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Abstract

View-Oriented Parallel Programming (VOPP) is a novel pé&hprogramming model which
uses views for communication between multiple process#isth introduction of views, mutual
exclusion and shared data access are bundled togetherhvdfiers both convenience and high
performance to parallel programming. This paper preseh&sgerformance results of VOPP on
Chip-Multithreading processors, e.g. UltraSPARC T1. Weeheompared VOPP with MPI and
OpenMP in terms of programmability and performance. An anmntation of helper threaded
prefetching for VOPP has also been discussed and evaluated.

Key Words: Chip-Multithreading, View-Oriented Parallel Programigi®penMP, Message Pass-
ing Interface, Helper Threaded Prefetching

1 Introduction

Computer architectures and the computer industry are lieangformed by the advent of multi-core
and Chip-Multithreading (CMT) technologies [20]. Thesehteologies offer massive increase in pro-
cessing capacity on a single computer and open new opptesifor system- and application-level
software. With conservative estimation, in the near futhexe will be hundreds or even thousands
of cores in a single, economical chip [2].

The challenge for us is how to efficiently utilize this comipgtpower. This task will eventually
fall on the shoulders of application programmers, who stioubke sure that their programs run
correctly and efficiently on multiple processors. In thinse parallel programming models and
related environments become more important to the progemsim

To facilitate programmability, the underlying parallebgramming models should be friendly to
programmers. A well designed, easy model will help increéhseproductivity largely. On the other
hand, it should perform well in efficiency and scalabilityiah is needed to guarantee a fairly good
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speedup for most applications. Traditionally, there are tamps in parallel programming method-
ologies. One is based on message passing such as MPI, anthénesobased on shared memory
which is used for communications between computing estgiech as processes.

Parallel programming with message passing is commonly krasvdifficult and complex, espe-
cially when there are hundreds of processes communicatithgnaessages. Programmers are bur-
dened with the task of orchestrating inter-process comeatiioin through explicit message passing.
While MPI is often ade factostandard for distributed memory systems due to its highoperdnce,
it is less efficient for shared memory systems. The reasdmaisthe advantage of message passing
has turned out to be a potential disadvantage due to its eadrbf data transfer in a shared memory
system.

Using shared memory for communications between processaatiral and straightforward for
programmers, but the problems such as data race and deddfa#e parallel programming with
shared memory. Recently, OpenMP becomete dactostandard for shared memory environments
because of its ease of use. However, it suffers from perfoce@enalties due to the fork-join pat-
tern in its compiler-automated code. Also it is not alwayavamient in programmability, as to be
discussed in Section 2.2.

View-Oriented Parallel Programming (VOPP)[8, 11] is a reyeproposed parallel programming
model which has demonstrated its high performance on clastaputers[9]. This paper will show
that, as a model based on shared memory, VOPP can achievgpgdodnance on shared memory
systems such as multi-core systems, besides its advarntagegrammability.

In this paper, with the CMT technology of UltraSPARC T1 (akiad#ara)[1], we will compare the
performance of the above three models and make detailegsgisns in terms of both programmabil-
ity and performance. Additionally, the unique features &fRP enable us to adopt the idea of helper
threaded prefetching [14], in order to reduce memory adeg¢sscy of shared data.

This paper has the following contributions. First, we preegke first implementation of VOPP on
multi-core processors, which provides an alternative lf@rarogramming environment for shared
memory systems. Second, we use four applications writt&©ORP, MPI, and OpenMP to compare
the performance of these three parallel programming stylea CMT system. Third, we give a
detailed analysis on the differences between VOPP and tte two popular parallel programming
environments. The analysis is based on both experimersaltseand programmability. Fourth, we
implement helper threads for prefetching data for parphejrams and give a performance evaluation
and analysis of the helper threads.

The rest of this paper is organized as follows. Section Zlpriescribes the VOPP programming
style and compares it with that of MP1 and OpenMP. In Sectiomeintroduce the implementation of
VOPP on CMT with a helper threaded prefetching feature.i@edtpresents the performance results
and analysis. Finally, our future work is suggested in $achi.

2 View-Oriented Parallel Programming (VOPP)

In VOPP, shared data is partitioned into views. A view is acfanemory units (bytes or pages)
in shared memory. Each view, with a unique identifier, can freated, merged, and destroyed at
any time in a program. Before a view is accessed (read oremjitit must be acquired (e.g., with
acquireview); after the access of a view, it must be released (e.g. reigmseview). The most



significant property for views is that they do not intersethveach other.

The following classes of views are identified in [8] for péghprogramming: Single-Writer View
(which includes Consumable View and Atomic View), Multiplériter View, and Automatically De-
tected View.

There are a number of requirements for VOPP programmes, &ie programmer should partition
shared data into a number of views according to the datarghpattern of the parallel algorithm.
Second, each view should consist of data objects that amyalprocessed as an atomic set in the
program. Third, when any data object of a view is accessed primitives such aacquire viewand
releaseviewmust be used (refer to [8] for details of the primitives).

VOPP allows programmers to participate in performancewigttion through wise partitioning of
shared data into views. Views can be carefully designedwametitin order to reduce the communica-
tion overhead between processes. VOPP does not place aaybextlen on programmers since the
partitioning of shared data is an implicit task in parallssgramming. This task is just made explicit
in VOPP by adding view primitives, which renders parallagnamming less error-prone in handling
shared data.

The focus of VOPP is shifted more towards data managementdata partitioning and sharing),
instead of mutual exclusion and data race as in traditi@twk-based parallel programming. Mutual
exclusion is automatically achieved when a view is acquirgidgacquire view.

Some programming interfaces that bundle mutual exclusiohdata access have also been pro-
posed [3, 12, 13]. CRL (C Region Library)[13] focuses on l@wvel memory mapping, and limits
a region to contiguous memory space. In contrast, a view iIPR@ a higher level shared object
whose memory space may be non-contiguous, e.g., Autorhptidatected Views. Entry Consis-
tency (EC)[3] and Scope Consistency (ScC) [12] also bundirial exclusion and data access like in
VOPP. However, their programming interfaces are very wbfiefrom VOPP (refer to [9] for details).

Bundling mutual exclusion and data access together is secient way for parallel programming.
It has the following advantages. First, programmers carelieved from data race issues. In VOPP,
when a view is acquired, mutual exclusion is automaticatlyieved, so it is not possible for other
processes to access the same view at the same time. If a vegessed without being acquired,
either the programmer can be notified of the problem by thepdemwith some VOPP related sup-
port, or the run-time system can report the problem with thgpsrt of the underlying virtual memory
system. Second, debugging is more effective. In VOPP, vemesthe only shared data between
processes. Since views can be tracked down with view priestithey can be easily monitored by
a debugger while a program is running. Third, since the mgmspace of a view can be known,
view access can be made more efficient with cache prefet¢batmique. We will demonstrate this
advantage shortly in this paper.

2.1 Comparison with MPI

MPI is different from VOPP in that it is based on message passAlthough MPI is difficult for
programmers, it is very suitable and effective to utilize tomputing power on computers that are
connected by networks, such as cluster computers. Sineethiei programmers’ responsibility to
perform the actual message passing, the overhead of datfaracan be minimized by carefully
selecting the data to be transferred.

From programming point of view, VOPP is more convenient aasiex for programmers than



MPI, since VOPRP is still based on the concept of shared merfexgept that view primitives are
used whenever shared memory is accessed). Like MPI, VORRdproexperienced programmers
an opportunity to finely-tune the performance of their pemgs by carefully dividing the shared data
into views.

Since partitioning of shared data into views becomes pathefdesign of a parallel algorithm
in VOPP, VOPP offers the potential to make VOPP programsoparfas well as MPI programs on
clusters. A view in VOPP can be regarded as a message witsptieant location, and therefore a
VOPP program can be finely tuned so that its behavior can ntlaétof its MPI counterpart. That is,

a VOPP program can imitate the MPI program in a way that whegrthere is data sharing through
message passing between processors in the MPI programQiRE Yrogram can allocate a view for
the shared data and uses view acquisition to get the dataislway, the overhead of message passing
for VOPP on distributed shared memory (DSM) can be almostainee as that in MPI program, since
the cost of view acquisition is almost the same as that ofiegrahd receiving a block of data in
MPI. We have demonstrated that the performance of VOPP ipaaable to that of MPI on cluster
computers[9, 11]. However, VOPP still suffers from perfame penalties incurred by certain critical
routines such as barrier[9], which is common for DSM on @dusbmputers.

Fortunately, the shared memory model has been attracting amal more attention with the advent
of CMT processors, which provide physical shared memorysiratled caches. Since all processes
share the same physical memory, the high overhead of m@imgamemory consistency that hin-
ders the speedup of parallel programs on DSM can be enteetpved. Therefore, shared memory
models can take full advantages on these systems. That meesides a guaranteed much better
programmability, they can even overwhelm the messagemassodel in terms of performance. A
typical producer/consumer problem written in both VOPP e, shown in Figurel(a) and 1(b), can
demonstrate their significant difference in programmingestin these programs, a master process
produces the data, and then distributes it for other presassconsume. Thecquire Rviewprimitive
in Figurel(a) is acquiring a view for read-only accesses.

if (O==proc_id) { if (O==rank) {
aquire_view(view _id); [*produce the data*/
[*produce the data*/ for (i=1; i<nprocs; i++) {
release_view(view_id); send(data,i);

}

barrier(bar_id);

acquire_Rview(view_id); if (O'=rank) {

/*do something with the data*/ recv(data,0);

release_Rview(view_id);

/*do something with the data*/

(a) VOPP style program (b) MPI style program

Figure 1: producer/consumer program written in VOPP and MPI

These two simple programs are also used to test the extrheaeof data transfer in MPI on shared
memory systems. Their performance results are shown ind8ett3, which suggests that VOPP is
more scalable than MPI on multi-core systems.



2.2 Comparison with OpenMP

As a popular shared memory model, OpenMP has been apprediado its ease of use. For certain
types of programs, a few OpenMP directives will “magicaliy’n a sequential program into a parallel
one.

Although both OpenMP and VOPP are based on shared memoyyataesssentially different in
methodology. In OpenMP, everything is shared by defaultil&this concept sounds straightforward
for a shared memory model, it brings performance penaltips@ally on distributed shared memory
(DSM). Although an effort is being made to extend OpenMP foster computers|[7], its performance
is still not satisfactory. In contrast, while VOPP does used memory for communications between
processes, it emphasizes the use of private memory whepessible. By creating and acquiring
views explicitly, programmers are reminded of the cost @ddddnaring and are discouraged of using
unnecessary shared data. This philosophy and its efficimw-Based consistency protocol help
VOPP achieve a high performance on DSM.

As a shared memory model, OpenMP can bring net performameéaganany sequential programs
on shared memory systems, such as multi-core systems. ¥éujleential code likéor loops can be
parallelized by OpenMP compiler, there are programs that@igbe parallelized in such a convenient
way. A classical example in artificial intelligence is thas# of a decision tree. Pruning is used while
the tree is explored. Pruning could largely reduce the caatjun, but it results in an unpredictable
amount of work to do. Since it brings data dependency in tbhgnam, it is hardly parallelizable by
OpenMP in the convenient way. A typical code pattern for smpihogram is shown in Figure 2.

do{ bucksort(){
[*calculate with data in current for(i=0; i<count; i++)
node*/ key den[key[i]]++;
[*calculate whether perform
pruning*/ for(i=1; i<MAXKEY:;i++)
if ('prun){ key_den[i]+=key_den[i-1];
node—>rtree=new_rnode;
} for(i=0;i<count;i++)
node=node—>ltree; rank[i]l=——key_den[key[i]];
}while(searchnotfinished);

Figure 2: Generation of a tree with pruning  Figure 3: A typical bucketsort algorithm

With VOPP, we can parallelize the program in Figure 2 basea @noducer/consumer pattern.
When arrtreeis identified, it is put into a shared task queue. All proces$sek up the queue for new
tasks. Since this problem is already under discussion entegork on OpenMP, hopefully it will be
solved in the upcoming OpenMP Specification 3.0.

Another example is a bucket sort program in Figure 3. Thiggm aims to compute the rank of
each integer in an arragey[]. At first glance, the program looks perfect for OpenMP beeatas
threefor loops. However, by carefully examining the behavior of thegoam, we find the second
loop cannot be parallelized with OpenMP directives due tia d@pendency. Furthermore, the first
loop cannot be parallelized as well, becalsg[i] is a random value and accessik®y den[key[i]]
concurrently incurs data races. While the third loop hassdmae data race problem if parallelized,
the data races in that loop only affect the rank of the integéthe same value. From this example,



we also realize that novice OpenMP programmers may eadilgugdh programs parallelized incor-
rectly by directly applying OpenMP directives. In fact, Téeemingly easy OpenMP interfaces have
incurred a lot of traps that may resultéorrectnessnistakes for new parallel programmers[21]. With
VOPP, we can parallelize the program by dividing the keyyaméo several parts. After the first and
the second loop are done by each process, all processesmmakaillel to construct a shar&dy.den
using the values of their locaky denarray.

Of course, the above two problems can also be addressed mMPpley hardwiring the parallel
code with parallel sections. However, in this way, it fallck to the traditional lock-based model,
which exposes the problems such as data race conditions psagrammers and is not what OpenMP
is supposed to advocate.

In terms of performance, OpenMP suffers from penalties dgpawning and maintaining threads
dynamically. While this overhead can be amortized in cogragned parallelism, it becomes promi-
nent for fine-grained parallelism and for applications vathall data size. This problem is demon-
strated in Section 4.2.

3 Implementation of VOPP

We have implemented VOPP primitives [8] in Linux kernel 2@running on UltraSPARC T1. They
are implemented as a kernel module supporting a shared metavice. This device provides both
shared memory and synchronization mechanisms for VOPRSPARC T1 has eight cores, each of
which can support four hardware threads. In total, it campetipup to 32 simultaneous threads. There
is a 12-way 3MB L2 cache in the chip, shared by all cores. Each bas a 16KB instruction cache
and a 8KB data cache (L1 caches) and is clocked at 1.0GHzeHnerfour DDR2 channels with a
total throughput of 23GB/s for accessing RAM [1].

3.1 Implementation principle

VOPP is implemented with multi-processing support. MUétiprocesses are created when a program
is started with the primitiv&/dc startup We prefer multi-processing to multi-threading, because w
believe independence and isolation are better than sharipgrallel computing. In the same line,
we encourage more independence and isolation than sharfdd@PP. With multi-processing, we
can keep the sharing of data among processes to the minimed the sharing of data in VOPP
programs can only be achieved through views. In contrasgatls have lots of unnecessary sharing
which expose programs to potential problems like data raoelition. By the way, the overhead of
multi-processing has been much reduced with the Light-WedrRyocess (LWP) and Copy-On-Write
(COW) techniques.

VOPP conforms to this principle of minimizing sharing. Byeéime there is a sharing of data,
a view has to be created by the programmer. Every time a sliatdobject is accessed, view
primitives have to be used. In this way, sharing is discoadlagnd the programmer is reminded to
carefully budget the amount of sharing.

On cluster computers, minimizing data sharing helped VO#lRge large amount of data transfer
and false sharing effect [10]. This principle also benefibsfthe shared cache (L2 cache) on multi-
core platforms. Since minimizing the shared data can rethec®otprint of the data in memory, the



shared data can be more often kept in the cache instead ofthefét fast accesses.

3.2 Helper Threaded Prefetching for VOPP

In order to help VOPP programs tolerate the increasing gapemhory latency, we have tried to take
advantages of the prefetching techniques [4-6, 14, 15,9 7which have received much attention
recently with the advent of chip-level multithreading teology. To prefetch data accurately and
efficiently, efforts are put into region selection, whiclemdifies the appropriate regions to include a
piece of helper code, and phase detection which identifeegght timing to run the helper code [17].
However, without the help of the above techniques, VOPP cavige the right information for both
the prefetching regions and the prefetching timings. Wherew is acquired, it is almost for sure
that the memory space of the view is about to be accessed diue Wew-oriented feature of VOPP.
When a view is created with traloc_viewprimitive, the address and the length of the memory space
of the view are recorded. With this information, we can pigiehe memory space of a view at the
view acquiring time.

For our view prefetching, we have tried to use the PREFETGétruiction provided by Ultra-
SPARC T1. The instruction can prefetch a cache line to L2 e&elth time it is executed. However,
UltraSPARC T1 only allows three PREFETCH instructions igliti at the same time. This limi-
tation renders it impossible to use themaoquireview because a view can be very large and the
PREFETCH instructions cannot preload them into cache ia.tim

An alternative solution is a helper thread that does prhfetcfor a task thread. Helper threaded
prefetching is a technique which proved to be promising oittimmare and hyper-threading plat-
forms [14, 15, 18]. With the help of the view information dissed above, a helper thread can adapt
to the dynamic behavior of a running application. That meangorks effectively despite a different
input data set each time an application is given. The comeation between the helper thread and
the task thread is achieved by a shared variable that carttaridentifier of the view being acquired.
In our implementation, we make the helper sleep in a wait gueitially. When a view is being
acquired, the task thread wakes up the helper, which theskshike shared variable to find out which
view should be prefetched.

In previous research work, helper threaded prefetchingesl in both chip-level multiprocessors
(CMP), which have multiple cores inside one chip, and Siemdbus Multi-Threading (SMT) [22]
processors, which physically support simultaneous tte@a@ single core. The implementation of
a helper with a hardware thread inside an SMT processor lsdctgihtly-coupled helper, while the
helper implemented with another core in a CMP is called Iysseupled. It had been suggested
that a tightly-coupled helper incurs the contention of theme core that is shared among multiple
threads [14, 18]. However, a helper thread that is locatethensame core as the task thread can
actually help prefetch the data into the L1 cache which ishralgser to the CPU than the L2 cache.
Although the difference of the speed between the L1 cach&and? cache is not so significant as that
between the L2 cache and the memory, there are chanceggthét-toupled helpers would provide
further performance gain when we perform read accessdequlire Rview. Previous research work
could not compare and evaluate both the loosely-coupledlandightly-coupled approaches with
experimental results. Fortunately, with the CMT technglogUItraSPARC T1, which supports both
CMP and SMT, we can now evaluate them on the same architectime experimental results are
shown in Section 4.4.



Using helper threads to increase the speed of task threadprsmising approach to high per-
formance computing on multi-core systems. It can offerifertperformance gain on top of parallel
computing technology. Since there will be hundreds (mahbesands) of cores in a chip, a helper
thread may well use some idle core to speed up a sequentaityieed task thread.

4 Performance evaluation

The performance evaluation is divided into four parts. tFwge use four applications to compare
the general performance of VOPP (without use of the helgeatts) with MPI and OpenMP. In the

second part, we use the Gaussian Elimination problem withllghata sizes to compare the perfor-
mance of VOPP and OpenMP for fine-grained parallelism. Irttive part, the producer/consumer
programs shown in Figure 1 are used to demonstrate the aedielata transfer in MPI. Finally, we

use a sum program to demonstrate the performance of VOPRhgitielper threads.

All performance tests are carried out on Sun Microsysteni290D server. The server has Ultra-
SPARC T1 as its processor and 16GB RAM. Its operating sysselnniux 2.6.20 for sparc64. We
use a gcc version 4.2.1, which suppoeftgppenmpoption to compile OpenMP programs. MPICH2 is
used to compile and run MPI programs. All the applicationSéction 4.1, 4.2 and 4.3 are compiled
with -O2 optimization switch. However, in Section 4.4, in order tok@aure the compiler does not
disturb the memory access pattern, we do not use any optionzarovided by gcc.

4.1 VOPP performance

In this part of our evaluation work, the applications we uselateger Sort (IS), Gauss Elimination
(GE), Successive Over-Relaxation (SOR), and Neural Nét({dN). Since UltraSPARC T1 has only
one floating point unit, we replaced floating point calcwas with integer calculations without af-
fecting the correctness of these programs, in order to ab@dottleneck problem of the floating
point unit in T1. We only use up to 30 processes in our expeartmm order to avoid interference
from other system processes.

IS ranks an unsorted sequence of N keys using a bucket soritalg shown in Figure 3. The
rank of a key in a sequence is the index valdieat the key would have if the sequence of keys were
sorted. All the keys are integers in the raif@eBmax]. In order to guarantee the effectiveness of the
parallelization, we do not put any restriction on the ordethe keys with same value. As discussed
in Section 2.2, this approach makes it possible for OpenMpatallelize the third loop, despite the
potential data race which only affects the rank of the integd the same value. In our test, the
problem size i2% integers with @maxof 2!, and 40 iterations are performed. The speedup of IS is
shown in Figure 4.

GE implements the Gauss Elimination algorithm in parallelour test, the matrix size €000 =
4000. The speedup of GE is shown in Figure 5.

SOR uses a simple iterative relaxation algorithm. The impatwo-dimensional grid. During each
iteration, every matrix element is updated to a functiorhefvtalues of its neighboring elements. We
use local buffers for those infrequently-shared data iMO®P program. In contrast, we use shared
memory (a set of views) for those frequently-shared data siscthe boundary elements shared by
two adjacent processes. In our test, a matrix with a sizZ9@d = 4000 is processed id0 iterations.



The speedup of SOR is shown in Figure 6.

NN trains a back-propagation neural network in parallehgsi training data set. After each epoch,
the errors of the weights are gathered from each procesdaharweights of the neural network are
adjusted before the next epoch. The training is repeatetlthatneural network converges or it
reaches the max epoch number. In our test, the size of thalneeiwork is9 « 40 x 1 and the
maximum number of epochs is 200. The speedup of NN is showiguré-7.
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The performance results of these applications show thatrV@Rperforms both MPI and OpenMP,
especially when the number of processes is large. The semaltconsistent with the prior discussions
in Section 2. For example, for the GE application, VOPP permup to 18% better than OpenMP
and up to 16% better than MPI for 30 processes. The prograterpan GE is similar to the producer-
consumer pattern in Section 2.1. Every time a process figithee calculation of the pivot row, all
other processes begin to process their rows with the pivat 6E in MPI should thus transfer the
pivot row to all other processes, which affects its perfanoea OpenMP also performs worse than
VOPP in GE due to the overhead of dynamically maintainingaldls with fork-join patterns. Al-
though we have optimized the OpenMP program by mergingreéifitdoops into one parallel section,
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there are still many fork-joins because of the large numbéemations in the outer loop. The over-
head of data transfer in MPI and the fork-join overhead in i can also be applied to other
applications, which differ in these overheads due to thieiiht data sharing patterns they follow.
These overheads are amortized in the programs when thelamanaf parallelism is large. They are
more prominent for fine-grained parallelism, which will Be®/n shortly in the next section.

The only exception from the above results is IS in OpenMP. i8su$sed in Section 2.2, to follow
the typical way of OpenMP programming, we can only paraéethe third loop, which makes the
speedup of the program is lower thadue to Amdal’s Law.

4.2 OpenMP for fine-grained parallelism

To demonstrate the performance problem of OpenMP with fragigd parallelism, we show the
running time of the GE application with various number of ggsses working on a matrix of size
200 * 200 in Figure8(a). Also we show the running time of GE with vasauatrix sizes ranging
between100 x 100 and 1000 = 1000 using 16 processes in Figure8(b). In order to make an optimal
OpenMP program, we merge three separate loops into ondgbaedtion so that OpenMP generates
threads only once in one iteration.
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(a) different process number, 200*200 (b) different data size

Figure 8: Performance Comparisons

We can see from Figure 8(a) that OpenMP reaches its peak eflspenuch earlier than VOPP
when dealing with the small data size. From Figure 8(b), we alao find that when we decrease
the problem size, the time cost by OpenMP is decreasing movdysthan VOPP, and the time
difference between VOPP and OpenMP becomes larger. Therethife presented by the curve is
calculated using the time of OpenMP divided by the time of YYO®/hen we perform this test on
a 100*100 matrix, OpenMP is 4.5 times slower than VOPP. Tiheee VOPP is more scalable than

10



OpenMP for fine-grained parallelism.

4.3 Overhead of data transfer in MPI

Figure 9(a) and 9(b) show the time cost of the producer/amesyprogram mentioned in Section 2.1.

They depict the running time for various number of processekvarious data sizes, respectively.
Note that we only demonstrate the time cost of data sharitwdss the producer and the consumers,
which excludes the computation time.
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Figure 9: Performance Comparisons

We use 1000 integers as the shared data in Figure 9(a), whernedreasing time cost of both
programs is expected because synchronization overheaghses when the number of processes
increases. The overhead of VOPP is attributed to the barsianchronizing the processes, and is
relatively small. However, the communication overheadNti?l becomes not negligible when the
number of processes is large. Data transfer becomes a sagniGverhead in the MPI program when
more processes are involved in message passing. We halv#otrise a broadcast operation to reduce
the overhead in the MPI program. However, the program usie¢ptoadcast operation performs even
worse in our experiments, of which the reason is unknown yet.

Figure 9(b) shows the time cost with variable data sizes. tirhe cost of MPI increases signifi-
cantly because it has to do more data transfers. Howeveg, iheo extra overhead for VOPP because
there is no data transfer and the overheadagnfuire Rviewis trivial and constant.

4.4 Performance of the helper thread

To evaluate our preliminary implementation of helper thisave divide our experiments into two
parts. The first part involves cache misses and the secomdhpalves general performance of the
helper threads.

The benchmark program is a sum program in real world. It adldbaintegers from a shared
array. It is selected because it is a memory-intensive pragthat has a regular memory access
pattern, which makes it an ideal program to show the effentgs of helper threads due to its regular
memory access pattern.

Since Linux dynamically schedules the processes to anyigdlysores, to perform our test, we
have to bind the processes to specific physical cores witlsebaffinity() system call in Sparc64
Linux.
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In order to get accurate profiling of cache misses, the L2eactl the L1 caches are thoroughly
cleared before the computation starts. Since there aréorariks for performance profiling for Ul-
traSPARC T1, we have to access directly the two performanaoaters, namely PIC and PCR, by
calling theperfctr() system call in Sparc64 Linux.

Cache misses are shown in Table 1 and 2 for two data set si&emndl 100K, which are used
for the integer array in the sum program. The results in thietaare collected for the sum program
running with one task thread and one helper thread (if helpeaded prefetching is used).

Helper task thread helper || Helper task thread helper
Type | L1 |L2| Tick | L1 | L2 Type L1 L2 Ticks | L1 L2
Vie 10 | 1 | 25685| 245 | 64 Vie 482 | 131 | 510084| 5875 | 1447

Vie 252 | 1 | 28484 64 Vie 6278 1 567828 1564
Vion |l 252| 63 | 34362 Vion 6278| 1563 | 703808
Table 1: cache misses, 4K data Table 2: cache misses, 100K data

In the above tablesy;., V., andV,,, stand for VOPP task thread with a tightly-coupled helper
thread, VOPP task thread with a loosely-coupled helpeathrand VOPP task thread without any
helper, respectively. The columiid and L2 are the L1 and L2 cache misses. The colufioksis
the number of CPU ticks cost by the task thread.

From Table 1 and 2, we can see that the helper thread can sagniifi decrease the CPU ticks of
the task thread. Compared with,,,, the tightly-coupled helper can dramatically decreasé hat
and L2 cache misses, while the loosely-coupled helper chndecrease L2 cache misses.

However, when the data set size is larger, e.g. 100K in Figutiee count of L2 cache misses for
V.. is higher than that of/., and its L1 cache misses is also increasing. This is largedytd the
interference between the task thread and the helper thorageting for resources in the same core.
Nevertheless, there is a significant performance gain byighdy-coupled helper thread according
to the CPU ticks, which is attributed to the decrease of Lheanisses.

We can also notice that no matter whether we run the helpeadhon the same core or not, the
total number of L2 cache misses from both the task threadtemtélper thread is larger than that of
Vaon. This also applies to L1 cache misses. The above result scéxq due to two reasons. One is
the interference between the two simultaneous processies game core. The other is the inaccurate
prefetch performed by the helper.

Since our experimental results have shown that tightlyptedihelper threads can perform better
for read accesses, we currently adopt the tightly-coupgbedaach for thecquire Rviewin our imple-
mentation of VOPP. However, since L1 cache is write-thrqtigd tightly-coupled helper cannot pro-
vide the benefits mentioned above and will incur more cordest Instead, we use loosely-coupled
helpers for write accesses. The performance benefit frometheced cache misses is reflected in the
improved performance of the parallelized sum program, Wwtgshown in Figure 10.

Figure 10 shows the performance of a simple sum program ttulst @p 25,000 integers randomly
selected from an array of 100,000 integérs., V., V..., have the same meaning as above. We only
use up to 4 cores to perform this test 160 P P,., because there are only 8 cores in the T1 chip and
thus we can only have 4 cores for the task threads while ther dtitores are used by the helper
threads. For comparison purposes, we show the time coseafdiresponding OpenMP program,
which suffers from performance penalties due to the fin@aghparallelism in the sum program.

For VOPP with helper threaded prefetching, we can see aduithprovement of performance.
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Figure 10: performance of helper threaded prefetching fOP?

With tightly-coupled helper threads, VOPP achieves an éetter speedup. However, when the
number of processes is increasing, the performance gagmgbeivy,, andV. is decreased. This is
expected because when the data loaded into each processdsesmaller, the helper threads are less
effective in terms of cache prefetching. This also applethe decreased performance gap between
V.. andV,,,,., which is also partially attributed to the high L2 cache ragsfV;. as mentioned above.
Due to limited time, we have not integrated the helper thgaadther applications yet. Tests on
other benchmark applications with helper threaded prieifietowill be carried out in our future work.

5 Conclusions and future work

We have presented an implementation of VOPP on a latest CMdepsor, UltraSPARC T1. We
have shown the differences and advantages of VOPP compated popular parallel programming
models—MPI and OpenMP. Our experimental results show tRRF/is more scalable than MPI and
OpenMP on CMT processors. VOPP outperforms OpenMP for fiagrgd parallelism. It also out-
performs MPI when there is large data sharing between psesesich as in our producer/consumer
problem. We have also adopted helper threaded prefetchingriimplementation, which enables
VOPP to achieve additional performance gain.

In the near future, we would like to test these programming@on other multi-core architectures
such as Intel Core 2 and AMD multi-core processors. Sincedénmrmance of VOPP is better than
OpenMP on CMT processors and comparable to MPI on clustepatars [9], an integrated parallel
programming environment based on VOPP for multi-core ehgsis desirable to replace the current
solution of combining OpenMP and MPI, which is both hard toggam and error prone due to the
two completely different models.

Current VOPP helper threads can only load memory for regataess patterns. They cannot
guarantee a similar performance gain for applications witgular memory access pattern. The
cache contention of simultaneous processes is anothdeprabat should be solved when the shared
memory block is large. These factors can largely restrietetfficiency of prefetching in VOPP and
a more efficient prefetching strategy may still rely on a mgpeculative approach [20]. We will
address these issues with some compiler support using ¢haitgies introduced in some related
work [5, 14, 16].
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