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Abstract

Pit is a multi-player card game that simulates the commodities trading
market, and where actions consist of bidding and of swapping cards. We
define a simplification of that game for which we present a detailed de-
scription of all dynamical game features. The description is in a standard
language for dynamic epistemics. This formalization is then used to out-
line the game theory for a simplification of the Pit game. This uncovers
some interesting equilibria.

1 Introduction

Pit is a multi-player card game where actions consist of swapping cards. The
first player to declare a certain hand of cards wins the game. From a different
theoretical point of view, various ramifications involving the Pit game have been
investigated [5, 7]. The former uses Pit to illustrate the supply and demand
cycle in the general economics classroom. The latter two may be seen as a
study in requirements engineering for electronic market simulations. In this
paper we address the logical dynamics of the game and also present some game
theoretical results. The starting point to specify the logical dynamics is the
language presented in [8], which forms part of an ongoing line of research in
logical dynamics [4, 1], and which has specifically been used to describe (other)
card game actions in [9]. Another starting point for the logical dynamics are
the card game state descriptions originally presented in [11].

The structure of this paper is as follows. In Section 2 we describe the Pit
game, and in Section 3 some abstractions from the real game that facilitate for-
malization. Given that, we then give an overview of all conceivable game actions
and game states in Section 4. This includes a new action feature ‘assignment’,
essential to describe trading cards. We illustrate the dynamics for the case of
three players and three resources of each two cards: the SixPit game. In Sec-
tion 5 we make a small exploration into the game theory of Pit, only for the
∗I kindly acknowledge useful comments from Miklos Szilagyi.
†This work is related and indebted to a collaboration involving Pit between the author,

Johan Lövdahl (Computer Science, Linköbing and Otago University), and Stephen Cranefield
and Martin Purvis (Information Science, Otago University).
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specific case of SixPit. That uncovers three equilibria, plus a nonstable profile
that benefits two collaborating players. The last appears to be an interesting
‘chicken’-like dilemma in an e-commerce setting.

There is a slight discrepancy between ‘game actions’ as modelled in logic
and ‘game actions’ as abstract parameters in game theory, and similarly be-
tween ‘game states’ in logic or in game theory. Instead of introducing different
terminology, we will rely on the reader’s perception of the context of such terms
and we will only point out marked differences when relevant.

2 Pit game

The essentials of the Pit game are taken from

www.hasbro.com/common/instruct/pit.pdf

The object of Pit is to corner the market on Barley, Corn, Flax,
Hay, Oats, Rye and Wheat by trading cards with other players. Pit
can be played by three to seven players. There are nine cards in
each suit. If three play, use only three complete suits. If four play,
use four complete suits, etc. Use the complete Pit deck for seven
players. Place the trading bell in the center of the table and select
one player to shuffle the deck and deal out nine cards to each player.
The Dealer should allow the players 30 seconds to sort their cards and
decide mentally on which commodity (Wheat, Rye, Oats. etc.) they
will attempt to corner. Players should try to corner the commodity
of which they hold the most cards. When the cards have been sorted.
the Dealer strikes the bell and announces, “The Exchange is open.”
Then, any player may begin to trade cards with other players. To
trade, he takes from his hand one to four cards of the same suit, holds
the cards up so that the suits do not show and calls out, “Trade One!
One! One!” or “Two! Two! Two!” or “Three! Three! Three!” or
“Four! Four! Four!” depending on the number of cards being traded.
Players continue calling out their numbers until the cards have been
exchanged. If a player wishes to exchange cards with another player,
he must call in return, “One! One! One!”, “Two! Two! Two!”, etc.
and trade an equal number of cards of the same suit with that player.
If a player wishes to trade three or four cards and other players will
only exchange lower numbers, he may drop his bid and trade the
smaller number of cards. Trading continues until one player gets
nine cards of the same suit. That player must quickly ring the bell
and call out, “Corner on Wheat!” (or whatever the commodity may
be). The player then scores the amount marked on the commodity he
has cornered (Wheat, 100 points; Oats, 60 points, etc.) and records
this on the score pad. When a corner is won, all the cards are
reshuffled and dealt by the last winner and another corner is played
for. The game is won by the first trader to get 500 points.
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3 Abstraction of Pit

An important aspect of the Pit game for multi-agent systems researchers may
well be its real-time asynchronous and concurrent features: players act under
pressure, using incomplete or incompletely processed information, and with also
otherwise restricted rationality. It is this mix of realistic agent behaviour in an
otherwise highly procedural game setting that appears to make it a suitable
vehicle to simulate trading and negotiation [7]. Our current more restricted
interest is in the logical dynamics and game theory of Pit. For that, we even
have to make further abstractions from the reality of live agents. Specifically,
we need to abstract from asynchronous features of Pit, and we assume ‘ideal
agents’, i.e. perfectly rational and perfectly logical agents. Of course, it may then
be occasionally unclear how the results we will obtain for this abstraction are
relevant for ‘the real game’: a real pitfall for a multi-agent systems researcher.

We consider the following abstraction of the Pit game:

Given is a set of players (agents) N and a natural number m. We consider Pit
games for players N and a deck of cards consisting of |N | suits, i.e. equal to
the number of players, and with m cards per suit. The set of suits is called
U and the set of all cards Q. Nondeterministically determine a deal of the
cards over the players, where each player gets m cards. Given a player’s hand,
the set of possible offers for trade consists of any number of cards of the same
suit in that player’s hand. All players each make one offer, simultaneously.
Choose nondeterministically one from the matching offers (i.e., offers for the
same number of cards), and execute it. Repeat this ‘make-offer’/‘execute-trade’
process until at least one player can corner the market. Choose one from the
achieved corners nondeterministically. This player wins the game.

This abstraction is a significant departure from the real game. The act of
accepting an offer pending the still uncertain execution of that trade is not
considered an action in the abstraction, in other words: we ignore a certain
asymmetry between the agents in the process leading up to execution of a trade.
Also, in this abstraction, after a trade, all non-honoured offers are considered
withdrawn and do not remain valid. In the real Pit game, such offers remain
valid. This means that a consecutive trade can take place that does not depend
on the current game state but still on the previous game state: a complication
with game theoretical consequences that could have been modelled but that we
have chosen not to. In this abstraction, who is allowed to trade depends on
chance, and not on choice. In the real game a player can refuse to trade with
another player who makes a matching offer. This determines the cards a player
is willing to offer to trade: yet another game theoretically relevant consequence,
that we have not incorporated in the current abstraction.

Further generalizations are also conceivable. The number of agents may be
different from the number of suits, and/or the number of cards in a suit may be
less than the number of cards in a player’s hand. We do not model those here.

We assume that all cards have equal value. This assumption is not required
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to describe Pit’s dynamics, but is helpful to simplify its game theory. For the
same reason, repetitions of the game, that are required in order to achieve the
‘500 points’, are not considered.

SixPit A running example in the continuation will be the Pit game for three
players Anne, Bill, and Cath (a, b, and c) that each hold two cards from a
pack consisting of two Wheat, two Flax, and two Rye cards. A commodity
corresponds to a suit. The suits are abbreviated as w, x, y. For the card deal
where Anne holds a Wheat and a Flax card, Bill a Wheat and a Rye card,
and Cath a Flax and a Rye card, we write wx.wy.xy, etc. The representation of
game actions will be considered in the next section. For the purpose of modelling
only, which requires rigid designators (object identities), we further assume that
the cards are named w1, w2, x1, x2, y1, y2. We call this the SixPit game.

4 Dynamic epistemics of Pit

Given the abstractions, we can describe all game states and game actions for-
mally. The initial state of the game, which is ‘merely’ a deal of cards where all
players only know their own hand of cards, has been exhaustively explored in
[11]. Most game actions can be modelled in a known language and semantics for
logics of knowledge change [9, 10]. Their description is already worthwhile to
report on, as a case-study in knowledge specification. But some action features
need an extension of this language that has not been presented before. This we
consider therefore of additional, independent, interest. The description of the
initial game state and the description of the game actions fully determines what
is known by arbitrary players in arbitrary game states.

We start with an overview of the knowledge of the players in this game and
how this changes as a result of game actions. Before dealing the cards, it is
common knowledge how many suits there are and how many cards there are in
each suit. The following game actions (and only those actions) have epistemic
content:

• Dealing the cards to the players
As a result of this, it is common knowledge to all players: how many cards
each player has, and that a player only knows his own cards. This allows
for descriptions such as “player n knows that player n′ does not know that
n holds card q”.

• Offering i cards for trade
The offering player thus publicly announces that he has at least i cards of
at least one commodity. The cards being offered are not made public.

• Trading i cards
This is a ‘semi-public announcement’: a non-deterministic action that all
agents know to take place (partly needed for synchronization purposes),
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even though the observable part of the action may vary for different sub-
groups of all agents. In the case of trading cards, the two trading play-
ers gain common knowledge of the (current, switched) ownership of the
swapped (sets of size i of) cards, whereas all players gain common knowl-
edge that those two players have traded i cards. Also, a non-trading merely
observing player, who knew one of the trading players to hold some given
card, may now no longer know that.

• Not cornering the market
When neither of the players that just traded announces a corner, this is
indirectly ‘observed’ by the remaining players because ‘the game goes on’.
For our modelling purposes this is a public announcement that the trading
players ‘cannot win’, i.e., that neither of them holds a complete suit.

• Cornering the market
One of the players that just traded is the first to announce a corner in
some commodity (i.e., that he holds a complete suit).

We emphasize once more, that there are no other dynamic features of the
game, given the abstraction. We continue with the formalization of this epis-
temic dynamic setting. After the cards have been dealt, the game state results
[11] that represents an arbitrary distribution of cards over players. This is a
finite relational structure consisting of a domain of abstract points and a num-
ber of unary and binary relations between those points, plus a designated point.
This may also be known as a pointed Kripke model. We give no details.

On such a structure we can interpret epistemic statements as in the examples
above. For this, a ‘simple’ propositional language is sufficient. This has the
advantage that such statements are then decidable, so that they can, in principle,
be computed using various proof and/or model checking tools.

We choose some set of atoms and define various useful propositions. Atomic
propositions qn describe that player n holds card q. For example, the fact that
Anne holds card w1 is described by the atomic proposition w1

a (one can read
this as (w1)a). We introduce propositional connectives in standard ways[3].
Propositions u+i

n stand for “player n holds at least i cards of commodity u” and
are defined in the obvious way, e.g.:

u+1
n :⇔

∨
i=1...m u

i
n

u+m
n :⇔

∧
i=1...m u

i
n

Instead of u+1
n we also write un (‘player n holds – at least – a u card’) and

instead of u+i
n we also write u...un (length i sequence of u) (‘player n holds –

at least – a i u cards’). Note that u+m
n stands for ‘player n holds exactly m

cards of commodity u’, as m is the number of cards in a player’s hand. We
also informally extend the notation u...un to cover holding at least i cards of
different suits. For example, if each player holds nine cards, as in the full version
of the Pit game, xxxxyya means that Anne holds at least four Flax and two
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Rye cards. We let Corner(n, u) (player n can corner the market in commodity
u) stand for u+m

n , and define Corner(n) :⇔
∨
u∈U Corner(n, u) (player n can

corner the market).
For example, wa describes that Anne holds a Wheat card, and Corner(a,w),

or wwa, that Anne corners the market on Wheat, i.e., “that she has at least
two Wheat cards”. And wxa describes that that Anne’s hand of cards consists
of one Wheat and one Flax card.

Epistemic modal operators such as Kn, for individual knowledge, and CN ,
for (public) common knowledge, are also introduced in standard ways[3]. For
example, Kawa stands for “Anne knows (i.e., sees) that she holds a Wheat
card”, and

∨
u=w,x,y Cabc(ua → Kaua) stands for “It is common knowledge

to all players that Anne knows the suit of the card that she is holding.” All
background knowledge takes this form of commonly known propositions. The
two example propositions are indeed true for this application, but we have to
be careful in these matters. Note the difference between owning a card – which
we stipulate to be already true if it lies facedown in front of you, and knowing
that you own/hold a card – only true after you’ve picked it up. In our case their
is also a striking difference between knowing the suit of a card and knowing
the identity of a card. Typically, w1

a → Kaw
1
a is false: Anne can determine if

she is holding a Wheat card, by looking at it, but not which of the two Wheat
cards that is. She cannot see if she is holding ‘the card named w1’. That is an
abstraction only made in order to allow object identities. It is not supposed to
show on the cards themselves.

The game actions can now be described as epistemic actions in an action lan-
guage as in [9, 1]. In such languages, epistemic actions induce information state
transformations, i.e. they induce binary relations between the pointed relational
structures introduced before. For motivation and the formal semantics, see
[9, 10]. Actions are interpreted as state transformers, and this corresponds in the
language to a dynamic modal operator. We explain this by example only. Sup-
pose the deal of cards is wx.wy.xy. Let Trade(a, b, 1)(x,w) describe the action
where Anne trades her Flax card for the Wheat card from Bill (meaning: they
hand over their cards to each other in such a way that Cath observes the trade
but cannot see the cards). We can then express that after that trade Anne can
corner the market in Wheat, by the formula [Trade(a, b, 1)(x,w)]Corner(a,w).
The modal operator [Trade(a, b, 1)(x,w)] is interpreted as a state transition
that transforms the game state describing the knowledge of the players in deal
wx.wy.xy to the new game state describing the knowledge of the players af-
ter the trade, when the deal has become ww.wx.xy. In other words, a state
transition is a binary relation between game states (information states). A
game state is not the same as a card deal: every game state is about one
card deal, but the same card deal can occur in many game states. The formal
counterpart is given in the Appendix. Combinations of modal operators for
game actions and for knowledge of players is also conceivable. For example,
[Trade(a, b, 1)(x, y)]KaKbya describes that, after Anne and Bill swapped a Flax
and a Rye card, Anne knows that Bill knows that she holds a Rye card.
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A new feature in this epistemic action language, that has not been reported
before1, is the ‘assignment’: assignments are useful to describe that cards change
hands: if Anne actually trades the Flax card x1, fact x1

a – ‘Anne holds card x1’ –
becomes false, and if Bill gets that card, fact x1

b becomes true.2 For the present
purpose, assignments of facts to true or false suffice: qn := > and qn := ⊥
express that it becomes true and false, respectively, that player n holds card q.
For reference purposes we give the semantics of assignment plus an example in
the Appendix.

Other action constructs are explained while defining the Pit game actions,
now to follow. The main thing to keep in mind here, is that these action descrip-
tions are not ‘merely’ informal descriptions but that these are truly computable
actions strictly and only defined as relational state transitions, or, more in com-
puter science terms, as paths in a large process graph representing all static and
dynamic Pit game features for a given set of players and cards. Therefore every
statement about the game can effectively be decided to be either true or false.
We start with an overview of the abstract descriptions of the five sorts of action
in Pit, illustrated by the examples in SixPit. In the explanatory text, the parts
between parentheses are the the parameters of the actions that are not public.

• Dealcards(wx.wy.xy)
The cards are dealt to the players. All players pick up their cards. (Anne
holds Wheat and Flax. Bill holds Wheat and Rye. Cath holds Flax and
Rye.)

• Offer(a, 1)(w)
Anne offers one card for trade. (It is a Wheat card.)

• Trade(a, b, 1)(w, y)
Anne and Bill trade one card. (Anne trades Wheat. Bill trade Flax.)

• Nocorner(a, b)
After trading cards, neither Anne nor Bill has achieved a corner.

• Cornered(a,w)
Anne corners the market in Wheat.

The remainder of this section makes these descriptions semantically precise. The
next section, that presents some game theoretical results for Pit, can be read
independently from these semantical precisions and only requires understanding
of the informal descriptions above.

1Work in progress by Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi.
2We can even say that the (new) value of the fact ‘Bill holds card x1’ becomes the (old)

value of ‘Anne holds card x1’, in program form: x1
b := x1

a. But we then still have to make x1
a

false as well.
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4.1 Details of game action descriptions

Dealing the cards to the players

Deals :=
∨

deal δ
deal

Learnhandn := LN
⋃

hand Ln?handn
Dealcards := LN?Deals ; Learnhandn ; Learnhandn′ ...

A paraphrase in slightly more natural language of the description Dealcards
is: “All players (N) learn (L) that the test (?) on the formula ‘Deals’, describing
that each player holds a full hand of m cards, succeeds. Then (;) the program
‘Learnhandn’ is executed, describing that all players learn that player n learns
his/her hand of cards. Then ... (etc., for each player)” The order of players
looking up their cards is irrelevant in the strong sense that bisimilar structures
result.

An example in terms of SixPit: The cards are dealt over Anne, Bill and
Cath. Anne then picks up her cards and looks at them. (She has a Wheat and
a Flax card.) Bill then picks up his cards and looks at them. (He has a Wheat
and a Rye card.) Finally Cath picks up her cards and looks at them. (Cath
has a Flax and a Rye card.) The non-parenthesized part of each of these four
actions is commonly observed by Anne, Bill and Cath.

The formula ‘Deals’ is the disjunction of the descriptions δdeal for all possible
card deals deal of |N | ·m cards over the players, where each player gets m cards.
For example, the deal where Anne gets cards w1, x1, Bill gets cards w2 and
y1, and Cath gets cards x2 and y2 is described by (a conjunction of 18 literals
namely)

w1
a ∧ ¬w2

a ∧ x1
a ∧ ¬x2

a ∧ ¬y1
a ∧ ¬y2

a ∧ ¬w1
b ∧ ... ∧ y2

c

Program Learnhandn is defined as nondeterministic choice between, for all
hands of cards, player n learning his hand ‘hand ’ of cards, where all players
observe that. For example, for Anne, who is handed two cards, Learnhandn
states that the players learn that Anne learns which of nine different hands she
has been dealt

Labc(La?wwa ∪ La?wxa ∪ La?wya ∪ La?xwa ∪ La?xxa ∪ ...La?ywa ∪ ...)

Given the actual card deal wx.wy.xy, this action is executable because the alter-
native La?wxa is executable. We can describe this differently as a deterministic
action

Learnhanda(wx)

which selects, so to speak, ‘only for Anne, while the others remain ignorant’
alternative La?wxa before execution. Neither Bill nor Cath know what Anne’s
hand is after executing Learnhanda(wx) in deal wx.wy.xy. But Learnhanda can
also be executed in xx.wy.wy, where Anne’s hand is xx, whereas Learnhanda(wx)
cannot. Similarly we also get a deterministic ‘card deal’ action, for example,

Dealcards(wx.wy.xy)
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that is only executable for a specific deal. This switch from nondeterministic
to deterministic is a ‘semantic trick’ in the action language that is called ‘local
choice’. We give no details.

Offering cards for trade

Offer(n, i) := LN?
∨
u∈U

u+i
n

In other words: everybody learns that player n has at least i cards of the
same suit. For example, Labc?(wa ∨ xa ∨ ya) describes that Anne offers a single
card for trade. The cards that are being offered are not made public. The
functional version of this nondeterministic action is, for the concrete case of
Anne offering Wheat:

Offer(a, 1)(w)

Again, note that Bill and Cath do not know that Anne offers Wheat. The
Offer action is of course only informative for larger hands of cards: if there
were nine cards altogether, and all players therefore hold three cards, then if
Anne is offering two cards for trade, both Bill and Cath know that her hand
cannot be wxy. This resulting knowledge is now formally captured as (part of)
a postcondition of the Trade action.

Trading cards Suppose that Anne trades a Wheat card with a Rye card
from Bill. More precision is actually needed for specification of this action.
Assume that Anne held w1 and Bill held y2. Anne pushes card w1 facedown
over to Bill, and simultaneously Bill pushes card y2 over to Anne. At this stage,
the cards can be said to have changed ‘hands’ in the sense of ownership: the
value of the corresponding facts need to be reassigned. Anne then picks up card
y2, after which Bill picks up card w1. By picking up cards, the player learns
the suit of those cards, or, in terms that we can model “learns the suit of the
cards in his possession of which he doesn’t know the suit yet”. Again, just as
when the cards were dealt, the order of Anne and Bill picking up their new card
is irrelevant: if Bill picks it up first and then Anne, the same (i.e., bisimilar)
information state will result. In general, we get the following description; for
simplicity, we stick to the case of a single card being traded, the action where
player n and player n′ trade more than one card (of the same suit) is similarly
defined as Trade(n, n′, i):

Swap(n, n′, 1)(q, q′) := qn := ⊥ ; qn′ := > ; q′n′ := ⊥ ; q′n := >
Swap(n, n′, 1)(u, u′) :=

⋃
q∈u,q′∈u′,q 6=q′ Swap(n, n′, 1)(q, q′)

Swap(n, n′, 1) :=
⋃
u∈U Swap(n, n′, 1)(u, u′)

Learncardn := LN
⋃
u∈U ;i≤m Ln?(u+i

n ∧ ¬Knu
+i
n )

Trade(n, n′, 1) := LNSwap(n, n′, 1) ; Learncardn ; Learncardn′

The order of the four assignments in Swap(n, n′, 1)(q, q′) is irrelevant. But
it is highly relevant that keeping the assignments together means that that the
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cards are traded simultaneously and not one after the other: if a player gives
a card to another player and then that other player returns a card, that may
have been the card that other player had just been given. This is ruled out by
our specification.

The ‘test formula’ (the formula preceded with ‘?’) in the action Learncardn
indeed describes that for some suit u of cards, player n holds one more card of
that suit (namely i cards) than he currently knows. That is the card that he
has just been handed.

The functional version of the nondeterministic action Learncardn is Learncardn(u)
and the corresponding functional version of two agents trading a single card is
Trade(n, n′, 1)(u, u′). For example, the action of Anne trading a Wheat card
with a Rye card from Bill is described by Trade(a, b)(w, y).

As the assignment action is a recent addition to the dynamic language that
we presume in these modellings, we give its formal details in the Appendix to
this contribution. This includes an example illustrating its meaning.

Not cornering the market

Nocorner(n, n′) := LN?(¬Corner(n) ∧ ¬Corner(n′))

In other words: everybody learns that the two players that just traded can-
not corner the market, as neither declared a corner. We remind the reader
that, for example, Corner(a) in the six card case is defined as Corner(a,w) ∨
Corner(a, x) ∨ Corner(a, y) which means wwa ∨ xxa ∨ yya: Anne corners the
market if she holds two Wheat cards, or two Flax cards, or two Rye cards.

This is an implicit action. Its absence appears from players starting to make
next offers, so to speak. For synchronization purposes we have to distinguish
this action as ‘one more tick of the clock’: a proper action that is being observed
by all players, before they continue to offer cards for trade.

Cornering the market

Cornered(n, u) := LN?Corner(n, u)

This description will by now be obvious. Note that the game requires the player
to declare the commodity of his corner. The suit is therefore public. This is
indeed how we have modelled it.

This concludes the detailed description of game actions in Pit. For an example,
in the Appendix we show the information states that result from executing these
actions in SixPit, if the card deal is wx.wy.xy and the cards have just been dealt.

5 Game theory of Pit

To our knowledge, no results are known on the game theory of Pit. Very few
investigations have been made anyway into the game theory of knowledge games
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[2]. We make a small exploration into this matter. Note that we have assumed,
for simplification of matters, that all cards have the same value, and that chance,
and not choice, determines what players are allowed to trade with each other.
The simplest system that is not trivial is the Pit game for three players and six
cards, i.e., two cards per player. This is the SixPit game already described above.
We will restrict our investigations in this Section to SixPit. The players are, as
before, a, b, and c, and the cards are w,w, x, x, y, y. For our current purposes
there is no need to give different cards of the same suit different names, as in
the previous section. We start by a random distribution of these six cards over
the three players a, b, c, where they all get two cards.

An example of the only type of deal that does not immediately end in a
corner is wx.wy.xy. By this representation, we mean that Anne holds {w, x},
Bill holds {w, y}, and Cath holds {x, y}. Given deal wx.wy.xy, all players seem
to be ‘equally well’ informed. Their actual information is of course different. For
example, Anne does not know that Bill’s hand is wy whereas Bill knows that his
hand is wy. But modulo a permutation of suits and agents, their information is
the same: Bill does not know that Anne’s hand is wx. Because of that, none has
an advantage over the others after the cards have been dealt. Also, the players
cannot make an intelligent choice between the two cards in their hand. They
cannot do better than randomly choosing a card for trade! Well, almost: they
can choose between not offering for trade or offering one card for trade. (Two
cards – that have to be of the same suit! – is out, because that would have
been a corner already.) ‘Not trading’ is irrational: if you do not offer cards for
trade, you do not have a chance to win, even though the penalty for losing is
just as high as when you trade and do not corner the market, or when you offer
for trade but are not selected; whereas if you offer cards for trade, you have
a non-zero probability of getting selected for trade and if you are a non-zero
probability of winning in that move.

As before, a player does not disclose which card he offers for trade, and must
determine the card before and not after the offer is honoured. Given the offers,
it is determined randomly which offers are matched, ‘after which’ (instantly)
that trade takes place.

Suppose that given the card deal wx.wy.xy at the outset of the game, Anne
and Bill are chosen to trade the card they offer. Then there are four possibili-
ties3:

Current deal Game action Resulting deal
wx.wy.xy Trade(a, b, 1)(w,w) wx.wy.xy
wx.wy.xy Trade(a, b, 1)(w, y) xy.ww.xy
wx.wy.xy Trade(a, b, 1)(x,w) ww.xy.xy
wx.wy.xy Trade(a, b, 1)(x, y) wy.wx.xy

In the third case Anne will declare a corner in Wheat and wins, and in
the second case Bill declares a corner in Wheat and wins. In the other cases a

3In the Appendix the formal counterparts to the game states that correspond to the current
and resulting card deals are visualized.
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further move has to be made, possibly ad infinitum. They appear rather boring,
in particular the first case: we already had deal wx.wy.xy, and now we have
it again. Appearences can be deceptive. Relevant is, what the game state was
and has become, not merely what the card deal was and has become. Game
states are the pointed Kripke models (relational structures) from the previous
Section: they include what players know about each other. And in the game
state for deal wx.wy.xy resulting from game action Trade(a, b, 1)(w,w), both
Anne and Bill, but not Cath, happen to know what the card deal is. (And this
was not the case in the game state for the same card deal before that action.)
We can establish this by reasoning about the knowledge that the players have
about each others’ cards. Anne knows that Bill now has a Wheat card, because
she just gave him her own. But Anne can now also deduce Bill’s other card: it
cannot also be Wheat, because she received Wheat and if Bill’s other card had
been Wheat he would immediately have declared a corner in Wheat and not
have offered a card for trade. But it cannot be Flax either, because then Cath
would have had two Rye cards initially and immediately have declared a corner
in Rye. And she didn’t. So Bill’s other card must be Rye. But then Cath holds
the two remaining cards: Flax and Rye. In other words: Anne knows the deal
of cards. Bill can reason as Anne, and therefore also knows the deal of cards.
Cath has not gained factual knowledge from Anne and Bill trading. But, e.g.,
she now knows that Anne and Bill know the deal of cards.

We can now make several meaningful observations:
First, Anne can now distinguish between ‘the card in her hand that she

shares with Bill, with whom she just traded’, namely her Wheat card, and ‘the
card in her hand that she shares with Cath, with whom she did not just trade’,
namely her Flax card. Therefore, in the next move of the game, she may have
an individual preference to choose to offer for trade the one or the other card,
or even a strategic choice based on the similar preferences of the other player
that has just traded, Bill. Cath cannot make an intelligent choice between one
of her cards to offer for trade, because she was not selected for the previous
trade, and because her knowledge of Anne and Bill is symmetric with respect
to her cards.

Second, the justification for these distinctions are observations about knowl-
edge that the players have about each other, not merely about facts, i.e., not
merely about their hands of cards. In the case of SixPit, the argument was fairly
simple. We could do it ‘by hand’ so to speak. But in the general case this may
require checking possibly complex knowledge properties of the players. Those
properties are entailed by the logical description of the game actions and game
states in the previous section. Therefore, this logical description is indispensible
in order to define the game, even up to - as we will see - the computation of
players’ individual preferences. This is a typicality of such ‘knowledge games’:
generally in game theory, all of the game states, actions, payoffs, and induced
preferences, are a given, a parameter that one starts out with. Not so for
knowledge games: both game states and game actions have a structured, com-
putable description, such that preferences are also computable given a payoff
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corresponding to some game state feature. We will largely bypass the epistemic
details of game states, but in the Appendix we have visualized the four actions
discussed here as transitions between pointed relational structures, including
part of the further development of that game that we will analyze after these
observations.

Third, this happens to be not just an interesting game state on level one
of the game tree, but, modulo the agent and suit symmetries also mentioned
above, the single game state ever occurring in any further development of the
game. Whatever the next game move is, either a corner results (and, unlike in
the initial deal of cards, always for one player only) or a similar information
state will result where the two players that were allowed to trade now know the
deal of cards, but the player who did not trade does not know it (and therefore
may even have ‘forgotten’ his knowledge of the deal before the trade took place).

This can be shown as follows: Given was the distribution wx.wy.xy. In the
next move, either a and b, or a and c, or b and c trade a card. If a and b trade
again, then the same argument applies as above. If a and c trade instead, b no
longer knows the cards of a and c, because he does not know which of their two
cards either of them has chosen to trade. On the other hand, a and c now learn
the entire deal of cards, as above. And if b and c trade instead, then that case
is analogous to a and c trading. So whatever behaviour is optimal for this move
in the game, will be similarly optimal for any future game state that does not
end the game.

Therefore, for each player, there are only two ‘game actions’ in the sense of
game theory.4 These are:

• sharedn
“if player n traded in the previous round, then he offers the card for
trade that he knows to share with the player whom he traded with, and
otherwise he chooses his card randomly.”

• distinctn
“if player n traded in the previous round, then he offers the card for trade
that he knows to share with the player whom he did not trade with, and
otherwise he chooses his card randomly.”

The individual preferences of the players are according to the expected payoffs
of these actions. This then defines the game and the optimal strategies for the
players [6]. We present a full analysis for a further simplification of SixPit,
namely that consisting of one offer/trade action only, and an outline of the
equilibria for SixPit, that may require an arbitrarily large number of repeats of
these actions.

4Here we see one of the discrepancies between the ‘logical’ and the ‘economics’ point of view:
for example, one of the executions of a profile – pair consisting of two individual ‘economics’
game actions – (shareda, distinctb, distinctc) in the game state for deal wx.wy.xy resulting
from Anne and Bert have traded a Wheat card, is the program – sequence of three ‘logic’
game actions – Offer(a)(w) ; Offer(b, y) ; Trade(a, b)(w, y) (namely the execution where a
and b were selected for trade).
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There is a difference between a player offering a card for trade, and a
player choosing an action. The first is an execution instance of the second.
Assume the game state for deal wx.wy.xy resulting from (epistemic) action
Trade(a, b, 1)(w,w) in the (different) game state for (the same) deal wx.wy.xy.
Suppose that player a now chooses shareda, that player b chooses distinctb, and
that player c chooses sharedc. This means that player a offers card w for trade,
player b offers card y for trade, and player c randomly chooses on of her cards
for trade, suppose the result is that she offers card y for trade. If a and b are
now selected for trade, the result of Trade(a, b, 1)(w, y) is the deal xy.ww.xy: b
corners the market in w and wins the game. If, instead a and c had been selected
for trade, the result of Trade(a, c, 1)(w, x) is the deal xy.wy.wx. Nobody wins
in this round and (at least) another move has to be made to finish the game.
The three matrices below present a systematic overview of these payoffs. We
emphasize that these are not game matrices, as w, x, and y do not meaningfully
represent game actions.

a\b w y
w − (−1, 2,−1)
x (2,−1,−1) −

a\c x y
w (2,−1,−1) −
x − (−1,−1, 2)

b\c x y
w − (−1, 2,−1)
y (−1,−1, 2) −

For example, the result of action Trade(a, b, 1)(w, y), after which b wins and
therefore a and c lose, is found in the leftmost matrix in column 2, row 1.
Payoff (−1, 2,−1) means that player a loses 1, player b gains 2, and player c
loses 1. Note that we have defined the combined payoff three-player zero-sum.
This makes sense, as the only objective of the game is to be the first to corner
the market, resulting in the others not doing that. Payoff ‘−’ means that more
moves are needed to finish the game. Once more, we simplify the game: we
assume that in those case the payoff is (0, 0, 0). After we have described the
equilibria for that game, we continue our analysis of the full game. For example,
the first of the three matrices above has become:

a\b w y
w (0, 0, 0) (−1, 2,−1)
x (2,−1,−1) (0, 0, 0)

We can now compute the expected payoff of the game for each player, given that
they each choose between their two possible strategies with some probability.
As the previous trade was between a and b, c’s behaviour can be assumed to be
random. Therefore, we can model this simplified SixPit move as a two-player
game namely between a and b only. Let pn be the probability with which player
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n chooses sharedn such that (1 − pn) is the probability with which that player
chooses action distinctn. The expected payoff Ea(pa, pb) for player a is:

Ea(pa, pb) = (1
3 · pa · (1− pb) · −1) + ( 1

3 · (1− pa) · pb · 2)+
( 1

3 · pa ·
1
2 · 2) + ( 1

3 · (1− pa) · 1
2 · −1)+

( 1
3 · pb ·

1
2 · −1) + ( 1

3 · (1− pb) ·
1
2 · −1)

= 2
3pb + 1

6pa −
1
3papb −

1
3

On symmetry grounds the expected payoff for a and b are of course analogous,
and the expected payoff for c is ‘whatever is needed to add up to 0’, as obviously
any combination of strategies is also zero-sum for a, b, and c together. We
therefore get:

Eb(pa, pb) = 2
3pa + 1

6pb −
1
3papb −

1
3

Ec(pa, pb) = − 5
6pa −

5
6pb + 2

3papb + 2
3

We have now finally reached the level of defining a standard game. The result-
ing game matrix for players a and b takes the following shape. For example,
the combined payoff when a plays shareda and b plays distinctb corresponds
to (Ea(1, 0), Eb(1, 0)) above, etc. More in line with how we have chosen the
probabilities, distincta comes first, and shareda comes second, and similarly for
b:

a\b distinctb sharedb
distincta (− 1

3 ,−
1
3 ) ( 1

3 ,−
1
6 )

shareda (− 1
6 ,

1
3 ) (1

6 ,
1
6 )

This game has two equilibria (distincta, sharedb), and (shareda, distinctb), and
a mixed equilibrium for pa = pb = 1

2 , i.e., a playing 1
2 · distincta + 1

2 · shareda
and b playing 1

2 · distinctb + 1
2 · sharedb. In the third equilibrium the combined

payoff is (0, 0). A peculiar property is associated with that third equilibrium:
when a plays a random card, b cannot affect his own expected payoff but only
a’s expected payoff, and vice versa. For example, for pa = 1

2 , we get that
Ea( 1

2 , pb) = 1
2pb −

1
4 and Eb( 1

2 , pb) = 0. In other words: when a doesn’t think
at all, b cannot take advantage of that.

It is further worthwhile to observe that the game matrix is of a so-called
‘chicken-like’ game, where playing sharedn may be seen as the cooperating strat-
egy and playing distinctn as the defecting strategy. As in ‘chicken’, also here
(1, 0) and (0, 1) are equilibria.

In the context of the simplified SixPit ‘knowledge game’ we can interpret the
unstable profile (shareda, sharedb) as follows: if Anne and Bill form a coalition,
they can outwit Cath and each increase their expected gain from 0 to 1

6 . It is
unstable, as for either of them it is profitable to ‘break up the coalition’ and act
in their private interest: if the other doesn’t they further increase their expected
gain to 1

3 . Unfortunately, if they both do that, they both lose 1
3 instead, and

Cath is the laughing bystander who then gains.

Towards the full SixPit game We now present the outline of a general-
ization to the SixPit game wherein the ‘game’ above just describes one move,
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namely a typical second move of the game. If we assume that players choose
a strategy before they start playing the game (and that, therefore, they do not
reward or punish each other for their behaviour during the game), we arrive at
an appealing though still rather complex generalization. The payoff

(0, 0, 0)

in the ‘one-move game’ matrix can now be replaced with expected payoffs that
we write, for that specific continuation, as

(Eaba (pa, pb, pc), Eabb (pa, pb, pc), Eabc (pa, pb, pc))

where, for example, Eaba (pa, pb, pc) is the expected gain of player a in the remain-
der of the game, given that a traded with b in the current move and that the
game is not over yet, and given that a (always) plays shareda with probability pa
and b plays sharedb with probability pb and c plays sharedc with probability pc.
We therefore get the following ‘game-like matrices’ (write Eaba for Eaba (pa, pb, pc),
etc.) to help us compute the expected payoff Eab of the players given that a
and b have just traded:

a\b w y
w (Eaba , E

ab
b , E

ab
c ) (−1, 2,−1)

x (2,−1,−1) (Eaba , E
ab
b , E

ab
c )

a\c x y
w (2,−1,−1) (Eaca , E

ac
b , E

ac
c )

x (Eaca , E
ac
b , E

ac
c ) (−1,−1, 2)

b\c x y
w (Ebca , E

bc
b , E

bc
c ) (−1, 2,−1)

y (−1,−1, 2) (Ebca , E
bc
b , E

bc
c )

From this, we can, for example, compute Eaba as follows:

Eaba (pa, pb, pc) = 1
3 · pa · pb · E

ab
a +

1
3 · pa · (1− pb) · −1+
1
3 · (1− pa) · pb · 2+
1
3 · (1− pa) · (1− pb) · Eaba +
1
3 · pa ·

1
2 · 2+

1
3 · pa ·

1
2 · E

ac
a +

1
3 · (1− pa) · 1

2 · E
ac
a +

1
3 · (1− pa) · 1

2 · −1+
1
3 · pb ·

1
2 · E

bc
a +

1
3 · pb ·

1
2 · −1+

1
3 · (1− pb) ·

1
2 · −1+

1
3 · (1− pb) ·

1
2 · E

bc
a

Obviously pc does not yet occur in the equation, but this is uncovered by both
Eaca and Ebca , for example, the equation for Eaca (pa, pb, pc) contains a (first) part
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1
3papcE

ac
a (pa, pb, pc) and another (one of twelve) part(s) 1

6pcE
bc(pa, pb, pc). This

results in a fairly complex set of nine recurrent equations in three variables, for
which one can in principle find a solution and possibly equilibria. We are still
investigating what the optimal strategies for this full SixPit game are. The
general pattern of these investigations is clear:

In the SixPit game there are after the first move only three different epistemic
states, depending on the two players that just traded. Therefore there are three
expected payoff functions Eab, Eac, and Ebc. In the general case of a Pit game
for an arbitrary number of players and cards, we can compute for each distinct
epistemic state of the game, as modelled by the logical formalization presented
in the previous section, the expected payoffs for each player in a way very similar
to the above procedure.

6 Conclusions and further research

We have presented an overview of game states and game actions occurring in a
simplified version of the Pit game. Thus we have grounded the investigation of
this and similar simplifications into the mainstream of formal logical semantics.
We have presented some minor results of game theoretical relevance for Pit, in
particular for the SixPit game for three players and six cards only. This revealed
the ‘game actions’ that are the game theoretical counterparts of the logical ‘game
actions’ that were described separately. It also clearly demonstrated that the
logical specification is indispensable for the game theoretical investigations. We
described equilibria of the SixPit game.

Further research will involve different abstractions of the Pit game, for ex-
ample allowing for simultaneous trading between different couples of players.
This presents no logical difficulties, but is mainly interesting for game the-
ory. Such explorations might link our results to those from [7]. We are also
implementing simple Pit games in an epistemic model checker. This would
allow to check automatically what players know in a given game state. We
further intend to generalize the current game theoretical results. Finally, Jo-
han Lövdahl has implemented some Pit game plays for demonstration pur-
poses for a three player and twelve cards case. This can be viewed on webpage
http://www.ida.liu.se/~jolov/pit/.
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Appendix: dynamic epistemics with assignment

Given are a set of atoms P and agents N , a two-typed dynamic epistemic
logical language LN (P ) with both formulas ϕ and actions α, and a class of
structures for atoms P and agents N called epistemic states. An epistemic
state (M, s) = (〈S,∼, V 〉, s) consists of a domain of abstract objects, with for
each agent an equivalence relation ∼n on the domain, and for each atom p a
subset Vp of the domain, and a designated object that is the actual state of
affairs. Epistemic – and other - actions are defined by state transitions for
dynamic modal operators as follows:

(M, s) |= [α]ϕ iff (M ′, s′) |= ϕ for all (M ′, s′) such that (M, s)[[α]](M ′, s′)

The assignment action (‘program’) is one particular example of such an action.
It is defined as follows:

(M, s)[[p := ϕ]](M ′, s′) iff M ′ = 〈S, ∅, V ′〉 and s′ = s

where V ′ is as V except that Vp := Sϕ, such that Sϕ = {s ∈ S | M, s |= ϕ}.
For an example, in Figure 1 we visualize the action where three players Anne,

Bill and Cath (a, b, c) each hold one card namely Wheat, Flax, and Rye (w, x, y)
and where Anne and Bill swap their cards and first Anne looks at her card and
then Bill looks at his card. The deal is represented by w.x.y (as before), and
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Figure 1: First, Anne and Bill swap their card. Then, Anne looks at her card.
Then, Bill looks at his card. In the resulting state, Anne and Bill know the deal
of cards, but Cath does not.
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we have that, initially, for Anne deal w.x.y cannot be distinguished from deal
w.y.x (where Bill holds Rye and Cath holds Flax), etc. After the cards have
been swapped, Anne knows that Bill holds her former card, Wheat, but does
not know her own card yet. For that, she has to look at it first. After Anne and
Bill have both looked, they know the card deal, but Cath still cannot distinguish
between w.x.y and x.w.y: she does not know which of Anne of Bill holds Wheat,
etc.

For the SixPit game, the trade action gives of course quite similar results, but
with different numbers of distinct states in the models. In that case, there are
21 different card deals. It so happens that all but six of those involve a corner.
Somewhat by coincidence we can visualize a game state in SixPit after the
cards have been dealt and possible corners have been declared in a very similar
‘hexagonal’ figure. The swap action then leads to a model with 24 distinct
states, because for each deal, there are four ways for two players to swap a card.
Subsequent possible ‘Cornering’ actions reduce the model again. If we combine
these actions, we get an appealing result again: Figure 2 that pictures what
is known when, given the deal wx.wy.xy, a and b are chosen for trade. Any
subsequent development in SixPit from either of the non-terminal nodes copies
this pattern, the game defined in Section 5 corresponds to a single move from
node wx.wy.xy—c—wy.wx.xy in Figure 2.
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Figure 2: Part of the game tree for SixPit
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