Department of Computer Science,
University of Otago

UNIVERSITY

OTAGO

Te Whare Wananga o Otago

Technical Report OUCS-2006-02

A model of the relationship between language and
sensorimotor cognition

Author:
Joost van Oijen

(visiting student from the University of Twente)

Department of Computer Science,
University of Otago, PO Box 56, Dunedin, Otago, New Zealand

http://www.cs.otago.ac.nz/research/techreports.html

A model of the relationship between language
and sensorimotor cognition

Joost van Oijen

December 12, 2005

Abstract

The goal of this report is to simulate how a child learns a language. First
children learn single words, later they begin to associate events they see with
sentences describing the events. They accomplish this with the help of a
tutor, usually the parent. Here the relationship between the perception of an
event and a sentence describing the event is investigated. Knott’s hypothesis
about event perception is used resulting in a sensorimotor model where event
perception is described as a sequence of sensorimotor items. The theory of
Minimalism is used to map sentences onto an underlying syntactic structure.
Knott’s proposal is that there is a direct mapping of the sensorimotor items
to the items in the syntactic structure. This mapping is explored using neural
networks.

Contents

2.1

2.2
2.3

3 The
3.1

3.2

3.3

Introduction

Literature review

Relationship between language and sensorimotor cognition . .
2.1.1 Model of human sensorimotor cognition
2.1.2 Model of human language
2.1.3 Relationship between the models
The Elman neural network
‘Division of labor’-principle

implementation

Initial Elman reimplementation
3.1.1 Problem description
3.1.2 The Elman network
3.1.3 Training the network
3.1.4 Evaluation
Elman network extended with a semantic input
3.2.1 Problem description
322 Thenetwork o
3.2.3 'Training the network
3.2.4 Evaluation L
Language learning network
3.3.1 Problem description
3.3.2 The network architecture
3.3.3 Training the network
334 Evaluation

4 Extensions 31

4.1 ‘Biological’ implementation of the TWD-module 32
4.2 Idioms 33
4.2.1 Problem description 33
4.2.2 The network architecture 33
4.2.3 Training the network 34
424 Evaluation 35
4.3 Inflections 36
4.3.1 Modification to the sensorimotor model 36
4.3.2 Problem description 36
4.3.3 Network architecture 37
4.3.4 Training the network 37
4.3.5 Evaluation 40

Chapter 1

Introduction

The aim of this paper is to suggest a solution for the relationship between
natural language and sensorimotor cognition with the goal of simulating how
a child learns a language. According to the theory of cognitive development
first developed by Jean Piaget, the sensorimotor stage (0-2 years) is the first
stage of cognitive development, which marks the development of essential
spatial abilities and understanding of the world. It is at the end of this stage
that children learn to associate single words they hear frequently with the
meaning of the words. In the next stage children begin to associate events
they see with sentences describing the events. They achieve this with the
help of a tutor. For example, when a child perceives a physical event, eg.
‘The dog follows the man’, which is simultaneously described by an adult,
the child receives two representations. The perception of the event generates
sensorimotor representations while the spoken sentence describing the event
consists of a sequence of words. There must be a relationship between these
two sequences, after all, children in a later stage are able to describe perceived
events by generating sentences they have never heard before. The main goal
here is to investigate the relationship between these two representations using
the hypothesis of Knott.

The hypothesis of Knott is that the syntactic structure of a sentence
describing a physical event can be understood as an encoding of the senso-
rimotor processes which occur in an agent witnessing the event. In Knott’s
model of the perception and execution of actions, these sensorimotor pro-
cesses occur in a characteristic sequence in different areas of the brain. Thus
a cognitive representation of an event can be seen as a sequence of dis-
tinct sensorimotor states. Such sequences are stored in episodic memory

representations, which preserve their sequential structure. The hypothesis is
that these memory representations map onto the underlying ‘deep’ syntactic
structure of sentences.

However, sentences describing a particular sensorimotor event can have a
different grammar and word order in different languages. The mapping from
the ‘deep’ syntactic structure (which is the same for all languages) to the
‘surface’ structure (which differs from language to language) must be learned
by a child. The goal of this project is to find a way to learn this mapping
through the use of a neural network.

The neural network will be used to learn single words and some notion
of syntax. The trained network will then be tested on events represented by
sensorimotor sequences that were not in the training data to see if it is able
to produce a correct sentence describing the event. Different networks can
be trained to learn sentences in different word orders, simulating different
languages. For these networks the same sensorimotor inputs can be used
because the order of the sensorimotor sequences is thought to be universal
to every agent.

The outline of the report is as follows. In chapter 2 a literature review
is given of topics that reflect different aspects of the problem. A detailed
description of the theory behind Knott’s hypothesis is given including the
representation of semantics as a sensorimotor sequence and the syntactic
structure of sentences using Chomsky’s theory of Minimalism. Then the
‘division of labor’ principle will be outlined which is about the contribution
of semantics and syntax to the generation of sentences. Finally a review of
the Elman neural network is given along with a justification why this network
architecture is a good choice for the problem at hand. In chapter 3 several
implemented neural networks will be described and evaluated that simulate
some language processing aspects that are useful for the problem. These
include a network design which gives a promising solution to the problem of
mapping sensorimotor sequences to their corresponding sentences. Chapter
4 consists of some extensions or modifications to the basic network design
to handle different some aspects of natural language which go beyond basic
word ordering issues. These aspects include the use of idioms and inflections.

Chapter 2

Literature review

2.1 Relationship between language and sen-
sorimotor cognition

In this section Knott’s hypothesis of the relationship between natural lan-
guage and sensorimotor cognition will be presented. In section 2.1.1 Knott’s
model of representing semantics as a sequence of sensorimotor processes will
be described. Section 2.1.2 will outline the model of syntactic structure of
sentences using Chomsky’s theory of Minimalism. A relationship between
the two models will be given in section 2.1.3.

2.1.1 Model of human sensorimotor cognition

Knott’s sensorimotor model is about the cognitive processes involved in per-
ceiving a simple transitive event. Knott’s proposel is that a transitive action
is cognitively encoded as a sequence of attentional operations in which the
agent, patient and action occur in a characteristic position.

Decomposition of event perception into sub-processes

In the sensorimotor model, visual perception of an event invokes several rela-
tively separate sub-processes. This is supported by the well accepted hypoth-
esis that the brain’s visual processing is organized in separate pathways (e.g.
Milner & Goodale, 1995). Each pathway extracts different information from
the visual input. For example, one pathway categorises objects according

to their form, another delivers representations about the motor affordances
of object, another delivers objects and actions derived from motor informa-
tion and another delivers information about the most salient object in the
environment.

Event perception

Humans perceive the world via a sequence of separate snapshots, each result-
ing from an eye fixation. Each snapshot delivers a deictic representation,
a transitory representation of what the eye is currently looking at. Each vi-
sual pathway can compute its own deictic representation to encode. Knott’s
suggestion is that event perception can be decomposed into a strict sequence
of deictic representations, which constitute a deictic routing (Knott, 2005).

To give an example of such a deictic routine, consider the perception of
the transitive event: ‘The sealion chases the surfer’.

At stage 1, the observer is in an attentional state where objects in the
world compete for the observer’s attention.

At stage 2, the observer selects an object to attend to. This initial
attented to object will be the agent of the action, which is the sealion in this
example.

At stage 3, the observer creates a new attentional environment, centred
on the attended-to-object (the sealion). This biases attention to objects
which are close to the agent. In this new environment, these objects compete
for the observer’s attention.

At stage 4, the observer selects one of these objects to attend to. This
object will be the patient of the action, which is the surfer in this example.

At stage 5, the observer is in an attentional state where several possible
actions compete for selection. These actions are represented as motor goals.

At stage 6, one of these motor actions is selected (chase). As a side
effect, the observer once more attends to the agent (the sealion).

At stage 7, When the goal motor state is reached, the observer once
more attends to the patient of the action (the surfer).

Episodic memory

The goal of the project is to link the ‘deep’ underlying syntactic structure of
a sentence to the sensorimotor system of humans. But sentence generation
and event perception are not parallel processes. A sentence is not necessarily

pronounced while perceiving the event. A sentence can be generated long
after the event was perceived. The hypothesis is that the syntactic structure
of a sentence can be seen as a trace of an episodic memory operation which
rehearses the original sensorimotor experience.

In Knott’s model, when an event is perceived, the deictic representations
are stored in a specific sequence in episodic memory. When this event is
recalled, the sequence in which the objects and actions were originally per-
ceived is reactivated. It is this reactivation of the sequence which is linked
to sentence creation.

2.1.2 Model of human language

The syntactic model Knott uses for his hypothesis is the theory of Mini-
malism (Chomsky, 1995), which is the successor of Government-and-Binding
(GB) theory (Chomsky, 1981). This theory was chosen because it supports
the assumption of universal grammar, which means that at some level of
abstraction, the linguistic structure of transitive sentenses must be the same
in any language. This is a good model to use for the claim Knott wants
to make that the structure of a transitive sentence is an encoding of senso-
rimotor processes -which are assumed to be universal- involved in an event
corresponding to the sentence.

Minimalism

A syntactic theory should provide two things. It should provide a method for
identifying the entire set of syntactically well-formed sentences in a language
and a method that identifies the meaning of each of those well-formed sen-
tences. Because such a theory cannot enumerate every possible sentence, it
needs some general principles. According to these principles a sentence can
be broken up into phrases. The well-formedness of each phrase can be con-
sidered and an infinite set of sentences can be formed by combining phrases
through the use of recursion.

The Minimalism theory comprises two components: a representation of
phrases and a generative mechanism used for forming and altering phrases.
The generative mechanism is used to explain how the full range of well-
formed sentences is produced by combining simple phrases. The phrases are,
like most syntactic theories, simple trees so that sentences have a tree-shaped
syntactic structure.

In Minimalism, two levels of sentence structure are invoked: phonetic
form (PF) and logical form (LF). LF is the syntactic representation of the
meaning of a sentence, while PF is the representation of its surface form.
LF and PF are both tree-based structures produced by the generative mech-
anism. The generative mechanism starts with a series of phrase-formation
operations to create a basic tree-structure corresponding to a sentence. After
that a series of movement operations are performed on the resulting tree-
structure. Two sequences of movement operations are performed. First a
sequence of overt movement operations is executed, which results in a struc-
ture representing the phonetic form of the sentence. The point after the overt
movement operations is called the ‘spell-out’. This is the point at which the
phonetic form is ‘read off’. A sequence of covert movement operations is
then performed, resulting in the final logical form of the sentence. The full
sequence of operations performed on the sentence is called a derivation. Fig-
ure 2.1 shows how the generative mechanism of Minimalism works.

Spell—out
Phonetic
form (PF)
Phrase Overt
formation movement
operations operations
. Covert -
movement Logical
operations form (LF)

Figure 2.1: Derivations in Minimalist syntax

A theory of phrase structure

The X-bar theory, introduced by Jackendoff (1977), is one of the most used
components of theories of grammar, representing syntactic structure of sen-
tences in a tree-based fasion. The key idea is that at some level of abstraction,
all phrases have the same structure. The basic element in a phrase is the
head, consisting of a lexical item which can be a noun, verb or an adjective
for example. The head creates a grammatical constituent, represented by an

8

X-bar schema, which has certain slots that can be filled by other elements,
namely a complement (YP) and a specifier (Spec). The basic X-bar schema
is shown in figure 2.2 together with an example of a verb phrase.

XP VP
[Spec,XP] X’ [Spec,VP] \'A
/\ the man /\
X YP A% NP
drinks coffee

Figure 2.2: The X-bar schema and an schema instance of a verb phrase

X is the head of the phrase, which can be a lexical head (noun, verb
or adjective) or a functional head (for instance a verb inflection). YP is
the complement of this head and stands for ‘any maximal projection’. This
means that the X-bar schema is recursive and that a maximal projection
has slots which can be filled by other maximal projections. How two X-bar
schemas can be bound together is shown in figure 2.3.

X1P Top

/\ application

[Spec,X1P] X1
binding

- .
X1 YIP=——= X2P Recursive

/\application

[Spec,X2P] X2

7N

X2 Y2P

Figure 2.3: A recursive application of the X-bar schema

Clause structure at LF

As an example of how the generative mechanism of Minimalism works, a
derivation of the simple transitive sentence ‘the man drinks coffee’ will be
outlined. The derivation begins with a series of phrase formation operations.
The X-bar clause structure resulting from these operations is shown in at the
top of figure 2.4.

As can be seen, the figure consists of three separate X-bar schemas that
are bound together. The bottom projection consists of the verb phrase (VP)
which now contains the subject, verb and object of the sentence. The dashed
arrows in the figure represent the movement operations that can be performed
by the generative mechanism to form the LF of the sentence. The bottom
of figure 2.4 shows the structure after all the movement operations, which
results in the LF of the sentence.

The tree starts with an inflection phrase (IP). Inflection phrase is the
general term used for ‘sentence’. The left-hand daughter of IP ([Spec,IP]) is
associated with the subject of the sentence. The head of the VP projection
moves in two stages to join the I node, the head of the IP. Noun phrases
have been relabelled as determiner phrases (DP). Determiners are the heads
of the phrases representing the subject and object positions in the sentence
structure. An extra XP can be seen between the IP and VP projections.
This XP is called the agreement phrase (AgrP). Chomsky proposed that the
object DP should raise from its original position as the complement of V to
[Spec,AgrP], as can be seen from the dotted arrow. Also, when V moves to
its inflection in the SVO-language, it passes through the head of AgrP.

Minimalism says that the different word orders of different languages are
caused by the movement operations, which can occur before or after spell-
out. Remember from the previous section that the PF of the sentence is
‘readoft’ after the overt movements and that further covert movements result
in the LF. We will now consider two derivations, one for the given sentence
in a SVO-language (English, French, Dutch) and one in a SOV-language
(Japanese, Korean). Figure 2.5 shows the possible movements caused by the
generative mechanism. The difference between the word order of languages
has to do with after which movement the PF is ‘readoff’. So in an SVO-
language, like English, the PF is 'read-oftf’ after movement 1. But in an
SOV-language, movements 1 and 2 are overt and so the PF is ‘readoft” after
these movements, which results in a subject-object-verb word order.

10

P
/\ Before movement

Agrp

Spec(=DP) | Agr’

: \ DP
| drinks coffee
1P | T
/\‘ “““““““ '
Spec(=DP) r
the man After movement
I AgrP
drinks

T

I

I

I

I

I

: Spec(=DP) | Agr’
| : coffee
I : A
I :

I

I

I

I

I

I

I

;

Figure 2.4: X-bar clause structure of a transitive sentence before and after
movement

11

1P

Swon] ¥
) /\

1

Figure 2.5: The possible movements after phrase-formation operations

2.1.3 Relationship between the models

In this section Knott’s hypothesis about the relationship between sensorimo-
tor and syntactic representations will be outlined. The sensorimotor model of
Knott was described in section 2.1.1 and the syntactic model was described in
section 2.1.2. Knott’s proposal is as follows: “The LF of a sentence describing
an event encodes the structure of the episodic memory representation of the
sensorimotor process via which this event was witnessed”. In other words,
Knott believes that the LF of a sentence is an encoding of the sensorimotor
sequence.

Recall from section 2.1.1 the seven stages of event perception. In figure
2.6 these stages are mapped onto the syntactic structure according to the
Minimalism theory using the example sentence ‘the sealion chases the surfer’.
The figure shows that the order of the sensorimotor representations matches
the order at the syntactic level.

So the syntactic structure of Minimalism maps nicely onto the idea of
iterative sensorimotor operations. The idea that subject and object DPs are
each found in two locations at the LF maps onto the idea that the agent and
patient are each attended to twice during the sensorimotor sequence.

12

Stage 1:

mmal context/state

A

Stagg.1 'Zﬁ: Spec(=DP)

establishment

of the sealion | the sealion /\
Stage 2b: AgrP

Stage 3:
context/state of

top—down action having—attented—to—the—sealion
fp attention Chases A

Stage 4a: Spec(=DP)

establishment
of the surfer the surfer /\
Stage 5:

Stage 4b: VP
top—down action
of attention

Stage 6a: Spec(=DP)

re—attention to the sealion
via motor state tracking

Stage 6b:
activation of
’chase’ motor programme

context/state of

/\havmg —attented—to—the—surfer

Z0N

DP

Stage 7:
context/state of haptic—
attention—to—the—surfer

Figure 2.6: Relationship between the sensorimotor model and syntactic struc-

ture

2.2 The Elman neural network

Now that the relationship between the syntactic model and the sensorimotor
model has been outlined, a neural network model has to be found which can
provide a solution for the implementation of this relationship.

A language expresses itself as temporal sequences. This means that a
network that handles these temporal sequences needs to have some kind of
memory. In his paper ‘Structure of Time’, Elman suggests the following
solution for providing a network with memory. He proposes to augment the
network at the input level with additional units, the so called ‘Context Units’.
These units do not interact with the outside world, but only with other nodes
internal to the network. The goal of the context units is to remember the
previous state of the network, by copying the weights of the hidden units
at each time unit. The hidden units now have the task of mapping both
an external input and the previous internal state provided by the context
units to some desired output. A network that provides these context units
is known as an ‘Elman network’.

In his paper Elman applies his architecture to a number of problems
that involve processing inputs that have some sequential dependencies which
revealed some interesting results. Interesting for the problem at hand are
the results of the network that learned structure in sequences, like simple
sentences. For example, a network was trained on simple 2, 3-word sentences.
After training a hierarchical clustering analysis was performed on the internal
representation of the network. It revealed that the network had learned that
there are several major categories of words, for example verbs and nouns.

Although the network was not able to predict the precise order of words,
it recognizes that there is a class of inputs that typically follow other inputs.
The network had learned some kind of syntactic structure. The hidden units
of such a network thus not only represent inputs, but also develop represen-
tations which will serve as useful encoding of temporal context that can be
used when processing subsequent inputs.

2.3 ‘Division of labor’-principle
One problem with Elman’s model is that his neural network model has no

semantic inputs. For example, when applying his network to learn small 3-
word transitive sentences, it can predict a sentence only by looking at the first

14

input. When the first input is a noun, the network will most likely predict
a verb and after that a noun again because it has learned this syntactic
structure. Which verb the network predicts is a matter of chance depending
on the frequency of the occurence of a verb after the first noun input. The
same holds for the prediction of the last noun.

What is needed is an extra input to the network, a semantic input which
can influence the output of the network, so that a sentence can be generated
that corresponds to the semantics. For the problem to be solved in this
report, the semantics are represented by sensorimotor activations.

How semantics contribute to the generation of sentences is described in
the paper ‘Learning to divide labor’ (Gordon, Dell, 2002). The production
of an utterance begins with a message or meaning that one wants to deliver.
This message guides the retrieval of lexical items and the construction of a
schema that specifies in what position and in what form according to some
grammar the lexical items appear. So this lexical retrieval is subject to both
semantic and syntactic constraints.

In the paper the hypothesis is explored that the relative strength of the
respective contributions of semantics and syntax during lexical access varies
among words and this variation can explain certain dissociations on aphasic
language production. These variations arise from cue competition, resulting
in a ‘division of labor’. Cue competition is the tendency for inputs, in this
case semantic and syntactic inputs, to compete with each other to control
output. Gordon and Dell’s idea was not originally expressed within the
framework of an Elman network for word-sequencing. Here their idea is
translated into this framework.

Assume for example a sentence generation Elman network with an extra
semantic input. The syntactic input is represented by a combination of the
previous word input and the context units. While testing the network after a
succesful training, the semantic input and the syntactic input both contribute
to the output of the network. The semantic input to the network presents
to the network the meaning of the next word that has to be produced while
the syntactic input presents to the network of what class of words the next
word that is produced should be, for example a noun or a verb. The goal is
to let the network depend enough on both inputs to generate valid sentences
with the correct meaning.

15

Chapter 3

The implementation

In this chapter some implemented neural networks are described and evalu-
ated that contribute to the solution of the problem.

In section 3.1 the first network is presented. This network is a normal El-
man network that was implemented to learn sequences. Learning sequences
is part of the problem because both semantic and syntax representations con-
sist of sequences of sensorimotor and word items respectively. The Elman
network was trained and tested on word sequences of different length. The
goal of this phase was to find a good network architecture and the right net-
work parameters for an Elman network to learn sequences of some specified
length.

In the second network, outlined in section 3.2, the first network was ex-
tended with an extra input, which represented the semantics of the next
item to be predicted. The network was trained to predict the next word
in a sequence given the previous word of the sequence, the context of the
previous word in the sequence and a semantic representation of the word to
be predicted. The sequences in the training data were structured sequences
with the goal of simulating simple grammar. The expected result is that the
network learns a mapping between the semantic input of the word to the
actual word to be predicted. To force the network to also learn a notion of
grammar and syntax, represented by the previous word and context inputs,
some degree of noise was added to the semantic input. The goal was to train
the network with different degrees of noise on the semantic input to anal-
yse how much the semantic input and the syntactic inputs contribute to the
predicted output of the network in the testing phase.

Finally, a third model was implemented, described in section 3.3, which

16

goal was to learn the mapping between a sensorimotor sequence and a word
sequence. Since the sensorimotor sequence contains two occurences of both
agent and patient the task of learning the mapping for a given language is to
decide which occurence of the agent and patient must be mapped to a word
and which occurences must be mapped to a ‘GAP’ which represents a silence.
This model consists of two separate networks. The first network was used to
map sensorimotor representations to their corresponding words. The output
of this network was fed into the semantic input of the second network, whose
task it was to produce a grammatically correct sentence from a sequence of
semantic inputs.

3.1 Imnitial Elman reimplementation

This section describes an implemented Elman network which learns sequences.
At first a problem discription in given in section 3.1.1. In section 3.1.2 a de-
scription of the architecture of the network is given. Section 3.1.3 presents
the problem to be solved and describes the training process. An evaluation
is given in section 3.1.4.

3.1.1 Problem description

The first step in trying to solve the language learning problem is to learn
sequences using neural networks. The goal of this phase is to find a neural
network architecture that is suitable for this task. The sequences to be
learned consist of items represented by letters from the alphabet. Sequences
of length five are learned. Variations are made on the number of different
sequences and on the number of different items that can occur in a sequence.
An item can occur more than once in a sequence.

3.1.2 The Elman network

To learn sequences a common neural network architecture is the Elman re-
current network. An Elman network is a normal multiple feedforward neural
network extended with a context layer. This context layer can be seen as
just another input to the network. It is added to provide the network with
memory. This is accomplished by copying the hidden layer to the context
layer at each time step. The network is presented at each time step with an

17

item in the sequence to be learned and the context in which that item occurs
in the sequence. A model of an Elman network is given in figure 3.1.

Next item

Fully connected

Copy

Hidden layer

Fully connected Fully connected

| Current item | | Context

Figure 3.1: An Elman recurrent network

3.1.3 Training the network

The network was trained and tested three times, each time increasing the
the amount of sequences and/or the amount of different items that can occur
in the sequence. The length of the sequences remained constant, 5. The
encoding of a character in the sequence consisted of a bit vector with one
bit turned on. A special character was introduced which served as an end-
of-sequence character. This character was encoded in the same way as the
other characters.

In the training phase subsequent items in a sequence were presented to
the network. For each item the prediction error was calculated and the error
backpropagated. At the end of a sequence, the context layer was reset to
prepare itself for a new sequence. The way the error is backpropagated is
shown in figure 3.2.

Training the Elman network consisted of the following steps:

1. Initialize the context layer with random weights
2. Present the first item of the sequence to the current item input layer
3. Calculate the network output at the next item output layer

4. Compare the predicted next item with the actual target item

18

#|_Targetitem |
7z

Copy

| Current item | | Context

Figure 3.2: Backpropagation in an Elman recurrent network

5. Backpropagate the error by adjusting the weights of the hidden- and
output layer

6. Copy the hidden layer to the context layer

7. Repeat steps 2-6, this time by presenting the next item in the sequence
until the end of the sequence is reached

8. Repeat steps 1-7 until the training error is sufficiently small

To test the network in the testing phase, one item can be presented to the
network. The network predicts the next item that follows the presented item.
This predicted item is then fed into the network again as the new current
item and the network again predicts the next item. This continues until
the network predicts the end-of-sequence character after which the network
stops predicting items. If the training data contained sequences that began
with the same character, prediction in the testing phase is not always correct
because after the first item, it’s a matter of chance which next item will be
predicted, depending on the number of sequences that began with the same
item. To avoid this no sequences with the same first character were trained.

3.1.4 Evaluation

As can be seen from the test results in tables 3.1, 3.2 and 3.3, training a net-
work to learn sequences is a task that can be accomplished fairly easily. The
amount of time spent on training though increases rapidly when increasing

19

parameter value training error result
sequences: 5 1 0.0401 80%
different items: 5 2 0.0401 80%
hidden neurons: | 15 3 0.0803 60%
learning rate: | 0.03 4 2.0146 E-4 | 100%
momentum: 0.9 5 3.3940 E-4 | 100%

Table 3.1: Test results test 1

parameter value training error result
sequences: 10 1 0.0203 90%
different items: | 26 2 0.0403 90%
hidden neurons: | 20 3 0.0204 90%
learning rate: | 0.02 4 3.9179 E-4 | 100%
momentum: 0.9 5 6.4249 E-4 | 100%

Table 3.2: Test results test 2

the number of sequences to learn and increasing the length of the input bit
vector.

3.2 Elman network extended with a semantic
input

This section gives an overview of the second network. This network deals
with the ‘division of labor’ principle. A way of representing semantics was
needed so the Elman network was extended with an extra input. Section
3.2.1 explains how the ‘division of labor’ principle will be represented in a
neural network. In section 3.2.2 an overview of the network architecture is

parameter value training | error | result
sequences: 26 1 0.2004 | 27%
different items: | 26 2 0.1005 | 54%
hidden neurons: | 30 3 0.0928 | 62%
learning rate: | 0.01 4 0.1158 | 42%
momentum: 0.9) 0.0928 | 58%

Table 3.3: Test results test 2

20

given. Training aspects will be presented in section 3.2.3 and an evaluation
is given in section 3.2.4.

3.2.1 Problem description

The ‘division of labor’ principle is about the sharing of responsibility between
syntactic and semantic inputs for lexical activation according to their predic-
tive power. The goal of this phase is to see if this sharing of responsibility can
be simulated by a neural network. The syntactic inputs will be represented
by the current item input layer and the context input layer. The semantic
inputs will be represented by an extra input layer. The items that are fed to
this input layer are the semantic representations of the next item that is to
be predicted.

As in the previous network, sequences of items are learned. Again the
items are represented by letters from the alphabet. The semantic items are
represented as upper-case letters. This time, not just random sequences are
leared, but sequences of which the order of items are restricted by some
underlying structure. This structure consists of rules giving the sequences
some grammatical structure. A rule might be for example: “After having
seen a ‘d’ in a sequence, only an ‘e’ is allowed to follow.” The training data
for the network then consists of sequences that are created by following the
given rules.

The goal is to let the network learn two things. One thing is a mapping
of some semantic input representation of the next item in a sequence to the
actual next item in the sequence. The other thing is a mapping between
the syntactic input representing the current item of the sequence to the next
item in the sequence with the use of the learned structure. If the network is
trained normally, the network will probably end up having learned sequences
only by looking at the semantic information of the next item, because this
information provides a direct mapping to the item that is to be predicted.
To prevent this situation, some noise is added to the semantic input in the
training phase to let the network also learn the structure of the sequences
(simulating grammar). With increasing or decreasing the amount of noise
in the semantic input, the network can be learned to rely more or syntactic
input and context input or to rely more on the semantic input to predict the
next item in the sequence.

21

current item | allowed items as next item
a c
b a,c,e
c a,b,d,e
d e
e b,c,d

Table 3.4: Structure of the training data

3.2.2 The network

The network used in this section is based on the Elman network implemented
in the previous section. That network was extended with an additional input,
representing the semantic input. A model of the resulting network is given
in figure 3.3.

Next item

Copy

Hidden layer

| Next item sem.| | Current item | | Context

Figure 3.3: An Elman network with an extra semantic input

3.2.3 Training the network

The first task before the network could be trained was to create some struc-
tured training data. The data consisted of sequences of length 5, which
contained at most 5 different items. The structure that was used for the
training data is shown in table 3.4. 500 random sequences were generated as
training data that all conformed to the given structure. An example of how
one sequence is trained in the network is given in table 3.5.

The error calculation, backpropagation of the error and the resetting of
the context after each sequence is the same as in the Elman network of the

22

step | semantics next item | current item | context | target item
1 E init Co e
2 C e C1 c
3 A c C2 a
4 C a C3 c
5 D c C4 d

Table 3.5: Training the network

previous section.

Three tests were performed to analyse the dependence of the network
on the semantic and syntactic inputs. In the first test the training data was
trained as generated without noise on the semantic inputs. In the second test
noise of 1 bit was added to the semantic inputs. This was done by flipping
one bit of the input vector on every semantic input of the sequence currently
learned. In the third test a 3-bit noise was added to the semantic inputs.

After the training, each resulting network was tested on the same set of
inputs. These inputs consisted of sequences of semantic inputs that were
randomly generated and thus did not always conform to the structure that
was provided in the training data. For testing purposes no noise was added.
For every test the output of the network was analysed to see how much the
network relied on the semantic inputs and how much it relied on the structure
that was learned in the training phase.

3.2.4 Evaluation

The results from the first test were as expected. Without any noise on the
semantic output, the network has learned a direct mapping from the semantic
input of the next item to the actual next item. So the network primarily relied
on the semantic inputs and did not rely on the syntactic structure.

The second test revealed some interesting points. Most of the predicted
sequences conformed to the semantic inputs just as in test 1. But in some
sequences the network showed that it relied sometimes more on the syntactic
and context inputs than on the semantic inputs when predicting the next
item. In other words, the network sometimes predicted items that conformed
to the learned structure instead of relying only on the semantic next item
input. Though the network still relied more on the semantic next item input,

23

it can be seen that it is possible to learn some of the underlying structure of
the sequences when training the network with noise on the semantic inputs.

In the third test the network that was learned with a 3-bit noise on
the semantic inputs was tested. The test results showed that the network
conformed more to the learned structure than in the previous test. Most of
the time the network did not rely on the semantic next item inputs when the
structure didn’t allow that item to be predicted in the sequence.

The conclusion that can be made from these test results is that one can
learn a network to rely more or less syntax (represented by the current item
input and the context) by adding noise to the semantics (represented by the
next item input) in the training phase. This point is very similar to the
‘division-of-labor’ point made by Gordon and Dell described in section 2.3.

3.3 Language learning network

In this chapter a network which solves the basic word order learning problem
will be discussed. Section 3.3.1 gives a description of the problem to be
solved. The network architecture used for this solution is given in section
3.3.2. How this network was trained is presented in section 3.3.3 and a final
evaluation of the performance of the network is given in section 3.3.4.

3.3.1 Problem description

The network that we want to achieve is a network that simulates how a child
learns a language. Before learning a language, a child first learns single words.
So the first task is to simulate this part of the child’s development. When a
child perceives some object, some sensorimotor activation takes place in his
brain. If the child hears a word that corresponds to the perceiving object,
the child can learn to create a mapping between this sensorimotor activation
and the corresponding word.

The next stage is learning to speak sentences that correspond to some
physical event. A cognitive representation of an event can be seen as a se-
quence of sensorimotor activations. A simplified version of Knott’s hypothe-
sis of event perception will be outlined here by giving an example to explain
the different sensorimotor activations. Take for example the event of a dog
chasing a cat. Knott’s suggestion is that a specific sequence of sensorimo-
tor activations takes place in the brain, which is explained in section 2.1.1.

24

For this model we will use a simplified version of this sequence to see how
the network will perform. The sequence of sensorimotor activations assumed
here is the following:

1. The observer attends to the dog

2. The observer attends to the cat

3. The observer attends to the dog again

4. The observer attends to the chasing action
5. The observer attends to the cat again

The task to be solved here is to map such sequences of sensorimotor acti-
vations to their corresponding sentences, in this case to the sentence: The
dog chases the cat. The task will be simplified by learning only the subject,
uninflected verb and object of the sentence in question. So the learned sen-
tence of the above example will look like: “dog chase cat”. In addition, after
having learned alternative sentences, the network should be able to predict
new sentences from new sequences of sensorimotor activations that didn’t ex-
ist in the training data, provided that the network already knows the single
sensorimotor activations in the sequence.

The network should also be able to learn to map sequences of sensorimotor
activations to sentences of different word orders. The word orders that will
be explored here are:

1. Subject-Verb-Object (SVO)
2. Subject-Object-Verb (SOV)
3. Object-Subject-Verb (OSV)

3.3.2 The network architecture

The network solution consists of two independent networks that will be linked
together. One network is used for mapping the sensorimotor activations to
words corresponding to the activations. This network is a simple feedforward
network with one hidden layer. No context layer is needed for this network.
The output for this network will be fed as input for the second network.

25

The second network is used for mapping a sequence of five words to a
sequence of three words (the actual sentence). The input of this network
is the result of the mapping of the sensorimotor activations to words of the
first network. To achieve a mapping of five words to three words a new
item is introduced. This item is called a "GAP’. The purpose of this item
is that whenever the network shouldn’t produce any output, the GAP item
is produced, which is just some representation of a silence. The architecture
of the network is the same as the network of the previous section: a normal
Elman network with one extra input, the semantic input. The model of the
two networks linked together is shown in figure 3.4.

Current word

Hidden layer

| Current word | | Previous word | | Context

Hidden layer

Current SM item

Figure 3.4: Language learning Elman network

3.3.3 Training the network

To train the two networks a lexicon was build that consisted of 20 nouns and
20 transitive verbs. The lexicon is shown in table 3.6.

The first network was trained to map the sensorimotor activation rep-
resentations of the words in the lexicon to their corresponding words. The
training of this network consisted of the usual task of calculating the predic-

26

nouns verbs

man lion bird child grab touch kick chase
fish king weta dog see hear hit love
morepork farmer penguin kiwi defeat teach kiss look_at

teacher student surfer sealion | pick_up hate reject dislike
spider mother captain princess | throw follow ignore greet

Table 3.6: the lexicon

tion error and backpropagating the error. When the overall error was low
enough, the network had learned the mapping.

The training of the second network was a bit more complicated. For
the training data 500 training pairs of sensorimotor-sequences and word-
sequences were generated by combining nouns and verbs from the lexicon.
From these 500 items, 20 training items were deleted. These items were re-
served for testing the network to see if the it has learned to generalize and can
predict sentences from sequences of sensorimotor activations which it hasn’t
seen in the training phase. The input for the network was sequences which
had as format: [subject,object,subject,verb,object]. In the whole network
model such sequences are supposed to be the outputs of the first network
after mapping the sensorimotor inputs to words sequences. The target items
were actual sentences which format depended on the word order used in the
training data. In this case we will discuss ‘English’ word order. The ba-
sic idea here is that a word-sequence must be mapped to a sentence in a
specific word order. This can be accomplished by inserting GAPs on spe-
cific places in the input sequence. For example to create a correct sentence
in English from the input sequence, the input sequence has to be mapped
to [subject, GAP,GAP,verb,object| because the ‘English’ word order is SVO.
But GAPs cannot be used in the training data, because when a child learns
a language, he hears only a sentence and not the GAPs. So the target items
used in training the network were sequences like: [subject,verb,object]. The
network has to learn where to put the GAPs in the sequence. Training a se-
quence from the training data consisted of the following steps for each item
in the sequence:

1. Present the item to the network

2. Calculate the output of the network

27

Compare the presented item with the target item
If the items are equal, go to step 7

If the items are unequal, go to step 6

S

Replace the target item with the GAP-item and use the replaced target
item as target item for the next item in the sequence

~

Calculate the prediction error

8. Backpropagate the error

TWD-module

P 7| Used target word|

£
: | Current word

—| Current word | | Previous word | | Context

Hidden layer

Current SM item

Figure 3.5: Backpropagation in the Language learning network

The network had to learn to produce a GAP whenever the presented item
and the target item didn’t match. If this was the case, the current target item

28

had to become the target item for the next presented item. This comparison
of items and replacement of the target item is shown in figure 3.5 as the
TWD-module (target word decider module). The input to the TWD-module
consists of the current item, the target item and the GAP-item. The output
is the actual target item wich will be used in the backpropagation algorithm.
The output will be the initial target item if that item is equal to the current
item, or it will be the GAP-item if the initial target item and the current
item are not equal.

After these two networks were trained, the output of the first network
(mapping sensorimotor items to words) was connected to the input of the
second network (inserting gaps) to form to final network. This network could
now be tested by presenting a sequence of sensorimotor items to the ‘Current
SM item’ input shown in figure 3.5. Three different networks were trained
like this, one for each word order (SVO, SOV, OSV).

3.3.4 Evaluation

When the network was presented with sequences of sensorimotor items which
it had never seen before, the network was still able to predict the corre-
sponding sentences. This was true for all the three networks that learned the
different word orders. The test results are shown in table 3.7-3.9

From this can be concluded that it is possible to build a network which
simulates the generation of sentences from a sequences of sensorimotor acti-
vations. Such a network can be learned to generate sentences with a desired
word order, representing different languages, from sensorimotor activations
which happen in a specific sequence that is assumed to be universal for every
human.

29

Sensorimotor input

Sentence output

SEALION PRINCESS SEALION HIT SEALION
MAN TEACHER MAN LOOK_AT TEACHER
STUDENT SPIDER STUDENT DEFEAT SPIDER
MAN FARMER MAN PICK_UP FARMER
PENGUIN LION PENGUIN TEACH LION
SEALION FISH SEALION GRAB FISH

sealion GAP GAP hit princess
man GAP GAP look_at teacher
student GAP GAP defeat spider
man GAP GAP pick_up farmer
penguin GAP GAP teach lion
sealion GAP GAP grab fish

Table 3.7: Test results SVO learning network

Sensorimotor input

Sentence output

SEALION PRINCESS SEALION HIT SEALION
MAN TEACHER MAN LOOK_AT TEACHER
STUDENT SPIDER STUDENT DEFEAT SPIDER
MAN FARMER MAN PICK_UP FARMER
PENGUIN LION PENGUIN TEACH LION
SEALION FISH SEALION GRAB FISH

sealion princess GAP hit GAP
man teacher GAP look_at GAP
student spider GAP defeat GAP
man farmer GAP pick_up GAP
penguin lion GAP teach GAP
sealion fish GAP grab GAP

Table 3.8: Test results SOV learning network

Sensorimotor input

Sentence output

SEALION PRINCESS SEALION HIT SEALION
MAN TEACHER MAN LOOK_AT TEACHER
STUDENT SPIDER STUDENT DEFEAT SPIDER
MAN FARMER MAN PICK_UP FARMER
PENGUIN LION PENGUIN TEACH LION
SEALION FISH SEALION GRAB FISH

GAP princess sealion hit GAP
GAP teacher man look_at GAP
GAP spider student defeat GAP
GAP farmer man pick_up GAP
GAP lion penguin teach GAP
GAP fish sealion grab GAP

Table 3.9: Test results OSV learning network

30

Chapter 4

Extensions

In this chapter a few extensions to the language learning problem are handled.
They involve modifications or extensions to the final network solution given
in the previous chapter shown in figure 3.4.

First in section 4.1 the ‘target word decider’ module (TWD-module) will
be handled. Recall that the TWD-module was used in the training phase
of the language learning network. Its task was to decide what the target
word should be for the currently handled word in the sequence. This could
be the current target word or a GAP item. The way the TWD-module was
implemented cannot be seen as a proper simulation of how the task of the
TWD-module would be executed inside the brain. The decision of the actual
target word depending on the equality of the current word and the initial
target word was done in a programmatic way. To make the simulation of this
module more plausible, the TWD-module was implemented in a ‘biological’
way.

Section 4.2 handles the occurence of idioms in event perceptions and
sentences. Take for example the idiom ‘keep an eye on’. When perceiving this
‘action’, a single sensorimotor activation takes place. The current network
design can only map this sensorimotor activation to one word. Because the
literal item describing the action consists of more that one word, the basic
network has to be modified to account for idioms.

Finally, in section 4.3 inflections will be handled. Until now, the word
order learning network could only process uninflected verbs. To account for
inflected verbs, the network has to be extended with an extra input. This
input is a representation of an ‘action of attention’ to the agent of the event
(subject agreement). This input together with the sensorimotor actication

31

representation input of the action will be mapped to an inflected verb.

4.1 ‘Biological’ implementation of the TWD-
module

In this section the ‘biological’” implementation of the TWD-module will be
presented. The goal of the TWD-module is to decide what should be used
as target item at each time step of the training phase. This resulting target
item can either be the initial target item or a GAP item. The TWD-module
has three inputs: the current item (item is that currently presented to the
network), the target item for the current item and the GAP item. If the
current item and the target item are equal, then the output of the TWD-
module should be the target item. If not, the output should be the GAP
item.

Gl

Tl
Tl
XNOR [O
AND

Cl1

B -

n =

G2

Figure 4.1: Gate circuit of the TWD module

It is assumed that this module in the brain could be hard-wired by evolu-
tion. To simulate this, the module was implemented using a circuit of gates.
The circuit is shown in figure 4.1. The inputs of the module are bit vectors.
To keep it simple bit vectors of only two items are used. So in the figure T'1
stands for the first bit of the target item input, C1 for the first bit of the
current item input and G1 for the first bit of the GAP item. The outputs of
the first XNOR-gates represent the equality of the bit vectors of the target

32

item and the current item. If the bit vectors are equal, all the outputs of
these gates will be 1. The output of the following AND-gate will thus be
1 if the vectors are equals and 0 if they are not. The resulting bit vector
(R1..R2) will eventually be the original target item or a GAP item.

4.2 Idioms

In this section the handling of idioms in sentences will be discussed. Section
4.2.1 explains the problem to be solved. The network solution for the problem
will be outlined in section 4.2.2. Training the resulting network solution is
described in section 4.2.3. The evaluation will be presented in section 4.2.4.

4.2.1 Problem description

An idiom is an expression whose meaning does not follow from the meaning
of the individual words of which it is composed. For example the English
phrase ‘kick the bucket” means ‘to die’. Literally, the phrase can in fact mean
to kick the bucket, but this is usually not the intended interpretation.

So if our network should learn to handle idioms in sentences, it has to be
able to map one sensorimotor activation representation to multiple words.
Take for example the following sentence: “You go easy on him”. This sen-
tence consists of 5 words, while if one perceives this event, only three different
sensorimotor activations take place in the brain. One for ‘you’, one for ‘go
easy on’ and one for ‘him’.

The current final network from section 3.3 cannot handle idioms, because
the network can only map one sensorimotor activation representation to one
word. To account for idioms the network has to be able to map one sensori-
motor activation representation of the idiom to multiple words.

4.2.2 The network architecture

To handle idioms, the part of the final network that maps sensorimotor ac-
tivation representations to words was modified to handle a mapping of one
sensorimotor activation to a sequence of words representing the idiom. In
case the input is not an idiom, the output sequence consists just of one word.
The part of the final network that learns where to put the GAPs in the se-
quence did not have to change. The only consequence is that the length of

33

the sequence of words the network outputs can now be longer than 5.

If the first part of the network now has to learn sequences, an obvious
choice is to replace that part of the network with an Elman network. The
resulting network architecture is shown in figure 4.2. To connect the two
parts of the network, the output of the ‘Idiom learning network’ is connected
to the input of the ‘Sentence learning network’.

Sentence
Learnin, g Current word
Network Copy
Hidden layer
| Current word | | Previous word | | Context
i
I
i
i
!
Idiom :
Learning Current word
Network
Copy
Hidden layer
|CurrentSMilem | | Previous word | | Context

Figure 4.2: Final network extended with idiom extension

4.2.3 Training the network

Just as in the final network, the two parts of the network are trained sep-
arately. Part of the training data of the ‘idiom learning network’ is shown
in table 4.1 which shows three idioms and part of the training data of the
‘Sentence learning network’ is shown in table 4.2. Sensorimotor activation
representations of object and actions are represented by the words written
in uppercase letters. Remember also that the sensorimotor activations of
an event was represented as a sequence of 5: [agent, patient, agent, action,
patient].

34

input target

MAN man
SEALION sealion
BLACK_SHEEP black sheep
MOTHER mother
KISS kiss

HAVE_CRUSH_ON | have crush on
LOSE_TRACK_OF | lose track of

Table 4.1: Training data example of the Idiom Learning Network

input target

man black sheep man go easy on black sheep | man go easy on black sheep
mother child mother kiss child mother kiss child

bird fish bird lose track of fish bird lose track of fish
princess captain princess fall for captain princess fall for captain

Table 4.2: Training data example of the Sentence Learning Network

When both parts of the network were trained, the final network was build
by connecting the output of the first part to the input of the second part of
the network.

4.2.4 FEvaluation

The trained network solution was able to handle idioms in sentences. The
single items in a sensorimotor activation sequence were mapped to a sequence
of one or more words, depending on if the item represents an idiom or not.
The resulting words of the whole sequence of sensorimotor activations was
mapped to a sequence of words including GAP items. Filtering the GAPs
from this sequence results in the sentence corresponding to the sensorimotor
activations representation of the event that was perceived.

35

4.3 Inflections

In this section verb inflections will be added to the language learning network
of section 3.3. A modification to the sensorimotor model that was used in
the language learning network was made. The sensorimotor model that will
be used here is described in section 4.3.1. In section 4.3.2 the problem will be
outlined. Section 4.3.3 presents the network solution. Training the network
is described in section 4.3.4 and an evaluation is given in section 4.3.4.

4.3.1 Modification to the sensorimotor model

In section 3.3.1 a sensorimotor model of event perception was proposed which
was represented as a sequence of 5 sensorimotor activation representations
in episodic memory. For the solution to the network that handles inflected
verbs the model was modified. The model that was used here is shown in
figure 4.3 using the example event of a sealion chasing a surfer.

Attend to the agent Attend to the patient Re—attend to the agent Re—attend to the agent
| SEALION | | SURFER | | SEALION | | SURFER |
| CHASE/3S I | CHASE/3S I | CHASE/3S I | CHASE/3S I
Abent Sgrement Adent Hgretment Adent heretment Abent Sgrement

Figure 4.3: Modified sensorimotor model

In this model the length of the sensorimotor sequence is 4 where each
item is an attendance to the agent or the patient, combined with the motor
action with its agent agreement (causing inflection in sentence generation).
Patient agreement will currently be left out as this is not reflected in the verb
in most languages.

4.3.2 Problem description

Until now, the network could only learn uninflected verbs.

Knott’s proposal is that the inflection of the verb which agrees with the
subject is a reflex of the action of attention which results in establishment of
the agent. This action representation together with the motor action repre-
sentation must endure throughout the sequence. The network solution now

36

has to have three different inputs: A sensorimotor activation representation
of an action (verb), the sensorimotor activation representation of the action
of attention to the agent (which causes the inflection) and a sensorimotor
activation representation of an object (noun). The verb and its inflection
endure throughout the sequence. The objects representing the agent and
patient of the action change from time step to time step. As an example
consider the perception of the event ‘the man chases the dog’. The sensori-
motor activation sequence of this event perception using the model described
above would now look like this: [(MAN,CHASE/3S), (DOG,CHASE/3S),
(MAN,CHASE/3S), (DOG,CHASE/3S)]. This sequence has four items and
each item consists of a combination of a sensorimotor activation represen-
tation of an object and an action with its subject agreement (3S stands for
third person singular). A network solution has to be found to map such
sequences to their corresponding sentences, in this case the sentence ‘man
chases dog’.

4.3.3 Network architecture

The network architecture that was used here is shown in figure 4.4. The solu-
tion consists of 4 smaller networks. Network 1 maps sensorimotor activation
representations of objects to their corresponding nouns. Network 2 maps the
combination of sensorimotor activation representations of actions and their
subject agreement to the corresponding inflected verbs. Network 3 decides
which nouns of the noun input sequence should be a GAP and network 4
decides which verbs of the verb input sequence should be a GAP. At each
time step, network 3 and 4 can either produce a noun respectively a verb
or a GAP. The inputs of network 3 are the current noun, the previous noun
and the context of network 3. The inputs of netword 4 are the current verb,
the previous noun and the context of network 3. No context of network 4 is
used, but it uses the context of network 3 which copies its hidden layer at
each time step to the context inputs.

4.3.4 Training the network

The error calculation and backpropagation in the training phase is shown in
figure 4.5. Network 1 and 2 of the figure were trained separately. Error cal-
culation and backpropagation in network 1 and network 2 works normally by
calculating the difference between the output and the target item. Network 2

37

Current Noun | |Current Verb |

3 4
Hidden layer | | Hidden layer

\

Context | | Previous Noun | Current Verb |

| Current Noun |

Hidden layer 1 Hidden layer

SM Noun SM Verb Inflection

Figure 4.4: Final network extended with inflections

input SM-action | input SM-inflection | output verb
CHASE 1S chaselS
CHASE 2S chase2S
CHASE 3S chase3S
CHASE 1M chaselM
CHASE 2M chase2M
CHASE 3M chase3M

Table 4.3: Training data example of the Idiom Learning Network

handles the mapping of a sensorimotor activation representation of an action
and its subject agreement to an inflected verb. The mappings that had to
be learned for a single verb are presented in table 4.3. Because inflections
for regular verbs in English are not very rich, inflected verbs are represented
as the verb followed by the inflection. (It would have been better to use for
example Italian as a language in this experiment.)

Network 3 and 4 were trained together because network 4 needs to have
the context input of network 3. Error calculation and backpropagating the
error in network 3 and 4 work just like in section 3.3.3. Training a sequence
in network 3 and 4 is described in the following pseudo-code. The ‘nounlIn-
putSequence’ in the code could be for example [dog, cat, dog, cat] and the

38

| Target Word| | GAP |

3

| TargeVGAP | | TargeGAP | |

! \‘i Current Noun | | Current Verb k/

i Hidden layer| | Hidden layer|

'Co
o [T
7

H TWD—module) (TWD—module)_

4

Error Error
N 7

| == = - = = 4 - > B

Target Verb

N

| Error |— - >| Current Noun | Context | | Previous Noun| | Current Verb |< - -I Error |
T T

F-—-——--=-=--- o> <-—

| |
| |
| Hidden layer 1 2 Hidden layer |
o [Hidden layer | y .
| |

————————— - —> < e N - = - - =

SM Noun | SM Verb |

Figure 4.5: Final network extended with inflections

39

‘verbInputSequence’ could be [chase3S, chase3S, chase3S, chase3S], then the
‘targetWords’ sequence would be [dog, chase3S, cat] and the output when
testing the networks would be [dog, chase3S, cat, GAP, GAP, GAP, GAP,
GAP] (reading the output of network 3 before network 4 at each time unit).

train() {
context3 = initial context
context4 = context3
prevWiord3 = some initial input representation
prevWord4 = prevWord3
targetWordPos = 0

for i = 0; i < length of the noun input sequence; i++ {
currentNoun = nounInputSequence[i]
if targetWords[targetWordPos] = currentNoun {
targetWord3 = targetWords[targetWordPos]
} else {
targetWord3 = GAP
}
calculate output network 3 and backpropagate the error
context3 = weights hidden layer network 3
if output network 3 is not GAP {
targetPosition++

}

currentVerb = verbInputSequencel[i]
if targetWords[targetWordPos] = currentVerb {
targetWord4 = targetWords[targetWordPos]
} else {
targetWord4 = GAP
}
calculate output network 4 and backpropagate the error
context4 = context3
if output network 4 is not GAP {
targetPosition++

}

previWord3 = last output network 3
previWord4 = prevWord3

After training all the parts of the network, the parts were connected. The
output of network 1 was connected to the input of network 3 and the output
of network 2 was connected to the input of network 4. Four different word
orders were trained, namely SVO, SOV, VSO and the less common OSV.

4.3.5 Evaluation

Training the network for the inflected verb sentences was harder than training
the network for the uninflected verb sentences. Part of the test results are

40

shown in tables 4.4-4.6. The predicted GAPs have been left out. Almost
all of the tests generated successful sentences. As can be seen from the test
results only the second test in the SOV and OSV word orders is wrong. The
noun predictions are always correct, but in the second test the verb was
predicted wrongly. Although the wrong verb was predicted, the inflection
that was predicted was correct, so no grammatical errors were made. So it
is possible to train a network to predicted correct sentences with inflected
verbs.

41

input SM-noun

input SM-verb

output

SEALION SURFER SEALION SURFER
IYOUIYOU

PENGUIN FISH PENGUIN FISH

MOTHER TEACHER MOTHER TEACHER
WE CHILD WE CHILD

(CHASE,39)
(GRAB,18)
(FOLLOW,39)
(DEFEATS3S)
(DISLIKE,1M)

Table 4.4: Test results SVO

input SM-noun

input SM-verb

sealion chase3S surfer

i grablS you

penguin follow3S fish
mother defeat3S teacher
we dislikelM chlid

output

SEALION SURFER SEALION SURFER
IYOUIYOU

PENGUIN FISH PENGUIN FISH

MOTHER TEACHER MOTHER TEACHER
WE CHILD WE CHILD

(CHASE,3S)
(GRAB,1S)
(FOLLOW,38S)
(DEFEATS3S)
(DISLIKE,1M)

Table 4.5: Test results SOV

input SM-noun

input SM-verb

sealion surfer chase3S

i you follow1S

penguin fish follow3S
mother teacher defeat3S
we child dislikelM

output

SEALION SURFER SEALION SURFER
IYOUIYOU

PENGUIN FISH PENGUIN FISH

MOTHER TEACHER MOTHER TEACHER
WE CHILD WE CHILD

(CHASE,3S)
(GRAB,18)
(FOLLOW 3S)
(DEFEATS3S)
(DISLIKE,1M)

Table 4.6: Test results OSV

input SM-noun

input SM-verb

surfer sealion chase3S
you i dislikelS

fish penguin follow3S
teacher mother defeat3S
child we dislike1M

output

SEALION SURFER SEALION SURFER
IYOUIYOU

PENGUIN FISH PENGUIN FISH

MOTHER TEACHER MOTHER TEACHER
WE CHILD WE CHILD

(CHASE,39)
(GRAB,18)
(FOLLOW,39)
(DEFEATS3S)
(DISLIKE,1M)

Table 4.7: Test results VSO

42

chase3S sealion surfer
grablS i you

follow3S penguin fish
defeat3S mother teacher
dislikelM we child

Bibliography

[1] Elman, Jeffrey L., Finding Structure in Time, (Cognitive Science 14 pages
179-211).

2] Gordon, Dell, Learning to divide the labor: an account of deficits in light
and heavy verb production (Cognitive Science 27 pages 1-40).

[3] Knott, Alistair, Grounding syntactic representations in an architecture
for sensorimotor control (Technical report OUCS-2003-04).

[4] Knott, Alistair, Argument linking and spatial cognition

[5] Goldberg, Adele E., Constructions: a construction grammar approach to
argument structure

[6] Ullman, Michael T., Neural correlates of lexicon and grammar: Evidence
from the production, reading, and judgement of inflection in aphasia

43

