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ENTAILMENT, DUALITY, AND THE FORMS OF REASONING

K. BRITZ, J. HEIDEMA, AND W. LABUSCHAGNE

Abstract. We explore the notion of duality for defeasible entailment relations induced

by preference orderings on states. We then show that such preferential entailment relations

may be used to characterise Peircean inductive and abductive reasoning. Interpreting the

preference relations as accessibility relations establishes modular Gödel-Löb logic as the

modal logic of inductive and abductive reasoning.

§1. Introduction. The heart of logic is entailment – a relation between
information-bearers X and Y according to which Y in some sense follows from
X. We take X and Y to be discrete strings (sentences) in some object language.
The entailment relation that may hold between premiss X and consequence Y
is induced by the choice of a relation E between possibly independent represen-
tations P (X) and Q(Y ) of X and Y , where the criterion E may vary between
opposing poles on at least three qualitative dimensions: syntactic to semantic;
conservative to liberal; and ontological to epistemological. Our primary pur-
pose in this paper is to discuss two kinds of entailment, |∼ and |∼∗, induced by
semantic, liberal, epistemological criteria. In order to set the scene, we briefly
indicate what we understand by the opposite poles of each dimension. Next,
as a reference point, classical entailment is situated in this landscape. We are
then ready to consider |∼ , the sort of entailment relation encountered in non-
monotonic logic, and to introduce a notion of duality relative to which every
preferential entailment relation |∼ has an associated dual |∼∗. After examining
the relationship between the new |∼∗ and the familiar |∼ from several points of
view, we shall argue that |∼ constrains inductive reasoning, and |∼∗ abductive
reasoning.

Let us consider in more detail the ways in which entailment criteria may vary.
The syntactic approach takes P (X) and Q(Y ) to be symbol-strings derived

from X and Y , while E denotes formal deduction according to a set of infer-
ence rules that pattern-match the shapes of strings, so that the criterion for
“X syntactically entails Y ” addresses form rather than content. A semantic
approach, on the other hand, associates with the object language some class
of extralinguistic structures; establishes a relationship between sentences and
structures indicating whether a sentence is satisfied by a structure; designates
certain structures as the representations P (X) and Q(Y ); and finally nominates
a relationship E between the representations, such as ⊆, to induce a semantic

Key words and phrases. abduction, induction, defeasible entailment, nonmonotonic logic,
preference orders.
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entailment relation. In this case the syntactic forms of X and Y play no role,
and it is the meanings provided by the representational structures of X and Y
that are crucial.

The entailment between premiss X and consequence Y is conservative if a
rigid constraint of truth-preservation is applied, and liberal if a more flexible
constraint is imposed, permitting the consequence Y to be false under at least
some circumstances that make the premiss X true. This simple opposition is
complicated by the expressiveness of the object language to which premiss and
consequence belong. A criterion giving a liberal entailment relation in the con-
text of a nonmodal propositional language may induce a conservative entailment
relation when the language is enriched by appropriate modal operators. (Indeed,
we shall show that two kinds of liberal entailment relation |∼ and |∼∗ defined for
nonmodal languages become special cases of a conservative entailment relation
|= in a suitable modal language.)

E embodies an ontological criterion if it leaves no room to take account of a
reasoning agent’s understanding of or information about the state of the world,
i.e. if “there is no knowing or reasoning subject, even an ideal one, appealed to
or legislated for” [42, p.493]. Instead, the objective structure of such states im-
poses a constraint such as that the same state of the world making this sentence
true makes that sentence true too. For example, classical entailment (discussed
in the next section) is concerned with conservative entailments sanctioned by an
ontological criterion. The ontological criterion may further presuppose a meta-
physical reality determining the meaning of entailment and the nature of truth.
We shall return to the metaphysical vs. epistemological distinction in Section
6.2, and to the position of classical logic in this landscape in Section 2.

An epistemological criterion would address the question of whether a ratio-
nal agent’s believing X constitutes a reason for believing Y . The growth of
research in artificial intelligence has firmly established the relevance of the epis-
temological perspective. The challenge is to design an artificial agent capable
of reasoning adaptively, i.e. capable of functioning effectively in the everyday
world of humans, houses, automobiles, and business. Higher-level agents (e.g.
belief-desire-intention (BDI) agents) are typically seen as planning and acting
on the basis of beliefs about their environment (and other agents). The agent is
generally able to extract only partial information from its environment. Since,
in order to achieve their goals, agents need to take decisions based on partial
information, the epistemological perspective is naturally associated with liberal
inferences and the risk of error. We shall explore relations E that characterise
two such liberal forms of reasoning: induction and abduction.

The taxonomy above provides the setting rather than the focus of the dis-
cussion to follow, and remains largely informal. For a detailed taxonomy of
entailment relations, which however does not take the ontological vs. episte-
mological distinction into account, the reader is referred to [5]. We note that
both the conservative-liberal and the ontological-epistemological dimensions of
entailment presuppose the syntactic-semantic dimension, since both involve the
syntactic strings X and Y as well as their meanings and truth.
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§2. Classical entailment. What do we understand by ‘classical’ entailment?
Historically, the first formal treatment of entailment was in terms of the syntac-
tic (as well as ontological and conservative) relation of formal deduction. Thus
the classical, syntactic approach takes P (X) = X and Q(Y ) = Y to be the
symbol-strings X and Y themselves, while E = `, deduction according to a
set of syntactic inference rules. As Bertrand Russell put it a century ago, an
argument “is valid in virtue of its form, not in virtue of the particular terms
occurring in it” [79, p.197], and more generally:

The language of mathematical logic, if it were perfected, would . . .
have symbols for variables, such as ‘x’ and ‘R’ and ‘y’, arranged in
various ways; and the way of arrangement would indicate that some-
thing was being said to be true of all values or some values of the
variables. We should not need to know any words, because they would
only be needed for giving values to the variables, which is the busi-
ness of the applied mathematician, not of the pure mathematician or
logician [79, p.200].

Thus for Russell entailment, or valid argument, was concerned with the trans-
formation of one string of symbols into another by the application of carefully
selected rules. The rules were selected in order to preserve truth, thus ensuring
that the entailment relation was conservative, but the meanings that might be
attributed to the strings by a comprehending subject (i.e., the semantics) had
no bearing on whether an argument was valid. Many different sets of inference
rules have been proposed [86, 87], so that in a sense there are many syntactic
entailment relations `.

A contrasting semantic view was articulated by Charles Sanders Peirce, who
wrote [65, see 2:778]:

The third elementary way of reasoning is deduction, of which the war-
rant is that the facts presented in the premisses could not under any
imaginable circumstances be true without involving the truth of the
conclusion . . . The process is as follows, at least in many cases: We
form in the imagination some sort of diagrammatic, that is, iconic,
representation of the facts, as skeletonized as possible. The impres-
sion of the present writer is that with ordinary persons this is always a
visual image, or mixed visual and muscular; but this is an opinion not
founded on any systematic examination . . . This diagram, which has
been constructed to represent intuitively or semi-intuitively the same
relations which are abstractly expressed in the premisses, is then ob-
served, and a hypothesis suggests itself that there is a certain relation
between some of its parts – or perhaps this hypothesis has already
been suggested.

And again [65, 5:162]:
All necessary reasoning without exception is diagrammatic. That is,
we construct an icon of our hypothetical state of things and proceed
to observe it. This observation leads us to suspect that something is
true, which we may or may not be able to formulate with precision,
and we proceed to enquire whether it is true or not.
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Following Peirce, we shall use ‘deduction’ for conservative entailment, but
without making assumptions about the remaining qualities. Note that Peirce’s
semantic approach incorporates the epistemological perspective of a compre-
hending agent, for he explicitly refers to imagining and constructing, and the
semantics involves iconic representations, which are psychological phenomena.
As is well known, Peirce did not use ‘symbol’ as a synonym for ‘anything that
represents’ but instead distinguished between various kinds of representation.
An iconic representation differs from a symbolic representation in abstractness:
symbols acquire their denotations by convention whereas an iconic representa-
tion such as a photograph, map, or blueprint resembles in some analog fashion
that which it represents. For example, the image formed on the retina when
we look at our friend Alice is an iconic representation of her, as is also the
subsequent topographically organised pattern of neural excitation in the brain
that we subjectively experience as an image of Alice; on the other hand, the
string ‘Alice’ is a symbolic representation. Perception produces iconic represen-
tations (images) in the early sensory cortices of organisms [18, p.91]. From these
an analog-to-discrete transformation, perhaps involving a form of filtering that
picks out invariant features, produces a categorical representation, from which in
turn may arise a symbolic representation in the form of a label associated with
the categorical representation [38, 29]. We note in passing that a major challenge
for artificial intelligence researchers is to design situated agents in which some
version of this analog-to-discrete transformation will convert inputs from sen-
sors (or as Harnad so memorably puts it: “the proximal projection of the distal
stimulus object on the device’s transducer surfaces”) into sentences intended for
communication or processing by a syntactic algorithm [16]. In the case of hu-
man reasoning, it was Peirce’s view that our (partly unconscious) manipulation
of iconic representations guides our thoughts from one symbolic representation
(sentence) to another – a foreshadowing of Johnson-Laird’s theory of cognition
based on mental models [44, 45]. Peirce’s concept of entailment was thus episte-
mological, semantic, and (in virtue of his warrant for deduction) conservative.

A subsequent, and better-known, semantic view of entailment was developed in a
sequence of papers by Alfred Tarski [88]. Here abstract set-theoretic models take
the place of the iconic representations involved in actual human thought, facil-
itating the formal analysis of semantic notions. This model-theoretic approach
associates with the object language a class W of semantic structures (states,
interpretations, worlds) each consisting of a domain of discourse together with
functions and relations on the domain. Denotations are then specified, so that it
is known what elements, functions, and relations are denoted by the constants,
function symbols, and predicate symbols of the object language. A definition of
what it takes for a sentence to be satisfied by such a semantic structure is given.
Now every sentence X is true relative to a subset of W, the set Mod(X) of
models of X, and is false relative to the remainder, making it possible to define
that sentence X semantically entails sentence Y , written X |= Y , by taking the
representations of X and Y to be P (X) = Mod(X) and Q(Y ) = Mod(Y ) and by
taking the inducing relation E = ⊆, set-theoretical inclusion. Peirce’s warrant
for deduction is again realised: |= preserves truth in the sense that if X is true
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in a state (interpretation, world) and X |= Y , then Y is also true in that state
(interpretation, world).

Peirce was interested in science and the discovery of truths about the real
world; Tarski focused on applications in mathematics. In this latter context |=
has a fixed ontological foundation: to the (first-order) object language is associ-
ated the class of all semantic structures whose signature fits the vocabulary of
the object language, subclasses that may be of interest then being demarcated
by axiomatisation. Furthermore, it is a purely set-theoretic question whether
X |= Y , with no room for a reasoning agent to intrude any influence. For first-
order logic, there are, in fact, multiple versions of |= because the notion of model
can be defined either locally (model = interpretation + assignment of values to
variables) or more globally (model = interpretation) [6], but for sentences the
local and global notions coincide. In this limiting case, |= is the same binary rela-
tion as (sensibly defined versions of) the syntactic `, the latter being sound and
complete with regard to the former. Since propositional logic affords a similar
coincidence of |= and ` relative to the fixed ontology in which all assignments of
truth values to atoms are included, one might argue for the existence of a sin-
gle ‘classical’ entailment relation capable of being generated either semantically
or syntactically. This classical entailment relation, in either of its incarnations,
serves to characterise deduction by providing a mathematically precise static
constraint against which deductive lunges from premiss to consequence may be
tested.

The ontology, by which we understand the class W of states associated with
the object language, need not be fixed at the class of all semantic structures
mathematically compatible with the signature of the language (in the proposi-
tional case, need not be the class of all truth assignments). If a propositional
language is used to represent knowledge about a simple system such as the 3
Card Game (in which there are three different cards and three different players,
so that there are nine elementary ideas of the form “This player has that card”
to express in the object language), the realisable states (legal deals) correspond
to just 6 of the 512 ways to assign truth values to the nine atomic sentences.
It is convenient to exclude from W the 506 spurious states, for example the
truth assignment making all atoms true simultaneously, which would represent
the impossible deal in which every player gets all three cards. Allowing flexibil-
ity in the choice of W may in effect inject agent-orientation, and the supply of
potential models, i.e. W, affects the semantic entailment relation |=, for if W ⊆
W′ then |=W′ ⊆ |=W. A relation defined in terms of set-theoretic models may
therefore be construed epistemologically even though the semantics is formal (set
theoretic) rather than psychological (Peircean images).

The agent-orientation characteristic of epistemological criteria does not reduce
logic to psychology. The distinction is well drawn by John Pollock, who says:
“Psychologists study human thought when it goes wrong as well as when it goes
right, but we want to know what it is for it to go right” [68, p.1]. If by reasoning
we understand patterns of thought that are rational in the pragmatic sense of
tending to go right, in the everyday world and not just in the universe of math-
ematics, then it would seem prudent to give Peirce a respectful hearing without
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necessarily discarding the technical conveniences of Tarskian model theory. An
insight frequently re-iterated by Peirce was that there are three kinds of reason-
ing. In addition to deduction, there are induction and abduction [65, e.g. 2:774,
5:161, 5:274]. This invites the question: What entailment relations constrain
induction and abduction?

In what follows we shall put forward two kinds of semantic, liberal, epis-
temological entailment, where ‘liberal’ is made precise as supraclassicality. In
supraclassical entailment more pairs (X, Y ) are allowed into the entailment re-
lation than can be justified by the classical entailment relations ` or |=. This is
done by suitable choices, determined by meta-information beyond that carried
by X and Y , of P (X), Q(Y ) and E, and then stipulating “X entails Y ” to mean
P (X)EQ(Y ). The truth of premiss X does not guarantee that consequence Y
is true, but knowing X constitutes a reason for believing Y at least tentatively
and provisionally. The entailment is therefore defeasible; it represents entailment
from premiss to consequence that may have a counterexample, an (unexpected)
interpretation under which X is true but Y is false. The reasoning captured by
such supraclassical entailment is ampliative inasmuch as the consequence may go
beyond the information contained in the premiss X. Frameworks for the expli-
cation of ampliative reasoning are provided by nonmonotonic logic, in one form
of which a preference order on states determines a defeasible entailment relation
|∼ . We call this preferential semantics, for short [81, 49]. An overview of this
and other approaches can be found in [20], while a more abstract treatment is
given in [5].

We shall argue below that the relation |∼ given by preferential semantics con-
strains inductive reasoning. For abduction, we introduce the dual relation |∼∗,
which embodies the idea of being a potential partial explanation. But before
forging the links to induction and abduction, we explore the relationship be-
tween the new |∼∗ and the familiar |∼ from the perspectives of Boolean algebra,
inference rules, and modal axiomatisation respectively.

§3. Preferential semantics. Assume that we have a propositional object
language L, with which is associated a set W of states or possible worlds. For
simplicity we shall identify states with assignments of truth values to atomic sen-
tences, although in general the connection between states and truth assignments
is more loose [49]. In a preferential semantics for L one assumes an order relation
on W to be given. The intuitive idea captured by the order relation on states
is that states higher up (greater) in the order are more preferred, more normal,
more likely to occur in the context under consideration, than those lower down.
For historical reasons the order is often inverted in the literature, i.e., states lower
down in the order are preferred to those higher up (see, for example, [1, 19, 59]),
but we will follow Shoham in taking upwards as the direction of increased pref-
erence [81, p.74], which respects the direction of accessibility relations in modal
logic and observes the informal intuition that ‘up’ is ‘better’. Indeed, this is in
accordance “with a long-standing philosophical tradition” [36].

To ensure that the entailment relation eventually generated is what is often
called a rational consequence relation [25, 51, 24], we assume the preference
order to be a modular partial order, i.e. a reflexive, transitive relation such that,
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for all u, v, w in W, if u and v are incomparable and u is strictly below w, then
v is also strictly below w. Equivalently, we may take the preference order to
be a total preorder, i.e. a reflexive, transitive relation such that, for all u, v in
W, u and v are comparable. Both modular partial orders and total preorders
have the effect of stratifying the set W into layers (levels), thus facilitating
visualisation, and for purposes of selecting maximally preferred models it does
not matter which is used (although subsidiary concepts such as entrenchment,
which are not pertinent to the present discussion, would be affected [57, 56]). We
further assume that the order relation is Noetherian (and hence, in Shoham’s
terminology [81, p.75], bounded, which is the dual of well-founded, which in
turn implies, in the terminology of Kraus, Lehmann, and Magidor [49], that
the order relation is smooth), i.e., there is no infinite strictly ascending chain of
states. In the presence of transitivity, the Noetherian property is equivalent to
the following condition: For every nonempty subset U of W and u ∈ U there is
an element v ∈U, maximal in U, with v greater than or equal to u. In particular,
any nonempty set Mod(X) has a subset of maximal elements MaxMod(X) –
those models w of X for which there is no model of X strictly higher up in the
preference order ≤ than w, i.e. no model strictly preferred to w.

The preference order ≤ on W permits us to expand the classical entailment
relation X |= Y , i.e. Mod(X) ⊆ Mod(Y ), to a supraclassical set of pairs (X,Y )
by shrinking Mod(X) to a smaller set, the set P (X) of most preferred models of
X, capable of fitting into more different sets Mod(Y ). We define the defeasible
entailment relation |∼ by

X |∼ Y iff P (X) ⊆ Mod(Y ),

where

P (X) = MaxMod(X)
= {w ∈ Mod(X) | for no w′ ∈ Mod(X) is w ≤ w′ but w′ 6≤ w}.

The entailment relation |∼ is defeasible inasmuch as a model of X may exist
which is a counterexample to X |= Y but not to X |∼ Y . Such a model of X
which is not a model of Y cannot be among the most preferred models of X, and
must be somewhat “abnormal” – for the cognoscenti: like a state of the world
in which Tweety is a bird but is flightless.

By way of fully formalised example, consider the Light-Fan System consisting
of two components, a light and a fan, each of which may be either on or off. As
knowledge representation language we take the propositional language generated
by the set {p, q} of atoms, where p is intended to express the atomic fact that
the light is on and q that the fan is on. The usual connectives are assumed:
¬ (negation), ∧ (conjunction), ∨ (disjunction), → (conditional), and ↔ (bicon-
ditional). The set of states is W = {11, 10, 01, 00}, where the string 10 is an
abbreviation for the truth assignment making p true and q false, and so on.

As an aid to intuition we may regard the Light-Fan system as a metaphor for
(say) a nuclear powerplant, with the light standing for the atomic pile and the
fan for the cooling system.

The following modular partial order depicts the heuristic information that the
utility company selling the electricity generated by the powerplant tries as far as
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possible to keep both the light and the fan on; sometimes has to switch off the
light for maintenance but tries then to keep the fan going lest shutting down and
starting up again cause problems; more rarely has to switch off both the light and
the fan (say, if the fan needs maintenance); and only very exceptionally would
have the light on while the fan is off (for example, during a serious malfunction
on the order of the Three Mile Island meltdown):

11
01 ↑ more preferred
00
10

The defeasible entailment relation |∼ induced by this order is such that, for
example, ¬p |∼ q since MaxMod(¬p) = {01} ⊆ {11, 01} = Mod(q). This reflects
the intuition that when the light is off, it is more usual for the fan to be on than
to be off. Since ¬p 2 q, the relation |∼ is clearly supraclassical.

It should be remarked that the relation |∼ does not model statistical inference.
Statistical data may provide the basis for a default rule, and thus probabili-
ties may be the source of the original preference order, but nonmonotonic logic
then proceeds in a manner subtly different from probabilistic inductive logic
[39]. Suppose the order relation depicted above were derived from statistical
information about the likelihood that the system is in a given state. The sta-
tistical information would be in the form of probabilities such as (for example)
Pr(10) = 1

10 , Pr(00) = 2
10 , Pr(01) = 3

10 , and Pr(11) = 4
10 . In order to generalise

classical entailment |= to probabilistic entailment, these numbers would be used
to calculate conditional probabilities [39]. For example, to determine whether
¬p probabilistically entails q, one would calculate Pr({01, 11} | {00, 01}) where
{01, 11} = Mod(q) and {00, 01} = Mod(¬p). The calculation of this conditional
probability in effect restricts consideration to the models of ¬p and counts the
proportion of these that satisfy q. In contrast, the defeasible entailment relation
|∼ picks out only the most preferred models of ¬p and checks whether (all of)
these satisfy q, a procedure requiring no arithmetical calculation and sometimes
leading to different results.

§4. Duality. As noted above, classical entailment X |= Y is defined by re-
quiring that Mod(X) ⊆ Mod(Y ), and in preferential semantics the defeasible
entailment relation X |∼ Y shrinks Mod(X) to P (X) and requires merely that
P (X) ⊆ Mod(Y ). Instead of shrinking Mod(X) it is possible to expand the
relation |= by dilating Mod(Y ) to Q(Y ), for some appropriate choice of Q(Y ).
Since P (X) is the set comprising only the most preferred models of X, we take
Q(Y ) to be the dual notion, i.e. the set of all states except for the most preferred
models of ¬Y .

Formally, we define

Q(Y ) = W − P (¬Y ),

and since W−P (¬Y ) = Mod(Y )∪ [Mod(¬Y )−P (¬Y )], we may think of Q(Y )
as obtained by adding to Mod(Y ) those models of ¬Y which are not maximally
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preferred. Now we can define the dual defeasible entailment relation |∼∗ by

X |∼∗ Y iff Mod(X) ⊆ Q(Y ).

The intuition underlying this form of entailment is that, should X (against
expectations) have a model not in Mod(Y ) (i.e. a counterexample to X |= Y ),
then this model (counterexample) is “abnormal”, being not amongst the most
preferred models of ¬Y .

Returning to the Light-Fan System for concrete illustrations, we see that |∼∗
is different from |∼, since ¬(p ↔ q) |∼∗ ¬q whereas it is not the case that
¬(p ↔ q) |∼ ¬q. To see that ¬(p ↔ q) does not defeasibly entail ¬q under
|∼, it suffices to note that the models of ¬(p ↔ q) are 10 and 01 of which the
preferred model 01 fails to be a model of ¬q. That ¬(p ↔ q) |∼∗ ¬q follows since
{01, 10} ⊆ {00, 10}∪{01}, where we have dilated the models of ¬q by adding the
model of q that is not maximally preferred. Furthermore |∼∗ is not the converse
of |∼, for it is not the case that ¬q |∼ ¬(p ↔ q), as the most preferred model of
¬q is 00, which is not a model of ¬(p ↔ q).

Let us now examine the extent to which |∼∗ deserves to be called the dual of
|∼. Duality in a context such as Boolean algebra has to do with swapping ‘up’
and ‘down’ (e.g. join and meet) under complementation. Classically, X |= Y iff
¬Y |= ¬X, where |= is the order relation in the Lindenbaum-Tarski algebra of
propositions, and negation is complementation. This property does not generally
hold for |∼, as may be seen from the counterexample ¬p |∼ q in the Light-Fan
System above – it is not the case that we have the contrapositive entailment
¬q |∼ p, since the most preferred model of ¬q is 00, which fails to satisfy p.
However, note that

¬Y |∼ ¬X iff P (¬Y ) ⊆ W −Mod(X)
iff Mod(X) ⊆ W − P (¬Y )
iff X |∼∗ Y.

Thus |∼∗ is the dual of |∼ where the operation ()∗ on binary relations of
sentences is given by (X, Y ) ∈ R∗ iff (¬Y,¬X) ∈ R. As one would expect of a
duality operation, ¬¬X |∼∗∗ ¬¬Y iff X |∼ Y .

From an algebraic perspective one has that, for a fixed premiss X, the set
{Y | X |∼ Y } of consequences under |∼ is a filter in the Lindenbaum-Tarski alge-
bra of the language, i.e., is closed under conjunction ∧ and classical entailment
|=. (It is a principal filter if P (X) is the set of models of a single sentence, as
always happens for a finitely generated propositional language.) But, for a fixed
consequence Y , the set of its premisses {X | X |∼ Y } under |∼ merits no accla-
mation: it is not an ideal, amongst others because |∼ is nonmonotonic; X |∼ Y
does not always ensure that X ∧X ′ |∼ Y , so the set of premisses of Y under |∼
is not closed downward in the Lindenbaum-Tarski algebra.

In sharp contrast, when we change to |∼∗ we find that it is the consequences
{Y | X |∼∗ Y } of a fixed X under |∼∗ that are collectively disappointing since
they do not constitute a filter in the Lindenbaum-Tarski algebra, but it is easily
verified that now the set of premisses {X | X |∼∗ Y } of a fixed consequence Y
do form an ideal, in large part because |∼∗ is monotonic. In sum, whereas the
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consequences under |∼ form a filter, the premisses under |∼∗ form an ideal in the
Boolean algebra of propositions.

We now turn to properties of entailment that can be expressed in the form of
inference rules. It was mentioned in passing that although |∼ is nonmonotonic,
|∼∗ is monotonic. Monotonicity is one of the characteristic properties of classical
entailment, and reflects that we may blithely strengthen the premiss on the left
hand side of an entailment: if X |= Z then, for any sentence Y , it is also the case
that X ∧Y |= Z. Since the premisses under |∼ do not form an ideal, the best we
can hope for is that some more careful form of left strengthening may hold, in
which some safety criterion filters out unsuitable additional premisses Y . Two
such versions are given below, cautious monotonicity and rational monotonicity
respectively.

The following are a sample of the properties known from [49, 51] to typify |∼ .

(1) Reflexivity: X |∼ X

(2) And:
X |∼ Y X |∼ Z

X |∼ Y ∧ Z

(3) Or:
X |∼ Z Y |∼ Z

X ∨ Y |∼ Z

(4) Left defeasible equivalence:
X |∼ Y Y |∼ X X |∼ Z

Y |∼ Z

(4′) Left logical equivalence:
² X ↔ Y X |∼ Z

Y |∼ Z

(5) Right weakening:
X |∼ Y ² Y → Z

X |∼ Z

(6) Cautious monotonicity:
(Cautious left strengthening)

X |∼ Y X |∼ Z
X ∧ Y |∼ Z

(7) Rational monotonicity:
(Rational left strengthening)

X |∼ Y X |� ¬Z
X ∧ Z |∼ Y

(8) Cut:
(Cautious left weakening)

X ∧ Y |∼ Z X |∼ Y
X |∼ Z

Since |∼ is supraclassical, the premisses for left defeasible equivalence are
weaker than those for left logical equivalence.

The duality between ideals and filters in Boolean algebra leads us to expect
that the inference rules that hold for |∼∗ ought to form matching pairs with
those for |∼, differing in whether it is the left or the right that is altered and
whether the alteration amounts to weakening or strengthening (in the sense of
respectively dilating or contracting the set of models). The property of right
weakening for |∼ ought to be replaced by left strengthening (monotonicity) for
|∼∗, while the careful forms of monotonicity for |∼ have as their analogs careful
forms of right weakening for |∼∗, and the cut rule for |∼, being a cautious form of
left weakening, ought to have as its analog a cautious form of right strengthening.
And indeed, each of the following inference rules holds for |∼∗, since it is (via
the definition of |∼∗) equivalent to the correspondingly numbered rule for |∼.
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(1∗) Reflexivity: X |∼∗ X

(2∗) Or:
X |∼∗ Z Y |∼∗ Z

X ∨ Y |∼∗ Z

(3∗) And:
X |∼∗ Y X |∼∗ Z

X |∼∗ Y ∧ Z

(4∗) Right defeasible equivalence:
X |∼∗ Y Y |∼∗ X Z |∼∗ X

Z |∼∗ Y

(4∗′) Right logical equivalence:
|= X ↔ Y Z |∼∗ X

Z |∼∗ Y

(5∗) Monotonicity:
(Left strengthening)

Y |∼∗ Z |= X → Y
X |∼∗ Z

(6∗) Cautious right weakening:
X |∼∗ Y Z |∼∗ Y

X |∼∗ Y ∨ Z

(7∗) Rational right weakening:
X |∼∗ Y ¬Z |�∗ Y

X |∼∗ Y ∨ Z

(8∗) Cautious right strengthening:
X |∼∗ Y ∨ Z Z |∼∗ Y

X |∼∗ Y

Since |∼∗ is supraclassical, the premisses for right defeasible equivalence are
weaker than those for right logical equivalence. The form in which monotonicity
for |∼∗ is given has been chosen to rhyme with the form in which right weakening
for |∼ was given previously. We could of course recast monotonicity for |∼∗ in the
equivalent but more familiar garb whereby the entailment X |∼∗ Z is blithely
strengthened on the left to X ∧ Y |∼∗ Z. In a similar vein, it may help to
understand the two careful forms of right weakening for |∼∗ if the reader first
recasts the (blithely unguarded) right weakening rule for |∼ as the equivalent
assertion that if X |∼ Y then, for any Z whatever, X |∼ Y ∨ Z.

Since |∼ and |∼∗ are respectively associated with filters and ideals of the
Lindenbaum-Tarski algebra of propositions and since the inference rules gov-
erning the behaviour of |∼ have intuitively natural dual versions that apply to
|∼∗, it is clear that |∼∗ may justifiably be termed the dual of |∼. Further evidence
is found in modal logic, where rational monotonicity for |∼ and rational right
weakening for |∼∗ require a tense logic with bidirectional frames.

§5. Modal characterisation. Our relation |∼ is produced by a preference
order on W with very specific properties – a modular partial order (or, equiva-
lently, a total preorder). In contrast, an accessibility relation for a modal logic
can, in general, be any binary relation R on W. This invites the conjecture
that the defeasible entailment relation |∼ can be characterised modally by con-
structing an apt accessibility relation R from the preference order ≤ and then
formulating a modal sentence P (X) which, with semantics relative to R, de-
scribes the preferred models (relative to ≤) of premiss X:

Mod(P (X)) = MaxMod(X).
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5.1. Modal formulation. Unlike in the previous sections, where P (X) was
defined semantically as a set of interpretations, here we want a syntactic repre-
sentation of X that matches a given semantic construction. There are several
ways in which this can be done, as for example in [17, 11, 4, 32, 93]. The proposal
of [32], also characterised semantically in [93], is particularly natural and elegant,
and we adopt it below. Note that the modal characterisation of default reason-
ing presented in [4] is not compatible with our proposal. For example, seriality
(for every u there is some v such that u < v, axiomatised by 2X → ¬2¬X) is
argued to be mandatory in a minimal modal logic for default logic, whereas it
never holds in Modular GL as defined below. (Seriality is not compatible with
a Noetherian strict partial order as accessibility relation.)

As a first step, let us expand the (nonmodal propositional) object language L
by including the sentences formed by application of a modal operator 2. Call
the resulting language L2. Given a preference order ≤ on the set of states W,
which we assume to be at least a preorder (reflexive, transitive relation), take
the accessibility relation R to be <, the strict partial order (irreflexive, transitive
relation) corresponding to ≤:

(∀w)(∀w′)[w < w′ iff w ≤ w′ and w′ 6≤ w].

Then define

P (X) = X ∧2¬X,

which is logically stronger than X. According to the semantics induced by R,
the sentence 2¬X is true in state w if and only if X is false in all w′ such that
w < w′. Hence P (X) is true in all the maximal models of X, and false in all
other states (non-models of X as well as non-maximal models of X):

Mod(P (X)) = MaxMod(X); and X |∼ Y iff P (X) |= Y.

For the dual |∼∗ of |∼ we see that

X |∼∗ Y iff ¬Y |∼ ¬X

iff ¬Y ∧2Y |= ¬X

iff X |= Q(Y ),

where

Q(Y ) = 2Y → Y.

Q(Y ) is not in general a tautology, since < is irreflexive, but Q(Y ) is logically
weaker than Y .

This shows that the defeasible entailments X |∼ Y and X |∼∗ Y are equivalent
to entailments P (X) |= Y and X |= Q(Y ), with P (X) = X ∧2¬X and Q(Y ) =
Y ∨¬2Y in the modal language L2 with semantics induced by that accessibility
relation which is the strict variant of the preference order. Note that in the
non-modal language L for preferential logic in Section 3 the filter {Y | X |∼ Y }
need not be principal, since MaxMod(X) need not be axiomatisable by a single
sentence; similarly the ideal {X | X |∼∗ Y } need not be principal. However, in
the more expressive modal language L2 of this section the corresponding filter
and ideal are principal, generated respectively by the single modal sentences
P (X) and Q(Y ).
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5.2. Modal axiomatisation. We now turn to the axiomatisation of the ac-
cessibility relation < which was used to give an appropriate semantics to the
sentence P (X) = X ∧ 2¬X. In its most general form, < is a Noetherian strict
partial order.

Gödel-Löb logic GL (a provability logic) is obtained from the minimal modal
logic K by adding the transitivity and Löb axioms (see, for example, [10]):

GL = K ⊕ 2X → 22X ⊕ 2(2X → X) → 2X.

GL is determined by the class of all Noetherian strict partial orders [80]. This
makes GL the appropriate logic to reason syntactically about |∼.

The emphasis in [32] is on the development of a tableau proof system for pref-
erential semantics. Our concern here is not with the development of a decision
procedure, but rather with the modal representation of modularity (or connect-
edness, if we are using a total preorder). In fact, we only need to consider mod-
ularity, as any total preorder can be converted to an associated modular partial
order via its associated strict partial order: Let preorders S and T be order-
equivalent iff they have the same associated strict partial orders. It is then not
difficult to show that, for any modular partial order S, there is a total preorder T
such that S and T are order-equivalent, and conversely, for every total preorder
T there is a modular partial order S such that S and T are order-equivalent. So
one can move without loss of information (about maximal elements) from a total
preorder to a modular partial order via the modal representation of information
in terms of a strict accessibility relation.

Linearity, and trichotomy, cannot be axiomatised directly in modal logic, and
neither can modularity. However, just as linearity may be weakened to prohibit
branching to the right (see, for example, [8, p.193]), modularity can be weakened
to prohibit upward-branching over more than one level. Let an order relation be
weakly modular if

(∀w)(∀u)(∀v)[If w < v and w < u then v < u or u < v or ↑v = ↑u],

where ↑v = {v′ | v < v′} is the strict upclosure of v.
The axiomatisation of weak modularity in Lemma 5.2 below requires bolstering

the syntax of the non-modal language L of Section 3 to allow conjunctions and
disjunctions of sets of sentences with arbitrary cardinality [47, 21], and then
adding the modal operator 2. Of course, this is superfluous in a finitely generated
propositional language. It is not clear whether Lemma 5.2 can be proved without
referring to either of these conditions.

Lemma 5.1. For any U ⊆W there exists a sentence X such that U = Mod(X).

Proof. Suppose U = {ui | i ∈ I}. Define the “diagram” of ui:

D(ui) =
∧
{l | l is a literal true in ui},

where a literal is a propositional atom or its negation. Then it is easy to see that

X =
∨
{D(ui) | i ∈ I}

suffices. a
The axiomatisation of weak modularity is then as follows:
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Lemma 5.2. Let (W, <) be a GL-frame (i.e. a Noetherian strict partial or-
der). (W, <) is weakly modular if and only if any sentence of the form

2(2X → Y ) ∨2(2Y → 2X)

is valid in the frame.

Proof. Left to right: Suppose 2(2X → Y )∨2(2Y → 2X) is false in world
w. Then

(i) there exists u such that w < u and 2X → Y is false in u, i.e. 2X is true
in u and Y is false in u, and

(ii) there exists v such that w < v and 2Y → 2X is false in v, i.e. 2Y is true
in v and 2X is false in v.

Suppose also that < is weakly modular. Then v < u or u < v or ↑v =↑u. If
v < u, then 2Y is true in v, so Y is true in u, contradicting (i). If u < v, then
2X is true in u, so 2X is true in v, contradicting (ii). If ↑ v =↑u, then 2X is
true in u, so 2X is true in v, contradicting (ii). Therefore weak modularity of
the frame implies validity of 2(2X → Y ) ∨2(2Y → 2X).

Conversely, suppose there exist worlds u, v, w such that w < v and w < u and
not(v < u or u < v or ↑v =↑u). Without loss of generality, we can assume that
there exists a world z such that v < z and u 6< z.

Let Y be any sentence true in ↑ v and false in u, and let X be any sentence
true in ↑ u and false in z. The existence of X and Y is guaranteed by Lemma
5.1, since we can for instance choose X and Y to satisfy ↑ u = Mod(X) and
↑ v = Mod(Y ). We see that 2X is true in u, Y is false in u, 2Y is true in v
and 2X is false in v. Therefore 2X → Y is false in u and 2Y → 2X is false
in v. So 2(2X → Y ) ∨ 2(2Y → 2X) is not true in w, and hence not valid.
Therefore validity of the axiom implies weak modularity. a

Let Weakly Modular GL be the logic obtained from GL by adding the weak
modularity axiom (and, if necessary, infinitary conjunctions and disjunctions
in the underlying purely propositional language). We then have the following
result:

Theorem 5.3. Weakly Modular GL is determined by the class of all Noether-
ian weakly modular strict partial orders.

Weak modularity of a GL-frame does not suffice to ensure rational monotonic-
ity of its associated defeasible entailment relation |∼, nor does it ensure rational
right weakening of |∼∗. In order to obtain such a result, we turn Weakly Modular
GL into a tense logic. The class of frames under consideration here is the class
of bidirectional frames of the form (W, <, >), where < is a Noetherian weakly
modular strict partial order with weakly modular converse >.

Let Modular GL be the tense logic with modal operators 2 and 2c obtained
from the minimal tense logic Kt [8, p.205] by adding the transitivity, Löb, and
weak modularity axioms for 2, as well as the weak modularity axiom for 2c. We
then have the following result, which is proved similarly to Lemma 5.2:

Theorem 5.4. Modular GL is determined by the class of all Noetherian weakly
modular strict partial orders with weakly modular converse.



ENTAILMENT, DUALITY, AND THE FORMS OF REASONING 15

Any Noetherian modular strict partial order is weakly modular with weakly
modular converse, and hence a Modular GL-frame as determined by Theorem
5.4. However, the converse statement is not true in general. Weak modularity of
< prohibits upward branching over more than one level. Similarly, weak mod-
ularity of > prohibits downward branching over more than one level. Together,
the weak modularity axioms ensure that, for any two worlds x and y, either
x < y or y < x or ↑x =↑ y or x and y have no common upper or lower bound.
That is, either both x and y are elements of the same modular strict partial
order, or they belong to two disjoint modular strict partial orders. We use this
observation to obtain the following representation result:

Theorem 5.5. Modular GL is determined by the class of all Noetherian mod-
ular strict partial orders.

Proof. Suppose X is valid in Modular GL. Then X is true in all Noetherian
weakly modular strict partial orders with weakly modular converse, and hence
also in all Noetherian modular strict partial orders. Conversely, suppose X is true
in all Noetherian modular strict partial orders. Let (W, <, >) be a Noetherian
weakly modular strict partial order with weakly modular converse. (W, <, >)
consists of one or more disjoint Noetherian modular strict partial orders. X is
true in each of these subframes, and hence also in (W, <,>). So X is valid in
Modular GL. a

Thus Modular GL is the tense logic of the forms of reasoning constrained by |∼
and |∼∗. We now proceed to a closer examination of these forms of reasoning, and
argue that |∼ characterises inductive reasoning while |∼∗ characterises abductive
reasoning.

§6. Inductive reasoning. Peirce claimed that reasoning was of three kinds:
deductive, inductive, and abductive. Deductive reasoning is comparatively well
understood. But what is inductive reasoning? Popper argued that there is,
in fact, no such thing [71]. Is it possible that this contradiction between the
Peircean and the Popperian views can be resolved with the help of |∼? Such is
our contention.

At its simplest, induction surely has to do with making predictions on the basis
of past experience, for example predicting on the basis of experience summarised
by the premiss “The bread which I formerly eat, nourished me” that “Other
bread must also nourish me”, to quote Hume [43, from para.29]. Hume drew
attention to the fact that such predictive inferences are not truth-preserving, i.e.
are not instances of deduction: “That there are no demonstrative arguments in
the case seems evident; since it implies no contradiction that the course of nature
may change, and that an object, seemingly like those which we have experienced,
may be attended with different or contrary effects.”

Popper’s subsequent explicit formulation of the problem of induction was very
broad [71, p.110]:

Are we rationally justified in reasoning from instances or from coun-
terinstances of which we have had experience to the truth or falsity
of the corresponding laws, or to instances of which we have had no
experience?
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By including counterinstances as well as instances, and directing the inference
toward laws as well as novel instances, Popper could rely on Hume’s arguments
against any claim that the inference from instances is truth-preserving, while
putting forward falsification as the closest thing to a solution, because a coun-
terinstance suffices to falsify a law, at least if that law is expressed as a universally
quantified sentence. (Actually, the matter is not as simple as Popper thought,
because a contingent sentence can only be falsified in some specific interpretation
of the object language. Despite his respect for Tarski’s model-theoretic initia-
tives, Popper never quite adopted the corresponding methodology. But this is
not crucial in what follows.)

6.1. Peircean induction. Peirce would have granted no Popperian broad-
ening of the notion of induction, for laws (theories) would in Peirce’s view result
from the process of hypothesis-formation he termed abduction. According to
Peirce, induction uses laws rather than produces laws [65, 5:170]:

Induction consists in starting from a theory, deducing from it predic-
tions of phenomena, and observing those phenomena in order to see
how nearly they agree with the theory.

Here the word “deducing” should be read as a careless synonym for ‘inferring’,
for Peirce was quite clear about deductive reasoning being necessary (i.e. apod-
ictic) reasoning whereas induction is associated with predictions such as might
be used to design experiments by which to test theories. Induction thus involves
defeasible, not necessary, reasoning (although Peirce used the term ‘probable’
rather than the modern ‘defeasible’) [65, 5:270, 5:272]:

A complete, simple, and valid argument, or syllogism, is either apo-
dictic or probable. An apodictic or deductive syllogism is one whose
validity depends unconditionally upon the relation of the fact inferred
to the facts posited in the premisses . . . But a syllogism whose validity
depends partly upon the non-existence of some other knowledge, is a
probable syllogism . . . The absence of knowledge which is essential to
the validity of any probable argument relates to some question which
is determined by the argument itself. This question, like every other, is
whether certain objects have certain characters [i.e. features]. Hence,
the absence of knowledge is either whether besides the objects which,
according to the premisses, possess certain characters, any other ob-
jects possess them; or, whether besides the characters which, accord-
ing to the premisses, belong to certain objects, any other characters
not necessarily involved in these belong to the same objects. In the
former case, the reasoning proceeds as though all the objects which
have certain characters were known, and this is induction; in the latter
case, the inference proceeds as though all the characters requisite to
the determination of a certain object or class were known, and this is
hypothesis [i.e. abduction].

Peirce explicitly rejected the commonly held view that induction led from
instances to generalisations [65, 2:775]:
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Induction takes place when the reasoner already holds a theory more
or less problematically (ranging from a pure interrogative apprehen-
sion to a strong leaning mixed with ever so little doubt); and having
reflected that if that theory be true, then under certain conditions cer-
tain phenomena ought to appear (the stranger and less antecedently
credible the better), proceeds to experiment, that is, to realize those
conditions and watch for the predicted phenomena . . . But all of the
above is at variance with the doctrines of almost all logicians; and,
in particular, they commonly teach that the inductive conclusion ap-
proximates to the truth because of the uniformity of nature. They
only contemplate as inductive reasoning cases in which, from finding
that certain individuals of a class have certain characters the reasoner
concludes that every single individual individual of the class has the
same character.

From Peirce’s remarks it is clear that his view of induction encompasses,
though perhaps is not confined to, the kind of thought process that cognitive psy-
chologists have studied as ‘categorical induction’ since the publication of Rips’s
seminal 1975 paper [73, 64, 61, 62, 82]. The Rips paradigm, on which many
of these studies are based, involves describing a property that applies to one
or more category members and then asking subjects to make judgments about
whether that property is also true of another category member. For example,
the premiss might be “Sparrows use serotonin as a neurotransmitter” and the
prediction might be “Crows use serotonin as a neurotransmitter”. One of the sur-
prising discoveries has been that natural categories have a typicality structure: a
mathematical class is defined by necessary and sufficient conditions and thus all
members have equivalent status; in contrast, the concept of a natural category
is acquired by exposure to instances from which a prototype is abstracted, and
now some members are more typical members than others because they have a
closer similarity to the prototype [76]. This typicality structure determines the
readiness with which subjects make predictive inferences. For example, in the
category of birds (i.e. of bird genera), sparrows are more typical than penguins
[75]. And subjects are much more willing to infer from “Sparrows use serotonin
as a neurotransmitter” that some other kind of bird, such as crows, do likewise
than if the premiss were “Penguins use serotonin as a neurotransmitter” [64].

Research on categorical induction in psychology provides experimental evi-
dence that people do use a form of reasoning that matches what Peirce called
inductive reasoning. Furthermore, the engine that drives the reasoning is the
typicality structure of the relevant category, which may be construed as a de-
fault rule: If the prototypical members of the category have a property, and if a
member of the category which is not known to be atypical is presented, then it
is reasonable to believe that this member will also have the property.

We suggest that it is this typicality structure of categories, or equally the
default rules expressing the structure, that provide the ‘medium’ Hume sought
[43, para.29]:

The bread which I formerly eat, nourished me . . . but does it follow,
that other bread must also nourish me at another time[?] . . . There
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is required a medium, which may enable the mind to draw such an
inference, if indeed it be drawn by reasoning and argument. What
that medium is, I must confess, passes my comprehension . . .

The normative, as opposed to descriptive, study of reasoning based on default
rules is nonmonotonic logic, which grew out of work in artificial intelligence dur-
ing the 1970s and in which the canonical example involves categorical induction
[31, Chapter 1]:

It is not the case that all birds fly, but only that typically birds fly.
Now if I tell you that Tweety is a bird, it is reasonable for you to
conclude that Tweety can fly, since you have no evidence that Tweety
is atypical. But there is a crucial difference here: You based your
conclusion that Tweety could fly on an absence of information about
Tweety’s atypicality. On learning something new about Tweety (such
as that he has a foot set in concrete), you will need to flexibly revise
your conclusion that he can fly.

The comprehensive survey of nonmonotonic logic (as it stood in 1986) from
which this passage was excerpted cites no references to the psychological lit-
erature, presumably because interest in the field of categorical induction lay
dormant after Rips’s 1975 paper until developmental studies by Gelman and
Markman [30] showed that inductive reasoning was not something children mas-
tered immediately, but something more complex and interesting [61, p.247]. It
is remarkable that the study of inductive reasoning became an active research
area simultaneously but independently in two different disciplines.

The early roots of nonmonotonic logic exemplified different ways to represent
default rules. The preferential semantics proposed by Shoham [81] generalises
several of these, and in the developed form discussed by Kraus, Lehmann, and
Magidor [49, 51] may be taken to be the most general model-theoretic framework
for nonmonotonic logic that is known. As indicated earlier, preferential seman-
tics represents default rules as order relations on a set of states. The defeasible
entailment relation |∼ generated by the ordering is designed to capture precisely
the sort of prediction that constitutes categorical induction. We propose, there-
fore, that inductive reasoning is characterised by |∼ in the sense that |∼ provides
a static constraint against which inductive lunges from premiss to conclusion
may be tested.

6.2. Popperian skepticism. Inductive reasoning is a psychological fact,
thus Popper’s denial must have been aimed at claims that such reasoning could
be formalised in a logical system. Hume’s argument’s sufficed to show that clas-
sical entailment did not go far enough, and so Popper’s chief concern was to
deny the explication of induction via Carnap’s probabilistic inductive logic. A
decades-long controversy resulted [58, 50, 53, 48].

In his address to the Karl Popper Centenary Congress, Vienna 2002, Mus-
grave resolved the Carnap-Popper controversy by drawing a distinction between
metaphysical and epistemological entailment [63, p.28]. This distinction is also
relevant to another formal approach to induction – that of Solomonoff [84, 85],
who uses probability distributions induced by a notion of complexity based on
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program lengths, and appeals to the metaphysical principle that Nature has a
preference for simple programs.

A metaphysical principle such as the uniformity of Nature, or her preference
for simple programs, is required in order to underpin the assertion that a pre-
miss, summarising our limited experience, renders probable a prediction about
a new instance. Such metaphysical principles may be contrasted with epistemic
principles such as CR: The fact that a hypothesis is well-corroborated is a good
reason to adopt it, tentatively, as true. To demonstrate that CR is not a meta-
physical principle, and that it is reasonable to adopt CR, Musgrave argues as
follows:

But epistemology is one thing, metaphysics is another. Call CR an
‘epistemic inductive principle’, if you like. This principle neither im-
plies nor assumes that well-corroborated theories are true, or more
likely to be true than not. It says only that it is reasonable to adopt
such theories as true. Can we separate epistemology and metaphysics?
. . . Can it be reasonable to believe falsely? If it can, then the (epis-
temic) reason for believing falsely cannot be a conclusive (metaphys-
ical) reason for what is believed. Everybody will agree that any rea-
sonable theory of reasonable belief must make room for reasonable
yet false belief. Everybody will agree, too, that if the state of the
critical discussion changes, and we find a reason to think something
false, then it is no longer reasonable to adopt it as true. What we say
in such cases is that what we reasonably believed turned out to be
wrong, not that it was wrong or unreasonable for us to have believed
it . . . Surely, we must show that the method of corroboration is a
reliable method, which produces more truth beliefs than false ones, if
it is to be a rational method? No. [J]ust as a belief need not be true,
or shown true, to be reasonable, so also a method of forming beliefs
need not be reliable, or shown reliable, to be reasonable.

Do the probabilistic entailment relations of inductive logic incorporate any
metaphysical criteria? There are many views of probability – one thinks of
Good’s paper titled “46656 varieties of Bayesians” [35] – but at least some ap-
proaches to probabilistic inference do exemplify a system of liberal inferences
sanctioned by metaphysical criteria. However, if the only Popperian objection
to inductive logic were that it rests on a metaphysical assumption, we could
simply point out that the objection does not carry over to the explication of
inductive reasoning offered by nonmonotonic logic in general and |∼ in partic-
ular, for |∼ is unabashedly epistemological and acquires its peculiar force from
the agent’s default rule, which is something “well-corroborated” that the agent
has learnt from the environment. The epistemological roots of preferential se-
mantics become even clearer when we note that these can be traced back to a
paper by John McCarthy tellingly titled “Epistemological problems of artificial
intelligence” [54].

Still, there is a second criticism to consider. Popper and Miller wrote dismis-
sively: “All probabilistic support is purely deductive” [72]. Can the accusation
be levelled at |∼ that it is merely deduction in disguise? The answer depends
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on whether only flat deduction is meant, i.e. deduction in a nonmodal context,
where no additional semantic structure on the set W of states plays a role in
the definition of satisfaction. We claim that inductive reasoning, which we have
explicated in terms of |∼, cannot be fully explicated in terms of flat deduction.
Preferential semantics allows a proper generalisation of flat deduction and is in-
dispensable for the modelling of rational belief formation and change. To show
this, we first relate |=, |∼, and |∼∗.

Consider information expressed by a sentence or theory Z in the (nonmodal
propositional) object language L. Assume that Z is non-trivial in the sense of
being neither contradictory nor tautological. Then the sentence Z all by itself
induces a preference order on W which stratifies W into two levels, as follows:
the models of Z form the upper layer, and the nonmodels of Z form the lower
layer, i.e., every model of Z is strictly preferred to every nonmodel. This trivial
preference order induces entailment relations |∼Z and |∼∗Z . Now:

Theorem 6.1. For any sentences X and Y such that X is consistent with Z
and ¬Y is also consistent with Z (i.e., Y is not classically entailed by Z alone),
the following are equivalent:

1. Z ∧X |= Y
2. X |∼Z Y
3. X |∼∗Z Y

Proof. 1 ⇒ 2 : Suppose Z∧X |= Y . Then P (X) = Mod(Z∧X) ⊆ Mod(Y ),
so X |∼Z Y .

2 ⇒ 1 : Simply reverse the steps above.
Now 1 is equivalent to 1′. Z ∧ ¬Y |= ¬X. We shall show that 1′ ⇔ 3 :
1′ says that Mod(Z ∧ ¬Y ) ⊆ Mod(¬X), i.e. that Mod(X) has no element

in common with Mod(Z ∧ ¬Y ). But since Mod(Z ∧ ¬Y ) is not empty, it is
P (¬Y ). That Mod(X) has no element in common with P (¬Y ) is precisely what
3 claims. a

Thus |∼ and |∼∗ are very natural generalisations of the limiting case |=, and it
should be evident that these generalisations are proper. For whereas the infor-
mation in any sentence Z corresponds semantically to the trivial dichotomous
preference order that prefers every model of Z to every nonmodel of Z, preference
orders that stratify W into more than two layers cannot in general be replaced by
sentences. This follows easily from a consideration of the cardinalities involved
– there are far more preference orders than (sets of) sentences.

Of course, we concede that if one expands the object language L to the more
expressive modal language L2 of Section 5 (or the subsequent tense logic) with
the concomitant characterisations of the preferential entailments, then all in-
stances of X |∼ Y or X |∼∗ Y with respect to any preference order whatsoever
are equivalent to the corresponding ‘classical’ P (X) |= Y or X |= Q(Y ), re-
spectively. However, this is just preferential semantics in a different guise – we
are again making use of meta-information represented by an ordering on states,
and in this context deduction is not flat. Popper may well have been willing
to extend his notion of deduction to the non-flat entailment relation |= in the
context of L2 or tense logic, since he seems to have regarded possible worlds
semantics as a natural extension of Tarski’s ideas. For example, his definition
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of “naturally or physically necessary” statements is formulated in terms of “sat-
isfied in all worlds that differ from our world, if at all, only with respect to
initial conditions” [69, p.433]. It may be that the modal languages of the pre-
vious section bridge the conceptual gap between the Popperian conviction that
deduction renders induction unnecessary, on one side, and, on the other, the ex-
plication of inductive reasoning rendered possible by preferential semantics and
|∼. Induction may indeed be seen as one form of non-flat deduction.

Whether expressed in a modal language or not, we claim that the meta-
information made available by preferential semantics is needed for any adequate
treatment of belief formation and change. While belief formation (via reasoning)
may be characterised by suitable entailment relations, belief change goes beyond
entailment. Beliefs are not surrendered with equal readiness in the face of new
information; some beliefs are more entrenched than others [1, 57]. The entrench-
ment relations that may hold between beliefs derive from preference orderings,
and if these stratify the set of states into multiple layers then the nuances are
reflected in the entrenchment relation. Hence flat deduction (and dichotomous
orderings) cannot suffice.

But can |∼ not simply be reduced to the |= of flat deduction by augmenting the
premiss in a suitable manner, say by representing the default rule as a sentence
in the object language?

The first thing to note is that in our everyday decision-making (and even
in science [13]), we make predictions by applying rules that cannot baldly be
expressed by universal sentences. We drive to work every morning by relying
on a default rule of the form “Drivers normally stop at red lights”. Without
this rule, one would hardly dare to cross an intersection. And yet we all know
that exceptions exist, such as drunk drivers. Therefore it is not the case that
we predict the behaviour of an oncoming driver by deducing from the universal
sentence “Drivers always stop at red lights” that this particular driver will stop
when the light turns red.

Perhaps it is possible to replace the quantifier “For all” by a quantifier like “For
most”, which tolerates exceptions? Mostowski developed the semantics of such
generalised quantifiers [60, 28], but in their original form these do not deliver
satisfactory default rules. In simple terms, if the domain of an interpretation has
n objects, then a sentence of the form “For most x, such-and-such” is satisfied if
the formula “such-and-such” with free variable x is satisfied by more than n

2 of
the possible assignments of values in the domain to the variable x. But consider
the sentence “Most cats have three legs”, which would be formalised along the
lines of “For most x, if x is a cat then x has three legs”. And consider an inter-
pretation whose domain has ten objects of which, say, four are perfectly ordinary
four-legged cats and the remaining six objects are sheep. Due to the peculiarities
of the material conditional, the formula “if x is a cat then x has three legs” is
satisfied by more than half the objects (the six sheep rendering the antecedent
false). Counter-intuitively, the supposed default rule “Most cats have three legs”
would be true in a domain (possible world) having several cats all of which have
four legs. We conclude that the material conditional is an unpromising vehicle
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for expressing default rules. However, the generalisation to Lindström quanti-
fiers eliminates reliance on the material conditional [22]. Nevertheless, the more
general quantifiers still rely on cardinalities of subsets, and this introduces some-
thing not present in the original reasoning of the agent. Drivers do not learn a
default rule by keeping actuarial tables of frequencies and consulting these (e.g.
adding up the number of exceptions) when decisions need to be made about
crossing an intersection. The same consideration rules out explications based on
non-subjective probabilities, and even any subjective probabilities that require
conscious arithmetical calculations, as conditional probabilities would.

Perhaps a default rule such as “If I turn the key, then normally the car will
start” might be included as a premiss in a (flat) deduction by rewriting it in
the form “If I turn the key and the battery is not flat and . . . and there is
petrol in the tank, then the car will start”. While the exhaustive spelling out of
exceptions may be feasible in some cases, it is by no means clear that it is even
theoretically possible in the general case, for there is no way to be sure that all
exceptions have been mentioned. (This is the familiar qualification problem in
artificial intelligence, closely related to the frame problem and the closed world
assumption.) And even if it were possible to spell out all the exceptions, a person
(or artificial agent) does not first verify that the exceptions fail to apply before
drawing the inference, so that this trick can only succeed at the cost of failing
to formalise the reasoning actually used in such cases.

Perhaps the agent simply assumes that the car will start, or that the driver
will stop at a red light, as an hypothesis? After all, Popper wrote: “The ac-
tual procedure of science is to operate with conjectures: to jump to conclusions”
[70, p.53]. But such an hypothesis is not a random shot in the dark. Rational
decision-making takes account of risks and is not only far from random but also
guards against believing whatever the agent may want to believe (i.e. is not wish-
ful thinking). Somehow the adoption of the hypothesis is rendered reasonable by
the past experience of the agent, by what has been learnt. And what has been
learnt is not that this car will start on this occasion or that this driver will stop
at this red light, for we are now talking about the grounds for assuming these
outcomes. What the agent has learnt is something along the lines of “This is the
way things usually work, though not always”. Might the Popperian rejoinder not
be that logic has no business concerning itself with whatever mysterious process
underlies the formation of hypotheses? But why should such defeatism be taken
seriously? If it is possible to give a semantic account of this process, there is
surely nothing wrong with doing so. And nonmonotonic logic does give such
a semantic account, by representing what the agent has learnt as a relation on
states. It is entirely compatible with the epistemological perspective to include
this agent-orientation in the logical modelling process.

Our justification of the explication of inductive reasoning by |∼ has brought
us face to face with the question of hypothesis formation, to which we now give
full attention.

§7. Abductive reasoning. Popperian (and popular) conceptions of induc-
tive reasoning conflate singular predictive inference and hypothesis formation,
whereas Peirce was at pains to distinguish them. Hypothesis formation itself
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has two aspects: it may involve a search for an object language sentence X
(singular or general) that explains the observed facts (as expressed by another
object language sentence Y ), or it may involve the abstraction of a law or rule by
which to guide singular predictive inferences. Peirce did not distinguish between
these aspects of hypothesis formation, but we are in a position to do so. The
former process of forming an explanatory hypothesis at the level of the object
language we shall continue to call abduction, and our purpose shall be to relate
this process to the entailment relation |∼∗. But the second process, that of ab-
stracting a rule by which to guide predictions, appears to us to be substantially
different. We have argued above that rule abstraction does not necessarily result
in something that can be expressed by a sentence of the object language. It
follows that the process of rule abstraction is not amenable to characterisation
by a relation on object-level sentences. Accordingly we take rule abstraction to
be an important type of learning rather than a type of reasoning, for reasoning
starts with a sentence and ends with a sentence. As psychological research on
child development has shown, categories, the most widely-useful kind of rule for
guiding predictions, are gradually learnt from instances [9, 30, 7].

Since the difference between reasoning and rule abstraction is important, we
note that in computer science, and in particular in artificial intelligence, pro-
grams such as artificial neural networks have been created that learn from ex-
amples to classify new instances or make predictions with a fair degree of ac-
curacy [77, 55]. There are two levels of granularity at which the operation of
such a network may be analysed. The programmer is concerned with the finer
granularity at which a probabilistic or other learning algorithm is implemented,
while the ultimate user may be interested solely in the predictions made by the
network. To appreciate the difference, consider the example of a network which,
upon being told that some room contains, say, a ceiling and an oven, then makes
predictions about what else is likely to be in the room, and infers that the room
contains a coffee cup but no fireplace, and a coffee pot but no computer [78, 83].
At the fine-grained level, the system doesn’t know about bathrooms or offices,
as its nodes correspond to low-level descriptors such as ‘has-windows’, but its
search leads it to local maxima that we recognise as prototypical kitchens or
bathrooms, and so its inferences have all the hallmarks of categorical induction.
The default rule is learnt by a subsymbolic process at the fine-grained level; the
predictions manifest themselves at the coarse-grained level where logical judg-
ments can be made, for instance that the predictions are defeasible (since errors
occur from time to time). Since our concern is with reasoning and entailment,
rather than the subsymbolic processes involved in learning, we shall say no more
about rule abstraction.

7.1. Views on abduction. What, then, is abduction? As a starting point,
we turn to Peirce, who writes [65, 5:189]:

Long before I first classed abduction as an inference it was recognized
by logicians that the operation of adopting an explanatory hypothesis
– which is just what abduction is – was subject to certain conditions.
Namely, the hypothesis cannot be admitted, even as a hypothesis,
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unless it be supposed that it would account for the facts or some of
them. The form of inference, therefore, is this:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.

A voluminous literature on abduction has grown from Peirce’s writings. Among
the questions that deserve attention are: What constitutes an explanation?
Should we concern ourselves only with finding the best explanation? Can abduc-
tion be characterised logically? What is the epistemic status of an explanation?

What makes X an explanation of Y ? To judge by the quoted extract, Peirce
takes the test for whether X constitutes an explanation of Y to be X |= Y . This
very natural idea has been termed ‘classical abduction’ [91] and its supporters
appear to include Helft and Flach. Helft (who did not distinguish between
abduction and induction) wrote [40]:

. . . a system is presented with information concerning a domain; its
task is to infer hypotheses that allow it to ‘explain’ what it observes.
From a logical standpoint, what we informally call here ‘explain’ is in
fact ‘deduce’.

Flach [23] arrived at a similar point via a different route; he defines a ‘strong
explanatory consequence relation’ Y |< X relating an explanandum Y to an
explanans X in terms of a set of postulates, and then shows that Y |< X iff
X |= Y for some choice of the set of states.

There have however been dissenting voices, who have argued that “abduction
is not deduction-in-reverse” [15, 90]. A natural alternative is to take X to be
an explanation of Y if X |∼ Y . Suppose the fact we want to explain is Y =
“Tweety flies”. An obvious sort of explanation is X = “Tweety is a bird”. It
is not the case that X |= Y , since penguins cannot fly, but if we have an ap-
propriate representation of the typicality structure of the category of birds, we
can exploit the fact that the most typical birds fly to get that X |∼ Y . This is
the notion of epistemic explanation [12], according to which X is an epistemic
explanation of Y if knowing X would be a reason to believe Y . Similarly, Wal-
ton considers explanation to be the transmission of understanding, and seems
implicitly to equate understanding something with being able to defeasibly infer
it [92]. However, as pointed out by a reviewer [41]: “ . . . ability to infer the
occurrence of a phenomenon is neither necessary nor sufficient for understanding
it; for example, one can understand why an atom of a radioactive isotope decays
without being able to infer it from the data, and one can infer from hearing
thunder that lightning just struck without understanding why lightning struck”.

7.2. Abduction and explanation. We argue that neither |= nor |∼ con-
stitutes a necessary criterion of explanation, at least not of the notion that X
is a potential partial explanation of Y . We introduce this notion via a murder
mystery, and show that its constraining criterion is given by |∼∗.

The lifeless body of the Squire is discovered in his library. The famous detective
Sherlock Holmes is brought in to solve the case. Ultimately, Sherlock hopes to
discover a complete explanation of events. But he knows that this complete
explanation is a puzzle to be built piece by piece, and he begins by focusing
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his attention on such matters as fingerprints, footprints in the flowerbed, and
(in the modern day) DNA evidence. What is the significance that ought to be
attached to the discovery, on an empty brandy glass in the library, of fingerprints
belonging to the Squire’s neighbour, Colonel Pepper? If Colonel Pepper were a
frequent visitor, often to be found chatting with the Squire over a convivial spot
of brandy, then the fingerprints would have very little significance. But suppose
Sherlock discovered the Colonel and the Squire to have been estranged, so that
a sociable visit would be highly unusual. Now the fingerprints become very
significant indeed. What model-theoretic criterion reflects this intuitive notion
of significance?

Suppose Y = “The Squire is murdered in his own house” and X = “Colonel
Pepper visits the house”. What gives X significance and makes it a piece of the
puzzle is not that X |= Y , for this is far too stringent a test of significance –
that the Colonel visited the house does not necessarily imply that he murdered
the Squire. Nor is the criterion of significance that X |∼ Y , for one could hardly
claim that if the Colonel visited the Squire’s house then one would normally
expect him to murder the Squire. But what one can say is that, in view of
their estrangement, a visit by the Colonel would not be a normal event for the
Squire. That is, the models of X have empty intersection with the most normal
models of “The Squire is not murdered”, i.e. ¬Y . But the requirement that
Mod(X) ∩ P (¬Y ) = ∅ is precisely equivalent to X |∼∗ Y .

For a fully formalised example contrasting |=, |∼, and |∼∗, we return to the
Light-Fan System (metaphorically construed as a nuclear powerplant). Recall
from Section 2 that the object language is generated by the atoms p and q, with
p = “The light is on” and q = “The fan is on”. The truth assignments, written as
binary strings giving the truth values assigned to p first and then q, are ordered
as follows:

11
01 ↑ more preferred
00
10

Suppose the fact to be explained is q. Perhaps the control room agent has
observed, on coming to work that morning, that the cooling system (i.e. ‘fan’)
is operating at full blast. What candidates are permitted by the three possible
criteria for explanation? If we require strictly that X |= q, then X = p ∧ q and
X = ¬p∧ q are the only explanations (apart from the contradictory explanation
p ∧ ¬p and the trivial explanation q). These would make sense as ultimate
solutions or completed puzzles, but are less reasonable as preliminary pieces of
the puzzle. If we desire candidate explanations that are small pieces of the puzzle,
then we could relax the requirement to X |∼ q, in which case the possibilities
include all of the preceding plus X = p and X = ¬p and X = ¬(p ↔ q). As
simple pieces of the puzzle, X = p and X = ¬p stand out. But now the main
defect of |∼ as criterion for explanation becomes evident. It is possible to have
X |∼ Y in cases where all the (perhaps very many) models of X except for
the (perhaps very few) maximally preferred ones are in fact typical models of
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¬Y . In our example, X = ¬p has one maximally preferred model, namely 01,
which is a model of Y = q, while all the other models of X = ¬p (by chance,
there happens to be only a single other model) are models of ¬Y = ¬q, and
in fact happen to be the most preferred model(s) of ¬Y = ¬q. Can one really
consider as a potential explanation of Y = q a feature which is associated with
typical cases of ¬Y = ¬q? Unfortunately, the criterion |∼ cannot discriminate
between sensible candidate p and suspect candidate ¬p. However, if we require
that X |∼∗ q then X = p remains as a candidate but X = ¬p is eliminated, since
Mod(¬p) *W − P (¬q).

In fairness to Peirce, it should be noted that he did not identify abduction with
deduction-in-reverse, i.e. claim that X explains Y if and only if X |= Y . While
he seems content with X |= Y as a sufficient condition for X to be an explanation
of Y , it is not a necessary condition, for he stipulated that a hypothesis X cannot
be admitted unless it would account for “the facts or some of them” (emphasis
added). The necessary condition is thus that from X we should be able to deduce
some weakening of Y , in other words that X |= Q(Y ), where Q(Y ) is logically
weaker than Y . But recall Section 5, where we showed that, for a sensible choice
of Q(Y ), the condition X |= Q(Y ) is equivalent to X |∼∗ Y .

Is there any other evidence that Peirce may have been willing to accept, as a
necessary condition for explanation, some criterion resembling X |∼∗ Y ? To some
extent there is. He distinguishes between theories (explanations) on grounds of
plausibility [66, p.167]:

By Plausible, I mean that a theory that has not yet been subjected to
any test, although more or less surprising phenomena have occurred
which it would explain if it were true, is in itself of such a character
as to recommend it for further examination or, if it be highly plausi-
ble, justify us in seriously inclining toward belief in it, as long as the
phenomena be inexplicable otherwise.

Although Peirce never defines plausibility more formally, he gives examples to
illustrate its absence. Consider the first of these [66, p.166]:

Suppose a particularly symmetrical larch tree near the house of a great
lover of such trees had been struck by lightning and badly broken, and
that as he was looking sorrowfully out of the window at it, he should
have happened to say, ‘I wonder why that particular tree should have
been struck, when there are so many about the place that seem more
exposed!’ Suppose, then, that his wife should reply, ‘Perhaps there
may be an eagle’s eyrie on some of the hills in the neighborhood, and
perhaps a male bird in building it may have used some stick that had
a nail in it; and one of the eaglets may have scratched itself against the
nail; so that the mother may have reproached the male for using such
a dangerous stick; and he, being vexed with her teasing, may have
determined to carry the piece to a great distance; it may have been
while he was doing this that the explosion of lightning took place, and
the electricity may have been deflected by the iron in such a way as
to strike this tree. Mind, I do not say that this is what did happen;
but if you want to find out why that tree was struck, I think you had
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better search for an eyrie, and see whether any of the eaglets have
been scratched.’

If Y is “Lightning struck the symmetric larch” and the proposed explanation
is X = “An eagle flew by carrying a stick with a nail in it”, then what is it that
makes X a poor explanation? It is surely that we can conceive of the eagle thus
carrying the stick in typical states of the world in which the larch was untouched
by lightning. The implausible theory is shown to be suspect when tested by |∼∗,
since Mod(X) ∩ P (¬Y ) 6= ∅. We cannot recruit Peirce as a supporter of |∼∗, of
course, but we may at least aver that as far as may be judged from Peirce’s own
examples, |∼∗ is compatible with his intuition about the character that would
recommend an explanation for further examination.

To summarise, we suggest that abduction should be thought of according to
the detective scenario, i.e. as a process of solving a puzzle one piece at a time
rather than as a single leap to an unique best explanation. The pieces of the
puzzle are potential partial explanations, and to be worthy of attention such
a potential partial explanation X need meet only a simple initial test, namely
that X |∼∗ Y , where Y is the thing to be explained. Here |∼∗ is to be seen
as the initial criterion for arriving at a set of candidates, not as a means of
singling out a ‘best’ explanation. As others have put it in a related context: “
. . . we feel it is better to study inference procedures which represent the set of
remaining theories . . . rather than inference procedures which are constrained to
return a single answer” [74]. It is to be expected that the abductive process will
continue by culling candidates that for various reasons are unsuitable. We shall
not discuss this culling further, as it is unclear whether the criteria for culling
would be logical or pragmatic, and in any case there is an enormous literature
devoted to abduction as inference to the best explanation in which such criteria
are proposed [37, 89, 46].

7.3. The direction of abduction. If one element of our proposal is that
emphasis should initially be placed on the set of potential partial explanations
rather than on the best (complete) explanation, then the other element is that
our criterion for a potential partial explanation is a relation that runs from
explanans to explanandum rather than vice versa. That is, although abductive
reasoning may be conceived as a process in which one starts with the fact Y
to be explained and eventually arrives at a potential partial explanation X, our
criterion is a relation such that X |∼∗ Y , read as “X explains Y ”. This is in
contrast to, for example, Flach’s notion of an explanatory consequence relation
Y |< X which is to be read as “Y is explained by X”. In a mathematical sense,
it doesn’t matter whether one works with a relation or, reversing all the ordered
pairs of the relation, with its converse. Is X |∼∗ Y just the converse of Y |< X?
No, for Flach’s |< satisfies a collection of properties not all of which are satisfied
by the converse of |∼∗.

Consider the postulate of Predictive Convergence [23, p.96]: if Y ∧ X |= Z
and Y |< X, then Z |< X. Rewritten in the form that would be appropriate if
the converse of |< were |∼∗, the postulate becomes: if Y ∧X |= Z and X |∼∗ Y ,
then X |∼∗ Z. But consider the Light-Fan example, with the four states ordered
as previously. Let X = ¬(p ↔ q), Y = q, and Z = (¬p ∨ q). Then certainly
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Y ∧ X |= Z, for Mod(Y ∧ X) = {01} ⊆ Mod(Z). Also X |∼∗ Y , for the most
preferred model of ¬Y is 00, which is not in Mod(X) = {10, 01}. But it is not
the case that X |∼∗ Z, since ¬Z is equivalent to p ∧ ¬q, and the most preferred
model of ¬Z is 10, which is in Mod(X).

The counter-example shows directly that |∼∗ is not the converse of Flach’s |<,
but we could also infer this indirectly, since he shows that |< is (more or less)
deduction-in-reverse. The question remains whether the converse of |∼∗ ought
to be used, so as to mimic the direction of Flach’s |<. We think not, in view
of the elegant duality between |∼∗ and |∼. Moreover, the tendency, for those
accustomed to Western left-to-right script, to focus attention on the lefthand
side of expressions, has the effect of magnifying the salience of properties such
as the monotonicity of |∼∗ (left strengthening). This is convenient, because if
we think of abduction as a process of puzzle-building, then it is very important
that pieces of the puzzle should be able to be combined to give a larger portion
of the puzzle. Flach does include the counterpart of monotonicity for |∼∗, which
becomes the postulate of (admissible) right strengthening, but the importance
of this property for abductive reasoning is underplayed. In contrast, those who
adopt the explanandum → explanans direction tend to emphasise what they call
the nonmonotonicity of abduction (see e.g. [52]), by which they mean that an
explanation X of Y need not be an explanation of Y ∧ Z. From the puzzle-
building perspective, this is not at all important, for the puzzle begins with Y ,
and the challenge is to find the set of potential partial explanations from which,
eventually, a complete solution can be selected.

7.4. Questions on abduction. Can the process of abduction as a whole
be characterised logically? And what is the epistemic status of an explanation?
For a general discussion of the last two questions, we refer the reader to recent
work by Gabbay and Woods on formal pragmatics, agendas, and abduction
[27]. Gabbay follows Aliseda [2, 3] in regarding the broad abductive process
as being constrained by a schema in which logical relationships play a narrow
role (narrower for Gabbay than for Aliseda). Without denying the importance
of pragmatics for the broad abductive process, we shall confine ourselves to the
logical relationship that holds between explanans and explanandum. As far as
the epistemic status of explanations is concerned, this appears impossible to
resolve without careful consideration of the actions that might be based on such
explanations, but we grant Gabbay’s claim to the effect that an explanation
ought not to be adopted ipso facto as a belief and thus as a basis for planning
to achieve goals unrelated to testing of the explanatory hypothesis.

The epistemic status of abductively derived explanations (prior to a deliber-
ate culling process) remains unclear, and we are mindful that having reason to
suspect that an explanation is true (as Peirce put it) is not the same as having
reason to believe the explanation. But we conjecture that the epistemic architec-
ture of agents ought to allow for the representation of disbeliefs as well as beliefs,
with disbeliefs acting as hedges against the formation of some new beliefs and,
in some cases, contracting the belief set. It may be that, in terms of such an
architecture, an abductive explanation X could be represented, not as a belief,
but as a tentative rejection of, or disbelief in, ¬X [33, 34, 14], which is closely
related to contracting a theory by removing or withdrawing ¬X [26, 56]. In the
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contexts of rejection, disbelief, and contraction it is acknowledged that the neg-
ative stance towards the sentence, in this case ¬X, should extend to all logically
stronger sentences that would classically, or even defeasibly, entail ¬X. Here
the fact that the set {X | X |∼∗ Y } forms an ideal in the Lindenbaum-Tarski
algebra may prove useful. We shall not explore this idea further, leaving it for
future research.

§8. Conclusions. We introduced the notion of duality into preferential se-
mantics, showing that to every defeasible entailment relation |∼ there may be
associated a dual relation |∼∗ which is not the converse of |∼, but rather its con-
trapositive, and which is not characterised by the same properties as |∼. Whereas
preferential semantics and |∼ have together created the impression that the key
feature of ampliative reasoning, and therefore of defeasible entailment, is non-
monotonicity, it turns out that |∼∗, while supraclassical, is always monotonic.

Following a comparison of |∼ and |∼∗, we argued in favour of Peirce’s tripar-
tite classification of reasoning as deductive, inductive, or abductive, and that the
three forms of reasoning can be semantically characterised by the constraints em-
bodied in the entailment relations |=, |∼, and |∼∗ respectively. Popperian skepti-
cism of induction was countered by Musgrave’s distinction between metaphysical
and epistemological criteria for entailment as well as arguments to the effect that
|∼ cannot be reduced to (flat) deduction. We demonstrated that the semantic
constructions behind |∼ and |∼∗ can be syntactically simulated in appropriate
modal languages, so that it is indeed the case that |∼ and |∼∗ could be reduced
to |= in the context of a tense logic whose bidirectional frames incorporate the
preference ordering relation on states (and its converse).

For the explication of abductive reasoning, we distinguished between rule
abstraction and explanatory reasoning. For the latter we proposed a puzzle-
building metaphor, and used X |∼∗ Y as the criterion for X to be a potential
partial explanation of Y . Certain of Peirce’s discussions on the nature of hy-
potheses suggest that our criterion is compatible with (our reconstruction of)
his views. While conceding that the logical characterisation we offer pertains
only to a part of the overal abductive process, we find aesthetic gratification in
the fact that the duality between |∼ and |∼∗ mirrors the intuitive impression
that inductive and abductive reasoning proceed in opposite directions.
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