
r

+
1

}
e
l
s
e

{
s
t
o
p
p
e
r

<
-

0
} c
u
r
r
e
n
t
e
r
r
o
r

<
-

n
e
w
e
r
r
o
r

i
f

(
c
u
r
r
e
n
t
e
r
r
o
r

<
b
e
s
t
e
r
r
o
r
)

{
b
e
s
t
e
r
r
o
r

<
-

c
u
r
r
e
n
t
e
r
r
o
r

b
e
s
t
w
e
i
g
h
t
s

<
-

m
l

b
e
s
t
e
p
o
c
h

<
-

c
o
u
n
t

}
} c
a
t
(
s
u
m
(
t
r
a
i
n
i
n
g
e
r
r
o
r
*

t
r
a
i
n
i
n
g
e
r
r
o
r
)
,

s
u
m
(
t
e
s
t
e
r
r
o
r
*

t
e
s
t
e
r
r
o
r
)
,

l
c
,

c
o
u
n
t
,

n
,

"
\
n
"
)

r
e
t
u
r
n
(
l
i
s
t
(
b
e
s
t
w
e
i
g
h
t
s
,

c
o
u
n
t
,

b
e
s
t
e
p
o
c
h
,

s
u
m
(
t
r
a
i
n
i
n
g
e
r
r
o
r
*

t
r
a
i
n
i
n
g
e
r
r
o
r
)
)
)

} #
p
l
o
t

a
n

m
l
p

a
s

a
t
o
p
o

m
a
p

m
l
p
v
i
e
w

<
-

f
u
n
c
t
i
o
n
(
w
e
i
g
h
t
s
)

{
i
m
a
g
e
(
x
=
s
e
q
(
0
,

1
.
0
,

0
.
0
1
)
,

y
=
s
e
q
(
0
,

1
.
0
,

0
.
0
1
)
,

z
=
m
a
t
r
i
x
(
f
f
(
c
b
i
n
d
(
r
e
p
(
s
e
q
(
0
,

1
.
0
,

0
.
0
1
)
,

e
a
c
h
=
1
0
1
)
,

s
e
q
(
0
,

1
.
0
,

0
.
0
1
)
)
,

w
e
i
g
h
t
s
)
,

n
r
o
w
=
1
0
1
)
,

c
o
l
=
t
o
p
o
.
c
o
l
o
r
s
(
2
5
6
)
,

z
l
i
m
=
c
(
0
.
0
,

1
.
0
)
)

} #
m
l
p
’
s

r
e
q
u
i
r
e

s
o
m
e

m
e
s
s
i
n
g

a
r
o
u
n
d

w
i
t
h

t
h
e

d
a
t
a

f
i
r
s
t

s
e
t
m
o
d
e
l

<
-

f
u
n
c
t
i
o
n
(
x
,

d
a
t
a
)

{
#

s
e
e

i
f

w
e

c
a
n

g
e
t

a
m
o
d
e
l

f
r
a
m
e

o
u
r
m
o
d
e
l

<
-

m
o
d
e
l
.
f
r
a
m
e
(
x
,

d
a
t
a
)

o
u
r
m
o
d
e
l
[
[
a
l
l
.
v
a
r
s
(
x
)
[
[
1
]
]
]
]

<
-

N
U
L
L

#
n
o
w

m
u
n
g
e

t
h
e

m
o
d
e
l

f
r
a
m
e

s
o

t
h
a
t

f
a
c
t
o
r
s

a
r
e

r
e
c
o
d
e
d

a
s

"
d
u
m
m
y
"

v
a
r
s

f
o
r

(
y

i
n

n
a
m
e
s
(
o
u
r
m
o
d
e
l
)
)

{
i
f

(
i
s
.
f
a
c
t
o
r
(
o
u
r
m
o
d
e
l
[
[
y
]
]
)
)

{
m
u
n
g
e
d
f
a
c
t
o
r

<
-

m
a
t
r
i
x
(
i
f
e
l
s
e
(
o
u
r
m
o
d
e
l
[
[
y
]
]

=
=

r
e
p
(
l
e
v
e
l
s
(
o
u
r
m
o
d
e
l
[
[
y
]
]
)
,

e
a
c
h
=
n
r
o
w
(
o
u
r
m
o
d
e
l
)
)
,

1
,

0
)
,

194

n
c
o
l
=
n
l
e
v
e
l
s
(
o
u
r
m
o
d
e
l
[
[
y
]
]
)
)

c
o
l
n
a
m
e
s
(
m
u
n
g
e
d
f
a
c
t
o
r
)

<
-

l
e
v
e
l
s
(
o
u
r
m
o
d
e
l
[
[
y
]
]
)

o
u
r
m
o
d
e
l
[
[
y
]
]

<
-

m
u
n
g
e
d
f
a
c
t
o
r

}
} r
e
t
u
r
n
(
o
u
r
m
o
d
e
l
)

} #
m
a
k
e

a
n
i
c
e

m
a
t
r
i
x

f
o
r

m
l
p

o
u
t
p
u
t
s

s
e
t
o
u
t
p
u
t
s

<
-

f
u
n
c
t
i
o
n
(
x
,

d
a
t
a
,

l
a
b
e
l
=
N
U
L
L
)

{
m
o
d
e
l

<
-

m
o
d
e
l
.
f
r
a
m
e
(
x
,

d
a
t
a
)

i
f

(
i
s
.
n
u
l
l
(
l
a
b
e
l
)
)

{
y

<
-

a
l
l
.
v
a
r
s
(
x
)
[
[
1
]
]

r
e
s
u
l
t

<
-
m
a
t
r
i
x
(
i
f
e
l
s
e
(
m
o
d
e
l
[
[
1
]
]

=
=

r
e
p
(
l
e
v
e
l
s
(
m
o
d
e
l
[
[
1
]
]
)
,

e
a
c
h
=
n
r
o
w
(
m
o
d
e
l
)
)
,

1
,

0
)
,

n
c
o
l
=
n
l
e
v
e
l
s
(
d
a
t
a
[
[
y
]
]
)
)

c
o
l
n
a
m
e
s
(
r
e
s
u
l
t
)

<
-

l
e
v
e
l
s
(
m
o
d
e
l
[
[
1
]
]
)

r
e
t
u
r
n
(
r
e
s
u
l
t
)

}
e
l
s
e

{
r
e
s
u
l
t

<
-

m
a
t
r
i
x
(
i
f
e
l
s
e
(
m
o
d
e
l
.
f
r
a
m
e
(
x
,

d
a
t
a
)
[
1
]

=
=

l
a
b
e
l
,

1
.
0
,

0
.
0
)
,

n
c
o
l
=
1
)

c
o
l
n
a
m
e
s
(
r
e
s
u
l
t
)

<
-

l
a
b
e
l

r
e
t
u
r
n
(
r
e
s
u
l
t
)

}
} #

m
a
k
e

a
4
-
l
a
y
e
r

M
L
P
,

o
p
t
i
o
n
a
l
l
y

s
p
e
c
i
f
y
i
n
g

a
c
l
a
s
s

l
a
b
e
l

t
o

p
r
e
d
i
c
t

m
l
p

<
-

f
u
n
c
t
i
o
n
(
x
,

d
a
t
a
,

h
1
,

h
2
,

l
a
b
e
l
=
N
U
L
L
,

b
u
m
p
=
0
.
0
2
5
)

{
r
e
s
u
l
t

<
-

N
U
L
L

r
e
s
u
l
t
$
p
o
s
i
t
i
v
e
l
a
b
e
l

<
-

N
U
L
L

r
e
s
u
l
t
$
n
e
g
a
t
i
v
e
l
a
b
e
l

<
-

N
U
L
L

r
e
s
u
l
t
$
f
o
r
m
u
l
a

<
-

x
r
e
s
u
l
t
$
e
p
o
c
h
s

<
-

0
c
l
a
s
s
(
r
e
s
u
l
t
)

<
-

"
m
l
p
"

r
e
s
u
l
t
$
t
d
a
t
a

<
-

s
e
t
m
o
d
e
l
(
x
,

d
a
t
a
)

r
e
s
u
l
t
$
o
u
t
p
u
t
s

<
-

s
e
t
o
u
t
p
u
t
s
(
x
,

d
a
t
a
,

l
a
b
e
l
)

r
e
s
u
l
t
$
s
t
o
p
p
i
n
g

<
-

s
a
m
p
l
e
(
n
r
o
w
(
r
e
s
u
l
t
$
t
d
a
t
a
)
,

n
r
o
w
(
r
e
s
u
l
t
$
t
d
a
t
a
)
/
4
)

i
f

(
i
s
.
n
u
l
l
(
l
a
b
e
l
)
)

{
r
e
s
u
l
t
$
o
u
t
p
u
t
n
a
m
e
s

<
-

l
e
v
e
l
s
(
d
a
t
a
[
[
a
l
l
.
v
a
r
s
(
r
e
s
u
l
t
$
f
o
r
m
u
l
a
)
[
[
1
]
]
]
]
)

}
e
l
s
e

{
r
e
s
u
l
t
$
p
o
s
i
t
i
v
e
l
a
b
e
l

<
-

l
a
b
e
l

r
e
s
u
l
t
$
n
e
g
a
t
i
v
e
l
a
b
e
l

<
-

p
a
s
t
e
(
s
e
p
=
"
.
"
,

"
n
o
t
"
,

l
a
b
e
l
)

r
e
s
u
l
t
$
o
u
t
p
u
t
n
a
m
e
s

<
-

c
(
r
e
s
u
l
t
$
n
e
g
a
t
i
v
e
l
a
b
e
l
,

r
e
s
u
l
t
$
p
o
s
i
t
i
v
e
l
a
b
e
l
)

} r
e
s
u
l
t
$
w
e
i
g
h
t
s

<
-

l
i
s
t
(
m
a
t
r
i
x
(
r
u
n
i
f
(
(
n
c
o
l
(
a
s
.
m
a
t
r
i
x
(
r
e
s
u
l
t
$
t
d
a
t
a
)
)

+
1
)
*

h
1
,

-
b
u
m
p
,

b
u
m
p
)
,

n
r
o
w
=
n
c
o
l
(
a
s
.
m
a
t
r
i
x
(
r
e
s
u
l
t
$
t
d
a
t
a
)
)

+
1
)
,

m
a
t
r
i
x
(
r
u
n
i
f
(
(
h
1

+
1
)
*

h
2
,

-
b
u
m
p
,

b
u
m
p
)
,

n
r
o
w
=
h
1

+
1
)
,

m
a
t
r
i
x
(
r
u
n
i
f
(
(
h
2

+
1
)
*

n
c
o
l
(
r
e
s
u
l
t
$
o
u
t
p
u
t
s
)
,

-
b
u
m
p
,

b
u
m
p
)
,

n
r
o
w
=
h
2

+
1
)
)

#
s
e
t

u
p

s
l
o
t
s

a
n
d

w
i
d
t
h
s

r
e
s
u
l
t
$
w
i
d
t
h
s

<
-

N
U
L
L

f
o
r

(
y

i
n

n
a
m
e
s
(
r
e
s
u
l
t
$
t
d
a
t
a
)
)

{
i
f

(
i
s
.
f
a
c
t
o
r
(
d
a
t
a
[
[
y
]
]
)
)

r
e
s
u
l
t
$
w
i
d
t
h
s

<
-

a
p
p
e
n
d
(
r
e
s
u
l
t
$
w
i
d
t
h
s
,

n
l
e
v
e
l
s
(
d
a
t
a
[
[
y
]
]
)
)

e
l
s
e

r
e
s
u
l
t
$
w
i
d
t
h
s

<
-

a
p
p
e
n
d
(
r
e
s
u
l
t
$
w
i
d
t
h
s
,

1
)

} r
e
s
u
l
t
$
s
l
o
t
s

<
-

c
u
m
s
u
m
(
r
e
s
u
l
t
$
w
i
d
t
h
s
)

-
(
r
e
s
u
l
t
$
w
i
d
t
h
s

-
1
)

n
a
m
e
s
(
r
e
s
u
l
t
$
s
l
o
t
s
)

<
-

n
a
m
e
s
(
r
e
s
u
l
t
$
t
d
a
t
a
)

r
e
s
u
l
t
$
t
r
a
i
n
e
d
w
e
i
g
h
t
s

<
-

r
e
s
u
l
t
$
w
e
i
g
h
t
s

r
e
t
u
r
n
(
r
e
s
u
l
t
)

} #
a
l
l
o
w

s
o
m
e

h
y
p
e
r
p
l
a
n
e

t
r
i
m
m
i
n
g

i
n

t
h
e

m
l
p

h
a
s
m
o
r
e
s
p
e
c
i
f
i
c

<
-

f
u
n
c
t
i
o
n
(
d
e
c
a
t
t
,

d
e
c
,

a
t
t
l
i
s
t
,

d
e
c
l
i
s
t
)

{
f
o
r

(
i

i
n

1
:
l
e
n
g
t
h
(
d
e
c
l
i
s
t
)
)

{
i
f

(
d
e
c
a
t
t

!
=

a
t
t
l
i
s
t
[
i
]
)

n
e
x
t

i
f

(
s
u
b
s
t
r
(
d
e
c
,

1
,

1
)

=
=

"
<
"
)

{
i
f

(
s
u
b
s
t
r
(
d
e
c
l
i
s
t
[
i
]
,

1
,

1
)

!
=

"
<
"
)

n
e
x
t

i
f

(
a
s
.
n
u
m
e
r
i
c
(
s
u
b
s
t
r
i
n
g
(
d
e
c
l
i
s
t
[
i
]
,

3
)
)

<
a
s
.
n
u
m
e
r
i
c
(
s
u
b
s
t
r
i
n
g
(
d
e
c
,

3
)
)
)

r
e
t
u
r
n
(
T
R
U
E
)

}
e
l
s
e

i
f

(
s
u
b
s
t
r
(
d
e
c
,

1
,

1
)

=
=

"
>
"
)

{
i
f

(
s
u
b
s
t
r
(
d
e
c
l
i
s
t
[
i
]
,

1
,

1
)

!
=

"
>
"
)

n
e
x
t

i
f

(
a
s
.
n
u
m
e
r
i
c
(
s
u
b
s
t
r
i
n
g
(
d
e
c
l
i
s
t
[
i
]
,

3
)
)

>
a
s
.
n
u
m
e
r
i
c
(
s
u
b
s
t
r
i
n
g
(
d
e
c
,

3
)
)
)

r
e
t
u
r
n
(
T
R
U
E
)

}
} r
e
t
u
r
n
(
F
A
L
S
E
)

} #
c
o
n
v
e
r
t

a
n

r
p
a
r
t

d
e
c
i
s
i
o
n

t
r
e
e

t
o

a
n

m
l
p

t
r
e
e
t
o
m
l
p

<
-

f
u
n
c
t
i
o
n
(
t
r
e
e
,

d
a
t
a
,

c
l
a
s
s
l
a
b
e
l
=
N
U
L
L
,

w
=
5
,

b
u
m
p
=
0
.
0
2
5
,

h
a
r
s
h
=
F
A
L
S
E
,

e
x
p
a
n
d
=
N
U
L
L
)

{
l
s
p
l
i
t
s

<
-

l
a
b
e
l
s
(
t
r
e
e
,

c
o
l
l
a
p
s
e
=
F
A
L
S
E
,

m
i
n
l
e
n
g
t
h
=
0
)
[
,
1
]

r
s
p
l
i
t
s

<
-

l
a
b
e
l
s
(
t
r
e
e
,

c
o
l
l
a
p
s
e
=
F
A
L
S
E
,

m
i
n
l
e
n
g
t
h
=
0
)
[
,
2
]

b
r
a
n
c
h
v
a
r
s

<
-

t
r
e
e
$
f
r
a
m
e
$
v
a
r
[
l
s
p
l
i
t
s

!
=

"
<
l
e
a
f
>
"
]

l
b
r
a
n
c
h
e
s

<
-

l
s
p
l
i
t
s
[
l
s
p
l
i
t
s

!
=

"
<
l
e
a
f
>
"
]

r
b
r
a
n
c
h
e
s

<
-

r
s
p
l
i
t
s
[
r
s
p
l
i
t
s

!
=

"
<
l
e
a
f
>
"
]

n
b
r
a
n
c
h
e
s

<
-

l
e
n
g
t
h
(
l
b
r
a
n
c
h
e
s
)

c
l
a
s
s
n
u
m

<
-

0
i
f

(
!

i
s
.
n
u
l
l
(
c
l
a
s
s
l
a
b
e
l
)
)

{
c
l
a
s
s
n
u
m

<
-

m
a
t
c
h
(
c
l
a
s
s
l
a
b
e
l
,

a
t
t
r
(
t
r
e
e
,

"
y
l
e
v
e
l
s
"
)
)

} i
f

(
!

i
s
.
n
u
l
l
(
c
l
a
s
s
l
a
b
e
l
)

&
&

h
a
r
s
h
)

{
b
r

<
-

t
r
e
e
$
f
r
a
m
e
$
y
v
a
l
2
[
c
(
1
:
l
e
n
g
t
h
(
l
s
p
l
i
t
s
)
)
[
l
s
p
l
i
t
s

!
=

"
<
l
e
a
f
>
"
]
,
]
[
,
c
l
a
s
s
n
u
m
+
1
]

n
b
r
a
n
c
h
e
s

<
-

l
e
n
g
t
h
(
b
r
[
b
r

>
0
]
)

} n
l
e
a
v
e
s

<
-

n
r
o
w
(
t
r
e
e
$
f
r
a
m
e
[
t
r
e
e
$
f
r
a
m
e
$
v
a
r

=
=

"
<
l
e
a
f
>
"

&
t
r
e
e
$
f
r
a
m
e
$
y
v
a
l

=
=

c
l
a
s
s
n
u
m
,
]
)

i
f

(
i
s
.
n
u
l
l
(
c
l
a
s
s
l
a
b
e
l
)
)

{
n
l
e
a
v
e
s

<
-

n
r
o
w
(
t
r
e
e
$
f
r
a
m
e
[
t
r
e
e
$
f
r
a
m
e
$
v
a
r

=
=

"
<
l
e
a
f
>
"
,
]
)

} f
e
a
t
u
r
e
s

<
-

a
l
l
.
v
a
r
s
(
e
v
a
l
(
t
r
e
e
$
c
a
l
l
$
f
o
r
m
u
l
a
)
)
[
-
1
]

i
f

(
!

i
s
.
n
u
l
l
(
e
x
p
a
n
d
)
)

{
n
b
r
a
n
c
h
e
s

<
-

m
a
x
(
n
b
r
a
n
c
h
e
s
,

(
l
e
n
g
t
h
(
n
a
m
e
s
(
d
a
t
a
)
)
-
1
)
*

e
x
p
a
n
d
)

n
l
e
a
v
e
s

<
-

m
a
x
(
n
l
e
a
v
e
s
,

l
e
n
g
t
h
(
n
a
m
e
s
(
d
a
t
a
)
)
*

e
x
p
a
n
d
)

} #
g
o
t

t
o

m
a
k
e

t
h
i
s

m
o
r
e

t
h
a
n

j
u
s
t

l
o
g
i
s
t
i
c

r
e
g
r
e
s
s
i
o
n

n
b
r
a
n
c
h
e
s

<
-

m
a
x
(
2
,

n
b
r
a
n
c
h
e
s
)

n
l
e
a
v
e
s

<
-

m
a
x
(
2
,

n
l
e
a
v
e
s
)

195

#
m
a
k
e

a
s
k
e
l
e
t
o
n

m
l
p

r
e
s
u
l
t

<
-

m
l
p
(
a
s
.
f
o
r
m
u
l
a
(
e
v
a
l
(
t
r
e
e
$
c
a
l
l
$
f
o
r
m
u
l
a
)
)
,

d
a
t
a
,

n
b
r
a
n
c
h
e
s
,

n
l
e
a
v
e
s
,

c
l
a
s
s
l
a
b
e
l
,

b
u
m
p
)

#
s
e
t
u
p

o
f

m
a
t
r
i
x

3
i
s

e
a
s
y
:

i
f

(
!

i
s
.
n
u
l
l
(
c
l
a
s
s
l
a
b
e
l
)
)

{
r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
3
]
]

<
-

m
a
t
r
i
x
(
w
,

n
r
o
w
=
n
r
o
w
(
r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
3
]
]
)
,

n
c
o
l
=
n
c
o
l
(
r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
3
]
]
)
)

} r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
3
]
]
[
1
,
]

<
-

-
w
/
2
.
0

b
r
a
n
c
h
n
u
m

<
-

0
l
e
a
f
n
u
m

<
-

0
n
o
d
e
s

<
-

t
r
e
e
$
f
r
a
m
e

t
r
u
e
s
t
a
c
k

<
-

N
U
L
L

f
a
l
s
e
s
t
a
c
k

<
-

N
U
L
L

f
o
r

(
i

i
n

1
:
n
r
o
w
(
n
o
d
e
s
)
)

{
i
f

(
n
o
d
e
s
$
v
a
r
[
i
]

=
=

"
<
l
e
a
f
>
"
)

{
i
f

(
n
o
d
e
s
$
y
v
a
l
[
i
]

=
=

c
l
a
s
s
n
u
m

|
|

i
s
.
n
u
l
l
(
c
l
a
s
s
l
a
b
e
l
)
)

{
l
e
a
f
n
u
m

<
-

l
e
a
f
n
u
m

+
1

r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
2
]
]
[
1
,
l
e
a
f
n
u
m
]

<
-

-
w
*

(
2

*
l
e
n
g
t
h
(
t
r
u
e
s
t
a
c
k
)

-
1
)

/
2
.
0

f
o
r

(
x

i
n

t
r
u
e
s
t
a
c
k
)

{
i
f

(
!

h
a
s
m
o
r
e
s
p
e
c
i
f
i
c
(
b
r
a
n
c
h
v
a
r
s
[
x
]
,

l
b
r
a
n
c
h
e
s
[
x
]
,

b
r
a
n
c
h
v
a
r
s
[
t
r
u
e
s
t
a
c
k
]
,

l
b
r
a
n
c
h
e
s
[
t
r
u
e
s
t
a
c
k
]
)
)

{
r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
2
]
]
[
x
+
1
,
l
e
a
f
n
u
m
]

<
-

w
}

e
l
s
e

{
r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
2
]
]
[
1
,
l
e
a
f
n
u
m
]

<
-

r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
2
]
]
[
1
,
l
e
a
f
n
u
m
]

+
w

}
} f
o
r

(
x

i
n

f
a
l
s
e
s
t
a
c
k
)

{
i
f

(
!

h
a
s
m
o
r
e
s
p
e
c
i
f
i
c
(
b
r
a
n
c
h
v
a
r
s
[
x
]
,

r
b
r
a
n
c
h
e
s
[
x
]
,

b
r
a
n
c
h
v
a
r
s
[
f
a
l
s
e
s
t
a
c
k
]
,

r
b
r
a
n
c
h
e
s
[
f
a
l
s
e
s
t
a
c
k
]
)
)

{
r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
2
]
]
[
x
+
1
,
l
e
a
f
n
u
m
]

<
-

-
w

}
}

i
f

(
i
s
.
n
u
l
l
(
c
l
a
s
s
l
a
b
e
l
)
)

{
r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
3
]
]
[
l
e
a
f
n
u
m
+
1
,

n
o
d
e
s
$
y
v
a
l
[
i
]
]

<
-

w
}

} i
f

(
l
e
n
g
t
h
(
t
r
u
e
s
t
a
c
k
)

=
=

0
)

b
r
e
a
k

n
e
w
t
o
p

<
-

t
r
u
e
s
t
a
c
k
[
l
e
n
g
t
h
(
t
r
u
e
s
t
a
c
k
)
]

t
r
u
e
s
t
a
c
k

<
-

t
r
u
e
s
t
a
c
k
[
-
l
e
n
g
t
h
(
t
r
u
e
s
t
a
c
k
)
]

w
h
i
l
e

(
l
e
n
g
t
h
(
f
a
l
s
e
s
t
a
c
k
)

!
=

0
&
&

f
a
l
s
e
s
t
a
c
k
[
l
e
n
g
t
h
(
f
a
l
s
e
s
t
a
c
k
)
]

>
n
e
w
t
o
p
)

{
f
a
l
s
e
s
t
a
c
k

<
-

f
a
l
s
e
s
t
a
c
k
[
-
l
e
n
g
t
h
(
f
a
l
s
e
s
t
a
c
k
)
]

} f
a
l
s
e
s
t
a
c
k

<
-

a
p
p
e
n
d
(
f
a
l
s
e
s
t
a
c
k
,

n
e
w
t
o
p
)

}
e
l
s
e

{
i
f

(
!
h
a
r
s
h

|
|

t
r
e
e
$
f
r
a
m
e
$
y
v
a
l
2
[
i
,
c
l
a
s
s
n
u
m
+
1
]

>
0
)

{
b
r
a
n
c
h
n
u
m

<
-

b
r
a
n
c
h
n
u
m

+
1

i
f

(
s
u
b
s
t
r
(
l
s
p
l
i
t
s
[
i
]
,

1
,
1
)

=
=

"
<
"
)

{
r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
1
]
]
[
1
,
b
r
a
n
c
h
n
u
m
]

<
-

w
*

a
s
.
n
u
m
e
r
i
c
(
s
u
b
s
t
r
i
n
g
(
l
s
p
l
i
t
s
[
i
]
,

3
)
)

r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
1
]
]
[
r
e
s
u
l
t
$
s
l
o
t
s
[
a
s
.
c
h
a
r
a
c
t
e
r
(
n
o
d
e
s
$
v
a
r
)
[
i
]
]

+
1
,

b
r
a
n
c
h
n
u
m
]

=
-
w

}
e
l
s
e

i
f

(
s
u
b
s
t
r
(
l
s
p
l
i
t
s
[
i
]
,

1
,
1
)

=
=

"
>
"
)

{
r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
1
]
]
[
1
,
b
r
a
n
c
h
n
u
m
]

<
-

-
w
*

a
s
.
n
u
m
e
r
i
c
(
s
u
b
s
t
r
i
n
g
(
l
s
p
l
i
t
s
[
i
]
,

3
)
)

r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
1
]
]
[
r
e
s
u
l
t
$
s
l
o
t
s
[
a
s
.
c
h
a
r
a
c
t
e
r
(
n
o
d
e
s
$
v
a
r
)
[
i
]
]

+
1
,

b
r
a
n
c
h
n
u
m
]

=
w

}
e
l
s
e

{
r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
1
]
]
[
1
,
b
r
a
n
c
h
n
u
m
]

<
-

-
w
/
2
.
0

o
f
f
s
e
t

<
-

0
f
o
r

(
b

i
n

a
t
t
r
(
t
r
e
e
,

"
x
l
e
v
e
l
s
"
)
[
[
a
s
.
c
h
a
r
a
c
t
e
r
(
n
o
d
e
s
$
v
a
r
[
i
]
)
]
]

%
i
n
%

s
t
r
s
p
l
i
t
(
l
s
p
l
i
t
s
[
i
]
,

"
,
"
)
[
[
1
]
]
)

{
i
f

(
b
)

{
r
e
s
u
l
t
$
w
e
i
g
h
t
s
[
[
1
]
]
[
r
e
s
u
l
t
$
s
l
o
t
s
[
a
s
.
c
h
a
r
a
c
t
e
r
(
n
o
d
e
s
$
v
a
r
)
[
i
]
]

+
1

+
o
f
f
s
e
t
,

b
r
a
n
c
h
n
u
m
]

=
w

} o
f
f
s
e
t

<
-

o
f
f
s
e
t
+
1

}
}

} t
r
u
e
s
t
a
c
k

<
-

a
p
p
e
n
d
(
t
r
u
e
s
t
a
c
k
,

b
r
a
n
c
h
n
u
m
)

}
} r
e
s
u
l
t
$
t
r
a
i
n
e
d
w
e
i
g
h
t
s

<
-

r
e
s
u
l
t
$
w
e
i
g
h
t
s

r
e
t
u
r
n
(
r
e
s
u
l
t
)

} #
f
i
n
e

g
r
i
d

o
f

p
o
i
n
t
s

f
o
r

m
a
k
i
n
g

m
l
p

p
i
c
t
u
r
e
s

g
e
n
x
y

<
-

f
u
n
c
t
i
o
n
(
a
,

b
,

c
)

{
r
e
t
u
r
n
(
c
b
i
n
d
(
r
e
p
(
s
e
q
(
a
,

b
,

c
)
,

e
a
c
h
=
(
b
-
a
)
/
c
)
,

s
e
q
(
a
,

b
,

c
)
)
)

} #
m
a
k
e

a
p
r
e
t
t
y

p
i
c
t
u
r
e

p
l
o
t
.
m
l
p

<
-

f
u
n
c
t
i
o
n
(
x
,

f
e
a
t
u
r
e
s
,

v
a
l
u
e
s
)

{
d
a
t
a

<
-

c
b
i
n
d
(
g
e
n
x
y
(
0
,

1
4
,

0
.
1
)
,

1
,

0
,

0
,

0
,

0
,

0
,

0
)

i
m
a
g
e
(
x
=
s
e
q
(
0
,

1
4
.
0
,

0
.
1
)
,

y
=
s
e
q
(
0
,

1
4
.
0
,

0
.
1
)
,

z
=
m
a
t
r
i
x
(
f
f
(
d
a
t
a
,

x
$
w
e
i
g
h
t
s
)
,

n
r
o
w
=
1
4
1
)
,

c
o
l
=
t
o
p
o
.
c
o
l
o
r
s
(
2
5
6
)
,

z
l
i
m
=
c
(
0
.
0
,

1
.
0
)
)

} #
u
s
e

t
h
e

m
l
p

t
o

m
a
k
e

p
r
e
d
i
c
t
i
o
n
s

p
r
e
d
i
c
t
.
m
l
p

<
-

f
u
n
c
t
i
o
n
(
x
,

d
a
t
a
=
N
U
L
L
,

t
y
p
e
=
"
c
l
a
s
s
"
,

.
.
.
)

{
i
f

(
i
s
.
n
u
l
l
(
d
a
t
a
)
)

{
o
u
r
m
o
d
e
l

<
-

x
$
t
d
a
t
a

}
e
l
s
e

{
o
u
r
m
o
d
e
l

<
-

s
e
t
m
o
d
e
l
(
x
$
f
o
r
m
u
l
a
,

d
a
t
a
)

} p
r
o
b
s

<
-

f
f
(
a
s
.
m
a
t
r
i
x
(
o
u
r
m
o
d
e
l
)
,

x
$
t
r
a
i
n
e
d
w
e
i
g
h
t
s
)

i
f

(
t
y
p
e

=
=

"
c
l
a
s
s
"
)

{
i
f

(
!
i
s
.
n
u
l
l
(
x
$
p
o
s
i
t
i
v
e
l
a
b
e
l
)
)

{
r
e
t
u
r
n
(
i
f
e
l
s
e
(
p
r
o
b
s

>
0
.
5
,

x
$
p
o
s
i
t
i
v
e
l
a
b
e
l
,

x
$
n
e
g
a
t
i
v
e
l
a
b
e
l
)
)

}
e
l
s
e

{
r
e
t
u
r
n
(
x
$
o
u
t
p
u
t
n
a
m
e
s
[
m
a
x
.
c
o
l
(
p
r
o
b
s
)
]
)

}
}

e
l
s
e

{

196

r
e
t
u
r
n
(
p
r
o
b
s
)

}
} #

r
e
p
l
a
c
e

m
l
p

w
e
i
g
h
t
s

r
a
n
d
o
m
i
s
e

<
-

f
u
n
c
t
i
o
n
(
x
,

d
)

{
f
o
r

(
i

i
n

1
:
l
e
n
g
t
h
(
x
)
)

{
x
[
[
i
]
]

<
-

(
x
[
[
i
]
]
*
0
)

+
r
u
n
i
f
(
n
r
o
w
(
x
[
[
i
]
]
)
*

n
c
o
l
(
x
[
[
i
]
]
)
,

-
d
,

d
)

} r
e
t
u
r
n
(
x
)

} #
p
e
r
t
u
r
b

m
l
p

w
e
i
g
h
t
s

p
e
r
t
u
r
b

<
-

f
u
n
c
t
i
o
n
(
x
,

d
)

{
f
o
r

(
i

i
n

1
:
l
e
n
g
t
h
(
x
)
)

{
x
[
[
i
]
]

<
-

x
[
[
i
]
]

+
r
u
n
i
f
(
n
r
o
w
(
x
[
[
i
]
]
)
*

n
c
o
l
(
x
[
[
i
]
]
)
,

-
d
,

d
)

} r
e
t
u
r
n
(
x
)

} #
a
d
d

g
a
u
s
s
i
a
n

n
o
i
s
e

t
o

m
l
p

w
e
i
g
h
t
s

a
d
d
n
o
i
s
e

<
-

f
u
n
c
t
i
o
n
(
x
,

s
)

{
f
o
r

(
i

i
n

1
:
l
e
n
g
t
h
(
x
)
)

{
x
[
[
i
]
]

<
-

x
[
[
i
]
]

+
r
n
o
r
m
(
n
r
o
w
(
x
[
[
i
]
]
)
*

n
c
o
l
(
x
[
[
i
]
]
)
,

0
,

s
)

} r
e
t
u
r
n
(
x
)

} #
m
a
k
e

t
h
e

m
l
p

m
o
r
e

a
c
c
u
r
a
t
e

o
n

t
h
e

t
r
a
i
n
i
n
g

d
a
t
a

t
r
a
i
n
m
l
p

<
-

f
u
n
c
t
i
o
n
(
x
,

n
=
3
0
0
0
,

l
c
=
l
c

<
-

1
.
0
/
n
r
o
w
(
x
$
t
d
a
t
a
)
,

m
s
=
1
.
7
5
,

m
o
m
=
0
.
9
,

t
y
p
e
=
"
g
d
m
o
m
"
,

m
i
n
e
r
r
o
r
=
I
n
f
,

s
t
o
p
=
1
0
)

{
x
$
e
p
o
c
h
s

<
-

0
x
$
b
e
s
t
e
p
o
c
h

<
-

0
n
e
w
w
e
i
g
h
t
s

<
-

N
U
L
L

w
e
i
g
h
t
s
t
o
t
r
a
i
n

<
-

x
$
w
e
i
g
h
t
s

r
e
p
e
a
t

{
i
f

(
t
y
p
e

=
=

"
g
d
m
o
m
"
)

{
n
e
w
w
e
i
g
h
t
s

<
-

g
d
m
o
m
(
a
s
.
m
a
t
r
i
x
(
x
$
t
d
a
t
a
)
,

w
e
i
g
h
t
s
t
o
t
r
a
i
n
,

x
$
o
u
t
p
u
t
s
,

l
c
=
l
c
,

n
=
n
,

m
o
m
=
m
o
m
,

s
t
o
p
=
s
t
o
p
)

}
e
l
s
e

i
f

(
t
y
p
e

=
=

"
q
p
r
o
p
"
)

{
n
e
w
w
e
i
g
h
t
s

<
-

q
p
r
o
p
(
a
s
.
m
a
t
r
i
x
(
x
$
t
d
a
t
a
)
,

w
e
i
g
h
t
s
t
o
t
r
a
i
n
,

x
$
o
u
t
p
u
t
s
,

l
c
=
l
c
,

n
=
n
,

m
s
=
m
s
,

s
t
o
p
=
s
t
o
p
)

} x
$
t
r
a
i
n
e
d
w
e
i
g
h
t
s

<
-

n
e
w
w
e
i
g
h
t
s
[
[
1
]
]

x
$
b
e
s
t
e
p
o
c
h

<
-

x
$
e
p
o
c
h
s

+
n
e
w
w
e
i
g
h
t
s
[
[
3
]
]

x
$
e
p
o
c
h
s

<
-

x
$
e
p
o
c
h
s

+
n
e
w
w
e
i
g
h
t
s
[
[
2
]
]

t
r
a
i
n
i
n
g
e
r
r
o
r

<
-

n
e
w
w
e
i
g
h
t
s
[
[
4
]
]

o
u
t
p
u
t
s

<
-

p
r
e
d
i
c
t
(
x
,

t
y
p
e
=
"
c
l
a
s
s
"
)

i
f

(
!
a
l
l
(
o
u
t
p
u
t
s

=
=

o
u
t
p
u
t
s
[
1
]
)

&
&

t
r
a
i
n
i
n
g
e
r
r
o
r

<
m
i
n
e
r
r
o
r
)

{
b
r
e
a
k

}
e
l
s
e

{
w
e
i
g
h
t
s
t
o
t
r
a
i
n

<
-

p
e
r
t
u
r
b
(
w
e
i
g
h
t
s
t
o
t
r
a
i
n
,

0
.
3
)

}
} r
e
t
u
r
n
(
x
)

}

B
.2

C
od

e
fo

r
Su

pp
or

tin
g

E
xp

er
im

en
ts

m
l
p
s
i
z
e

<
-

f
u
n
c
t
i
o
n
(
x
)

{
r
e
s
u
l
t

<
-

N
U
L
L

f
o
r

(
i

i
n

1
:
l
e
n
g
t
h
(
x
$
w
e
i
g
h
t
s
)
)

{
r
e
s
u
l
t

<
-

a
p
p
e
n
d
(
r
e
s
u
l
t
,

n
r
o
w
(
x
$
w
e
i
g
h
t
s
[
[
i
]
]
)
)

} r
e
s
u
l
t

<
-

a
p
p
e
n
d
(
r
e
s
u
l
t
,

n
c
o
l
(
x
$
w
e
i
g
h
t
s
[
[
l
e
n
g
t
h
(
x
$
w
e
i
g
h
t
s
)
]
]
)
)

r
e
t
u
r
n
(
p
a
s
t
e
(
r
e
s
u
l
t
,

c
o
l
l
a
p
s
e
=
"

"
)
)

} m
l
p
e
c
o
s
t

<
-

f
u
n
c
t
i
o
n
(
x
)

{
r
e
s
u
l
t

<
-

0
f
o
r

(
i

i
n

1
:
l
e
n
g
t
h
(
x
$
w
e
i
g
h
t
s
)
)

{
r
e
s
u
l
t

<
-

r
e
s
u
l
t

+
n
r
o
w
(
x
$
w
e
i
g
h
t
s
[
[
i
]
]
)
*

n
c
o
l
(
x
$
w
e
i
g
h
t
s
[
[
i
]
]
)

} r
e
t
u
r
n
(
r
e
s
u
l
t
*
x
$
e
p
o
c
h
s
)

} m
l
p
b
c
o
s
t

<
-

f
u
n
c
t
i
o
n
(
x
)

{
r
e
s
u
l
t

<
-

0
f
o
r

(
i

i
n

1
:
l
e
n
g
t
h
(
x
$
w
e
i
g
h
t
s
)
)

{
r
e
s
u
l
t

<
-

r
e
s
u
l
t

+
n
r
o
w
(
x
$
w
e
i
g
h
t
s
[
[
i
]
]
)
*

n
c
o
l
(
x
$
w
e
i
g
h
t
s
[
[
i
]
]
)

} r
e
t
u
r
n
(
r
e
s
u
l
t
*
x
$
b
e
s
t
e
p
o
c
h
)

} m
a
k
e
m
l
p
c
m

<
-

f
u
n
c
t
i
o
n
(
x
,

i
)

{
r
e
t
u
r
n
(
t
a
b
l
e
(
p
r
e
d
i
c
t
(
x
,

d
a
t
a
=
s
t
d
b
[
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,
]
,

t
y
p
e
=
"
c
l
a
s
s
"
)
,

s
t
d
b
[
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,

c
l
a
b
e
l
]
)
)

} m
a
k
e
m
l
p
r
e
c
o
r
d

<
-

f
u
n
c
t
i
o
n
(
x
,

i
)

{
r
e
s
u
l
t

<
-

N
U
L
L

c
o
n
f
u
s
i
o
n
m
a
t
r
i
x

<
-

m
a
k
e
m
l
p
c
m
(
x
,

i
)

r
e
s
u
l
t
$
e
r
r
o
r

<
-

1
-

(
s
u
m
(
d
i
a
g
(
c
o
n
f
u
s
i
o
n
m
a
t
r
i
x
)
)

/
l
e
n
g
t
h
(
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
)
)

r
e
s
u
l
t
$
s
i
z
e

<
-

m
l
p
s
i
z
e
(
x
)

r
e
s
u
l
t
$
e
p
o
c
h
s

<
-

x
$
e
p
o
c
h
s

r
e
s
u
l
t
$
b
e
s
t
e
p
o
c
h

<
-

x
$
b
e
s
t
e
p
o
c
h

r
e
s
u
l
t
$
c
o
s
t

<
-

m
l
p
e
c
o
s
t
(
x
)

r
e
s
u
l
t
$
b
e
s
t
c
o
s
t

<
-

m
l
p
b
c
o
s
t
(
x
)

r
e
t
u
r
n
(
r
e
s
u
l
t
)

} m
a
k
e
s
m
l
p
c
m

<
-

f
u
n
c
t
i
o
n
(
x
,

i
)

{
r
e
t
u
r
n
(
t
a
b
l
e
(
p
r
e
d
i
c
t
(
x
,

d
a
t
a
=
s
t
d
b
[
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,
]
,

t
y
p
e
=
"
c
l
a
s
s
"
)
,

i
f
e
l
s
e
(
s
t
d
b
[
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,

c
l
a
b
e
l
]

=
=

s
l
a
b
e
l
,

s
l
a
b
e
l
,

p
a
s
t
e
(
"
n
o
t
"
,

s
l
a
b
e
l
,

s
e
p
=
"
.
"
)
)
)
)

}

197

m
a
k
e
s
m
l
p
r
e
c
o
r
d

<
-

f
u
n
c
t
i
o
n
(
x
,

i
)

{
r
e
s
u
l
t

<
-

N
U
L
L

c
o
n
f
u
s
i
o
n
m
a
t
r
i
x

<
-

m
a
k
e
s
m
l
p
c
m
(
x
,

i
)

r
e
s
u
l
t
$
e
r
r
o
r

<
-

1
-

(
s
u
m
(
d
i
a
g
(
c
o
n
f
u
s
i
o
n
m
a
t
r
i
x
)
)

/
l
e
n
g
t
h
(
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
)
)

r
e
s
u
l
t
$
f
p

<
-

c
o
n
f
u
s
i
o
n
m
a
t
r
i
x
[
x
$
p
o
s
i
t
i
v
e
l
a
b
e
l
,

x
$
n
e
g
a
t
i
v
e
l
a
b
e
l
]

/
s
u
m
(
c
o
n
f
u
s
i
o
n
m
a
t
r
i
x
[
,
x
$
n
e
g
a
t
i
v
e
l
a
b
e
l
]
)

r
e
s
u
l
t
$
f
n

<
-

c
o
n
f
u
s
i
o
n
m
a
t
r
i
x
[
x
$
n
e
g
a
t
i
v
e
l
a
b
e
l
,

x
$
p
o
s
i
t
i
v
e
l
a
b
e
l
]

/
s
u
m
(
c
o
n
f
u
s
i
o
n
m
a
t
r
i
x
[
,
x
$
p
o
s
i
t
i
v
e
l
a
b
e
l
]
)

r
e
s
u
l
t
$
p
o
s
i
t
i
v
e
l
a
b
e
l

<
-

x
$
p
o
s
i
t
i
v
e
l
a
b
e
l

r
e
s
u
l
t
$
n
e
g
a
t
i
v
e
l
a
b
e
l

<
-

x
$
n
e
g
a
t
i
v
e
l
a
b
e
l

r
e
s
u
l
t
$
s
i
z
e

<
-

m
l
p
s
i
z
e
(
x
)

r
e
s
u
l
t
$
e
p
o
c
h
s

<
-

x
$
e
p
o
c
h
s

r
e
s
u
l
t
$
b
e
s
t
e
p
o
c
h

<
-

x
$
b
e
s
t
e
p
o
c
h

r
e
s
u
l
t
$
c
o
s
t

<
-

m
l
p
e
c
o
s
t
(
x
)

r
e
s
u
l
t
$
b
e
s
t
c
o
s
t

<
-

m
l
p
b
c
o
s
t
(
x
)

r
e
t
u
r
n
(
r
e
s
u
l
t
)

} t
r
e
e
e
r
r
o
r

<
-

f
u
n
c
t
i
o
n
(
x
,

i
)

{
r
e
t
u
r
n
(
1

-
s
u
m
(
d
i
a
g
(
t
a
b
l
e
(
p
r
e
d
i
c
t
(
x
,

n
e
w
d
a
t
a
=
s
t
d
b
[
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,
]
,

t
y
p
e
=
"
c
l
a
s
s
"
)
,

s
t
d
b
[
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,
c
l
a
b
e
l
]
)
)
)

/
l
e
n
g
t
h
(
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
)
)

} t
r
e
e
e
r
r
o
r
s

<
-

f
u
n
c
t
i
o
n
(
x
)

{
r
e
s
u
l
t

<
-

N
U
L
L

f
o
r

(
i

i
n

1
:
r
u
n
s
)

{
r
e
s
u
l
t

<
-

a
p
p
e
n
d
(
r
e
s
u
l
t
,

t
r
e
e
e
r
r
o
r
(
x
[
[
i
]
]
,

i
)
)

} r
e
t
u
r
n
(
r
e
s
u
l
t
)

} t
r
e
e
f
p

<
-

f
u
n
c
t
i
o
n
(
x
,

i
,

c
l
a
b
e
l
,

s
l
a
b
e
l
)

{
p
o
s
i
t
i
v
e
l
a
b
e
l

<
-

s
l
a
b
e
l

n
e
g
a
t
i
v
e
l
a
b
e
l

<
-

p
a
s
t
e
(
"
n
o
t
"
,

s
l
a
b
e
l
,

s
e
p
=
"
.
"
)

c
m

<
-

t
a
b
l
e
(
i
f
e
l
s
e
(
p
r
e
d
i
c
t
(
x
,

t
y
p
e
=
"
c
l
a
s
s
"
,

n
e
w
d
a
t
a
=
s
t
d
b
[
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,
]
)

=
=

p
o
s
i
t
i
v
e
l
a
b
e
l
,

p
o
s
i
t
i
v
e
l
a
b
e
l
,

n
e
g
a
t
i
v
e
l
a
b
e
l
)
,

i
f
e
l
s
e
(
s
t
d
b
[
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,

c
l
a
b
e
l
]

=
=

p
o
s
i
t
i
v
e
l
a
b
e
l
,

p
o
s
i
t
i
v
e
l
a
b
e
l
,

n
e
g
a
t
i
v
e
l
a
b
e
l
)
)

r
e
t
u
r
n
(
c
m
[
p
o
s
i
t
i
v
e
l
a
b
e
l
,

n
e
g
a
t
i
v
e
l
a
b
e
l
]

/
s
u
m
(
c
m
[
,
n
e
g
a
t
i
v
e
l
a
b
e
l
]
)
)

} t
r
e
e
f
p
s

<
-

f
u
n
c
t
i
o
n
(
x
,

c
l
a
b
e
l
,

s
l
a
b
e
l
)

{
r
e
s
u
l
t

<
-

N
U
L
L

f
o
r

(
i

i
n

1
:
r
u
n
s
)

{
r
e
s
u
l
t

<
-

a
p
p
e
n
d
(
r
e
s
u
l
t
,

t
r
e
e
f
p
(
x
[
[
i
]
]
,

i
,

c
l
a
b
e
l
,

s
l
a
b
e
l
)
)

} r
e
t
u
r
n
(
r
e
s
u
l
t
)

} t
r
e
e
f
n

<
-

f
u
n
c
t
i
o
n
(
x
,

i
,

c
l
a
b
e
l
,

s
l
a
b
e
l
)

{
p
o
s
i
t
i
v
e
l
a
b
e
l

<
-

s
l
a
b
e
l

n
e
g
a
t
i
v
e
l
a
b
e
l

<
-

p
a
s
t
e
(
"
n
o
t
"
,

s
l
a
b
e
l
,

s
e
p
=
"
.
"
)

c
m

<
-

t
a
b
l
e
(
i
f
e
l
s
e
(
p
r
e
d
i
c
t
(
x
,

t
y
p
e
=
"
c
l
a
s
s
"
,

n
e
w
d
a
t
a
=
s
t
d
b
[
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,
]
)

=
=

p
o
s
i
t
i
v
e
l
a
b
e
l
,

p
o
s
i
t
i
v
e
l
a
b
e
l
,

n
e
g
a
t
i
v
e
l
a
b
e
l
)
,

i
f
e
l
s
e
(
s
t
d
b
[
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,

c
l
a
b
e
l
]

=
=

p
o
s
i
t
i
v
e
l
a
b
e
l
,

p
o
s
i
t
i
v
e
l
a
b
e
l
,

n
e
g
a
t
i
v
e
l
a
b
e
l
)
)

r
e
t
u
r
n
(
c
m
[
n
e
g
a
t
i
v
e
l
a
b
e
l
,

p
o
s
i
t
i
v
e
l
a
b
e
l
]

/
s
u
m
(
c
m
[
,
p
o
s
i
t
i
v
e
l
a
b
e
l
]
)
)

} t
r
e
e
f
n
s

<
-

f
u
n
c
t
i
o
n
(
x
,

c
l
a
b
e
l
,

s
l
a
b
e
l
)

{
r
e
s
u
l
t

<
-

N
U
L
L

f
o
r

(
i

i
n

1
:
r
u
n
s
)

{
r
e
s
u
l
t

<
-

a
p
p
e
n
d
(
r
e
s
u
l
t
,

t
r
e
e
f
n
(
x
[
[
i
]
]
,

i
,

c
l
a
b
e
l
,

s
l
a
b
e
l
)
)

} r
e
t
u
r
n
(
r
e
s
u
l
t
)

} d
u
m
p
.
s
p
e
c
i
f
i
c

<
-

f
u
n
c
t
i
o
n
(
)

{
c
a
t
(
"

L
a
b
e
l

T
r
e
e

R
M
L
P

C
o
s
t

Q
R
M
L
P

C
o
s
t
\
n
"
)

f
o
r

(
x

i
n

l
e
v
e
l
s
(
s
t
d
b
[
,
c
l
a
b
e
l
]
)
)

{
c
a
t
(
s
p
r
i
n
t
f
(
"
%
1
1
s

f
p

%
.
4
f
"
,

x
,

m
e
a
n
(
t
r
e
e
f
p
s
(
p
t
r
e
e
s
,

c
l
a
b
e
l
,

x
)
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
.
4
f
"
,

m
e
a
n
(
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
f
p
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
7
.
0
f
"
,

m
e
a
n
(
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
c
o
s
t
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
.
4
f
"
,

m
e
a
n
(
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
f
p
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
7
.
0
f
\
n
"
,

m
e
a
n
(
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
c
o
s
t
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"
%
1
1
s

f
n

%
.
4
f
"
,

"
"
,

m
e
a
n
(
t
r
e
e
f
n
s
(
p
t
r
e
e
s
,

c
l
a
b
e
l
,

x
)
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
.
4
f
"
,

m
e
a
n
(
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
f
n
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
7
s
"
,

"
"
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
.
4
f
\
n
"
,

m
e
a
n
(
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
f
n
"
]
)
)
)

}
} d
u
m
p
.
s
p
e
c
i
f
i
c
.
l
a
t
e
x

<
-

f
u
n
c
t
i
o
n
(
)

{
d
u
m
p
.
s
p
e
c
i
f
i
c

<
-

f
u
n
c
t
i
o
n
(
)

{
c
a
t
(
"

L
a
b
e
l

T
r
e
e

R
M
L
P

C
o
s
t

Q
R
M
L
P

C
o
s
t
\
n
"
)

f
o
r

(
x

i
n

l
e
v
e
l
s
(
s
t
d
b
[
,
c
l
a
b
e
l
]
)
)

{
c
a
t
(
s
p
r
i
n
t
f
(
"
%
1
1
s

f
p

%
.
4
f
"
,

x
,

m
e
a
n
(
t
r
e
e
f
p
s
(
p
t
r
e
e
s
,

c
l
a
b
e
l
,

x
)
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
.
4
f
"
,

m
e
a
n
(
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
f
p
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
7
.
0
f
"
,

m
e
a
n
(
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
c
o
s
t
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
.
4
f
"
,

m
e
a
n
(
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
f
p
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
7
.
0
f
\
n
"
,

m
e
a
n
(
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
c
o
s
t
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"
%
1
1
s

f
n

%
.
4
f
"
,

"
"
,

m
e
a
n
(
t
r
e
e
f
n
s
(
p
t
r
e
e
s
,

c
l
a
b
e
l
,

x
)
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
.
4
f
"
,

m
e
a
n
(
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
f
n
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
7
s
"
,

"
"
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
.
4
f
\
n
"
,

m
e
a
n
(
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
f
n
"
]
)
)
)

}
}

198

c
a
t
(
"
\
\
h
l
i
n
e
\
n
"
)

c
a
t
(
"
\
\
s
t
r
u
t

L
a
b
e
l

&
T
y
p
e

&
T
r
e
e

&
R
M
L
P

&
C
o
s
t

&
Q
R
M
L
P

&
C
o
s
t
\
\
\
\
\
n
"
)

c
a
t
(
"
\
\
h
l
i
n
e
\
n
"
)

f
o
r

(
x

i
n

l
e
v
e
l
s
(
s
t
d
b
[
,
c
l
a
b
e
l
]
)
)

{
c
a
t
(
s
p
r
i
n
t
f
(
"
\
\
s
t
r
u
t

%
1
1
s

&
f
p

&
%
.
4
f

&
"
,

x
,

m
e
a
n
(
t
r
e
e
f
p
s
(
p
t
r
e
e
s
,

c
l
a
b
e
l
,

x
)
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
.
4
f

&
"
,

m
e
a
n
(
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
f
p
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
7
.
0
f

&
"
,

m
e
a
n
(
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
c
o
s
t
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
.
4
f

&
"
,

m
e
a
n
(
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
f
p
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
7
.
0
f

\
\
\
\
\
n
"
,

m
e
a
n
(
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
c
o
s
t
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"
\
\
s
t
r
u
t

%
1
1
s

&
f
n

&
%
.
4
f

&
"
,

"
"
,

m
e
a
n
(
t
r
e
e
f
n
s
(
p
t
r
e
e
s
,

c
l
a
b
e
l
,

x
)
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"

%
.
4
f

&
"
,

m
e
a
n
(
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
f
n
"
]
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"
%
7
s

&
"
,

"
"
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"
%
.
4
f

&
\
\
\
\
\
n
"
,

m
e
a
n
(
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
[
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
$
p
o
s
i
t
i
v
e
l
a
b
e
l

=
=

x
,

"
f
n
"
]
)
)
)

} c
a
t
(
"
\
\
h
l
i
n
e
\
n
"
)

} d
u
m
p

<
-

f
u
n
c
t
i
o
n
(
)

{
c
a
t
(
"

e
r
r
o
r
s

e
p
o
c
h
s

c
o
s
t

b
e
s
t
.
e
p
o
c
h

b
e
s
t
.
c
o
s
t
\
n
"
)

c
a
t
(
s
p
r
i
n
t
f
(
"
%
1
5
s
:

%
.
3
f
\
n
"
,

"
p
t
r
e
e
s
"
,

m
e
a
n
(
t
r
e
e
e
r
r
o
r
s
(
p
t
r
e
e
s
)
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"
%
1
5
s
:

%
.
3
f
\
n
"
,

"
h
p
t
r
e
e
s
"
,

m
e
a
n
(
t
r
e
e
e
r
r
o
r
s
(
h
p
t
r
e
e
s
)
)
)
)

f
o
r

(
x

i
n

t
e
s
t
s
)

{
c
a
t
(
s
p
r
i
n
t
f
(
"
%
1
5
s
:

%
.
3
f

%
7
.
0
f

%
7
.
0
f

%
7
.
0
f

%
7
.
0
f
\
n
"
,

x
,

m
e
a
n
(
e
v
a
l
(
a
s
.
n
a
m
e
(
x
)
)
$
e
r
r
o
r
)
,

m
e
a
n
(
e
v
a
l
(
a
s
.
n
a
m
e
(
x
)
)
$
e
p
o
c
h
s
)
,

m
e
a
n
(
e
v
a
l
(
a
s
.
n
a
m
e
(
x
)
)
$
c
o
s
t
)
,

m
e
a
n
(
e
v
a
l
(
a
s
.
n
a
m
e
(
x
)
)
$
b
e
s
t
e
p
o
c
h
)
,

m
e
a
n
(
e
v
a
l
(
a
s
.
n
a
m
e
(
x
)
)
$
b
e
s
t
c
o
s
t
)
)
)

}
} d
u
m
p
l
i
n
e

<
-

f
u
n
c
t
i
o
n
(
x
,

s
)

{
c
a
t
(
s
p
r
i
n
t
f
(
"
\
\
s
t
r
u
t

%
s

&
%
.
3
f

&
%
.
0
f

&
%
.
0
f

&
%
.
0
f

&
%
.
0
f

\
\
\
\
\
n
"
,

s
,

m
e
a
n
(
x
$
e
r
r
o
r
)
,

m
e
a
n
(
x
$
e
p
o
c
h
s
)
,

m
e
a
n
(
x
$
c
o
s
t
)
,

m
e
a
n
(
x
$
b
e
s
t
e
p
o
c
h
)
,

m
e
a
n
(
x
$
b
e
s
t
c
o
s
t
)
)
)

} d
u
m
p
l
a
t
e
x

<
-

f
u
n
c
t
i
o
n
(
)

{
c
a
t
(
"
\
\
h
l
i
n
e
\
n
"
)

c
a
t
(
"
\
\
s
t
r
u
t

M
e
t
h
o
d

&
E
r
r
o
r

&
E
p
o
c
h
s

&
C
o
s
t

&
B
e
s
t

E
p
o
c
h

&
B
e
s
t

C
o
s
t

\
\
\
\
\
n
"
)

c
a
t
(
"
\
\
h
l
i
n
e
\
n
"
)

c
a
t
(
s
p
r
i
n
t
f
(
"
\
\
s
t
r
u
t

D
e
c
i
s
i
o
n

T
r
e
e

(
p
r
u
n
e
d
)

&
%
.
3
f

&
0

&
0

&
0

&
0

\
\
\
\
\
n
"
,

m
e
a
n
(
t
r
e
e
e
r
r
o
r
s
(
p
t
r
e
e
s
)
)
)
)

c
a
t
(
s
p
r
i
n
t
f
(
"
\
\
s
t
r
u
t

D
e
c
i
s
i
o
n

T
r
e
e

(
p
r
u
n
e
d
,

1
S
E
)

&
%
.
3
f

&
0

&
0

&
0

&
0

\
\
\
\
\
n
"
,

m
e
a
n
(
t
r
e
e
e
r
r
o
r
s
(
h
p
t
r
e
e
s
)
)
)
)

d
u
m
p
l
i
n
e
(
g
d
m
l
p
s
,

"
M
L
P

(
g
r
a
d
i
e
n
t

d
e
s
c
e
n
t
)
"
)

d
u
m
p
l
i
n
e
(
r
m
l
p
s
,

"
R
M
L
P

(
g
r
a
d
i
e
n
t

d
e
s
c
e
n
t
)
"
)

d
u
m
p
l
i
n
e
(
r
h
m
l
p
s
,

"
R
M
L
P

(
g
r
a
d
i
e
n
t

d
e
s
c
e
n
t
,

1
S
E
)
"
)

d
u
m
p
l
i
n
e
(
q
m
l
p
s
,

"
M
L
P

(
q
u
i
c
k
p
r
o
p
)
"
)

d
u
m
p
l
i
n
e
(
q
r
m
l
p
s
,

"
R
M
L
P

(
q
u
i
c
k
p
r
o
p
)
"
)

d
u
m
p
l
i
n
e
(
q
r
h
m
l
p
s
,

"
R
M
L
P

(
q
u
i
c
k
p
r
o
p
,

1
S
E
)
"
)

c
a
t
(
"
\
\
h
l
i
n
e
\
n
"
)

} B
.3

Se
tu

p
of

R
an

do
m

is
ed

Te
st

Se
ts

s
a
m
p
l
e
l
i
s
t

<
-

l
i
s
t
(
)

f
o
r

(
i

i
n

1
:
r
u
n
s
)

{
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]

<
-

s
t
r
a
t
s
a
m
p
d
b
(
s
t
d
b
,

c
l
a
b
e
l
,

s
a
m
p
l
e
p
r
o
p
)

} B
.4

Se
tu

p
of

D
ec

is
io

n
Tr

ee
s

t
r
e
e
s

<
-

l
i
s
t
(
)

f
o
r

(
i

i
n

1
:
r
u
n
s
)

{
c
a
t
(
"
s
e
t
t
i
n
g

u
p

t
r
e
e

n
u
m
b
e
r
"
,

i
,

"
\
n
"
)

t
r
e
e

<
-

r
p
a
r
t
(
s
t
d
b
f
o
r
m
,

d
a
t
a
=
s
t
d
b
[
-
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,
]
,

m
i
n
s
p
l
i
t
=
1
,

c
p
=
0
.
0
)

t
r
e
e
s
[
[
i
]
]

<
-

t
r
e
e

} B
.5

Se
tu

p
of

Pr
un

ed
Tr

ee
s

p
t
r
e
e
s

<
-

l
i
s
t
(
)

f
o
r

(
i

i
n

1
:
r
u
n
s
)

{
c
a
t
(
"
m
a
k
i
n
g

p
r
u
n
e
d

d
e
c
i
s
i
o
n

t
r
e
e
"
,

i
,

"
\
n
"
)

m
i
n
p
o
s

<
-

w
h
i
c
h
.
m
i
n
(
t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
n
r
o
w
(
t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
)
,
"
x
e
r
r
o
r
"
]
)

+
1

p
r
u
n
e
p
o
i
n
t

<
-

t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
,

"
C
P
"
]

i
f

(
m
i
n
p
o
s

!
=

2
)

{
a
c
c
e
r
r

<
-

t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
m
i
n
p
o
s
,
"
x
e
r
r
o
r
"
]

i
f

(
i
s
.
v
e
c
t
o
r
(
t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
m
i
n
p
o
s
,
]
[
t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
m
i
n
p
o
s
,

"
x
e
r
r
o
r
"
]

<
=

a
c
c
e
r
r
,
]
)
)

{
p
r
u
n
e
p
o
i
n
t

<
-

t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
m
i
n
p
o
s
,
]
[
t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
m
i
n
p
o
s
,

"
x
e
r
r
o
r
"
]

<
=

a
c
c
e
r
r
,

"
C
P
"
]

}
e
l
s
e

{
p
r
u
n
e
p
o
i
n
t

<
-

t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
m
i
n
p
o
s
,
]
[
t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
m
i
n
p
o
s
,

"
x
e
r
r
o
r
"
]

<
=

a
c
c
e
r
r
,
]
[
1
,

"
C
P
"
]

}
} p
t
r
e
e
s
[
[
i
]
]

<
-

p
r
u
n
e
(
t
r
e
e
s
[
[
i
]
]
,

c
p
=
p
r
u
n
e
p
o
i
n
t
)

} B
.6

Se
tu

p
of

1S
E

Pr
un

ed
Tr

ee
s

h
p
t
r
e
e
s

<
-

l
i
s
t
(
)

f
o
r

(
i

i
n

1
:
r
u
n
s
)

{
c
a
t
(
"
m
a
k
i
n
g

h
a
r
s
h
l
y

p
r
u
n
e
d

d
e
c
i
s
i
o
n

t
r
e
e
"
,

i
,

"
\
n
"
)

m
i
n
p
o
s

<
-

w
h
i
c
h
.
m
i
n
(
t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
n
r
o
w
(
t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
)
,

"
x
e
r
r
o
r
"
]
)

+
1

p
r
u
n
e
p
o
i
n
t

<
-

t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
,

"
C
P
"
]

i
f

(
m
i
n
p
o
s

!
=

2
)

{

199

m
i
n
e
r
r
o
r

<
-

t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
m
i
n
p
o
s
,
"
x
e
r
r
o
r
"
]

s
t
e
r
r

<
-

t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
m
i
n
p
o
s
,
]
[
[
"
x
s
t
d
"
]
]

a
c
c
e
r
r

<
-

m
i
n
e
r
r
o
r

+
s
t
e
r
r

i
f

(
i
s
.
v
e
c
t
o
r
(
t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
m
i
n
p
o
s
,
]
[
t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
m
i
n
p
o
s
,

"
x
e
r
r
o
r
"
]

<
=

a
c
c
e
r
r
,
]
)
)

{
p
r
u
n
e
p
o
i
n
t

<
-

t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
m
i
n
p
o
s
,
]
[
t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
m
i
n
p
o
s
,

"
x
e
r
r
o
r
"
]

<
=

a
c
c
e
r
r
,
"
C
P
"
]

}
e
l
s
e

{
p
r
u
n
e
p
o
i
n
t

<
-

t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
m
i
n
p
o
s
,
]
[
t
r
e
e
s
[
[
i
]
]
$
c
p
t
a
b
l
e
[
2
:
m
i
n
p
o
s
,

"
x
e
r
r
o
r
"
]

<
=

a
c
c
e
r
r
,
]
[
1
,

"
C
P
"
]

}
} h
p
t
r
e
e
s
[
[
i
]
]

<
-

p
r
u
n
e
(
t
r
e
e
s
[
[
i
]
]
,

c
p
=
p
r
u
n
e
p
o
i
n
t
)

} B
.7

Ty
pi

ca
lM

L
P

E
xp

er
im

en
t

g
d
m
l
p
s

<
-

N
U
L
L

g
d
m
l
p
s
.
c
m

<
-

N
U
L
L

f
o
r

(
i

i
n

1
:
r
u
n
s
)

{
c
a
t
(
"
s
e
t
t
i
n
g

u
p

g
d
m
l
p

n
u
m
b
e
r

"
,

i
,

"
\
n
"
)

g
d
m
l
p

<
-

m
l
p
(
s
t
d
b
f
o
r
m
,

d
a
t
a
=
s
t
d
b
[
-
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,
]
,

l
e
n
g
t
h
(
n
a
m
e
s
(
s
t
d
b
)
)
-
1
,

l
e
n
g
t
h
(
n
a
m
e
s
(
s
t
d
b
)
)
,

b
u
m
p
=
r
a
n
d
w
e
i
g
h
t
)

g
d
m
l
p

<
-

t
r
a
i
n
m
l
p
(
g
d
m
l
p
,

l
c
=
g
e
n
l
c
,

n
=
m
a
x
n
,

t
y
p
e
=
"
g
d
m
o
m
"
,

m
i
n
e
r
r
o
r
=
m
e
r
r
,

s
t
o
p
=
s
t
o
p
m
e
)

g
d
m
l
p
s

<
-

r
b
i
n
d
(
g
d
m
l
p
s
,

d
a
t
a
.
f
r
a
m
e
(
m
a
k
e
m
l
p
r
e
c
o
r
d
(
g
d
m
l
p
,

i
)
)
)

g
d
m
l
p
s
.
c
m

<
-

r
b
i
n
d
(
g
d
m
l
p
s
.
c
m
,

m
a
k
e
m
l
p
c
m
(
g
d
m
l
p
,

i
)
)

} B
.8

Ty
pi

ca
lR

M
L

P
E

xp
er

im
en

t
r
m
l
p
s

<
-

N
U
L
L

r
m
l
p
s
.
c
m

<
-

N
U
L
L

f
o
r

(
i

i
n

1
:
r
u
n
s
)

{
c
a
t
(
"
s
e
t
t
i
n
g

u
p

r
m
l
p

n
u
m
b
e
r
"
,

i
,

"
\
n
"
)

r
m
l
p

<
-

t
r
e
e
t
o
m
l
p
(
p
t
r
e
e
s
[
[
i
]
]
,

d
a
t
a
=
s
t
d
b
[
-
s
a
m
p
l
e
l
i
s
t
[
[
i
]
]
,
]
,

w
=
g
e
n
w
e
i
g
h
t
)

r
m
l
p

<
-

t
r
a
i
n
m
l
p
(
r
m
l
p
,

l
c
=
g
e
n
l
c
,

n
=
m
a
x
n
,

t
y
p
e
=
"
g
d
m
o
m
"
)

r
m
l
p
s

<
-

r
b
i
n
d
(
r
m
l
p
s
,

d
a
t
a
.
f
r
a
m
e
(
m
a
k
e
m
l
p
r
e
c
o
r
d
(
r
m
l
p
,

i
)
)
)

r
m
l
p
s
.
c
m

<
-

r
b
i
n
d
(
r
m
l
p
s
.
c
m
,

m
a
k
e
m
l
p
c
m
(
r
m
l
p
,

i
)
)

} B
.9

Ty
pi

ca
lM

ul
ti-

w
ay

E
xp

er
im

en
t

l
i
b
r
a
r
y
(
r
p
a
r
t
)

s
o
u
r
c
e
(
"
m
l
p
.
R
"
)

s
o
u
r
c
e
(
"
a
c
c
u
r
a
c
y
.
R
"
)

f
i
l
e
n
a
m
e

<
-

"
i
r
i
s
.
s
t
d
.
c
s
v
"

o
u
t
p
u
t
n
a
m
e

<
-

"
i
r
i
s
"

s
t
d
b
f
o
r
m

<
-

S
p
e
c
i
e
s

˜
.

r
u
n
s

<
-

3
0

g
e
n
w
e
i
g
h
t

<
-

2
.
5

g
e
n
l
c

<
-

0
.
0
0
5

m
a
x
n

<
-

1
0
0
0

g
e
n
m
s
=
0
.
9
9

c
l
a
b
e
l
=
"
S
p
e
c
i
e
s
"

s
l
a
b
e
l
=
"
v
i
r
g
i
n
i
c
a
"

s
a
m
p
l
e
p
r
o
p

<
-

0
.
2
5

m
e
r
r

<
-

1
0
.
0

r
a
n
d
w
e
i
g
h
t

<
-

0
.
3

s
t
d
b

<
-

r
e
a
d
.
c
s
v
(
f
i
l
e
n
a
m
e
,

h
e
a
d
e
r
=
T
R
U
E
)

t
e
s
t
s

<
-

c
(
"
g
d
m
l
p
s
"
,

"
q
m
l
p
s
"
,

"
r
m
l
p
s
"
,

"
q
r
m
l
p
s
"
,

"
r
h
m
l
p
s
"
,

"
q
r
h
m
l
p
s
"
,

"
e
r
h
m
l
p
s
"
,

"
e
q
r
h
m
l
p
s
"
,

"
r
m
l
p
s
.
s
p
e
c
i
f
i
c
"
,

"
q
r
m
l
p
s
.
s
p
e
c
i
f
i
c
"
)

s
o
u
r
c
e
(
"
i
n
i
t
-
s
e
t
s
.
R
"
)

s
o
u
r
c
e
(
"
s
e
t
u
p
-
t
r
e
e
s
.
R
"
)

s
o
u
r
c
e
(
"
s
e
t
u
p
-
p
t
r
e
e
s
.
R
"
)

s
o
u
r
c
e
(
"
s
e
t
u
p
-
h
p
t
r
e
e
s
.
R
"
)

f
o
r

(
x

i
n

t
e
s
t
s
)

{
s
o
u
r
c
e
(
p
a
s
t
e
(
p
a
s
t
e
(
"
s
e
t
u
p
-
"
,

x
,

s
e
p
=
"
"
)
,

"
.
R
"
,

s
e
p
=
"
"
)
)

}

200

