
Department of Computer Science,
University of Otago

Technical Report OUCS-2002-10

Restricted permutations and queue jumping

Authors:

M.H. Albert, M.D. Atkinson, H. van
Ditmarsch, C.C. Handley

Department of Computer Science

R.E.L. Aldred, D.A. Holton
Department of Mathematics and Statistics

Status: Submitted for publication

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/trseries/

Restricted permutations and queue jumping

M. H. Albert∗ R. E. L. Aldred† M. D. Atkinson∗

H. P. van Ditmarsch∗ C. C. Handley∗ D. A. Holton†

November 12, 2002

Abstract

A connection between permutations that avoid 4231 and a certain
queueing discipline is established. It is proved that a more restrictive
queueing discipline corresponds to avoiding both 4231 and 42513, and
enumeration results for such permutations are given.

1 Introduction

Let sn(α1, α2, . . .) be the number of permutations of length n that avoid all of
the permutation patterns α1, α2, Finding a formula or a generating function
for sn(α1, α2, . . .) is a difficult and much studied problem. For a single pattern
α the sequence sn(α) is known only in the following cases (see [2, 3, 4]):

• α = 12 . . . k or α = k . . . 21 for any k

• |α| ≤ 3

• |α| = 4 but α 6= 1324, 4231

So the first unsolved cases are α = 1324 and α = 4231 which are equivalent
by symmetry. Here the lower bound sn(4231) ≥ sn(4321) has been proved by
Bóna [1] who has also made some contributions towards an upper bound.

In this note we introduce a certain type of queue and, harking back to early
work by Knuth [4] on such problems, study its connection with 4231-avoiding
permutations. By strengthening the conditions satisfied by the queue we go on
to solve the enumeration problem for the sequence sn(4231, 42513).

∗Department of Computer Science, University of Otago
†Department of Mathematics and Statistics, University of Otago

1

2 Jump queues

We shall define two queue-based data structures. They will be used with an
input sequence 1, 2, . . . , n whose members are added one by one to the rear of
the queue. Removals from the queue generate an output sequence that will be
a permutation of 1, 2, . . . , n. Removals are always allowed from the front of the
queue but both our queue-based structures also allow elements other than the
front member of the queue to be output, that is queue jumping (when we refer to
a jump we will always mean an output operation which would not be permitted
by an ordinary queue). When a queue jump occurs some of the items in the
queue become “locked” (forbidden to jump until the lock is released).

Our two structures differ in the extent to which instances of queue jumping
restrict further queue jumping. The first of these data structures, the loosely
locked jump queue is defined by the property that when an element x is jumped
from the queue all the elements in the queue behind x become locked; they are
released (given the freedom to jump) when all the elements in front of x have
been output. Note that any new elements added to a loosely locked jump queue
are initially not locked.

In the second structure, the strictly locked jump queue, the locking rule is more
severe. Again, elements in the queue behind an element x that jumps become
locked; furthermore, any new elements that are added to a queue that already
has some locked elements, are initially in the locked state. As before, the lock
on an element is released once all the elements in front of the jumped item that
initially caused the lock have been output.

In both cases jumping from the rear of the queue imposes no locks so our queues
are at least as powerful as the input-restricted deques that were analysed in [4].

In studying the output permutations generated by either type of queue we ob-
serve that an output permutation may be producible in several ways. This
allows us to make a simplifying assumption. Suppose that we are attempting
to generate a particular permutation π and have proceeded to a point where
we wish to output a symbol p. If p is already in the queue then if it is possi-
ble to succeed at all from this point onwards, we can succeed by outputting p
immediately. For the only alternative is to add further elements to the queue
and then output p. The only effect that this might have (versus outputting p
immediately and then adding the same elements) is to lock some queue elements
that would not be locked in the original instance. So, it cannot be harmful to do
any output as soon as it becomes available and, from now on, we consider only
operation sequences with this property. Under that assumption we will regard
the production of any permutation π as taking place in a number of stages. In
any of these stages one or more input elements are added to the queue, the last
of these is then output (such outputs produce the left to right maxima of π),
and then further output from the queue occurs (possibly none at all); a stage
comes to an end when the next element of π to be output has not yet been
added to the queue.

2

We begin our investigation with a result whose easy proof is omitted.

Lemma 1 Suppose we have a jump queue of either sort with a frontal segment
α = a1 < a2 < . . . < am. Then the permutations of α that can be generated
by queue removals (from the front or by jumping) are precisely those that avoid
231.

Proposition 2 The collection of permutations that can be produced by a loosely
locked jump queue is the class of 4231-avoiding permutations.

Proof: Let a permutation π be given which contains a 4231 pattern as

π = · · · d · · · b · · · c · · · a · · ·

and suppose that we could produce π using a loosely locked jump queue. In
order to output d before all of a, b, and c, those elements must be in the queue
when d is output. However, the subsequent output of b would then lock c so
that it could not be output until a was. So, in fact, π could not be generated.

Conversely, suppose that a permutation π avoids 4231. Let m1 < m2 < . . . <
mk be the left to right maxima of π. Then we can write

π = m1 α1 m2 α2 · · · mkαk

where each αi is some segment of π and mi > αi. For convenience define m0 = 0.

We will show that π can be produced by following the operation of the queue in
attempting to produce it, and observing that we never reach a point where an
element which we need to output is locked. We argue inductively on the stages
of this production (as defined previously) where stage j produces the segment
mjαj .

In the first stage the elements from 1 through m1 are added to the queue, then
m1 is output (without causing any locks), and then the elements of α1 must
now be output. At present this can certainly be accomplished since α1 avoids
231. However, this sequence of operations may leave some remaining elements
of [1,m1) locked in the queue.

Suppose that, after j stages, we have output the initial segment m1α1 · · ·mjαj

of π. Stage j + 1 begins by adding the elements of (mj ,mj+1] to the queue and
then outputting the element mj+1. Next we begin to output the elements of
αj+1. Consider the point at which an element c of this type is to be output.
Choose i ≤ j + 1 such that mi−1 < c < mi. Any lock to the output of c would
have been applied by an element b < c jumping after c had been added to the
queue (i.e. after the output of mi). For this lock to have remained in force
there must be an element a < b still in the queue. But if all this were true the
elements mibca would form a 4231 pattern in π. Stage j + 1 therefore succeeds
in producing a further segment mj+1αj+1 of output and the inductive proof is
complete.

3

Proposition 3 The collection of permutations that can be produced by a strictly
locked jump queue is the class of {4231, 42513}-avoiding permutations.

Proof: The proof is similar in spirit to that above, so we will provide somewhat
fewer details. In one direction, suppose that π contains the pattern 42513 as the
subsequence dbeac and yet can be produced by the queue. Then the element c
would be locked by the output of b. Since it is required that a be output after
e the element a must still be in the queue when e enters and so c would still be
locked at this point; therefore e would be locked upon entering the queue and
could not be output at the proper place. Obviously if π contains 4231 it cannot
be output, for even a loosely locked queue would not suffice in that case.

Conversely, suppose that π avoids these two patterns. Write

π = m1 α1 m2 α2 · · · mkαk

as above, and follow the operation of the queue in stages again.

Suppose that the output of mj is prevented because it has been locked by some
preceding jump of an element b. Then b was preceded by some mi > b, and
some element c > b still remains in the queue as does some element a < b (or
mj would no longer be locked). Then one of the two sequences mibmjca or
mibmjac occurs in π. The latter is a 42513 pattern and the former contains a
4231 pattern, a contradiction in either case.

Now suppose that the output of some x in αj is prevented by a lock caused by
some preceding jump of an element b. Then choose mi, c, and a as above. Since
the pattern 4231 does not occur in π the elements mi, b, x, a, c occur in π in
that order. If x > mi we have a pattern 42513 while if x < mi then mibxa is a
4231 pattern. Again, a contradiction is achieved in either case.

3 The number of permutations avoiding 4231 and
42513

Consider the operation of a strictly locked jump queue as it produces some
permutation that avoids 4231 and 42513. At a point where no elements are
locked we might choose to add one or more input elements (after which our
next output step must be to remove the last element of the queue), to jump an
element from the rear of the queue (which imposes no locks), or to output an
earlier element, say the jth. In the latter case we must, or rather might as well,
output all elements (if any) which are earlier still in the queue before continuing
the operation. In so doing, we can produce any 231-avoiding permutation of
these j − 1 elements. As is well known, the number of such permutations is
cj−1, the (j − 1)st Catalan number.

If we set q to be the number of elements in the queue, and i the number remain-
ing in the input then this trichotomy is easily translated into a recurrence for the

4

number of permutations that can be produced from this configuration. How-
ever, the manipulation of the resultant quantities will be simplified if we make a
distinction between two cases: where the next output is the last element of the
queue, or where we do not place any restriction on the next output. Let l(q, i)
enumerate the former class and n(q, i) the latter (both quantities conventionally
0 if either q or i is negative). Then we have:

l(q, i) = l(q + 1, i − 1) + n(q − 1, i)

n(q, i) = l(q, i) +
q−1∑
j=1

cj−1n(q − j, i).

Consider the power series:

N(x, t) =
∑

q,i≥0

n(q, i)xqti

L(x, t) =
∑

q,i≥0

l(q, i)xqti

C(x) =
∑
i≥0

cix
i

f(t) = L(0, t),

the last of which, by Proposition 3, is the generating function for the class of
permutations that avoid 4231 and 42513. Then the recurrences translate easily
into the equations:

L(x, t) =
t(L(x, t) − f(t))

x
+ xN(x, t) + 1

N(x, t) = L(x, t) + xN(x, t)C(x) − xf(t)C(x).

After some rearrangement this yields:

L(x, t)
(
(x2 − xt)C(x) + x2 − x + t

)
=

(
t − xtC(x) + x3C(x)

)
f(t)−x+x2C(x).

Now the stage is set for a simple application of the kernel method. Consider
the circumstances under which the parenthetical expression in the left hand side
above is zero:

(x2 − xt)C(x) + x2 − x + t = 0
xC2(x) − C(x) + 1 = 0.

Solving formally for C(x) and x in terms of t yields:

C3(x)t − C(x) + 1 = 0
x = C(x)t

5

These conditions can then be substituted in the right hand side, which must
also be zero, yielding eventually:

f(t) =
1

1 − η(t)t

where
tη(t)3 − η(t) + 1 = 0.

The latter equation is easily seen to be the equation satisfied by the generating
function for ternary trees. Therefore the nth term of the power series expansion
of η(t) is the number of ternary trees on n nodes, namely(

3n
n−1

)
n

From this it follows readily that, if fn denotes the nth term of f(t),

lim inf
n→∞

n
√

fn = 27/4

and more detailed asymptotics could easily be obtained. From the above equa-
tions we can also read off the recurrence

fn =
n−1∑
i=0

fn−1−i

(
3i

i − 1

)
/i

and thereby compute the expansion of

f(t) = 1+ t+2t2 +6t3 +23t4 +102t5 +495t6 +2549t7 +13682t8 +75714t9 + . . .

to as many terms as necessary.

References

[1] M. Bóna: Permutations avoiding certain patterns, The case of length 4 and
generalizations, Discrete Math. 175 (1997) 55–67.

[2] M. Bóna: Exact enumeration of 1342-avoiding permutations, A close link
with labeled trees and planar maps, J. Combin. Theory, Ser. A, 80 (1997)
257–272.

[3] I. M. Gessel: Symmetric functions and P -recursiveness, J. Combin. Theory
Ser. A, 53 (1990), 257–285.

[4] D.E. Knuth: Fundamental Algorithms, The Art of Computer Programming
Vol. 1 (Second Edition), Addison-Wesley, Reading, Mass. (1973).

6

