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What is my number? – A new epistemic riddle

H.P. van Ditmarsch1? and J. Ruan2

1 University of Otago, New Zealand, hans@cs.otago.ac.nz
2 University of Liverpool, United Kingdom, jruan@csc.liv.ac.uk

Abstract. A common theme in epistemic riddles is that announcements
of ignorance may eventually result in knowledge. We present a fairly new
epistemic riddle, including some variants that were partly accidentally
designed due to a miscommunication between logic puzzle enthusiasts.
The design was facilitated because such riddles can be specified, and
fairly easily checked, in ‘public announcement logic’, a modal logic with
both dynamic and epistemic operators; and because of the availability
of epistemic model checking tools for the finetuning and verification of
results. Logic puzzle design could benefit from similar future efforts.
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1 Introduction

Consider the following riddle—transcribed in our preferred terminology—that
appeared in Math Horizons in 2004, as ‘Problem 182’ in a regular problem section
of the journal, edited by A. Liu [1].

Each of agents Anne, Bill, and Cath has a positive integer on its forehead. They

can only see the foreheads of others. One of the numbers is the sum of the other

two. All the previous is common knowledge. The agents now successively make

the truthful announcements:

i. Anne: “I do not know my number.”

ii. Bill: “I do not know my number.”

iii. Cath: “I do not know my number.”

iv. Anne: “I know my number. It is 50.”

What are the other numbers?

By an unreliable chain of logic puzzle enthusiasts the riddle reached us in a
version with ‘natural number’ instead of ‘positive integer’. That includes the
number 0. In which case the riddle can no longer be solved. There is now exactly
one other number pair that remains possible when Anne knows that she has 50.

Which other number pair?

The uncertainty about the formulation of the riddle and its solution did not deter
the correspondents. Instead, it provoked their creativity and they redesigned the
riddle.
? Hans van Ditmarsch is contact author. We greatly acknowledge input from David
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David Atkinson mentioned a solution for natural numbers, if Anne would
have said that her number was 51. Strangely enough, we discovered later that
this is also a solution when 0 is excluded. There is also (another) rather crucial
difference between the 50 and the 51 version of the riddle...

What are the other numbers in the case 51?

In fact, there is an infinite number of x’s such that the other numbers can be
determined after Anne announces that she knows that her number is x.

In the mean time Hans formulated a version where the numbers must be
between 0 and an upper bound max, and where after the three ignorance an-
nouncements of the original riddle the problem is:

What is the range of max, if Anne now always knows her number?

It is not possible to determine Anne’s number in this case, nor what the numbers
of the other agents are. This version is a great deal harder (we think) than the
previous version and the original riddle. If no upper bound were given, Anne
would certainly not always know her number.

Actually, Hans did the computation for one specific value of max—so that
the question to the reader becomes “Show that Anne now always knows her
number.” He then enlisted the help of Ji Ruan, who explored the problem in
the epistemic model checker DEMO recently developed by Jan van Eijck [2]. Ji
confirmed, and corrected, the result and determined the requested range that
constitutes the solution. This range includes (exactly) one value of max for which
it (therefore) can be determined that Anne always knows the numbers, and also

what Anne’s number is (but again, not what the other numbers are).

Which value of max?

The ‘what is my number’ riddle(s) combines features from ‘wisemen’ or ‘muddy
children’ puzzles [3] with features from another classic, the ‘sum and product’
riddle [4, 5]. A common feature in such riddles is that we are given a multi-agent
interpreted system, and that successive announcements of ignorance finally result
in its opposite, typically factual knowledge. An interpreted system [6] consists
of a set of global states. A global state is (at least) a list of local states for each
agent. There is common knowledge that each agent only knows its local state,
and the extent of the domain—for ignorance statements to be truly informative
the domain should be more restrictive than the full cartesian product of the sets
of local state values. As in ‘muddy children’, we do not take the ‘real’ state of the
agent (the number on its forehead) as its local state, but instead the information
seen on the foreheads of others (the other numbers). ‘Sum and product’ is also
about sums of numbers. Other epistemic riddles around involve cryptography
and the verification of information security protocols [7].

The understanding of such riddles is facilitated by the availability of a suit-
able specification language, namely the logic of public announcements, wherein
succinct descriptions in the logical language are combined with convenient re-
lational structures on which to interpret them; and also by the availability of
verification tools, such as DEMO, to aid interpreting such descriptions on such
structures. It is harder to answer if and why a designed riddle is ‘fun’. This par-
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tially depends on its computational features. We corroborate this observation by
some relevant comparisons with other riddles and games.

Section 2 provides an introduction into public announcement logic, and in
Section 3 we analyze ‘what is my number’ in this logic—including solutions to
all versions of the riddle here presented. In Section 4 we verify the results in the
model checker DEMO. Section 5 shortly addresses the issue of computational
complexity in game design.

2 Public Announcement Logic

Public announcement logic is a dynamic epistemic logic and is an extension of
standard multi-agent epistemic logic. Intuitive explanations of the epistemic part
of the semantics can be found in [6, 7]. We give a concise overview of, in that
order, the language, the structures on which the language is interpreted, and the
semantics.

Given are a finite set of agents N and a finite or countably infinite set of
atoms P . The language of public announcement logic is inductively defined as

ϕ ::= p | ¬ϕ | (ϕ ∧ ψ) | Knϕ | CBϕ | [ϕ]ψ

where p ∈ P , n ∈ N , and B ⊆ N are arbitrary. Other propositional and epistemic
operators are introduced by abbreviation. For Knϕ, read ‘agent n knows formula
ϕ’. For example, if Anne knows that her number is 50, we can writeKa50a, where
a stands for Anne and some set of atomic propositions is assumed that contains
50a to represent ‘Anne has the number 50.’ For CBϕ, read ‘group of agents B
commonly know formula ϕ’. For example, we have that Cabc(20b → Ka20b):
it is common knowledge to Anne, Bill, and Cath, that if Bill’s number is 20,
Anne knows that (because she can see Bill’s number on his forehead)—instead
of {a, b, c} we often write abc. For [ϕ]ψ, read ‘after public announcement of ϕ,
formula ψ (is true)’. For example, after Anne announces “(I know my number.
It is 50.)” it is common knowledge that Bill’s number is 20. This is formalized
as [Ka50a]Cabc20b.

The basic structure is the epistemic model. This is a Kripke structure, or
model, wherein all accessibility relations are equivalence relations. An epistemic

model M = 〈S,∼, V 〉 consists of a domain S of (factual) states (or ‘worlds’),
accessibility ∼ : N → P(S × S), where each ∼ (n) is an equivalence relation,
and a valuation V : P → P(S). For s ∈ S, (M, s) is an epistemic state (also
known as a pointed Kripke model). For ∼ (n) we write ∼n, and for V (p) we
write Vp. Accessibility ∼ can be seen as a set of equivalence relations ∼n, and
V as a set of valuations Vp. Given two states s, s′ in the domain, s ∼n s

′ means
that s is indistinguishable from s′ for agent n on the basis of its information.
For example, at the beginning of the riddle, triples (2, 14, 16) and (30, 14, 16) are
indistinguishable for Anne but not for Bill nor for Cath. Therefore, assuming a
domain of natural number triples, we have that (2, 14, 16) ∼a (30, 14, 16). The
group accessibility relation ∼B is the transitive and reflexive closure of the union
of all accessibility relations for the individuals in B: ∼B ≡ (

⋃
n∈B ∼n)∗. This
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relation is used to interpret common knowledge for group B. Instead of ‘∼B

equivalence class’ (∼n equivalence class) we write B-class (n-class).

For the semantics, assuming an epistemic model M = 〈S,∼, V 〉:

M, s |= p iff s ∈ Vp

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

M, s |= Knϕ iff for all t ∈ S : s ∼n t implies M, t |= ϕ

M, s |= CBϕ iff for all t ∈ S : s ∼B t implies M, t |= ϕ

M, s |= [ϕ]ψ iff M, s |= ϕ implies M |ϕ, s |= ψ

where epistemic model M |ϕ = 〈S ′,∼′, V ′〉 is defined as

S′ = {s′ ∈ S | M, s′ |= ϕ}
∼′

n = ∼n ∩ (S′ × S′)
V ′

p = Vp ∩ S′

The dynamic modal operator [ϕ] is interpreted as an epistemic state transformer.
Announcements are assumed to be truthful, and this is commonly known by all
agents. Therefore, the model M |ϕ is the model M restricted to all the states
where ϕ is true, including access between states. The dual of [ϕ] is 〈ϕ〉: M, s |=
〈ϕ〉ψ iff M, s |= ϕ and M |ϕ, s |= ψ. Formula ϕ is valid on model M , notation
M |= ϕ, if and only if for all states s in the domain of M : M, s |= ϕ. Formula ϕ
is valid, notation |= ϕ, if and only if for all models M : M |= ϕ.

A proof system for this logic is presented, and shown to be complete, in
[8], with precursors—namely for public announcement logic without common
knowledge—in [9, 10]. A concise completeness proof is given in [7]. The logic
is decidable both with and without common knowledge [9, 8]. Results on the
complexity of both logics can be found in [11].

In public announcement logic, not all formulas remain true after their an-
nouncement, in other words, [ϕ]ϕ is not a principle of the logic. Some formulas
involving epistemic operators become false after being announced! For a simple
example, consider that Bill were to tell Anne (truthfully) at the initial setting
of the riddle: “You don’t know that your number is 50.” Using a conversational
implicature this means “(Your number is 50 and) You don’t know that your
number is 50.” This is formalized as 50a ∧ ¬Ka50a. After the announcement,
Anne knows that her number is 50: Ka50a. Therefore the announced formula,
that was true before the announcement, has become false after the announce-
ment. In the somewhat different setting that formulas of form p ∧ ¬Knp cannot
be consistently known this phenomenon is called the Moore-paradox [12, 13]. In
the underlying dynamic setting it has been described as an unsuccessful update

[10, 7]. Similarly, ignorance statements in ‘what is my number’ such as Anne say-
ing that she does not know her number may in due time lead to Anne knowing
her number, the opposite of her ignorance.
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3 Formalization of ‘What is my number’

The set of agents {a, b, c} represent Anne, Bill and Cath, respectively. Atomic
propositions in represent that agent n has natural number i on its forehead.
Therefore the set of atoms is {in | i ∈ N and n ∈ {a, b, c}}—or N

+ instead of
N and/or i ≤ max in case there is an upper bound for the numbers. Given an
upper bound, the property of, e.g., Anne seeing (and therefore knowing) the
numbers of Bill and Cath is described as

∧
y,z≤max

((yb ∧ zc) → Ka(yb ∧ zc)).
The successive ignorance announcements, such as Anne saying: “I don’t know
my number,” are quite simply described, namely as, in this case ¬

∨
x≤max

Kaxa

whereas the more general requirement that Anne now always knows her number
corresponds to the validity of that formula on the epistemic model describing
the problem or, viewed from the perspective of an actual number triple in that
model, the truth of Cabc

∨
x≤max

Kaxa. Without an upper bound for the numbers,
all these properties and announcements have infinitary descriptions which are
not permitted in this (propositional) logic.

The epistemic model T max = 〈S,∼, V 〉 is defined as follows, assuming a range
[0..max] of natural numbers x, y, z. Models T N, T N+, and T max+ are defined
similarly for the corresponding other range; write T when range does not matter.

S ≡ {(x, y, z) | x = y + z or y = x+ z or z = x+ y}
(x, y, z) ∼a (x′, y′, z′) iff y = y′ and z = z′

(x, y, z) ∼b (x′, y′, z′) iff x = x′ and z = z′

(x, y, z) ∼c (x′, y′, z′) iff x = x′ and y = y′

(x, y, z) ∈ Vxa

(x, y, z) ∈ Vyb

(x, y, z) ∈ Vzc

The initial epistemic state of the puzzle can be described by a characteristic
formula for finite interpreted systems [14] (this applies results for characterizing
models formulated in [15, 16]). This presumes that the underlying system is seen
as an interpreted system by regarding the number pair of the other agents as
your own local state value. Up to bisimilarity, a finite model T (T max, or T max+)
is now described by a theory K listing facts, and for each agent knowledge, and
ignorance—we slightly abuse the language in the conjunctions, that are actually
over all local state values, and in the atom names; note that ignorance and
knowledge are given for Anne only; the operator K̂ is the dual of K and stands
for ‘the agent considers it possible that’:

∨
(x,y,z)(xa ∧ yb ∧ zc)∧
(.,y,z)((yb ∧ zc) → Ka(yb ∧ zc))

∧
(.,y,z)((yb ∧ zc) → K̂a(y + z)a ∧ K̂(|y − z|)a)

One now has (as a slight adaptation and application of [14]) that arbitrary ϕ are
valid in T iff they are entailed by K, i.e. T |= ϕ iff K |= ϕ; and that an arbitrary
ϕ is true in an epistemic state for T iff it is entailed by an ‘identifier’ of that
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state and common knowledge of K: T , (x, y, z) |= ϕ iff (xa∧yb∧zc)∧CabcK |= ϕ.
The formula (xa ∧ yb ∧ zc) ∧ CabcK is the characteristic formula, or description,
of the epistemic state (T , (x, y, z)).

The fine-structure of the epistemic model T is not apparent from its formal
definition nor from its characterization. A relevant question is what the back-
ground knowledge is that is available to the agents, i.e., what the abc-classes in
the model are. Such a computation was performed by Panti for the ‘sum and
product’ riddle, which revealed three classes.3 A model for T for ‘what is my
number’ has a different structure, with many more common knowledge classes.
It is therefore quite informative to know what they are. The most elegant case
is T N+.

An abc-class in T N+ is binary tree. The depth of the tree is according to the
order: (x, y, z) > (u, v, w) iff (x > y and y = v and z = w) or (x = u and y > v

and z = w) or (x = u and y = v and z > w). Modulo a permutation of agents
and corresponding permutation of arguments in triples, every node except the
root has one predecessor and two successors, as in Figure 1.

. . .
(|x − y|, x, y)

(x + y, x, y)

(x + y, x + 2y, y) (x + y, x, 2x + y)
. . . . . .

a

b c

Fig. 1. Modulo agent symmetry, all parts of the model T N+ branch as here. Arcs
connecting nodes are labelled with the agent who cannot distinguish those nodes.

The root of each tree has label (2x, x, x) or (x, 2x, x) or (x, x, 2x). An agent
who sees two equal numbers, immediately infers that its own number must be
their sum (twice the number that is seen), because otherwise it would have to
be their difference 0 which is not a positive natural number. It will be obvious
that: the structure truly is a forest (a set of trees), because each node only has a
single parent; all nodes except roots are triples of three different numbers; and all
trees are infinite. All abc-trees are isomorphic modulo (i) a multiplication factor
for the numbers occurring in the arguments of the node labels, and modulo (ii)
a permutation of arguments and a corresponding swap of agents, i.e., swap of
arc labels. For example, the numbers occurring in the tree with root (6, 3, 3) are
thrice the corresponding numbers in the tree with root (2, 1, 1); the tree with
root (2, 1, 1) is like the tree for root (1, 2, 1) by applying permutations (213) to
arguments and (alphabetically ordered) agent labels alike. For more details, see
(the left side of) Figure 3.

3 Either (in two of the three classes) the solution of the problem is already common
knowledge in the initial state, or the agents commonly know that the sum of the
numbers is at least 7 [17].
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In case we start counting at 0, or have an upper bound for the numbers,
the tree may be no longer binary. When starting from 0, each abc-equivalence
class with root (2x, x, x) is extended with one more node, the new root, (0, x, x).
An agent who sees a 0, infers that his number must be the other seen number.
As this always applies to two out of three agents, the root has just one child
(2x, x, x). In this case T N we also have a singleton abc-equivalence class namely
with root (0, 0, 0).

When using an upper bound max, the tree is cut at the depth where nodes
(x, y, z) occur such that the sum of two of the arguments x, y, z exceeds max.
This explains possible other unary branching in a tree namely near the leaves.
For example, node (2, 5, 7) in the abc-class with root (0, 1, 1) has only a b-child
(2, 9, 7) and a c-parent (2, 5, 3), and not an a-child, as 5 + 7 = 12 > max. All
roots (0, x, x) with x > 1

2max are singleton abc-classes in T max (and in T max+).
In such models it is no longer the case that all equivalence classes are ‘similar’
as in T N+. We now have that [(0, x, x)]∼abc

⊆ [(0, y, y)]∼abc
if x ≥ y, modulo a

multiplication factor y

x
, and also that T max(+) ⊆ T max

′(+) if max ≤ max
′.

For an example we describe the epistemic model T 10 in detail. This model is
also used later to illustrate the results of ignorance announcements. To simplify
our notations, a triple (i, j, k) is written as ijk where the number 10 is written
as A, as usual in combinatorics and base-16 arithmetic. All equivalence classes
have a root containing one 0. The abc-equivalence classes with a root where
Anne has a 0 (i.e., form 0xx) are represented by roots 000–0AA; and similar
for x0x and xx0. From those, 000 and 066–0AA are singleton. The class with
root 055 contains one other triple, namely A55, indistinguishable from 055 by
Anne; 044 has some more structure, etc. The most complex class, with root 011,
is displayed in Figure 2, on the left. All other classes in T 10 are therefore similar
to a subtree of this [011]∼abc

.

3.1 Processing Announcements

Announcements result in model restrictions. For each agent n, a n-class is either
singleton or has two elements. An ignorance announcement by agent n in this
riddle corresponds to removal of all singleton n-classes from the epistemic model
T for the riddle, so that the remaining n-classes then consist of two states. Such
ignorance statements therefore never result in common knowledge of all three
numbers: either all states are removed, or multiples of two remain, so that at
least one agent is uncertain about its number. Knowledge statements “I know
my number” also cannot result in common knowledge: such a last remaining
state would have been eliminated as well, as it is a singleton. The singletons
typically occur together as non-branching subtrees that include the root or a
leaf of an abc-class.4 An ignorance announcement may have very different effects
on abc-classes that are the same modulo agent permutations. For example, given

4 We conjecture that they only take that form; i.e., a sequence of announcements in T
cannot result in a model containing an abc-tree that has a node with one child only,
a sibling, and a descendant with two children.
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abc-classes with roots 121, 112, and 211, the effect of Anne saying that she does
not know her number in T N+ only results in elimination of 211, as only the first
abc-class contains an a-singleton. Given 211, Anne knows that she has number 2
(as 0 is excluded). Triple 112 she cannot distinguish from 312, and 121 not from
321. Thus one proceeds with all three announcements. See also Figure 3.

011

211

231 213

431 235 413 253

451 437 835 275 473 415 853 257

297651 459 A37 279 A73 615 495 297

671

871

891

A91

617

817

819

A19

a

b c

a c a b

b c a b b c a c

a c a c a a b b

b

a

b

a

c

a

c

a

011

211

231 213

431 235 413 253

451 437 835 473 415 853

651 A37 A73 615

671

871

891

A91

617

817

819

A19

a

b c

a c a b

b c a b c a

a a a a

b

a

b

a

c

a

c

a

211

231 213

431 413 253

451 473

651

671

871

891

b c

a a b

b b

a

b

a

b

211

213

c

Fig. 2. Successive announcements in the abc-class with root 011 in model T 10. The
horizontal order of branches has no meaning. Symbol A represents 10.

If T ⊆ T ′ and ϕ is a sequence of ignorance announcements executable in both
models, then T |ϕ ⊆ T ′|ϕ. In particular, if max ≤ max

′, then T max|ϕ ⊆ T max
′

|ϕ.
For similar reasons, given a model T max: if x ≤ y, then [0yy]∼abc

|ϕ ⊆ [0xx]∼abc
|ϕ

(discounting a multiplication factor). Both properties facilitate systematic search
for problem solutions.5

For the model T 10, for the abc-class with root 011, the successive model
restrictions by the three ignorance announcements are visualized in Figure 2.
After those announcements, the triples 211 and 213 remain. This expresses that
in case either of these is the actual number, Anne and Bill now know their
numbers but Cath remains uncertain. But there are other equivalence classes to
take into account, so this does not prove yet that Anne now always knows her
number. We have now sufficient background to solve all versions of the riddle in
quick succession.

5 For arbitrary M ′ ⊆ M and ϕ we do not have that M ′|ϕ ⊆ M |ϕ. Given agents a, b and
state variables p, q (in 10 p is true and q is false) consider the (two-state) model M ′ =
11—a—10, which is a restriction of the (three state) model M = 11—a—10—b—01.
Consider ϕ = Kbq ∨ Kb¬q, for ‘Bill knows whether q.’ Then M ′|ϕ = M ′, whereas
M |ϕ is the singleton model consisting of state 11 wherein a and b have common
knowledge of p and q. Therefore M ′ ⊆ M but M ′|ϕ 6⊆ M |ϕ.
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3.2 Solving the riddle

Anne knows x = 50, given 1 ≤ x Three announcements cannot reduce
a binary tree to a depth larger than three. We reduce the three classes with
roots 011, 101, and 110, restricted to that depth, determine the nodes wherein
Anne knows the numbers, and from which of those Anne’s number divides 50.
See Figure 3—note that triple 835 is indistinguishable for Anne from (12, 7, 5),
further down the tree. The unique triple wherein Anne’s number divides 50 is
523. Therefore, the solution is that Bill has 20 and Cath has 30, as the triple
(50, 20, 30) remains after the three announcements in the abc-class with root
(10, 20, 10).

211

231 213

431 235 413 253

451 437 835 275 473 415 853 257. . . . . . . . . . . . . . . . . . . . . . . .

b c

a c a b

b c a b b c a c

431 413 253

451 437 835 275 473 415 853 257. . . . . . . . . . . . . . . . . . . . . . . .

b c b c a c

121

321 123

341 325 143 523

541 347 385 725 743 145 583 527. . . . . . . . . . . . . . . . . . . . . . . .

a c

b c b a

a c b a a c b c

321

341 325 143 523

541 347 385 725 743 145 583 527. . . . . . . . . . . . . . . . . . . . . . . .

b c

a c b a a c b c

112

132 312

134 532 314 352

154 734 538 572 374 514 358 752. . . . . . . . . . . . . . . . . . . . . . . .

b a

c a c b

b a c b b a c a

132 312

134 532 314 352

154 734 538 572 374 514 358 752. . . . . . . . . . . . . . . . . . . . . . . .

c a c b

b a c b b a c a

Fig. 3. The results of three ignorance announcements on the abc-classes of the model
T N+. The triples in bold are those where Anne knows her number.

Anne knows x = 51, given 1 ≤ x Using Figure 3 again, we now determine
the triples wherein Anne knows her number and it divides 51. This time, there
is no unique such triple but both 321 and 312 satisfy the constraint. This means
that, if Anne knows that she has 51, the other numbers must be 17 and 34 – but
it is not known whether Bill has 17 and Cath 34, or the other way round. The
original riddle could have been more restrictive: in the quoted version [1] it is
not required to determine who holds which other number, but this can also be
determined.

Wasn’t the ‘51’ version of the riddle for numbers 0 ≤ x, that is, including
0? Yes. But also in this case the other numbers must be 17 and 34. If we add
root nodes 011, 101, and 110 to the abc-classes in Figure 3, the latter two result
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in the same restrictions after the announcements, but the class with root 011
results in the top-left structure in the figure, as now only the b-announcement is
informative, by eliminating root 011. And in triple 211, where Anne knows the
numbers, 2 does not divide 51.

In the case of T N+, the infinite number of x’s wherein the other numbers can
be determined after Anne announces that her number is x, are such that only

one of {3, 4, 5} divides x (excluding 1 and—unless in that set—x), and 8 does
not divide x. Similarly, in the case of T N, all x such that only one of {2, 3, 5}
divides x, and 4 does not divide x.

Anne knows the numbers, given 0 ≤ x ≤ 10 The number 10 is in
the range of max for which Anne always knows the numbers after the three
announcements. We explain the solution for this case, and then proceed with
the case of an arbitrary finite upper bound.

We have already seen, in Figure 2, that from abc-class with root 011 the triples
211 and 213 remain. Similar computations show that from the abc-classes with
root 101 and 110 no triples remain. In other words, the announcements could
not all three have been made (truthfully) if the number triple occurs in either of
those two classes. Using the properties of inclusion for different abc-classes, we
have now ruled out all classes of type x0x and xx0 and only have to check other
classes of type 0xx. From class 022, the triples 242 and 246 remain after the
three announcements. Therefore, whatever the numbers, Anne now knows her
number. But the problem solver cannot determine what that number is (it may
be 1, or it may be 2) and also cannot determine what the other numbers are,
not even if it is also known what Anne’s number is (if it is 1, the other numbers
may be 2 and 1, or 2 and 3; and similarly if it is 2). Note that Bill also always
knows the numbers after the three announcements, but not Cath.

Anne knows the numbers, given 0 ≤ x ≤ max The further question
was for which values of max, apparently including max = 10, Anne always knows
the numbers after the three announcements. The answer to this question is:
8 ≤ max ≤ 13. This means that if max = 7, the three announcements cannot
be made (without lying). And if max = 14, it is not always the case that Anne
knows her number: if Bill has 1 and Cath has 3, Anne cannot determine whether
her number is 2 or 4; 213 and 413 are in that case the only two triples where
Anne is still uncertain. If max > 11, it is no longer the case that also Bill always
knows his number. If max = 8, and only for that value, the problem solver is
also able to determine Anne’s number: it is 2. The only remaining triples in this
case are 211 and 213.

4 Verification of epistemic riddles

With epistemic model checkers we may verify properties of interpreted systems,
knowledge-based protocols, and various other multi-agent systems. The model
checkers MCK [18] and MCMAS [19] use the interpreted systems architecture,
and exploration of the search space is based on ordered binary decision dia-
grams; other recent work includes [20]. The model checker DEMO [2] (written
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module SUMXYZ
where

import DEMO
upb = 10
-- triples (x,y,z) with x,y,z <= upb, x = y+z or y = x+z or z = x+y

triplesx = [(x,y,z)|x<-[0..upb], y<-[0..upb], z<-[0..upb], x==y+z]
triplesy = [(x,y,z)|x<-[0..upb], y<-[0..upb], z<-[0..upb], y==x+z]

triplesz = [(x,y,z)|x<-[0..upb], y<-[0..upb], z<-[0..upb], z==x+y]
triples = triplesx ++ triplesy ++ triplesz

-- associating states with number triples
numtriples = llength(triples)
llength [] =0

llength (x:xs) = 1+ llength xs
itriples = zip [0..numtriples-1] triples

-- initial multi-pointed epistemic model
three :: EpistM
three = (Pmod [0..numtriples-1] val acc [0..numtriples-1])

where
val = [(w,[P x, Q y, R z]) | (w,(x,y,z))<- itriples]

acc = [(a,w,v)| (w,(x1,y1,z1))<-itriples, (v,(x2,y2,z2))<-itriples, y1==y2, z1==z2]++
[(b,w,v)| (w,(x1,y1,z1))<-itriples, (v,(x2,y2,z2))<-itriples, x1==x2, z1==z2]++

[(c,w,v)| (w,(x1,y1,z1))<-itriples, (v,(x2,y2,z2))<-itriples, x1==x2, y1==y2]
-- agents a,b,c say (respectively): I do not know my number x,y,z
fagxnot = Conj [(Disj[Neg (Prop (P x)), Neg (K a (Prop (P x))) ])|x <-[0..upb]]

aagxnot = public (fagxnot)
fagynot = Conj [(Disj[Neg (Prop (Q y)), Neg (K b (Prop (Q y))) ])|y <-[0..upb]]

aagynot = public (fagynot)
fagznot = Conj [(Disj[Neg (Prop (R z)), Neg (K c (Prop (R z))) ])|z <-[0..upb]]

aagznot = public (fagznot)
-- model restriction resulting from the three announcements
solution = showM (upds three [aagxnot, aagynot, aagznot])

Fig. 4. The DEMO program SUMXYZ.hs

in Haskell) implements the ‘action model’ logic of [8], wherein also more com-
plex actions than public announcements can be described. Public announcements
correspond to semantic objects called (singleton) action models. With the excep-
tion of dynamic modal operators, the syntax of DEMO is very much like public
announcement logic. The inductive constructs Top | Prop Prop | Neg Form |

Conj [Form] | Disj [Form] | K Agent Form | CK [Agent] Form correspond
to counterparts >|p|¬ϕ|ϕ ∧ . . . ∧ ϕ|ϕ ∨ . . . ∨ ϕ|Knϕ|CBϕ.

The action model for a public announcement is created by a function public

with the announced formula as its argument. An action model is a datatype
PoAM, for pointed action model. The update operation is specified as a function
upd :: EpistM -> PoAM -> EpistM. This corresponds to computing (M |ϕ, s)
from a given (M, s) and an announcement ϕ. The function upds :: EpistM ->

[PoAM] -> EpistM performs a sequence of updates.

The DEMO program SUMXYZ.hs, displayed in Figure 4, implements the ‘what
is my number’ problem for upper bound max = 10. The list triples corresponds
to the set of possible triples (x, y, z) for the given bound 10. The next part of the
program constructs the domain based on that list: this merely means that each
member of the list must be associated with a state name. State names must be
consecutive numbers, counting from 0. The initial model T 10 is then represented
as three in the program. The expression (Pmod [0..numtriples-1] val acc
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[0..numtriples-1]) defines three as an epistemic model (Pmod), with domain
[0..numtriples-1], valuation val, a set (list) of accessibility relations acc

(and [0..numpairs-1] points—left unexplained here). In val we find for exam-
ple (67,[p6, q8, r2]) which says that state number 67 corresponds to triple
(6, 8, 2). Given (43,[p10, q8, r2]) we now find (a,43,67) in acc.

Anne’s announcement that she does not know her number is represented as
the action model aagxnot constructed from the announcement formula fagxnot

by the function public. The formula fagxnot specifies (disjunctively) that what-
ever x is—x <-[0..upb]—if Anne has it she does not know it—(Disj[Neg

(Prop (P x)), Neg (K a (Prop (P x))) ]) corresponds to ¬xa∨¬Kaxa. The
final line in the program asks to display the results of the three ignorance an-
nouncements.

5 Design of epistemic puzzles

A puzzle such as ‘what is my number’ is ‘fun’ if it is not too easy, and not too
complex. The complexity of Kripke models is typically a function of the num-
ber of possible worlds and the number of pairs in the relation. This does not
take into account other available structure. For epistemic models, the number of
equivalence classes in the partition seems more appropriate as a measure than
the number of pairs in the corresponding equivalence relation, e.g., the univer-
sal relation contains the maximum number of pairs, but does not partition the
domain—clearly it is less and not more complex than most other partitions even
though these consist of fewer pairs. There is yet more structure to take into
account: how do we represent that in ‘what is my number’ it is sufficient to
consider only one of many equivalence classes? The focus of such investigations
are somewhat different from those on the complexity of (real) imperfect infor-
mation game tree search [21, 22], although there is overlap with epistemic games
wherein both the complexity of the game state and of the game tree play a part.
A relevant observation for the link with ‘what is my number’ is that in the card
game of Cluedo the complexity of the epistemic models as measured in terms
of states and accessibility does not increase—though barely so: the factor is 9

21
[7]. Insight into the relation between game playability and game complexity may
help to design new, exciting, epistemic puzzles.

6 Conclusions

We presented a new epistemic riddle, defined some versions, and solved it with
the use of public announcement logic and epistemic model checking. Crucial in
the analysis was to model the riddle as an interpreted system, and to focus on
the description of the background knowledge, i.e., abc-equivalence classes of the
epistemic model. We also specified and verified the riddle in the model checker
DEMO. Logic puzzle design could benefit from similar future efforts, including
results from complexity analysis.
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