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Abstract

We propose an epistemic logic incorporating dynamic operators to describe information
changing events, both informative actions, where agents become more informed about the
non-changing state of the world, as ontic changes, wherein the world and the facts describ-
ing it change themselves as well. A complete axiomatisation is provided. There are some
independent semantic results, for example that assignments in programs can be restricted to
those to false or true only. We apply the logic to model systems for card deals and to model
protocols.

1 Introduction

In dynamic epistemic logics [27] one does not merely describe the static (knowledge and) beliefs
of agents but also dynamic features: how does belief change as a result of events taking place.
The main focus of such logics has been change of only belief, whereas the facts describing the
world remain the same. Change of belief is known as epistemic change, or information change.
Alternatively or additionally, one can model change of facts, and the resulting consequences of
such factual changes for the beliefs of the agents. Change of facts is also known as ontic change
(change of the real world, so to speak). From the somewhat different perspective of the areas of
artificial intelligence and belief revision, epistemic and ontic change correspond to, respectively,
revising [1] and updating [12] beliefs. Change, revision, action, ontic,... there is much overlapping
terminology around. In this contribution we use ‘event’ (and its formal counterpart ‘update’), to
denote any sort of change, both epistemic and ontic. Let us begin by a simple example involving
various events.

Example 1 Given are two players Anne and Bill. Anne shakes a cup containing a single coin
and deposits the cup upside down on the table (there are no opportunities for cheating). Heads
or tails? Let atomic proposition p stand for ‘the coin lands heads’. Initially, we have a situation
wherein both Anne (a) and Bill (b) are uncertain about p. This is represented by a two-state
epistemic model with domain {1, 0}, with universal access for a and b, and with V (p) = {1}. A
player may observe whether the coin is heads or tails, and/or flip the coin, and with or without
the other player noticing that. Four detailed events are as follows.

1. Anne lifts the cup and looks at the coin. Bill observes this but is not able to see the coin.
(All the previous is common knowledge.)

2. Anne lifts the cup and looks at the coin without Bill noticing that.

3. Anne lifts the cup, looks at the coin, and ensures that it is tails (by some sleight of hand).
Bill observes Anne looking but is not able to see the coin; he considers it possible that Anne
may have flipped the coin to tails (and this is common knowledge).
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4. Bill flips the coin (without seeing it). Anne considers that possible (and this is common
knowledge).

Events 1, 3, and 4 are all public in the sense that the actual state of the world is considered
possible by both agents, and that both agents know that, and know that they know that, etc.;
whereas event 2 is private: Bill is unaware of the action. Events 3 and 4 involve ontic change,
whereas events 1 and 2 only involve epistemic change. We will later model these examples in the
logical language. a

Dynamic modal operators for ontic change, in addition to similar operators for epistemic
change, have been suggested in various recent publications. As far as we know it was first men-
tioned by Baltag, Moss, and Solecki as a possible extension to their action model logic (for epistemic
change), in [4]. This was by example only and without a language or a logic. A precise quotation
of all these authors say on ontic change may be in order:

Our second extension concerns the move from actions as we have been working them
to actions which change the truth values of atomic sentences. If we make this move,
then the axiom of Atomic Permanence1 is no longer sound. However, it is easy to
formulate the relevant axioms. For example, if we have an action α which effects the
change p := p∧¬q, then we would take an axiom [α]p ↔ (PRE(α) → p∧¬q). Having
made these changes, all the rest of the work we have done goes through. In this way,
we get a completeness theorem for this logic. [4, p.24]

The logic that we present here is a realization of their proposal, although it is unclear to us
if the authors correctly assessed the required theoretical and modelling effort when stating “all
the rest (...) goes through”. In a later proposal by Baltag [2] a fact changing action flipP is
proposed that changes (‘flips’) the truth value of an atom P , with accompanying axioms (for the
proper correspondent action α resembling a single-pointed action model) [α]p ↔ (pre(α) → ¬p)
if “p changes value (flips) in α”, and otherwise [α]p ↔ (pre(α) → p) [2, p.29]. The approach is
restricted to ontic change where the truth value of atoms flips. In the concluding section of [2],
the author defers the relation of this proposal to a general logic of ontic and epistemic change to
the future.

More recently, in a MAS application-driven line of research [26, 25] assignments are added to
the relational action language of [22] but without providing an axiomatization. In this setting
only change of knowledge is modelled and not change of belief, i.e., such actions describe transfor-
mation of S5 models only, such as Kripke models corresponding to interpreted systems. A line of
research culminating in [21] also combines epistemic and ontic change. This should not be seen
as dynamic epistemics (epistemic logic, with dynamic operators corresponding to the execution
of epistemic programs) but rather as epistemic dynamics (dynamic logic, in an epistemic inter-
pretation), namely PDL extended with dynamic operators for action models. Our treatment of
postconditions, also called substitutions, is the same as in [21]; unlike them, we focus on specific
semantic results and applications, and, as said, we use a dynamic epistemic ‘dialect’. On the
whole, their treatment is much more general. A recent contribution on combining public ontic
and epistemic change, including detailed expressivity results for different combinations of static
and dynamic modalities, is found in [13]; our work uses a similar approach to ontic events but
describes more complex than public events. Finally, a general dynamic modal logic is presented in
[17], where ontic changes are also studied. The semantics of this logic uses tree-like structures for
its semantics, and fixed points are introduced in the language to be able to reason about updates.

An independent recent line of investigation combining epistemic with ontic change arises from
the belief revision community. Modelling belief revision, i.e., epistemic change, by dynamic op-
erators is a old idea going back to Van Benthem [19]. (In fact, this is one of the two original
publications—together with [16]—that starts the area of dynamic epistemic logic. For an overview
of such matters see [5, 24, 27].) But modelling ontic change—known as belief update [12]—in a
similar, dynamic modal, way, including its interaction with epistemic change, is only a recent

1I.e.: [α]p ↔ (PRE(α) → p) [4, p.15]

2



focus of ongoing research by Herzig and collaborators [11, 10]. Their work sees the execution of
an event as so-called progression of information, and reasoning from a final information state to
a sequence of events realizing it as regression—the last obviously relates to planning. The focus
of progression and regression is the change of the theory describing the information state, i.e. the
set of all true, or believed, formulas. See as well [14], a setting also involving degrees of belief.

In this contribution we combine ontic and epistemic change, as in [13], but for the full generality
of arbitrarily complex events, such as exchange of cards among subgroups of the public, and other
events with a ‘private’ (as opposed to public) character. A novel feature, also present in [13, 21]
but not in [4], is to define assignments / postconditions (expressing ontic change) concurrently for
a finite subset of atomic propositional letters. Various semantic results, probably just as applicable
to other ‘dialects’ of action languages, form a major part of our contribution. These results are
that: for all finite models and for all consistent formulas we can construct an event that ‘realizes’
the formula, i.e., makes the formula true; and that: arbitrary events (with assignments of form
p := ϕ for ϕ in the language) correspond to events with assignments to true and false only; and
also that: arbitrary events correspond to events with assignments for a single atom only. We
provide a full axiomatization of the logic. This had best be seen as an alternative presentation
of the completeness proof in [4], including extensions to handle assignments. We then apply the
logic to model the dynamics of two different multi-agent systems: various actions involving seeing,
showing, and trading cards; and a protocol to solve the ‘one hundred prisoners and a lightbulb’
problem.2 We deem the applications a substantial part of our contribution.

In Section 2 we define structures representing knowledge (and belief), and similar structures
representing events combining epistemic and ontic change. In Section 3 we define the logic for
those events. Subsection 3.1 provides the axiomatization of the logic, and is followed by subsections
with semantic observations of specific interest, as mentioned above. Details on the completeness
proof in the appendix. The applications are in Section 5.

2 Updates formalizing epistemic and ontic change

The models which adequately present an information state in a multi-agent environment are Kripke
models from epistemic logic. The set of states together with the accessibility relations represent
the information the agents have. If one state s has access to another state t for an agent a, this
means that, if the actual situation is s, then according to a’s information it is possible that t is
the actual situation.

Definition 2 (Epistemic model) Let a finite set of agents A and a countable set of proposi-
tional variables P be given. An epistemic model is a triple M = (S,R, V ) such that

• S is a non-empty set of possible states,

• R : A → ℘(S × S) assigns an accessibility relation to each agent a,

• V : P → ℘(S) assigns a set of states to each propositional variable.

A pair (S,R) is called an epistemic frame. A pair (M, s), with s ∈ S, is called an epistemic state.3

a
2In Section 5.2 we pose and then straightaway solve the riddle. For those who do not know it but want to

ponder it first: A group of 100 prisoners, all together in the prison dining area, are told that they will be all put
in isolation cells and then will be interrogated one by one in a room containing a light with an on/off switch. The
prisoners may communicate with one another by toggling the light-switch (and that the only way in which they
can communicate). The light is initially switched off. There is no fixed order of interrogation, or interval between
interrogations, and the same prisoner may be interrogated again at any stage. When interrogated, a prisoner
can either do nothing, or toggle the light-switch, or announce that all prisoners have been interrogated. If that
announcement is true, the prisoners will (all) be set free, but if it is false, they will all be executed. While still in
the dining room, and before the prisoners go to their isolation cells (forever), can the prisoners agree on a protocol
that will set them free?

3‘Epistemic state’ in our sense is not to be confused with the set of worlds/states indistinguishable for a given
agent from a given state, i.e., R(a)(s) = {t | (s, t) ∈ R(a)}. This set R(a)(s) is also commonly called an epistemic
state. We call that the set of reachable states, or, in the case of KD45 or S5-agents, the epistemic class.
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An epistemic model represents the information of the agents. Information change should therefore
be modelled as changes of such a model. There are three variables. One can change the set of
states, the accessibility relations and the valuation. It may be difficult to find the exact change
of these variables that matches a certain description of an information changing event. It is often
easier to think of such an event separately. One can model an information changing event in the
same way as an information state, namely as some kind of Kripke model: there are various possible
events, which the agents may not be able to distinguish. This is the domain of the model. Rather
than a valuation, a precondition captures the conditions under which such events may occur. Such
a Kripke model for events is called an update model.

Definition 3 (Update model) An update model for a finite set of agents A and a language L

is a quadruple U = (E,R, pre, post) where

• E is a finite non-empty set of events,

• R : A → ℘(E × E) assigns an accessibility relation to each agent,

• pre : E → L assigns a precondition to each event,

• post : E → (P ⇀ L ) assigns a partial substitution with a finite domain to each event. This
is called the postcondition of that event.

A pair (U, e) with a distinguished actual event e ∈ E is called an update. a

Instead of

pre(e) = ϕ and post(e)(p1) = ψ1, ... and post(e)(pn) = ψn

we also write

given event e, if ϕ, then p1 := ψ1, ..., and pn := ψn.

The event e with pre(e) = > and post(e) = ∅ we name skip. This stands for ‘nothing happens’
(except a ‘tick of the clock’). An update with a singleton domain, accessible to all agents, and
precondition >, is a (public) assignment. An update with a singleton domain, accessible to all
agents, and empty postconditions, is a (public) announcement.

The finite domain restriction on postconditions is needed because we will, in Section 3, propose
updates (U, e) as primitives in the logical language (similar to adding automata to PDL). Without
that restriction updates are infinitary constructs if P is infinite. Still, it is occasionally more
convenient to present the postcondition function for a given event as a total function. We therefore
propose to abuse the language and also write post(e)(p) = p if p 6∈ dom(post), thus informally
treating post(e) as a total function.

Example 4 The events of Example 1 on page 1 can be visualized as the following updates.
Assume reflexivity and symmetry of access for a and b in all visualizations except for item 2
wherein all access is explicit. The coin is heads when p is true. The actual state is underlined.

1. Anne lifts the cup and looks at the coin. Bill observes this but is not able to see the coin.

p npb

Here, pre(p) = p, post(p) = ∅, pre(np) = ¬p, post(np) = ∅.

2. Anne lifts the cup and looks at the coin without Bill noticing that.

p skipba a, b

Event p is as in the previous item and skip is as above.
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1 0a, ba, b a, b

×

p skipba a, b

(1, p)

(1, skip) (0, skip)

b b

b

a

a, b a, b

Figure 1: In an epistemic state where Anne and Bill are uncertain about the truth of p (heads or
tails), and wherein p is true, Anne looks at the coin without Bill noticing it. The actual states are
underlined.

3. Anne lifts the cup, looks at the coin, and ensures that it is tails. Bill observes Anne, and
considers it possible that she does nothing and also that Anne ensures tails.

p np

p′ np′

b

b

b b

Events p and np are as before, whereas pre(p′) = p, post(p′)(p) = ⊥, pre(np′) = ¬p,
post(np′)(p) = ⊥. Note that the event where Anne ensures an outcome (but not neces-
sary ‘tails’) would correspond to yet another update, namely one consisting of six different
events.

4. Bill succeeds in flipping the coin under the cup (without seeing it) – Anne considers that
possible.

n skipa

Where pre(n) = >, post(n)(p) = ¬p, and skip as before. a

Now that we have a way of modelling updates, we want to determine what the effects of these
information changing events are on an information state. This is given by the following definition—
Figure 1 gives an example of such update execution.

Definition 5 (Execution) Given are an epistemic model M = (S,R, V ), a state s ∈ S, an
update model U = (E,R, pre, post) for a language L that can be interpreted in M , and an event
e ∈ E with (M, s) |= pre(e). The result of executing (U, e) in (M, s) is the model (M ⊗U, (s, e)) =
((S′, R′, V ′), (s, e)) where

• S′ = {(t, f) | (M, t) |= pre(f)},

• R′(a) = {((t, f), (u, g)) | (t, u) ∈ R(a) and (f, g) ∈ R(a)},

• V ′(p) = {(t, f) | (M, t) |= post(f)(p)}. a

3 The logic of ontic and epistemic change

The models from the previous section can be used to define a logic for reasoning about information
change. An update is associated with a dynamic operator in a modal language, based on epistemic
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logic. Unlike above, where they introduced relative to a given logical language, the updates are
now part of the language: an update (U, e) is an inductive construct of type α that should be
seen as built from simpler constructs of type ϕ, namely the preconditions and postconditions
for the events of which the update consists. Note that only for only a finite number of atoms
postconditions are given, otherwise updates would be infinitary language constructs. Because
updates are part of the language, we also restrict ourselves to finite update models because they
would otherwise still be infinitary.

Definition 6 (Language) Let a finite set of agents A and a countable set of propositional vari-
ables P be given. The language L is given by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [α]ϕ
α ::= a | B+ | (U, e)

where U is a finite update model for A and L . We use the usual abbreviations. a

The semantics of this language is standard for epistemic logic and based on the product construc-
tion for the execution of update models from the previous section. Below, R(B)+ is the transitive
closure of the union of all accessibility relations R(a) for agents a ∈ B.

Definition 7 (Semantics) Let a model (M, s) with M = (S,R, V ) be given. Let a ∈ A, B ⊆ A,
and ϕ, ψ ∈ L .

(M, s) |= p iff s ∈ V (p)
(M, s) |= ¬ϕ iff (M, s) 6|= ϕ

(M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ

(M, s) |= [a]ϕ iff (M, t) |= ϕ for all t such that (s, t) ∈ R(a)
(M, s) |= [B+]ϕ iff (M, t) |= ϕ for all t such that (s, t) ∈ R(B)+

(M, s) |= [U, e]ϕ iff (M, s) |= pre(e) implies (M ⊗ U, (s, e)) |= ϕ

Definition 8 (Composition of update models) Let two update models U = (E,R, pre, post)
and U′ = (E′,R′, pre′, post′) and two events e ∈ E and e′ ∈ E′ be given. The composition
(U, e) ; (U′, e′) of these update models is (U′′, e′′) where U′′ = (E′′,R′′, pre′′, post′′) is defined
as follows

• E′′ = E × E′,

• R′′(a) = {((f, f ′), (g, g′)) | (f, g) ∈ R(a) and (f ′, g′) ∈ R′(a)},

• pre′′(f, f ′) = pre(f) ∧ [U, f]pre′(f ′),

• dom(post′′(f, f ′)) = dom(post(f)) ∪ dom(post′(f ′)) and if p ∈ dom(post′′(f, f ′)), then

post′′(f, f ′)(p) =

{

post(f)(p) if p 6∈ dom(post′(f ′)),
[U, f]post′(f ′)(p) otherwise.

The occurrence of [U, f]post′(f ′)(p) in the final clause will become clear in the proof of the following
proposition.

Proposition 9 |= [U, e][U′, e′]ϕ↔ [(U, e) ; (U′, e′)]ϕ a

Proof Let (M, t) be arbitrary. To show that (M, t) |= [(U, e) ; (U′, e′)]ϕ if and only if (M, t) |=
[U, e][U′, e′]ϕ, it suffices to show that M ⊗ (U ; U′) is isomorphic to (M ⊗ U) ⊗ U′).

Domain Let (t, (e, e′)) ∈ dom(M ⊗ (U ; U′)). We then have that (M, t) |= pre′′((e, e′)),
i.e., M, t |= pre(e) ∧ [U, e]pre′(e′), i.e., M, t |= pre(e) and M, t |= [U, e]pre′(e′). From M, t |= pre(e)
follows that (t, e) ∈ dom(M ⊗U), and from that and M, t |= [U, e]pre′(e′) follows that ((t, e), e′) ∈
dom((M ⊗ U) ⊗ U′). The argument runs both ways.
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all instantiations of propositional tautologies
[α](ϕ → ψ) → ([α]ϕ → [α]ψ) distribution
From ϕ and ϕ → ψ, infer ψ modus ponens
From ϕ, infer [α]ϕ necessitation
[U, e]p↔ (pre(e) → poste(p)) update and atoms
[U, e]¬ϕ↔ (pre(e) → ¬[U, e]ϕ) update and negation
[U, e](ϕ ∧ ψ) ↔ ([U, e]ϕ ∧ [U, e]ψ) update and conjunction
[U, e][a]ϕ↔ (pre(e) →

∧

(e,f)∈R(a)[a][U, f]ϕ) update and knowledge

[U, e][U′, e′]ϕ ↔ [(U, e); (U′, e′)]ϕ update composition
[B+]ϕ→ [B](ϕ ∧ [B+]ϕ) mix
[B+](ϕ → [B]ϕ) → ([B]ϕ → [B+]ϕ) induction axiom
Let (U, e) be an update model and let a set
of formulas χf for every f such that (e, f) ∈
R(B)+ be given. From χf → [U, f]ϕ and (χf ∧
pre(f)) → [a]χg for every f ∈ E, a ∈ B and
(f, g) ∈ R(a), infer χe → [U, e][B+]ϕ.

updates and
common knowledge

Table 1: The proof system UM.

Accessibility ((t, (e, e′)), (t1, (e1, e
′
1))) ∈ R(a) iff ( R(a)(t, t1) andR(a)(e, e1) andR(a)(e′, e′1) )

iff R(a)(((t, e), e′), ((t1, e1), e
′
1)).

Valuation For the valuation of facts p in the domain of post′′ we distinguish the cases (
p ∈ dom(post(e)) but p 6∈ dom(post′(e′)) ) (i), and otherwise (ii). The valuation of a i-atom in a
triple (t, (e, e′)) is post(e)(p) according to the definition of updates composition; and the valuation
of a ii-atom is [U, e]post′(e′). Consider the corresponding triple ((t, e), e′). The valuation of an
i-atom in (t, e) is post(e)(p), and because p does not occur in dom(post′(e′)) its value in the triple
((t, e), e′) will remain the same. For a ii-atom, its final value will be determined by evaluating
post′(e′)(p) in ((M ⊗ U), (t, e)). This corresponds to evaluating [U, e]post′(e′)(p) in (M, t).

For examples we refer to the applications in Section 5.

3.1 Proof system and completeness

A proof system UM for the logic is given in Table 1. The proof system is a lot like the proof
system for the logic of epistemic actions in [4]. There are two differences. The axiom ‘atomic
permanence’ in [4]—[U, e]p ↔ (pre(e) → p)—is now instead an axiom expressing when atoms are
not permanent, namely how the value of an atom can change, according to the postcondition for
that atom:

[U, e]p↔ (pre(e) → poste(p)) update and atoms

The second difference is not apparent from Table 1. The axiom

[U, e][U′, e′]ϕ↔ [(U, e) ; (U′, e′)]ϕ update composition

that also occurs in [4] now instead uses Definition 8 to compute that composition, a more complex
construction than the composition of action models with only preconditions. We find it remarkable
that these are the only differences: the interaction between postconditions for an atom and the
logical operators, only occurs in the axiom where that atom is mentioned, or implicitly, whereas
the interaction between preconditions and the logical operators appears in several axioms and
rules.

The proof system is sound and complete. The soundness of the ‘update and atoms’ axiom is
evident. The soundness of the ‘composition of update models’ axiom was established in Propo-
sition 9. The completeness proof is an inessential variant of the proof in [4]. We were therefore
uncertain if it would be informative to the reader. We have chosen to include the full proof in the
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Appendix on page 22. Our considerations to include it, were (i) to make explicit some technical
differences between our proof (finite closure sets, and numerical complexity) and [4] (filtration,
and lexicographic order); (ii) to let the reader determine exactly where postconditions play a role
in the proof, and (iii) the regrettable circumstance that [4], although a publicly available report,
has not been published in a journal: the semantics of action model logic has found its final form
in [3], but the presentation of the completeness results and various expressivity results are still
work in progress (personal communication). We continue with some details on points (i) and (ii)
above.

(i) Our method to establish completeness builds a finite model satisfying a given formula, that
consists of maximal consistent subsets of a Fischer-Ladner-like closure of that formula. Instead,
[4] use a filtration technique on an (possibly) infinite model of maximal consistent sets. This
is not a big difference. Baltag et al. [4, p.29] use a lexicographic path order wherein, in simple
words, dynamic parts of the language (‘updates’) are more complex than the static parts of the
language (‘formulas’). Formulas in the language can be rewritten to certain ‘normal forms’ of
lower complexity in this lexicographic path order. Instead, we use a direct numerical complexity on
formulas in the finite closure, with essential clause c([U, e]ϕ) = (4+c(U))·c(ϕ), see Definition 26, on
page 26. This complexity plays a role in Truth Lemma 28, on page 28. The same complexity is used
in the textbook [27] to prove completeness of public announcement logic and action model logic,
and the number 4 in (4+c(U)) is the minimum natural number that achieves the result. This may
be considered an interesting simplification compared to a completeness proof with lexicographic
orders. But the essential contribution of [4] is of course the derivation rule ‘updates and common
knowledge’ and its role in the proof: we copied the exact approach of [4] in that matter.

(ii) The postconditions play a role in the various parts of the completeness proof. The closure
set cl(ϕ) of a formula ϕ is the finite set of formulas that are ‘relevant’ for the construction of the
canonical model for ϕ. Clearly, if ϕ contains a subformula of the form [U, e]ψ we expect the
postconditions of events in the domain of U to reappear in closure cl(ϕ) in some form. It appears
in the basic clause of the closure definition: ‘if [U, e]p ∈ cl(ϕ) then (pre(e) → post(e)(p)) ∈ cl(ϕ),
see Definition 19 on 22. Similarly, we expect the postconditions to turn up when measuring the
complexity of formulas. The inductive proof of the truth lemma for the logic is by induction on the
complexity of formulas (in the closure set). It is derivable that c([U, e]p) > c(pre(e) → poste(p)),
see Lemma 26, item 2, on page 26. These are the only parts of the completeness proof where
postconditions occur.

4 Semantic results

The following subsections present some semantic peculiarities of the logic. They may be helpful
in relating this approach to other and existing approaches combining ontic and epistemic change,
and may further be helpful (different ‘normal forms’ are defined) towards future tool development.

4.1 Arbitrary belief change

Let (M, s) and (M ′, s′) be arbitrary finite epistemic states for the same set of atoms and agents,
with M = (S,R, V ) and M ′ = (S′, R′, V ′). Surprisingly enough, there is ‘almost always’ an
update transforming the former into the latter. ‘Almost always’: there are two constraints, both
of a somewhat technical nature. Firstly, for the set of agents with non-empty access in M ′ there
must be a submodel of M containing actual state s that is serial for those agents. In other words
(slightly less precise), if an agent initially believes everything (‘is crazy’) you cannot change his
beliefs, but otherwise you can. This seems reasonable. Secondly, M and M ′ should only differ
in the value of a finite number of atoms (called the relevant atoms for this purpose). This is
required, because we can only change a finite number of atoms in the postconditions. This also
seems reasonable: as both models are finite, the agents can only be uncertain about the value
of a finite number of atoms (in the combined models M and M ′); in other words, they are ‘not
interested’ in the value of the remaining atoms.
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For presentation purposes we initially assume that all agents consider the actual state s of M
a possibility (as in all S5 models, such as Kripke models representing interpreted systems), thus
satisfying the first of the two constraints above: the serial submodel required is then the singleton
model consisting of s, accessible to all agents. The update transforming (M, s) into (M ′, s′) can
be seen as the composition of two intuitively more appealing updates. That will make clear how
we can also describe the required update in one stroke.

In the first step we get rid of the structure of M . As the epistemic state (M, s) is finite, it has
a characteristic formula δ(M,s) [6, 20]. We let the agents publicly learn that characteristic formula.
This event is represented by the singleton update (U, e) defined as

(({e},R, pre, post), e) with pre(e) = δ(M,s), for all a : (e, e) ∈ R(a), and post(e) = ∅

In other words, the structure of the current epistemic state is being publicly announced. The
resulting epistemic state is, of course, also singleton, or bisimilar to a singleton epistemic state, as
δ(M,s) holds in all states in M bisimilar to s. (For the definition of bisimulation, see [7].) Without
loss of generality assume that it is singleton. Its domain is {(s, e)}. This pair (s, e) is accessible
to itself because for all agents, (s, s) ∈ R(a) (all agents consider the actual state s a possibility),
and (e, e) ∈ R(a). The valuation of propositional variables in this intermediate state are those of
state s in M . This does not matter: we will not use that valuation.

Now proceed to the second step. In the epistemic state wherein the agents have common
knowledge of the facts in s, the agents learn the structure of the resulting epistemic state M ′ and
their part in it by executing update (U′, s′) defined as

((S′, R′, pre′, post′), s′) with for t′ ∈ S′ : pre′(t′) = > and for relevant p : post′(t′)(p) = > iff t′ ∈ V ′(p)

where the domain S′ and the accessibility relation R′ of U′ are precisely those of M ′, the resulting
final epistemic model. The postcondition post′ is well-defined, as only a finite number of atoms
(the relevant atoms) is considered. Because we execute this update in a singleton model with
public access, and because it is executable for every event t′, the resulting epistemic state has the
same structure as the update: it returns S ′ and R′ again. The postcondition delivers the required
valuation of atoms in the final model: for each event t′ in U′ and for all revelant atoms p, p become
true in t′ if p is true in state t′ in M ′ (post(t′)(p) = >), else p becomes false. The value of irrelevant
atoms remains the same.

We combine these two updates into one by requiring the precondition of the first and the
postcondition of the second. Consider U′

r that is exactly as U′ except that in all events t′ in its
domain the precondition is not > but δ(M,s): the characteristic formula of the point s of (M, s).
Update (U′

r, s
′) does the job: epistemic state (M ⊗U′

r, (s, s
′)) is isomorphic to (M ′, s′). This will

be Corollary 11 of our more general result, to follow.

Now consider the more general case that the set of all agents with non-empty access in M ′,
henceforth called B, are serial in a submodel of M that contains s, henceforth called M ser, with
M ser = (Sser, Rser, V ser). In other words: at least all agents who finally have consistent beliefs in
some states, initially have consistent beliefs in all states. The construction above will no longer
work: if the actual state is not considered possible by an agent, then that agent will have empty
access in (M ⊗ U′

r) but not in M ′. But if we relax the precondition δ(M,s), for the point s
of (M, s), to the disjunction

∨

u∈Sser δ(M,u) that will now carry along the serial subdomain Sser,
the construction will work because an agent can then always imagine some state wherein the
update has been executed, even it that is not the actual state. Formally, we get the update
(U′′, (s, s′)) = ((E′′,R′′, pre′′, post′′), (s, s′)) such that (for arbitrary agents a and arbitrary relevant
atoms p):

E′′ = S′

(t′, u′) ∈ R′′(a) iff (t′, u′) ∈ R′(a)
pre′′(t′) =

∨

u∈Sser δ(M,u)

post′′(t′)(p) =

{

> if t′ ∈ V ′(p)
⊥ otherwise

9



The epistemic state (M ⊗ U′′, (s, s′)) is bisimilar to the stipulated (M ′, s′), which is the desired
result. It will typically not be isomorphic: M⊗U′′ can be seen as consisting of a number of copies of
M ′ (namely |Sser| copies) ‘with the accessibility relations just right to establish the bisimulation’.
One copy will be typically ‘not enough’, namely when the state tail in M to which that copy
corresponds, lacks access for some agents. This access will then also be ‘missing’ between the
states of ({tail} × S ′). But because of seriality one of the other M ′ copies will now make up for
this lack: there is a u ∈ Sser such that (t, u) ∈ R(a), which will establish access when required (as
in the proof of the following proposition).

Proposition 10 Given (M, s), (M ′, s′), and U′′ as above. Then R : ((M⊗U′′), (s, s′)) ↔ (M ′, s′)
by way of, for all t ∈ Sser and t′ ∈ S′: R(t, t′) = t′. a

Proof Let R⊗ be the accessibility relation and V ⊗ the valuation in (M ⊗ U′′).
atoms: For an arbitrary relevant atom p: (t, t′) ∈ V ⊗(p) iff (M, t) |= post′′(t′)(p), and by

definition of post′′ we also have that (M, t) |= post′′(t′)(p) iff t′ ∈ V ′(p). Irrelevant atoms do not
change value.

forth: Let ((t1, t
′
1), (t2, t

′
2)) ∈ R⊗(a) and ((t1, t

′
1), t

′
1) ∈ R. From ((t1, t

′
1), (t2, t

′
2)) ∈ R⊗(a)

follows (t′1, t
′
2) ∈ R′(a). By definition of R we also have ((t2, t

′
2), t

′
2) ∈ R.

back: Let ((t1, t
′
1), t

′
1) ∈ R and (t′1, t

′
2) ∈ R′(a). As M ser is serial for a, and t1 ∈ Sser, there

must be a t2 such that (t1, t2) ∈ R(a). As (M, t2) |=
∨

t∈dom(M ser) δ(M,t) (because t2 is one of those

t) we have that (t2, t
′
2) ∈ dom(M ⊗ U′′). From that, (t1, t2) ∈ R(a), and (t′1, t

′
2) ∈ R′(a), follows

that ((t1, t
′
1), (t2, t

′
2)) ∈ R⊗(a). By definition of R we also have ((t2, t

′
2), t

′
2) ∈ R.

Note that we keep the states outside the serial submodel M ser out of the bisimulation. Without the
seriality constraint the ‘back’ condition of the bisimilarity cannot be shown: given a ((t1, t

′
1), t

′
1) ∈

R and (t′1, t
′
2) ∈ R′(a), but where t1 has no outgoing arrow for a, the required a-accessible pair

from (t1, t
′
1) does not exist.

Corollary 11 Given (M, s), (M ′, s′), and U′
r as above. Assume that M is a bisimulation con-

traction. Then (M ⊗ U′′) ∼= M ′. a

Proof In this special case we have that (t, t′) ∈ dom(M ⊗ U′
r) iff (M, t) |= pre′(t′) iff (M, t) |=

δ(M,s) for the point s of (M, s). As the last is only the case when t = s (as M is a bisimulation con-
traction), we end up with a domain consisting of all pairs (s, t′) for all t′ ∈ S′, a 1-1-correspondence.
The bisimulation R above becomes the isomorphism I(s, t′) = t′.

Corollary 12 For arbitrary finite epistemic states (M, s) and (M ′, s′) there is an update (U, e)
transforming the first into the second (as long the two constraints are satisfied). a

Corollary 13 Given a finite epistemic state (M, s), and a satisfiable formula ϕ. (As long as M
has a serial submodel for all agents occurring in ϕ) There is an update realizing ϕ, i.e., there is a
(U, e) such that (M, s) |= 〈U, e〉ϕ. a

Using completeness of the logic, this further implies that all consistent formulas can be realized
in any given finite model with distributed knowledge. We find this result both weak and strong: it
is strong because any conceivable (i.e., using the same propositional letters and set of agents) formal
specification can be made true whatever the initial information state. At the same time, it is weak:
the current information state does apparently not give any constraints on future developments of
the system, or, in the opposite direction, any clue on the sequence of events resulting in it; the
ability to change the value of atomic propositions arbitrarily gives too much freedom. Of course,
if one restricts the events to certain types, the amount of change is constrained. The example
scenarios in Section 5 illustrate that.
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4.2 Postconditions true and false only

The postconditions for propositional atoms can be entirely simulated by the postconditions true or
false for propositional atoms. For a simple example, the public assignment p := ϕ can be simulated
by a two-point update e——A——f (i.e., all agents in A cannot distinguish e from f) such that
pre(e) = ϕ, post(e)(p) = >, pre(f) = ¬ϕ, post(f)(p) = ⊥. In the public assignment (p := ϕ, q := ψ)
to two atoms p and q we would need a four-point update to simulate it, to distinguish all four
ways to combine the values of two independent atoms.

The general construction consists of doing likewise in every event e of an update model. For
each e we make as many copies as the cardinality of the powerset of the range of the postcondition
associated with that event. Below, the set {0, 1}dom(post(e)) represents that powerset.

Definition 14 (Update model U
>⊥) Given is update model U = (E,R, pre, post). Then U>⊥ =

(E>⊥,R>⊥, pre>⊥, post>⊥) is a normal update model with

• E>⊥ =
⋃

e∈E{(e, f) | f ∈ {0, 1}dom(post(e))}

• ((e, f), (e′, f ′)) ∈ R>⊥(a) iff (e, e′) ∈ R(a)

• pre>⊥(e, f) = pre(e) ∧
∧

f(p)=1 post(e)(p) ∧
∧

f(p)=0 ¬post(e)(p)

• post>⊥(e, f)(p) =

{

> if f(p) = 1
⊥ if f(p) = 0

a

Proposition 15 Given an epistemic modelM = (S,R, V ) and an update model U = (E,R, pre, post)
with normal update model U>⊥ defined as above. Then (M ⊗ U) ↔ (M ⊗ U>⊥). a

Proof We show that the relation R : (M ⊗ U) ↔ (M ⊗ U>⊥) defined as

((s, e), (s, e, f)) ∈ R iff (M, s) |= pre>⊥(e, f)

is a bisimulation. Below, the accessibility relations in (M ⊗U) and (M ⊗U>⊥) are also written as
R(a).

atoms
We have to show that for all atoms p, (M, s) |= post(e)(p) ↔ post>⊥(e, f)(p). From the
definition of post>⊥ it follows that

post>⊥(e, f)(p) iff f(p) = 1 .

From (M, s) |= pre>⊥(e, f) and the definition of pre>⊥ follows that

(M, s) |= post(e)(p) iff f(p) = 1 .

Therefore
(M, s) |= post(e)(p) ↔ post>⊥(e, f)(p) .

forth
Assume that ((s, e), (s′, e′)) ∈ R(a) and that ((s, e), (s, e, f)) ∈ R. Let f ′ : dom(post(e′)) →
{0, 1} be the function such that

f ′(p) =

{

1 if post(e′)(p) = ϕ and (M, s′) |= ϕ

0 if post(e′)(p) = ϕ and (M, s′) 6|= ϕ

Therefore (M, s′) |= pre>⊥(e′, f ′). Therefore ((s′, e′), (s′, e′, f ′)) ∈ R. From ((s, e), (s′, e′)) ∈
R>⊥(a) follows (s, s′) ∈ R(a) and (e, e′) ∈ R(a). From (e, e′) ∈ R(a) and the definition
of access R>⊥ follows ((e, f), (e′, f ′)) ∈ R>⊥(a). From (s, s′) ∈ R(a) and ((e, f), (e′, f ′)) ∈
R>⊥(a) follows ((s, e, f), (s′, e′, f ′)) ∈ R(a).

11



back
Suppose ((s, e), (s, e, f)) ∈ R and (s, e, f), (s′, e′, f ′) ∈ R(a). From the last follows (s, s′) ∈
R(a) and ((e, f), (e′, f ′)) ∈ R>⊥(a), therefore also (e, e′) ∈ R(a). Therefore ((s, e), (s, e′)) ∈
R(a). That ((s′, e′), (s′, e′, f ′)) ∈ R, is established as in forth.

Corollary 16 The logic of change with postconditions true and false only is just as expressive as
the logic of change with arbitrary postconditions. a

Of course the reader realizes, that although it is possible to use postconditions true and false
only, this is highly unpractical in modelling actual situations: the descriptions of updates become
cumbersome and lengthy, and lack intuitive appeal.

A similar transformation result can not be established for public (epistemic or ontic) change
(as in [13]). If public assignments could only be to true and to false, then updates with assign-
ments always result in models wherein the assigned atoms are true throughout the model, or false
throughout the model. For example, there is no transformation of p——¬p into p——¬p with
public assignments and announcements only.

A transformation result as in Proposition 15 immediately gives an expressivity result as in
Corollary 16 for the languages concerned. It is also tempting to see such a transformation result
as a different kind of expressivity result. In two-sorted languages such as the one we consider in
this paper one can then distinguish between the expressivity of two kinds of syntactic objects.
A formula (ϕ) corresponds to a class of models that satisfy that formula, and a modality (α)
corresponds to a relation on the class of models. The ability to express more relations does not
necessarily lead to the ability to express more classes of models, nor vice versa. For example,
what formulas are concerned, epistemic logic without common knowledge is equally expressive as
public announcement logic without common knowledge, and even as public announcement and
assignment logic without common knowledge [13]. But, as we have now seen, more and more
relations between the models can be expressed.

4.3 Single assignments only

Consider update model e——a——f for a single agent a and for two atoms p1 and p2 such that in
e, if ϕ1 then p1 := ϕ2 and p2 := ϕ3, and in f, if ϕ4 then p1 := ϕ5 and p2 := ϕ6. Can we also do the
assignments one by one? In other words, does this update correspond to a sequence of updates
consisting of events g in which at most one atom is assigned a value: the cardinality of dom(g)
is at most 1. This is possible! First we ‘store’ the value (in a given model (M, s) wherein this
update is executed) of all preconditions and postconditions in fresh atomic variables, by public
assignments. This can be in arbitrary order, so we do it in the order of the ϕi. This is the sequence
of six public assignments q1 := ϕ1, q2 := ϕ2, q3 := ϕ3, q4 := ϕ4, q5 := ϕ5, and q6 := ϕ6. Note that
such public assignments do not change the structure of the underlying model. Next we execute
the original update but without postconditions. This is e′——a——f ′ with pre(e′) = pre(e) = ϕ1

and pre(f ′) = pre(f) = ϕ4 and with post(e′) = post(f ′) = ∅. Note that q1 remains true whenever
e′ was executed, because q1 was set to be true whenever ϕ1 was true, the precondition of both
e and e′. Similarly, q4 remains true whenever f ′ was executed. We have now arrived at the final
structure of the model, just not at the proper valuations of atoms.

Finally, the postconditions are set to their required value, conditional to the execution of the
event with which they are associated. Agent a must not be aware of those conditions (the agent
cannot distinguish between e′ and f ′). Therefore we cannot model this as a public action. The way
out of our predicament is a number of two-event update models, namely one for each postcondition
of each event in the original update. One of these two events has as its precondition the fresh
atom associated with an event in the original update, and the other event its negation, and agent
a cannot distinguish between both. The four required updates are

• e1——a——e′1 with in e1, if q1 then p2 := q2 and in e′1, if ¬q1 then ∅

• e2——a——e′2 with in e2, if q1 then p3 := q3 and in e′2, if ¬q1 then ∅

12



• e3——a——e′3 with in e3, if q4 then p5 := q5 and in e′3, if ¬q4 then ∅

• e4——a——e′4 with in e4, if q4 then p6 := q6 and in e′4, if ¬q4 then ∅

Now, we are done. These four final updates do not change the structure of the model, when exe-
cuted. Therefore, now having set the postconditions right, the composition of all these constructs
is isomorphic to the original update model! The general construction will hopefully be sufficiently
clear from this simple example.

Definition 17 (Update model U
one) Given an update model U = (E,R, pre, post), update model

Uone is the composition of the following update models: First perform Σe∈E|dom(post(e)) + 1|
public assignments for fresh variables q, . . . , namely for each e ∈ E, qe

0 := pre(e), and for all
p1, . . . , pn ∈ dom(post(e)), qe

1 := post(e)(p1), ..., qe
n := post(e)(pn). Then execute U but with

empty postconditions, i.e., execute U′ = (E,R, pre, post′) with post′(e) = ∅ for all e ∈ E. Finally,
execute Σe∈E|dom(post(e))| two-event update models with universal access for all agents wherein
for each event just one of its postconditions is set to its required value, by way of the auxiliary
atoms. For example, for e ∈ E as above the first executed update is e1——A——e2 with in e1, if
qe
0, then p1 := qe

1, and in e2, if ¬qe
0 then ∅. a

Without proof the following proposition will be clear:

Proposition 18 Given epistemic model M and update model U executable in M . Then Uone is
isomorphic to U, and (M ⊗ Uone) is isomorphic to (M ⊗ U). a

This result brings the logic closer to the proposals in [4, 26] wherein only one atom is simulta-
neously assigned a value.

5 Applications

In this section we apply the logic to model multi-agent system dynamics in two fairly general
settings. Subsection 5.1 models various game actions for card players, such as showing, drawing,
and swapping cards. Such precise dynamics are essential prerequisites to the further analysis of
such games, e.g., computing equilibrium strategies. Subsection 5.2 models a protocol that solves
the well-known ‘one hundred prisoners and a lightbulb’ riddle. The events involved are that a
prisoner may turn that light on, or off, or make an announcement, depending on the state of the
light. This serves as an example of the applicability of this logic to modelling other protocols with
complex communicative features.

5.1 Card game actions

Consider a deck of two Wheat, two Flax, and two Rye cards (w, x, y). Wheat, Flax and Rye are
called the commodities. Three players Anne, Bill, and Cath (a, b, and c) each draw two cards from
the stack. Initially, given a deal of cards, it is common knowledge what the deck of cards is, that
all players hold two cards, and that all players (only) know their own cards. For the card deal
where Anne holds a Wheat and a Flax card, Bill a Wheat and a Rye card, and Cath a Flax and
a Rye card, we write wx.wy.xy, and so on. As the cards in one’s hand are unordered, wx.wy.xy
is the same deal of cards as xw.wy.xy, but for improved readability we will always list cards in
a hand in alphabetical order. There are certain game actions that result in players exchanging
cards. This is called trading of the corresponding commodities. Players attempt to get two cards
of the same suit. That is called establishing a corner in a commodity. Subject to game rules that
are non-essential for our exposition, the first player to declare a corner in any commodity, wins the
game. For example, given deal wx.wy.xy, after Anne swaps her Wheat card for Bill’s Rye card,
Bill achieves a corner in Wheat, and wins. Of course, players can already achieve a corner when
the cards are dealt. This six-card scenario is a simplification of the ‘Pit’ card game that simulates
the trading pit of a stock exchange [15, 23, 25]; the full game consists of 74 cards: 8 commodities
of each 9 cards, and two special cards.
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Figure 2: On the left is the game state after the cards have been dealt and Anne received Wheat and
Flax, Bill received Wheat and Rye, and Cath received Flax and Rye. On the right is part of the game
state that results if Anne trades her Wheat card for Bill’s Rye card: only states resulting from trading
Wheat for Wheat, and (what really happened) Wheat for Rye, are present. The actual deal of cards is
underlined. In the figures, assume reflexivity and transitivity of access. The dotted lines suggest that
some states are indistinguishable for Cath from yet other states but not present in the picture.

An initial game state wherein players only know their own cards and nobody has won the game
yet, can be modelled as an epistemic state. There are six such card deals. Assume that the actual
deal is wx.wy.xy. The (hexagonally shaped) epistemic state (Pit, wx.wy.xy) in Figure 2 pictures
what players know about each other. All six card deals have to occur to describe the epistemic
information present, e.g., Anne cannot distinguish actual deal wx.wy.xy from deal wx.xy.wy, the
other deal wherein Anne holds Wheat and Flax. But if the deal had been wx.xy.wy, Bill could
not have distinguished that deal from wy.xy.wx, wherein Anne holds Wheat and Rye. Therefore,
Anne considers it possible that Bill considers it possible that she holds Rye, even though this is
actually not the case.

The event wherein Anne and Bill swap one of their cards involves both epistemic and ontic
change. Assume that, given deal wx.wy.xy,

Anne swaps her Wheat card for Bill’s Rye card.

This informal description is not specific enough to be modelled as an update.
In the first place, the role of Cath in the event is not specified. The event where Cath is

unaware of the swap taking place, is different from the event where Cath observes the swap and
where all agents are commonly aware of this. If Cath had been unaware of the event, she would be
mistaken about the actual state of the world. For example, she would incorrectly still believe that
neither Anne nor Bill has a corner in a commodity, whereas Bill holds two Wheat cards after the
trade (and we assume that he has not yet so declared). It is hard to conceive of such a scenario
as a game: even in imperfect information games, such as Pit, a basic condition of fairness must
be fulfilled for players to be able to act rationally. This means that all events should at least be
partially observable, and that ‘what actually happened’ should be considered a possibility for all
players. We therefore assume, for now, that Cath learns that Anne and Bill swap one of their
cards, but not which card it is. (The ‘private swap’ will be modelled later, as another example.)

Anne and Bill’s roles in the event are also underspecified. Anne may knowingly choose a card
to hand to Bill (the obvious interpretation), or blindly draw one of her cards to hand to Bill.
The latter is not obvious, given this description, but becomes more so if we see it as Bill drawing
(therefore blindly) one of Anne’s cards. For now, assume the obvious. Another specification
issue is that we may think of Bill as receiving Anne’s Wheat card facedown and only then, in a
subsequent action, picking it up. From our modelling perspective, Bill already can be said to own
the card after he has been handed it, but before he has picked it up he does not yet know that
he owns it. We first assume that players immediately ‘see’ the card they are being traded (in this
case maybe not the most obvious choice, but the simplest one to model). In other words: Anne
and Bill jointly learn the new ownership of both cards.
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To describe this multi-agent system and its dynamics, assume a propositional language for
three agents a, b, c and with atoms un

a expressing that Anne holds n cards of suit u. For example,
w2

a expresses that Anne holds two Wheat cards. In the event where Anne and Bill swap Wheat for
Rye, Anne gets one less Wheat card, Bill gets one more Wheat card, Bill gets one less Rye card,
and Anne gets one more Rye card. In the update model we have to distinguish separate events for
each card deal wherein this swap can take place, i.e., corresponding to wx.wy.xy, wx.xy.wy, and
wy.xy.wx (in general this depends on a feature of the local states of the card swapping agents only,
namely for both agents on the number of Wheat and Rye cards in their hands, in this specific case
that information is sufficient to determine the entire card deal). In case the card deal is wx.wy.xy
the precondition and postcondition are

If (w1
a ∧ y0

a ∧ w1
b ∧ y1

b ), then w1
a := ⊥ and w0

a := > and w1
b := ⊥ and w2

b := > and
y0

a := ⊥ and y1
a := > and y1

b := ⊥ and y0
b := >.

We name this event swapwx.wy.xy
ab (w, y). If two cards of the same suit are swapped, a simpler

description is sufficient. For example, the event wherein Anne and Bill swap Wheat given deal
wx.wy.xy is described as swapwx.wy.xy

ab (w,w) with (the same) precondition and (empty) postcon-
dition

If (w1
a ∧ y0

a ∧ w1
b ∧ y1

b ), then ∅

From the point of view of an actual card deal, there are always four different ways to exchange
a single card, namely for each agent either the one or the other card. All of these are clearly
different for Anne and Bill, because they either give or receive a different card (we assumed that
they know which card they give and see which card they receive). None of these are different
for Cath. For different card deals, card swapping events are indistinguishable if those deals were
indistinguishable. For example, the event where (Anne and Bill swap Wheat and Rye given
wx.wy.xy) is indistinguishable for Anne from the event where (Anne and Bill swap Wheat and
Rye given wx.xy.wy), because card deals wx.wy.xy and wx.xy.wy are the same for Anne.

Therefore, the update model for Anne swapping her Wheat card for Bill’s Rye card consists
of 24 events. The preconditions and postconditions of the events are as above. The accessibil-
ity relations are defined as, for deals d, d′ ∈ dom(Pit) = {wx.wy.xy, wx.xy.wy, . . . } and cards
q, q′, q1, q1

′ ∈ {w, x, y}, and accessibility relations R(a), R(b), R(c) in the epistemic model Pit:

(swapd
ab(q, q

′), swapd′

ab(q1, q1
′)) ∈ R(a) iff (d, d′) ∈ R(a) and q = q1 and q′ = q1

′

(swapd
ab(q, q

′), swapd′

ab(q1, q1
′)) ∈ R(b) iff (d, d′) ∈ R(b) and q = q1 and q′ = q1

′

(swapd
ab(q, q

′), swapd′

ab(q1, q1
′)) ∈ R(c) iff (d, d′) ∈ R(c)

We name the update model Swap. The event of Anne and Bill swapping Wheat for Rye has
therefore been modelled as update (Swap, swapd

ab(w, y)). The result of executing this update
model in epistemic state (Pit, wx.wy.xy) has the same structure as the update model, as the
preconditions are unique for a given state, and as access between events in the update model
copies that in the epistemic state. It has been partially visualized in Figure 2. An intuitive way to
see the update and the resulting structure in Figure 2, is as a restricted product of the Pit model
and nine card swapping events swap(q, q1), namely for each combination of the three different
cards. Figure 2 then shows just two of those copies, namely for swap(w, y) and swap(w,w). For
example, the event swap(w, y) ‘stands for’ the three events swapwx.wy.xy

ab (w, y), swapwy.wx.xy
ab (w, y),

and swapwx.wy.xy
ab (w, y).

Why did we not define such swap(q, q1) as updates in their own right, in the first place?
Although intuitive, this is not suppported by our modelling language. We would like to say that
the postconditions are ‘Anne gets one less Wheat card, and Bill gets one more Wheat card,’
and similarly for Rye. But instead, we only can demand that in case Bill already had a Wheat
card (extra precondition), then he now has two, etc. Incidentally, we can also either add non-
deterministic choice to the update language by notational abbreviation, as [α∪β]ϕ ↔ ([α]ϕ∧ [β]ϕ)
(this corresponds to taking the union of the epistemic state transformations induced by α and β),
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or allow multi-pointed update models. We can then define, in the update language, swap(w, y) =
swapwx.wy.xy

ab (w, y) ∪ swapwy.wx.xy
ab (w, y) ∪ swapwx.wy.xy

ab (w, y), or, respectively, see swap(w, y) as a
three-pointed Swap model.

The case where Anne does not choose her card but Bill blindly draws one of Anne’s can also
be modelled as an update. The accessibility for Anne then expresses that she is unaware which of
her cards has been drawn:

(swapd
ab(q, q

′), swapd′

ab(q1, q1
′)) ∈ R(a) iff (d, d′) ∈ R(a) and q′ = q1

′

This is somewhat counterintuitive when we still suppose that Anne observes which card she receives
from Bill. (We’d have to imagine Bill blindly drawing one of Anne’s cards, Anne putting her
remaining card facedown on the table, and receiving the card Bill gives her faceup.) A more
realistic setting is then that Bill draws one of Anne’s card and ‘pushes the card he gives to Anne
facedown towards her’. At that stage Anne can already be said to own the card, but not yet to
know that. All four swapping actions for a given deal are indistinguishable for Anne (as they were
and still are for Cath).

Yet another event is where Anne chooses a card to show to Bill, and receives Bill’s card
facedown (before she picks it up). Access is now

(swapd
ab(q, q

′), swapd′

ab(q1, q1
′)) ∈ R(a) iff (d, d′) ∈ R(a) and q = q1

Obviously, all these variables can be applied to Bill as well.
Picking up a card The action of picking up a card after it has been handed to you, has

another description (see, using another dialect of the language, [25]). One aspect is interesting to
observe in the current context. Imagine that given deal wx.wy.xy after Anne and Bill swapping
Wheat and Rye, Bill receives the card facedown in the following way: after having laid down his
remaining card (a Wheat card) facedown on the table, Anne puts her Wheat card facedown on
top of it or under it in a way that Bill cannot see that. He now picks up his two cards. How does
Bill know which of the two Wheat cards that he then holds, is the received card? He does not
know, but he does not care either. By looking at his cards after the swap, he effectively learns
that he holds two Wheat cards (which was already true after having received the card), and after
that event he then knows that he holds two Wheat cards. A neat way to express that he learns
the suit of the card he received, is to say that there is a suit for which he learns to have one more
card than he knows. This makes sense in the general Pit game setting wherein one only is allowed
to trade a certain number of cards of the same suit. This is formalized in our setting by an update
(U, e) with an event with precondition pre(e) = w2

b ∧¬[b]w2
b (and empty postcondition), as a result

of which Bill then knows to hold two Wheat cards, i.e., [U, e][b]w2
b .

Private swap The event where Anne and Bill swap Wheat for Rye but where Cath is unaware
of the event is modelled by a four-event update with events swapwx.wy.xy

ab (w, y), swapwy.wx.xy
ab (w, y),

swapwx.wy.xy
ab (w, y) and skip, such that for Anne and Bill access among the swap events is as already

discussed (including all variations), but where ‘Cath thinks nothing happens’: for the deals d in
the three swap events: (swapd

ab(w, y), skip) ∈ R(c), and (skip, skip) ∈ R(a), R(b), R(c).

The precise description of card game dynamics is a prerequisite to compute optimal strategies
to play such games [23, 8]. Card deals are also frequently used as standard representation for
cryptographic bit exchange protocols [9, 18], where communications / transmissions should from
our current perspective be seen as public announcements and/or assignments. Our more fine-
grained analysis of events may contribute to the description and verification of more complex
protocols that also include non-public events. The next subsection treats such a protocol, although
not in a setting of card deals.

5.2 One hundred prisoners and a lightbulb

The following riddle appears to have been around for at least five years4.
4We made some investigation on the puzzle’s origin. Our source was the ESSLLI 2003 logic summerschool

in Vienna, where it was—apparently incorrectly—said to originate with Moshe Vardi. We did not find informal
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Figure 3: The update model for an interrogation for the situation with three prisoners. See
accompanying text for explanations.

A group of 100 prisoners, all together in the prison dining area, are told that they will
be all put in isolation cells and then will be interrogated one by one in a room containing
a light with an on/off switch. The prisoners may communicate with one another by
toggling the light-switch (and that the only way in which they can communicate).
The light is initially switched off. There is no fixed order of interrogation, or interval
between interrogations, and the same prisoner may be interrogated again at any stage.
When interrogated, a prisoner can either do nothing, or toggle the light-switch, or
announce that all prisoners have been interrogated. If that announcement is true, the
prisoners will (all) be set free, but if it is false, they will all be executed. While still in
the dining room, and before the prisoners go to their isolation cells (forever), can the
prisoners agree on a protocol that will set them free?

Of course, the answer is: “Yes, they can.” We solve the riddle for an arbitrary number of n
prisoners. For n = 1 and n = 2 it is trivial. For n > 2 a protocol is as follows:

The n prisoners appoint one amongst them as the ‘counter’. All non-counting prisoners
follow the following protocol: the first time they enter the room when the light is off,
they turn it on; on all other occasions, they do nothing. The counter follows a different
protocol. The first n − 2 times that the light is on when he enters the interrogation
room, he turns it off. Then the next time he enters the room when the light is on, he
(truthfully) announces that everybody has been interrogated.5

In order to model this as a dynamic multi-agent system, we need to provide an initial epistemic
model and the updates that are possible in that model. The n prisoners are named 0, . . . , n− 1.
Prisoner 0 is the counter. In the protocol above we are only interested in the information the
counter has. It is therefore sufficient only to model his information, and we can model this as a
single-agent system. Atomic proposition p stands for for ‘the light is on’, and atomic propositions
qi, for 1 < i ≤ n − 1, for ‘prisoner i has turned on the light’. Formula

∧

1<i≤n−1 qi is true when
all prisoners except the counter have been interrogated.

We first define the update model that describes an event that a prisoner is interrogated. The
ordinary prisoners execute the protocol that they turn on the light, if it is off and if the prisoner
has not turned it on before. This event ei can be seen as the simultaneous assignment.

p := qi → p and qi := p→ qi

The counter executes a different protocol. He never turns on the light. He turns it off if it is on,
otherwise he leaves it alone. This can be modelled as event e

p
0 defined as

if p then p := ⊥

references before 2001. William Wu [29] mentions hearing about the riddle in 2001 and cites an IBM Research
site http://domino.watson.ibm.com/Comm/wwwr_ponder.nsf/challenges/July2002.html where it is mentioned (in
a 23 prisoner version) “This puzzle has been making the rounds of Hungarian mathematicians’ parties.” We did
not find formal references. We thank Moshe Vardi for his advice.

5The riddle can also be solved when it is not known if the light is initially on or off. In that case the solution
is for the non-counting prisoners to turn light on twice only if it is off, and the counter announces that everybody
has been interrogated after he has turned off the light 2n − 2 times.
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and event e
¬p
0 consisting of precondition ¬p only. In the single agent setting it is meaningless to

model the announcement of the counter, and it is sufficient to show that eventually the precondition
of that announcement is satisfied, namely that he eventually knows that all the other prisoners
have turned on the light once. Finally, event e∅ models that nothing happens when alternatively
a prisoner could have been interrogated; it is therefore a ‘skip’ action. An overview of the different
events is

e∅ skip ‘skip’ means ‘if > then ∅’
ei p := qi → p and qi := p→ qi for each i > 0
e
p
0 if p then p := ⊥

e
¬p
0 ¬p

Agent 0 cannot distinguish between events ei and e∅, but e
p
0 and e

¬p
0 that involve himself are of

course distinguishable from those and from one another. The update model for the case of three
prisoners is given is Figure 3.

We proceed with describing the epistemic model for the problem. The states in the model for
the problem are characterized by the facts p and qi true there. Although we defined the execution of
an event as a transition from one epistemic state to another epistemic state, a different perspective
is to see this as a ‘shift’ between points in a single (larger) epistemic model, i.e., more as a ‘run’
through a system. This allows for a simpler visualization. For the case of three prisoners, see
Figure 4. Let us take a close look at this picture.

Initially all prisoners are in the dining area so there is still common knowledge that nobody
has been interrogated: a singleton model with state (¬p,¬q1,¬q2) models that. This is the top
state in the picture. The event that the prisoners leave the dining area is modelled as the non-
deterministic execution of four possible events, namely all events with precondition ¬p: e1, e2, e

¬p
0 ,

and e∅. The last represents that even when noone has been interrogated yet, the counter considers
it possible that someone has been interrogated. That this action is necessary becomes clear in
case, later, the counter is interrogated himself and finds the light still off. He will then learn that
noone was interrogated yet: a transition back to the top state of the model. Without the e∅-event
we could not have modelled this. When one of the other prisoners is interrogated, this leads to the
light being on. No information change occurs as long as the counter is not interrogated. When
this happens, he turns the light off and learns that at least one prisoner has been interrogated.
The counter considers it possible that prisoner 1 has turned on the light and that prisoner 2 has
turned on the light. Upon leaving the interrogation room, again the counter immediately considers
it possible that other prisoners may have been interrogated, modelled by another informative e∅
transition. This possibility can again be excluded by observing that the light is still off during
yet another interrogation. Eventually the other prisoner is also interrogated, which leads to the
light being on again and by observing this the counter learns that both prisoners have turned on
the light once. This is modelled by another e

p
0-transition, now to the bottom state of the picture.

There, the counter indeed knows that everyone has been interrogated (and in principle he can
make an announcement to that effect).

It would be nice to also investigate what happens if we do take the information of the non-
counting prisoners into account. Suppose for example that one such agent is always interrogated
before the counter. That would mean the prisoner gets the same information as the counter, just
a bit quicker. Indeed, this prisoner could announce that everyone has been interrogated before
the counter. We leave this matter for the future.

6 Further research

Currently we consider several directions for further research.
An unresolved issue is whether updates can be described as compositions of ‘purely epistemic’

events (preconditions only) and ‘purely ontic’ events (postconditions only). In [11] it is shown for
public events, for a different logical (more PDL-like) setting. Such a result would be in the line of
our other ‘normalization’ results, and facilitate comparison to related approaches.
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Figure 4: The initial epistemic state and the results of executing the update model for all possible
events are pictured for the case of three prisoners trying to escape. The states are indicated by an atomic
description. We assume reflexivity and transitivity of access for agent 0. We also did not draw the reflexive
arrows for events that can be executed but do not yield information change. For example, in the top-left
state events e1, e2, and e∅ can also be executed but have no effect. In the bottom state agent 0 knows
that all other prisoners have turned on the light at least once.
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As said, the logic can be ‘applied’ to describe cryptographic bit exchange protocols, including
protocols where keys change hands or are being sent between agents. The logic is very suitable for
the description of protocols for computationally unlimited agents, such as described in the cited
[9, 18]. Using dynamic logics may be an advantage given the availability of model checking tools
for such logics, as e.g. the very versatile epistemic model checker DEMO [28]—van Eijck considers
an extension of that model checker with assignments (postconditions): if that were the case, the
match with the logic in this contribution would be perfect.

We intend to model the ‘prisoners’ example for the case where the state of the light is unknown
at the beginning, and in a proper multi-agent setting that allows for more efficient protocols
benefiting from non-counting prisoners’ knowledge in exceptional situations.

The results for ‘arbitrary belief change’ suggest yet another possibly promising direction. Under
certain conditions arbitrary formulas are realizable. What formulas are still realizable if one
restricts the events to those considered suitable for specific problem areas, such as forms of multi-
agent planning? And given a desirable formula (a ‘postcondition’ in another sense of the word),
what are the initial conditions such that a sequence of events realizes it? This is the relation to
AI problems concerning regression as pointed out in the introductory section, on which we think
fast progress can now be made.
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Appendix: Completeness

As usual, the completeness proof consists of building a model for an given formula, thus showing
that all consistent formulas are satisfiable, and by contraposition completeness of the logic. We
first define a canonical model for a given formula (Definition 22, below), then prove a number
of relevant properties of the model (Lemma 21, on page 22), from which the for completeness
required ‘Truth Lemma’ then follows without great difficulty (Lemma 28, on page 28).

Let Sub(ϕ) be the set of subformulas of ϕ.

Definition 19 (closure) Let cl : L → ℘(L ), such that for every ϕ ∈ L , cl(ϕ) is the smallest
set such that:

1. ϕ ∈ cl(ϕ),

2. if ψ ∈ cl(ϕ), then Sub(ψ) ⊆ cl(ϕ)

3. if ψ ∈ cl(ϕ) and ψ is not a negation, then ¬ψ ∈ cl(ϕ)

4. if [B+]ψ ∈ cl(ϕ), then {[a][B+]ψ | a ∈ B} ⊆ cl(ϕ)

5. if [U, e]p ∈ cl(ϕ), then (pre(e) → poste(p)) ∈ cl(ϕ)

6. if [U, e]¬ψ ∈ cl(ϕ), then (pre(e) → ¬[U, e]ψ) ∈ cl(ϕ)

7. if [U, e](ψ ∧ χ) ∈ cl(ϕ), then ([U, e]ψ ∧ [U, e]χ) ∈ cl(ϕ)

8. if [U, e][a]ψ ∈ cl(ϕ) and (e, f) ∈ R(a), then (pre(e) → [a][U, f]ψ) ∈ cl(ϕ)

9. if [U, e][B+]ψ ∈ cl(ϕ), then {[U, f]ψ | (e, f) ∈ R(B)+} ⊆ cl(ϕ) and {[a][U, f][B+]ψ | a ∈
B and (e, f) ∈ R(B)+} ⊆ cl(ϕ)

10. if [U, e][U′, e′]ψ ∈ cl(ϕ), then [(U, e); (U′, e′)]ψ ∈ cl(ϕ) a

Lemma 20 cl(ϕ) is finite for all formulas ϕ ∈ L . a

Proof Straightforward by induction on ϕ.

Definition 21 (maximal consistent in Φ) Let Φ ⊆ L be the closure of some formula. Γ is
maximal consistent in Φ iff

1. Γ ⊆ Φ

2. Γ is consistent: Γ 6` ⊥

3. Γ is maximal in Φ: there is no Γ′ ⊆ Φ such that Γ ⊂ Γ′ and Γ′ 6` ⊥.

Let Γ =
∧

{ϕ | ϕ ∈ Γ}. a

Definition 22 (canonical model for Φ) Let Φ be the closure of some formula. The canonical
model M c = (Sc, Rc, V c) for Φ is defined as follows

• Sc = {Γ | Γ is maximal consistent in Φ}

• (Γ,∆) ∈ Rc(a) iff for all ϕ if [a]ϕ ∈ Γ, then ϕ ∈ ∆}

• V c(p) = {Γ ∈ Sc | p ∈ Γ} a

Lemma 23 (Lindenbaum) Let Φ be the closure of some formula. Every consistent subset of Φ
is a subset of a maximal consistent set in Φ. a

Proof The proof is trivial since Φ is finite by Lemma 20.
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Figure 5: This Figure helps to make the semantic intuition for formulas of the form [U, e][B+]ϕ
clearer. The model below is the original model. The model in the middle is the update model.
The top model is the resulting model.

Semantically it is quite clear what it means for a formula of the form [U, e][B+]ϕ to be true in a
state s. It means that every B-path from (s, e) in the resulting model ends in a ϕ-state. But that
means that in the original model, a B-path for which there is a matching B-path e0, . . . en in the
update model ends in a [U, en]ϕ-state. This is shown in Figure 5. In view of this, in the proofs we
will use the notion of a BUef-path.

Definition 24 (paths) A B-path from Γ is a sequence Γ0, . . . ,Γn of maximal consistent sets in
Φ such that for all k (where 0 ≤ k < n) there is an agent a ∈ B such that (Γk,Γk+1) ∈ Rc(a) and
Γ0 = Γ.

A BUef-path from Γ is a B-path Γ0, . . .Γn from Γ such that there is a B-path e0, . . . en from e

to f in U and for all k < n there is an agent a such that (Γk,Γk+1) ∈ Rc(a) and (ek, ek+1) ∈ R(a)
and for all k ≤ n it is the case that pre(ek) ∈ Γk. a

Lemma 25 Let Φ be the closure of some formula. Let M c = (Sc, Rc, V c) be the canonical model
for Φ. If Γ and ∆ are maximal consistent sets in Φ, then

1. Γ is deductively closed in Φ;

2. `
∨

{Γ | Γ ∈ Sc};

3. if ¬ϕ ∈ Φ, then ϕ ∈ Γ iff ¬ϕ 6∈ Γ;

4. if (ϕ ∧ ψ) ∈ Φ, then (ϕ ∧ ψ) ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ;

5. if Γ ∧ 〈a〉∆ is consistent, then (Γ,∆) ∈ Rc(a);

6. if [B+]ϕ ∈ Φ, then [B+]ϕ ∈ Γ iff every B-path from Γ is a ϕ-path;

7. if [U, e][B+]ϕ ∈ Φ, then [U, e][B+]ψ ∈ Γ iff for all f ∈ E every BUef-path from Γ ends in an
[U, f]ψ-state.

Proof
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1. Suppose ϕ ∈ Φ and ` Γ → ϕ. Then Γ∪{ϕ} is also consistent in Φ. Therefore, by maximality,
ϕ ∈ Γ.

2. Suppose that
∨

{Γ | Γ is maximal consistent in cl(ϕ)} is not a tautology, i.e. that ¬
∨

{Γ | Γ
is maximal consistent in cl(ϕ)} is consistent. Therefore

∧

{¬Γ | Γ is maximal consistent in
cl(ϕ)} is consistent. Therefore

∧

{
∨

{¬ϕ | ϕ ∈ Γ} | Γ is maximal consistent in cl(ϕ)} is
consistent. Therefore for every maximal consistent Γ in cl(ϕ) there is a formula ϕΓ ∈ Γ such
that {¬ϕΓ | Γ is maximal consistent in cl(ϕ)} is consistent. Therefore by the Lindenbaum
Lemma (and the law of double negation) there is a maximal consistent set in cl(ϕ) that is
inconsistent with every maximal consistent set in cl(ϕ). That is a contradiction. Therefore
`

∨

{Γ | Γ is maximal consistent in cl(ϕ)}.

3. Suppose ¬ϕ ∈ Φ.

From left to right. Suppose ϕ ∈ Γ. By consistency ¬ϕ 6∈ Γ.

From right to left. Suppose ¬ϕ 6∈ Γ. By maximality ` (Γ ∧ ¬ϕ) → ⊥. But then ` Γ → ϕ.
Therefore ϕ ∈ Γ, because Γ is deductively closed in Φ.

4. Suppose (ϕ ∧ ψ) ∈ Γ. Then (ϕ ∧ ψ) ∈ Γ is equivalent to ϕ ∈ Γ and ψ ∈ Γ because Γ is
deductively closed in Φ.

5. Suppose that Γ ∧ 〈a〉∆ is consistent. Suppose that it is not the case that (Γ,∆) ∈ Rc(a).
Therefore there is a formula ϕ such that

[a]ϕ ∈ Γ but ϕ 6∈ ∆

By 2 of this lemma ¬ϕ ∈ ∆ (or if ϕ is a negation ¬χ then χ ∈ ∆). But then, ` 〈a〉∆ → 〈a〉¬ϕ.
Since [a]ϕ ∈ Γ, it must be the case that Γ ∧ 〈a〉∆ is inconsistent, contradicting our initial
assumption. Therefore (Γ,∆) ∈ Rc(a).

6. From left to right. We proceed by induction on the length of the B-path, but we load the
induction (we prove something stronger). We show that if [B+]ϕ ∈ Γ, then every B-path is
a ϕ-path and a [B+]ϕ-path. Suppose that [B+]ϕ ∈ Γ.

Base case Suppose the length of the path is 1, i.e. the path consists of two sets Γ0 and Γ1.
Therefore there is some agent in a ∈ B such that (Γ0,Γ1) ∈ Rc(a). Since ` [B+]ϕ →
[a](ϕ ∧ [B+]ϕ) and Γ1 is deductively closed in Φ, it must be the case that both ϕ ∈ Γ1

and [B+]ϕ ∈ Γ1.

Induction hypothesis Suppose that if [B+]ϕ ∈ Γ, then every B-path of length n is a
ϕ-path and a [B+]ϕ-path.

Induction step Take a B-path of length n+1 from Γ. By the induction hypothesis [B+]ϕ ∈
Γn. Now we can proceed in the same way that we did in the base case and conclude
that ϕ ∈ Γn+1 and [B+]ϕ ∈ Γn+1.

From right to left. Suppose that every B-path from Γ is a ϕ-path. Let SB,ϕ be the set of all
maximal consistent sets ∆ in Φ such that every B-path from ∆ is a ϕ-path. Now consider
the formula

χ =
∨

∆∈SB,ϕ

∆

We prove the following

Γ ` χ (a)

` χ→ ϕ (b)

` χ→ [B]χ (c)
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From these it follows that [B+]ϕ ∈ Γ. Because from (c) it follows by necessitation that
` [B+](χ → [B]χ). By the induction axiom this implies that ` χ → [B+]χ. By (a) this
implies that Γ ` [B+]χ. By (b) and necessitation and distribution for [B+] this implies that
Γ ` [B+]ϕ. Therefore [B+]ϕ ∈ Γ.

(a) Γ ` χ, because Γ is one of the disjuncts of χ.

(b) Note that ϕ ∈ ∆ if ∆ is in SB,ϕ. Therefore ϕ is a conjunct of every disjunct of χ.
Therefore ` χ→ ϕ.

(c) Suppose toward a contradiction that χ ∧ ¬[B]χ is consistent. Since χ is a disjunction
there must be a disjunct ∆ such that ∆ ∧ ¬[B]χ is consistent. By similar reasoning
there must be an a ∈ B such that ∆ ∧ 〈a〉¬χ is consistent. Since `

∨

{∆ | ∆ ∈ Sc} (by
item 2 of this lemma), it is the case that ∆ ∧ 〈a〉

∨

Θ6∈SB,ϕ
Θ is consistent. Then, by

modal reasoning, ∆ ∧
∨

Θ6∈SB,ϕ
〈a〉Θ is consistent. Therefore there must be a Θ 6∈ SB,ϕ

which is maximal consistent in Φ, such that ∆ ∧ 〈a〉Θ is consistent. But then by (4) of
this Lemma, (∆,Θ) ∈ Rc(a). Since Θ is not in SB,ϕ, there must be a B-path from Θ
which is not a ϕ-path. But then there is a B-path from ∆ which is not a ϕ-path. This
contradicts that ∆ ∈ SB,ϕ, which it is because ∆ is one of χ’s disjuncts. Therefore
` χ→ [B]χ.

7. From left to right. Suppose [U, e][B+]ϕ ∈ Γ. We now continue by induction on the length of
the path, but we load the induction. We show that if [U, e][B+]ϕ ∈ Γ, then every BUef-path
ends in an [U, f]ϕ-state which is also an [U, f][B+]ϕ-state.

Base case Suppose the length of the path is 0. Therefore we merely need to show that
if [U, e][B+]ϕ ∈ Γ0, then [U, e]ϕ ∈ Γ0. This can be shown as follows. Observe that
[B+]ϕ → ϕ. By necessitation and distribution for [U, e] we have that [U, e][B+]ϕ →
[U, e]ϕ. Therefore [U, e]ϕ ∈ Γ0.

Induction hypothesis Suppose that every BUef-path of length n ends in an [U, f]ψ-state
which is also an [U, f][B+]-state.

Induction step Suppose now that the path is of length n + 1, i.e. there is a BUef-path
Γ0, . . .Γn,Γn+1. Therefore there is a BUeg-path for some g from Γ0 to Γn. By the
induction hypothesis we may assume that [U, g][B+]ϕ ∈ Γn. Since there is a BUef-
path, there is an agent a such that (Γn,Γn+1) ∈ Rc(a) and (g, f) ∈ R(a). By the mix
axiom we have that ` [B+]ψ → [a][B+]ψ. By applying necessitation and distribution for
[U, g] we get ` [U, g][B+]ϕ → [U, g][a][B+]ϕ. By the axiom for updates and knowledge
` [U, g][a][B+]ϕ → (pre(g) → [a][U, f][B+]ϕ). Since pre(g) ∈ Γn, it must be the case
that Γn ` [a][U, f][B+]ϕ. Therefore by the definition of Rc(a), it is the case that
[a][U, f][B+]ϕ ∈ Γn+1, and so [U, f][B+]ψ ∈ Γn+1. And, by similar reasoning as in the
base case, [U, f]ψ ∈ Γn+1.

From right to left. Suppose that every BUef-path from Γ ends in an [U, f]ϕ-state. Let
SB,U,f,ϕ be the set of maximal consistent sets ∆ such that every BUfg-path from ∆ ends in
an [U, g]ϕ-state for all g such that (f, g) ∈ R(B)+. Now consider the formulas

χf =
∨

∆∈SB,U,f,ϕ

∆

We will show the following

Γ ` χe (a)

` χf → [U, f]ϕ (b)

` (χf ∧ pre(f)) → [a]χg if (f, g) ∈ R(a) (c)

From these it follows that [U, e][B+]ϕ ∈ Γ. By applying the updates and common knowledge
rule to (b) and (c) it follows that ` χe → [U, e][B+]ψ. By (a) it follows that Γ ` [U, e][B+]ϕ.
Therefore [U, e][B+]ϕ ∈ Γ.
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(a) This follows immediately, because Γ ∈ SB,U,e,ϕ, and Γ is one of χe’s disjuncts.

(b) Since every BUfgϕ-path ends in an [U, g]ϕ-state for every ∆ ∈ SB,U,f,ϕ it must be
the case that the length one BUffϕ-path ends in an [U, f]ϕ-state. Therefore [U, f]ϕ ∈
∆. Therefore, [U, f]ϕ is one of the conjuncts in every disjunct of χf . Therefore by
propositional reasoning χ→ [U, f]ϕ.

(c) Suppose toward a contradiction that χf ∧ pre(f) ∧ ¬[a]χg is consistent. Because χf is a
disjunction there must be a disjunct Θ such that Θ∧pre(f)∧¬[a]χg is consistent. Since
Θ ∧ pre(f) is consistent in Φ and pre(f) ∈ Φ it must be the case that pre(f) ∈ Θ. So
Θ∧ 〈a〉¬χg is consistent. Since `

∨

{Γ | Γ ∈ Sc}, there must be a Ξ in the complement
of SB,U,g,ϕ such that Θ ∧ 〈a〉Ξ is consistent. By item 5 of Lemma 25 this implies that
(Θ,Ξ) ∈ Rc(a). But since Ξ is not in SB,U,g,ϕ there must be an h such that there is a
BUgh-path not ending in an [U, h]ϕ-state from Ξ. But then there is also a BUfh-path
from Θ not ending in an [U, h]ϕ-state. This contradicts that Θ ∈ SB,U,f,ϕ, but it must
be, because Θ is one of χf ’s disjuncts. Therefore ` (χf ∧ pre(f)) → [a]χg.

Proofs by induction on formulas use the inductive definition of the logical language. In the
inductive step one uses the induction hypothesis for subformulas of that formula. It seems however
that this use of the induction hypothesis is not enough for the case at hand. For example ¬[U, e]ϕ
is not a subformula of [U, e]¬ϕ, but we would like to apply the induction hypothesis to the former
when we are proving the inductive step for the latter. Since the inductive definition of the logical
language does not say anything about the order of these formulas we can impose an order on them
that suits our purposes best. For this we define the following complexity measure on the language
of UM .

Definition 26 (complexity) The complexity c : L → N is defined as follows:

c(p) = 1
c(¬ϕ) = 1 + c(ϕ)
c(ϕ ∧ ψ) = 1 + max(c(ϕ), c(ψ))
c([a]ϕ) = 1 + c(ϕ)
c([B+]ϕ) = 1 + c(ϕ)
c([U, e]ϕ) = (4 + c(U)) · c(ϕ)

where c(U) = max({c(pre(e)) | e ∈ U} ∪ {c(ϕ) | ϕ ∈ ran(post(e))}). a

We can safely take the maximum of the complexity of the preconditions and formulas in the range
of substitutions in the action model, since action models are finite. Therefore the complexity of
a formula or an action model will always be a natural number. In the definition the number 4
appears in the clause for update models. It seems arbitrary, but it is in fact the least natural
number that gives us the following properties.

Lemma 27 For all ϕ, ψ, and χ:

1. c(ψ) ≥ c(ϕ) for all ϕ ∈ Sub(ψ).

2. c([U, e]p) > c(pre(e) → poste(p))

3. c([U, e]¬ϕ) > c(pre(e) → ¬[U, e]ϕ)

4. c([U, e](ϕ ∧ ψ) > c([U, e]ϕ ∧ [U, e]ϕ)

5. c([U, e][a]ϕ) > c(pre(e) → [a][U, f]ϕ) for all f ∈ U

6. c([U, e][B+]ϕ) > c([U, f]ϕ) for all f ∈ U

7. c([U, e][U′, e′]ϕ) > c([(U, e); (U′, e′)]ϕ)

Proof 1. By induction on ψ.
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Base case If ψ is a propositional variable, its complexity is 1 and it is its only subformula.

Induction hypothesis c(ψ) ≥ c(ϕ) if ϕ ∈ Sub(ψ) and c(χ) ≥ c(ϕ) if ϕ ∈ Sub(ξ).

Induction step We proceed by cases

negation Suppose that ϕ is a subformula of ¬ψ. Then ϕ is either ¬ψ or a subformula
of ψ. In the former case, we simply observe that the complexity of every formula
is greater than or equal to its own complexity. In the latter case, the complexity
of ¬ψ equals 1 + c(ψ). Therefore if ϕ is a subformula of ψ it follows immediately
from the induction hypothesis that c(ψ) ≥ c(ϕ).

conjunction Suppose that ϕ is a subformula of ψ ∧ χ. Then ϕ is either ψ ∧ χ or it is
a subformula of ψ or χ. Again in the former case, the complexity of every formula
is greater than or equal to its own complexity. In the latter case the complexity of
ψ ∧ χ equals 1 + max(c(ϕ), c(ψ)). Simple arithmetic and the induction hypothesis
gives us that c(ψ ∧ χ) ≥ c(ϕ).

individual epistemic operator This is completely analogous to the case for nega-
tion.

common knowledge This is also completely analogous to the case for negation.

update models Suppose that ϕ is a subformula of [U, e]ψ. Then ϕ is either [U, e]ψ
or it is a subformula of ψ or it is a precondition or postcondition in U. Again,
in the former case, the complexity of every formula is greater than or equal to
its own complexity. In the latter two cases, the complexity of [U, eone]χ equals
(4 + c(U)) · c(χ). Simple arithmetic and the induction hypothesis gives us that
c([U, e]χ) ≥ c(ϕ).

2. c(pre(e) → poste(p)) = c(¬(pre(e) ∧ ¬poste(p)))
= 1 + c(pre(e) ∧ ¬poste(p))
= 2 + max(c(pre(e)), 1 + c(poste(p))

and

c([U, e]p) = (4 + c(U)) · 1
= 4 + c(U)

and

c(U) ≥ max(c(pre(e)), c(poste(p)))

From this it is clear that c([U, e]p) > c(pre(e) → poste(p))

3. c([U, e]¬ϕ) = (4 + c(U)) · (1 + c(ϕ))
= 4 + c(U) + 4 · c(ϕ) + c(U) · c(ϕ)

and

c(pre(e) → ¬[U]ϕ) = c(¬(pre(e) ∧ ¬¬[U]ϕ))
= 2 + max(c(pre(e), 2 + ((4 + c(U)) · c(ϕ)))
= 2 + max(c(pre(e), 2 + 4 · c(ψ) + c(ϕ) · c(ψ))

The latter equals 2+ c(ϕ) or 4+4 · c(ψ)+ c(ϕ) · c(ψ). Both are less than 4+ c(ϕ)+4 · c(ψ)+
c(ϕ) · c(ψ).

4. Assume, without loss of generality, that c(ϕ) ≥ c(ψ). Then

c([U, e](ϕ ∧ ψ)) = (4 + c(U)) · (1 + max(c(ϕ), c(ψ)))
= 4 + c(U) + 4 · max(c(ϕ), c(ψ)) + c(U) · max(c(ϕ), c(ψ))
= 4 + c(U) + 4 · c(ϕ) + c(U) · c(ϕ)

and

c([U, e]ϕ ∧ [U, e]ψ) = 1 + max((4 + c(U)) · c(ϕ), (4 + c(U)) · c(ψ))
= 1 + ((4 + c(U)) · c(ϕ))
= 1 + 4 · c(ϕ) + c(U) · c(ϕ)

The latter is less than the former

27



5. This case is completely analogous to the case for negation.

6. This case is straightforward.

7. c([U, e][U′, e′]ϕ) = (4 + c(U)) · (4 + c(U′)) · c(ϕ)
= (16 + 4 · c(U) + 4 · c(U′) + c(U) · c(U′)) · c(ϕ)

and

c([(U, e); (U′, e′)]ϕ = (4 + c((U, e); (U′, e′))) · c(ϕ)

So now the inequality holds iff

(16 + 4 · c(U) + 4 · c(U′) + c(U) · c(U′)) · c(ϕ)c(U) · c(U′)) > (4 + c((U, e); (U′, e′)))

The complexity of (U, e); (U′, e′) is at most the following.

max({c(pre(f) ∧ [U, f]pre(f ′)) | f ∈ U and f ′ ∈ U′} ∪
{c([U, f]post′f′(p)) | f ∈ U, f ′ ∈ U′ and p ∈ dom(post′(f ′))})

Worst case this equals

1 + max(c(U), (4 + c(U)) · c(U′)) = 1 + ((4 + c(U)) · c(U′))
= 5 + 4 · c(U′) + c(U) · c(U′)

Therefore the inequality clearly holds.

Lemma 28 (truth) Let Φ be the closure for some formula. Let M c = (Sc, Rc, V c) be the
canonical model for Φ. For all Γ ∈ Sc, and all ϕ ∈ Φ:

ϕ ∈ Γ iff (M c,Γ) |= ϕ

Proof Suppose ϕ ∈ Φ. We now continue by induction on c(ϕ).

Base case Suppose c(ϕ) = 1. Therefore ϕ is a propositional variable p. This case now follows
straightforwardly from the definition of the valuation in the canonical model.

Induction hypothesis For all ϕ such that c(ϕ) ≤ n: ϕ ∈ Γ iff (M c,Γ) |= ϕ.

Induction step Suppose c(ϕ) = n + 1. The cases for negation, conjunction, and individual
epistemic operators follow straightforwardly from the induction hypothesis. We distinguish
the following cases:

the case for [B+]ψ: Suppose [B+]ψ ∈ Γ. From Lemma 25, item 6 it follows that this is the
case iff every B path from Γ is a ψ path. It follows from the induction hypothesis that
this is equivalent to saying that ψ is true along these paths. Therefore this is equivalent
to (M c,Γ) |= [B+]ψ

the case for [U, e]p: Suppose [U, e]p ∈ Γ. Given that [U, e]p ∈ Φ, [U, e]p ∈ Γ is equivalent
to pre(e) → poste(p) ∈ Γ by the update and atoms axiom. By item 2 of Lemma 27 we
can apply the induction hypothesis. Therefore this is equivalent to (M c,Γ) |= pre(e) →
poste(p). By the semantics this is equivalent to (M c,Γ) |= [U, e]p.

the case for [U, e]¬ψ: Suppose [U, e]¬ψ ∈ Γ. Given that [U, e]¬ψ ∈ Φ, [U, e]¬ψ ∈ Γ is
equivalent to (pre(e) → ¬[U, e]ψ) ∈ Γ by the update and negation axiom. By item 3
of Lemma 27 we can apply the induction hypothesis. Therefore this is equivalent to
(M c,Γ) |= pre(e) → ¬[U, e]ψ. By the semantics this is equivalent to (M c,Γ) |= [U, e]¬ψ.

the case for [U, e](ψ ∧ χ): Suppose [U, e](ψ∧χ) ∈ Γ. Given that [U, e](ψ∧χ) ∈ Φ, [U, e](ψ∧
χ) ∈ Γ is equivalent to ([U, e]ψ ∧ [U, e]χ) ∈ Γ by the update and conjunction axiom.
By item 4 of Lemma 27 we can apply the induction hypothesis. Therefore this is
equivalent to (M c,Γ) |= ([U, e]ψ ∧ [U, e]χ). By the semantics this is equivalent to
(M c,Γ) |= [U, e](ψ ∧ χ).
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the case for [U, e][a]ψ: Suppose [U, e][a]ψ ∈ Γ. Given that [U, e][a]ψ ∈ Φ, [U, e][a]ψ ∈ Γ is
equivalent to (pre(e) → [a][U, e]ψ) ∈ Γ by the update and knowledge axiom. By item 5
of Lemma 27 we can apply the induction hypothesis. Therefore this is equivalent
to (M c,Γ) |= pre(e) → [a][U, e]ψ. By the semantics this is equivalent to (M c,Γ) |=
[U, e][a]ψ.

the case for [U, e][B+]ψ: Suppose [U, e][B+]ψ ∈ Γ. Given that [U, e][B+]ψ ∈ Φ, [U, e][B+]ψ ∈
Γ iff for all f ∈ U every BUef-path from Γ ends in a [U, f]ψ-state by item 7 of Lemma 25.
By item 6 of Lemma 27 we can apply the induction hypothesis. Therefore this is equiv-
alent saying that for all f ∈ U every BUef-path from Γ ends in a state where [U, f]ψ is
true. By the semantics, this is equivalent to (M c,Γ) |= [U, e][B+]ψ.

the case for [U, e][U′, e′]ψ: Suppose [U, e][U′, e′]ψ ∈ Γ. Given that [U, e][U′, e′]ψ ∈ Φ,
[U, e][U′, e′]ψ ∈ Γ is equivalent to [(U, e); (U′, e′)]ψ ∈ Γ by the update composition ax-
iom. By item 7 of Lemma 27 we can apply the induction hypothesis. Therefore this is
equivalent to (M c,Γ) |= [(U, e); (U′, e′)]ψ. This is equivalent to (M c,Γ) |= [U, e][U, e′]ψ.

Now it is easy to prove the completeness theorem.

Theorem 29 (completeness) For every ϕ ∈ L

|= ϕ implies ` ϕ

The proof is a slight variation on the proof presented in [4] (also see [27] for a textbook version).

Proof By contraposition. Suppose 6` ϕ. Therefore {¬ϕ} is a consistent set. By the Lindenbaum
Lemma there is a set Γ which is maximal consistent in cl(¬ϕ) such that ¬ϕ ∈ Γ. By the Truth
Lemma (M c,Γ) |= ¬ϕ. Therefore 6|= ϕ.
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