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1 Introduction

Thielscher (1999) distinguishes two versions of the frame problem. Therepresenta-
tional versionis the problem of designing a logical language and a semantics such
that domains can be described without making the relation between every action
and fluent explicit: basically, when there aren actions andm fluents, the domain
description should be much smaller than 2×n×m. The inferential versionof the
frame problem is more demanding: given a framework that incorporates a solution
to the representational version, it is the problem of designing an “efficient” decision
procedure for reasoning in such a framework.

In this paper we consider the inferential version of the frame problem and investi-
gate how it can be solved based on what is currently the most popular solution to the
representational frame problem, viz. successor state axioms as introduced by Reiter
(1991). Reiter’s solution received a number of extensions such as for concurrent ac-
tions (Gelfond et al., 1991), for probabilistic actions (Bacchus et al., 1999), and for
knowledge and knowledge-producing actions (Scherl and Levesque, 1993, 2003).
We here also take into account the latter epistemic extension. We will start from the
reformulation of Scherl&Levesque’s solution in (Lakemeyer and Levesque, 2004,
2005).

We focus on decision procedures, and therefore only consider the propositional
case. In this case and in Reiter’s predicate logic formulation, the so-called proposi-
tional fluents only have situations as arguments, andp(do(a,s)) reads ‘p holds in
the situationdo(a,s)’, where the situationdo(a,s) results from the performance of
actiona in situations. Thensuccessor state axioms(SSAs) are of the form

∀x∀s ((p(do(x,s)) ↔

(x=a1∧ γ+(a1, p,s))∨· · ·∨ (x=an∧ γ+(an, p,s)) ∨

(p(s)∧¬(x=a′1∧ γ−(a′1, p,s))∧· · ·∧¬(x=a′m∧ γ−(a′m, p,s)))))

The formulaγ+(ai , p,s) characterizes the condition under whichai makesp true,
and the formulaγ−(ai , p,s) characterizes the condition under whichai makesp
false. These formulas have to beuniform in s, which in particular means that the
function symboldo does not occur in them.

The hypothesis underlying Reiter’s solution is that due to inertia it is “rare” that
actions change the truth value of fluents. This means that theformula on the right
hand side of the equivalence can be expected to be short. It follows that the size
of the set of all SSAs can be expected to be of the order of the number of fluents
m, and that it is thus much smaller than twice the product of thenumber of actions
and the number of fluents 2× n×m. Therefore, SSAs count as a solution to the
representational frame problem.
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Basic action theoriesessentially contain one successor state axiom for each fluent
p. Given such a basic action theory one can reduce (orregress) any formulaϕ to an
equivalent formula reg(ϕ) not mentioning actions. This leads to a straightforward
decision procedure for the propositional fragment of the language. However, the re-
duced formula can be exponentially larger than the originalformula, and therefore
regression does not solve the inferential frame problem.

In this paper we solve the inferential frame problem in the propositional case.
For the extension to knowledge, among all epistemic actions, our method is op-
timal when epistemic actions are restricted toobservations: all agents observethat
some proposition holds in the world, and update their epistemic state accordingly.
Note that observations are less general than sensing actions studied in (Scherl and
Levesque, 2003). By performing the latter, the agents observewhethersome propo-
sition holds in the world.

Technically, our approach builds on recent progress in the field of dynamic epis-
temic logics. Precisely, we use two extensions of public announcement logicPAL

(Plaza, 1989):

• public announcement logic with assignmentsPALA (van Ditmarsch et al., 2005;
van Benthem et al., 2006; Kooi, 2007), and

• an extension ofPALA by test actions that we callPALAT.

All three logicsPAL, PALA andPALAT have the same expressivity. In these log-
ics situation terms are left implicit, and one cannot quantify over actions as in the
situation calculus. Thus the central device in Reiter’s solution is not available. We
show that nevertheless one can do without it: our first contribution is a polyno-
mial transformation from Lakemeyer&Levesque’s logicES to PALAT. The logic
PALA being an extension ofPAL, we extend Lutz’ procedure forPAL satisfiability
checking (Lutz, 2006) toPALA, and show that we keep optimality. This provides
an optimal decision procedure for reasoning about actions and knowledge: both in
Reiter’s case (without knowledge operators) and in the monoagent case, satisfiabil-
ity checking can be done in nondeterministic polynomial time; in the multiagent
case it can be done in polynomial space; and in the case of common knowledge it
can be done in deterministic exponential time. All these results are optimal because
they match the computational complexity of the underlying epistemic logic.

The remainder of the paper is organized as follows: Section 2recalls Lakeme-
yer&Levesque’s logicES. Section 3 introduces public announcement logic with
assignments and testsPALAT. Section 4 presents an encoding ofES basic action
theories inPALAT; and Section 5 contains optimal decision procedures for satisfia-
bility checking inPALA. Section 6 contains the results for the multiagent case, and
section 7 concludes.1

1 A first version of this paper entitled ‘Optimal Regression for Reasoning about Knowl-
edge and Actions’ was presented at AAAI’2007 (van Ditmarschet al., 2007a). The present
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2 Lakemeyer&Levesque’s logic ES

Reiter formulated SSAs within a dialect of second-order logic calledsituation cal-
culus, which is the mainstream formalism in reasoning about actions (Reiter, 1991).
However, because situation calculus is defined axiomatically, properties about ac-
tion theories that are not direct entailments are very hard to prove. For instance,
(Lakemeyer and Levesque, 2004, 2005) mentions the long proof in (Reiter, 2001b)
for the fact that ifKϕ entailsKψ1∨Kψ2 in a theoryΘ, thenKϕ entailsKψ1 in Θ,
or Kϕ entailsKψ2 in Θ. Aiming at a “more workable” semantics for the situation
calculus, they proposed a variant calledES. This logic is not as expressive as the
entire situation calculus, but it handles Reiter’s basic action theories and, thereby,
also his solution to the frame problem. In this section we first give the syntax and
semantics ofES, then show how basic action theories are defined, and finally ex-
plain how regression works.

2.1 Syntax ofES

The full language ofES provides modal operators of knowledge and action together
with quantification over both actions and objects, and is thus a many-sorted modal
language. In this work though, we focus our attention on decision procedures, and
therefore consider only quantification over action symbols.

DEFINITION 1 LetU be a countable set of action variables, letP0 be a countable
set of fluents of arity 0, letA be a countable set of action constants, and letPoss
(‘possible’) andSF (‘sensed fluent’) be two predicate symbols of arity 1.

A Termis an action constanta∈ A or an action variablex∈U .

The languageLES is the set of formulasϕ defined by the following BNF:

ϕ ::= p | Poss(t) | SF(t) | t = t | ¬ϕ | ϕ∧ϕ | Kϕ | [t]ϕ | 2ϕ | ∀xϕ

wheret ranges over the set of terms,p ranges overP0, andx overU .

The predicatePossis used to model executability preconditions of actions. IfPoss(a)
holds, then the actiona is executable. The predicateSF is used to model the result
of sensing actions. The formulaSF(a) stands for the formula whose truth value is
known by the agent after the execution of the actiona. As in epistemic logics, the

version extends its results by establishing a precise formal relationship between a formal
translation fromES to PALAT. These ideas were also presented at the 2007 Dagstuhl work-
shop ‘Formal Models of Belief Change in Rational Agents’ (van Ditmarsch et al., 2007b)
and at the 2007 ‘Methods for Modalities’ workshop.
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operatorK is used to model knowledge of the agent. The operator[·] is used to
model the transitions associated to actions. A formula of the form [a]ϕ is read ‘ϕ
holds after the execution of actiona’. The formula2ϕ is read ‘ϕ holds after the
execution of any sequence of actions’.2

We use the common abbreviations for the operators∨, → and↔; and⊥ and⊤
respectively abbreviatep∧¬p and¬(p∧¬p), for somep∈ P0.

As usual a formula is calledgroundif no variable occurs in it. ABoolean formula
is built fromP0 with the Boolean operators. Thus Boolean formulas neither contain
Poss, SF, 2, [t], K, = nor variables.

DEFINITION 2 Ground box-free formulasare ground formulas without the opera-
tor 2. The set of ground box-free formulas is notedL

0
ES

.

2.2 Semantics ofES

Formulas ofES are interpreted at possible worlds after sequences of actions. First
we need a definition.

Primitive formulasare ground formulas without any logical operator (neither equal-
ity nor Boolean nor modal operators). The set of primitive formulas is notedP1, i.e.

P1 = P0∪{Poss(a) : a∈ A}∪{SF(a) : a∈ A}

Let A∗ be the set of all sequences of actions fromA, whereε is the empty sequence.
Let WES be the set of all mappings fromP1×A∗ to {0,1}. Formulas inLES are
evaluated in triples of the form〈e,w,α〉 such that:e⊆WES is the epistemic state of
the agent,w∈ e is the actual state, andα ∈ A∗ is the sequence of actions that has
been performed.

To interpret what is known by the agent after a sequence of actions, we inductively
define that two worlds areindistinguishablewith respect to a sequence of actions
α by:

• w∼ε w′, for all w,w′ ∈WES; and
• w∼α·a w′ iff ( w∼α w′ andw(SF(a),α) = w′(SF(a),α)).

That is,w andw′ are indistinguishable after actiona if they were so before, and if
a’s sensed fluent has the same value atw andw′.

2 The original language ofES also contains the operatorOK that stands for ‘only knows’.
It allows, for instance, to infer more about the ignorance ofthe agent. We do not consider
this here.
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The satisfaction relation|= between triples and sentences (formulas without free
variables) is defined inductively by:

〈e,w〉 |= ϕ iff 〈e,w,ε〉 |= ϕ
〈e,w,α〉 |= p iff w(p,α) = 1 for p∈ P1

〈e,w,α〉 |= a1=a2 iff a1 anda2 are (syntactically) identical
〈e,w,α〉 |= ¬ϕ iff 〈e,w,α〉 6|= ϕ
〈e,w,α〉 |= ϕ∧ψ iff 〈e,w,α〉 |= ϕ and〈e,w,α〉 |= ψ
〈e,w,α〉 |= ∀xϕ iff for all a∈ A,〈e,w,α〉 |= ϕ[x\a]

〈e,w,α〉 |= Kϕ iff for all w′ ∈ e, if w∼α w′ then〈e,w′,α〉 |= ϕ
〈e,w,α〉 |= [a]ϕ iff 〈e,w,α ·a〉 |= ϕ
〈e,w,α〉 |= 2ϕ iff for all α′ ∈ A∗,〈e,w,α ·α′〉 |= ϕ

whereϕ[x\a] is the formula resulting from replacing all free occurrences of x in ϕ
by a.

A formula ϕ ∈ LES is avalid ES consequenceof a set of formulasΨ ⊆ LES, noted
Ψ |=ES ϕ, if and only if for all eandw, if 〈e,w〉 |= ψ for all ψ ∈ Ψ then〈e,w〉 |= ϕ.
A formulaϕ is ES valid, noted|=ES ϕ, if and only if /0 |=ES ϕ.

For example we have|=ES [a]¬ϕ↔¬[a]ϕ. (Note that this equivalence is not valid in
dynamic logic.) Lakemeyer&Levesque show that positive introspection2(Kϕ →
KKϕ) is ES valid, as well as negative introspection2(¬Kϕ → K¬Kϕ). They also
show that the followingsuccessor state axiom for knowledge(SSAK) is valid:

SSAK. |=ES ∀x2 ([x]Kϕ ↔ ((SF(x)∧K(SF(x) → [x]ϕ)) ∨

(¬SF(x)∧K(¬SF(x) → [x]ϕ))))

It will be useful for our proofs that the rule of replacement of equivalences holds in
ES: supposeψ is a subformula ofϕ, and supposeΨ |=ES ψ ↔ ψ′; thenΨ |=ES ϕ ↔
ϕ′, whereϕ′ is obtained fromϕ by replacing subformulaψ by ψ′.

2.3 Basic action theories

Reiter’s solution to the frame problem requires that actionpreconditions and effects
be described by what he callsbasic action theories. Such theories must contain in
particular successor state axioms (SSAs) for each fluentp∈ P0.

DEFINITION 3 A basic action theoryis a set of formulasΘ = Θpre∪Θsense∪Θpost

such that:

• for eacha∈A, Θpre contains a formulaΘpre(a) of the form2 (Poss(a)↔ϕPoss(a)),
whereϕPoss(a) is a Boolean formula;
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• for eacha∈A, Θsensecontains a formulaΘsense(a) of the form2 (SF(a)↔ϕSF(a)),
whereϕSF(a) is a Boolean formula; and

• for eachp∈ P0, Θpost contains a formula of the form

∀x2 ([x]p↔ (x=a1∧ γ+(a1, p))∨· · ·∨ (x=an∧ γ+(an, p)) ∨

(p∧¬(x=a′1∧ γ−(a′1, p))∧· · ·∧¬(x=a′m∧ γ−(a′m, p))))

for eachp∈ P0, whereγ+(ai, p) andγ−(a′i, p) are Boolean formulas.

REMARK 4 Lakemeyer&Levesque’s definition is slightly more general. First,Θpre

consists of a single formula∀x2 (Poss(x)↔ ϕPoss(x)), whereϕPoss(x) may contain
quantifiers and equalities; similar forΘsense.

Second, they use Reiter’s generalization (Reiter, 2001a) and allow the SSA for a
fluent p to take the form∀x2 ([x]p ↔ γ(x, p)), whereγ(x, p) may again contain
quantifiers and equalities. Our approach does not work for that generalization, as
we will explain in Remark 8 in Section 2.3).

Given a basic action theoryΘ and a formulaϕ, theentailment problemin ES is to
decide whetherΘ |=ES ϕ.

When we use basic action theories we make some hypotheses. Reiter’s non-episte-
mic solution relies on the following three. (1) All actions are deterministic. (2) Ac-
tion precondition completeness: for eacha∈ A there is a Boolean formulaϕPoss(a)
that characterizes the conditions under whicha is executable. (3) Causal complete-
ness: first, for eacha∈ A there is a setEff+(a) of fluents which may become true
by the execution ofa, and there is a setEff−(a) of fluents which may become false
by the execution ofa; second, for eachp ∈ Eff+(a) there is a Boolean formula
γ+(a, p) characterizing the conditions under whichp becomes true by the execution
of a, and for eachp∈ Eff−(a) there is a Boolean formulaγ−(a, p) characterizing
the conditions under whichp becomes false by the execution ofa.

Scherl&Levesque’s epistemic extension relies on the following supplementary hy-
potheses: (4) The agent knows the basic action theoryΘ under concern. (5) The
agent learns about all action occurrences. (6) For each action a, there is a formula
ϕSF(a) that characterizes what is perceived by the agent via the execution ofa.

In the sequel we illustrate basic action theories by a running example inspired by a
puzzle of Smullyan (1992).

EXAMPLE 5 The environment consists of an agent that dwells in a room with two
doors. These doors may be opened by the agent and, if so, behind each one the
agent will either find the lady, or the tiger. If the agent opens a door and finds the
lady, then she will marry him, and if he finds the tiger, then itwill kill him.
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The fluentlady1 represents that the lady is behind door 1 and the tiger is behind
door 2. Thus the formula¬lady1 expresses that the lady is behind door 2 and the
tiger is behind door 1.

The available actions arelisten1 andlisten2 (the agent listens to what happens be-
hind the respective door, which results in hearing the tigerroaring if there is one
behind the door), andopen1 andopen2 (the agent opens the respective door, which
results in either marrying the lady or being killed by the tiger, depending on what
is behind the door).

A basic action theory for this example is made up of:

Θpre = { 2 (Poss(open1) ↔ alive),

2 (Poss(open2) ↔ alive),

2 (Poss(listen1) ↔ alive),

2 (Poss(listen2) ↔ alive))) }

Θsense= { 2 (SF(open1) ↔⊤),

2 (SF(open2) ↔⊤),

2 (SF(listen1) ↔ lady1),

2 (SF(listen1) ↔¬lady1))) }

Θpost = {∀x2 ([x]alive↔ (alive∧¬(x=open1∧¬lady1) ∧¬(x=open2∧ lady1))),

∀x2 ([x]married↔ ((x=open1∧ lady1)∨ (x=open2∧¬lady1) ∨

married)),

∀x2 ([x]lady1 ↔ lady1) }

We get e.g. the entailmentsΘ |=ES [listen1](Klady1∨K¬lady1), and

Θ |=ES (lady1∧alive) → [listen1][open1]Kmarried

We end this section by an interesting property of basic action theories.

DEFINITION 6 LetΘpost be the set of SSAs of a basic action theoryΘ, and let

∀x2 ([x]p↔ (x=a1∧ γ+(a1, p))∨· · ·∨ (x=an∧ γ+(an, p)) ∨

(p∧¬(x=a′1∧ γ−(a′1, p))∧· · ·∧¬(x=a′m∧ γ−(a′m, p))))

be its SSA forp. An actiona is positively relevantfor p if and only if a = ai for
some 1≤ i ≤ n, anda is negatively relevantfor p if and only if a = a′i for some
1≤ i ≤ m.

The set of fluentsp such thata is positively relevant forp is notedEff+Θ(a), and
the set of fluentsp such thata is negatively relevant forp is notedEff−Θ(a). Finally,
EffΘ(a) = Eff+Θ(a)∪Eff−Θ(a).
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The setEffΘ(a) is the set of fluentsp∈ P0 such thata occurs in the successor state
axiom for p.

PROPOSITION7 For every basic action theoryΘ, if p 6∈ EffΘ(a) thenΘ |=ES p↔
[a]p.

REMARK 8 As already said in Remark 4, Lakemeyer&Levesque allowΘpost to con-
tain SSAs of the more general form∀x2 ([x]p↔ γ(x, p)). An extreme example is
∀x2 ([x]p↔⊤), stating thatp is true after every action. The above Proposition 7
does not hold for such generalized action theories. It is forthat reason that we will
not be able to translate them intoPALAT, and thus our optimal method does not
apply to them.

Note that usingEff+Θ andEff−Θ, SSAs can be written as follows:

∀x2 ([x]p ↔ (
_

a∈Eff+Θ(a)

(x=a∧ γ+(a, p)))∨ (p∧¬
^

a′∈Eff−Θ(a)

(x=a′∧ γ−(a′, p))))

2.4 Regression

Given a basic action theoryΘ and a ground box-free formulaϕ of L
0
ES

, there is an
effective procedure that decides whetherΘ |=ES ϕ. It amounts to a simplification of
ϕ by the equivalences ofΘ: by iterating the application of these equivalences one
obtains an equivalent formula withoutPoss, SF, 2 or [t]. This procedure is called
regression, and it allows to reduce the entailment problem to the validity problem
in epistemic logic.

The two central equivalences are the SSAs for fluents ofΘpost and the successor
state axiom for knowledge SSAK. These and the other equivalences ofΘ can be
turned into rewriting rules that allow to transform ground box-free formulas into
epistemic formulas.

REMARK 9 Lakemeyer&Levesque do not require the box-free formulaϕ to be
ground, and allow for sentences such as∀x[x]p and∀x∃x′(x′ 6= x∧ (p→ [x][x′]p)).
We will not be able to handle such formulas, the reason being that the target logic
of our translation does not have quantifiers.

Instead of stating a formal definition we illustrate regression by our running exam-
ple.

EXAMPLE 10 Consider the basic action theoryΘ of Example 5. We regress the
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formula[listen1][open1]Kmarriedby applying the equivalences inΘ:

[listen1][open1]Kmarried↔ [listen1]K[open1]married

↔ [listen1]K(lady1∨married)

↔ (lady1∧K(lady1 → [listen1](lady1∨married))) ∨

(¬lady1∧K(¬lady1 → [listen1](lady1∨married)))

↔ (lady1∧K(lady1 → (lady1∨married))) ∨

(¬lady1∧K(¬lady1 → (lady1∨married)))

↔ lady1∨K(lady1∨married)

The first and the third equivalences are valid by SSAK (the first is due toΘ |=ES

SF(open1) ↔⊤, and the third is due toΘ |=ES SF(listen1) ↔ lady1). The second
and fourth equivalences are logical consequences ofΘpost: for the second,Θ |=ES

[open1]married↔ lady1∨married; and for the fourth, first|=ES [listen1](lady1∨
married) ↔ ([listen1]lady1 ∨ [listen1]married), and thenΘ |=ES ([listen1]lady1 ∨
[listen1]married) ↔ (lady1∨married).

Let regΘ(ϕ) denote the result of rewritingϕ by means of the equivalences inΘ as
formally defined in (Lakemeyer and Levesque, 2004). Their theorems 1 and 5 can
be restated here as follows.

THEOREM 11 (Lakemeyer and Levesque, 2004) LetΘ be a basic action theory,
and letϕ ∈ L

0
ES

be a ground box-free formula. ThenΘ |=ES ϕ if and only if |=EL

regΘ(ϕ). (WhereEL stands for epistemic logic to be defined in Section 3.1.)

Regression has high computational complexity: regΘ(ϕ) can be exponentially larger
thanϕ. To see this, consider the application of SSAK in Example 10.Note that each
time SSAK is applied toϕ, the resulting formula may be twice as large asϕ. In the
rest of the paper we show that one can do better by applying recent techniques that
were introduced in the field of dynamic epistemic logic.

3 Public announcement logic with assignments and tests PALAT

A different tradition in modelling dynamics of knowledge focusses on particular
epistemic actions that make the agents expand their knowledge without chang-
ing the world itself, see for example work by Plaza (1989), Baltag et al. (1998),
Gerbrandy (1999) and van Benthem (2006). It is only recentlythat ontic actions
(actions changing the facts of the world) were introduced into these dynamic epis-
temic logics (van Ditmarsch et al., 2005; Kooi, 2007). All ofthem are extensions
of Plaza’s public announcement logic (PAL) (Plaza, 1989). In this section we recall
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this extension, that we baptizepublic announcement logic with assignmentsPALA,
and that we augment by test actions. We call the resultPALAT.

All these dynamic epistemic logics are based on standard epistemic logic, that we
recall first.

3.1 Background: epistemic logicEL

Epistemic logics are a family of modal logics that use possible worlds semantics
to represent agents’ knowledge. This idea, originally due to Hintikka (1962), has
known great development in more recent works such as (Fagin et al., 1995), (Meyer
and van der Hoek, 1995) and (van Ditmarsch et al., 2007c). We here recall the
monoagent case, postponing the multiagent case to Section 6.

DEFINITION 12 The languageLEL of monoagent epistemic logic is the set of for-
mulasϕ defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ∧ϕ | Kϕ

wherep ranges over the countable set of propositional lettersP0.

DEFINITION 13 An epistemic model(EL model) is a tuple〈W,R,V〉 such that:

• W is a nonempty set of possible worlds;
• R⊆ (W×W) is an equivalence relation;
• V : P0 →℘(W) associates an interpretationV(p) ⊆W to eachp∈ P0.

For everyw∈W, the pair(M,w) is apointed epistemic model.

For convenience, we defineR(w) = {w′ : (w,w′) ∈ R}. The elements ofR(w) are
the worlds the agent considers possible atw.

DEFINITION 14 Let (M,w) = (〈W,R,V〉,w) be a pointed epistemic model. The
satisfaction relation|= betweenEL formulas and pointed epistemic models is in-
ductively defined as follows:

M,w |= p iff w∈V(p)

M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ∧ψ iff M,w |= ϕ andM,w |= ψ
M,w |= Kϕ iff R(w) ⊆ JϕKM

whereJϕKM
def
= {w : M,w |= ϕ} is the extension ofϕ in M.
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A formulaϕ∈LEL isEL valid, noted|=EL ϕ, if and only if for all pointedEL models
(M,w), (M,w) |= ϕ; and it isEL satisfiableif and only if 6|=EL ¬ϕ.

Lakemeyer&Levesque’s logicES is a conservative extension ofEL:

PROPOSITION15 Letϕ be a formula ofLEL. Then|=ES ϕ if and only if |=EL ϕ.

Satisfiability checking inEL is NP-complete (Halpern and Moses, 1992).

3.2 Syntax ofPALAT

DEFINITION 16 Thelanguage of public announcement logic with assignment and
testLPALAT is the set of formulasϕ defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ∧ϕ | Kϕ | [!ϕ]ϕ | [!!ϕ]ϕ | [σ]ϕ
σ ::= ε | p:=ϕ,σ

wherep ranges over the countable set of propositional lettersP0 andε is theempty
assignment.

Let α be one of !ϕ, !!ϕ or σ; the formula[α]ϕ reads ‘ϕ holds after all possible
executions ofα’. The action !ϕ is the public announcement ofϕ; the action !!ϕ
is the public test whether or notϕ; and the actionp:=ϕ is the public assignment
of ϕ to the atomp. For example,p:=⊥ is an assignment makingp false, and
K[p:=⊥]¬p is a formula expressing that the agent knows this. A complex assign-
ment(p1 :=ϕ1, . . . , pn :=ϕn) is supposed to take place in parallel. We sometimes
write this as the set{p1 :=ϕ1, . . . , pn :=ϕn}. Thusε is identified with /0. It is sup-
posed that in parallel assignments, the same propositionalletter can appear only
once on the left hand side of the operator ‘ := ’.

We shall show that announcements and tests are able to model epistemic actions,
and that assignments are able to model ontic actions. For example, the epistemic
actionlisten1 of Example 5 can be modelled as !!lady1, and the ontic actionopen1
can be modelled as the complex assignment

{alive:=(lady1∧alive),married:=(lady1∨married)}.

The language of public announcement logic with assignmentLPALA is LPALAT

without tests. Thelanguage of public announcement logicLPAL is LPALA without
assignments.

12



3.3 Semantics ofPALAT

Just as formulas of epistemic logic, formulas ofLPALAT are interpreted in pointed
epistemic models.

DEFINITION 17 Let (M,w) = (〈W,R,V〉,w) be a pointed epistemic model. The
satisfaction relation|= betweenPALAT formulas and pointed epistemic models is
that of Definition 14 extended with the following three clauses:

M,w |= [!ϕ]ψ iff M,w |= ϕ impliesM!ϕ,w |= ψ
M,w |= [!!ϕ]ψ iff M,w |= [!ϕ]ψ andM,w |= [!¬ϕ]ψ
M,w |= [σ]ϕ iff Mσ,w |= ϕ

The modelsM!ϕ andMσ are updates of the epistemic modelM, respectively defined
as:

M!ϕ = 〈W!ϕ,R!ϕ,V !ϕ〉 Mσ = 〈W,R,Vσ〉

W!ϕ = W∩ JϕKM Vσ(p) = Jσ(p)KM

R!ϕ = R∩ (JϕKM × JϕKM)

V !ϕ(p) = V(p)∩ JϕKM

whereσ(p) is the formula assigned top by σ. If there is no such formula, i.e., if
there is no(p:=ϕ)∈ σ, thenσ(p) = p. For example/0(p) = ε(p) = p for all p, and
{p:=¬p}(p) = ¬p.

To illustrate this let(M,w) be any pointed epistemic model. We haveM,w |=
[p:=⊥]¬p becauseV p:=⊥(p) = J(p:=⊥)(p)KM = J⊥KM = /0; and we haveM,w |=
[!p]Kp becauseV !p(p) = W!p.

A formula ϕ ∈ LPALAT is PALAT valid, noted |=PALAT ϕ, if and only if for all
pointed epistemic models(M,w), (M,w) |= ϕ; and it isPALAT satisfiableif and
only if 6|=PALAT ¬ϕ.

For example,[p:=⊥]¬p, [!p]Kp andp→ [!! p]Kp are allPALAT valid (for atomic
p). Note that neither[!ϕ]ϕ nor the stronger[!ϕ]Kϕ arePALAT valid.

PROPOSITION18 The following equivalences arePALAT valid.

• Announcements and tests are interdefinable:

|=PALAT [!!ϕ]ψ ↔ [!ϕ]ψ∧ [!¬ϕ]ψ and |=PALAT [!ϕ]ψ ↔ (ϕ → [!!ϕ]ψ)

• Assignments and tests are deterministic and executable:

|=PALAT [!!ϕ]¬ψ ↔¬[!!ϕ]ψ and |=PALAT [p:=ϕ]¬ψ ↔¬[p:=ϕ]ψ

13



• Tests do not modify Boolean formulas:

|=PALAT [!!ϕ]ψ ↔ ψ if ψ is Boolean

Therefore our test operator can be defined in terms of the announcement operator,
and thus does not increase the expressivity ofPALAT. Nevertheless, its definition
as a primitive operator allows us to provide a polynomial translation ofES sensing
actions intoPALAT. If tests were defined as abbreviations, then the translation of
anES formula with sensing actions of Section 4 would be exponentially larger than
the original formula in the worst case.

Just as Lakemeyer&Levesque’sES, ourPALAT is a conservative extension ofEL:

PROPOSITION19 Letϕ be anEL formula. Then|=PALAT ϕ if and only if |=EL ϕ.

REMARK 20 The semantics of both the announcement and the test operator is dif-
ferent from that of the dynamic logic test operator ‘?’. First, in dynamic logic[ϕ?]ψ
is equivalent toϕ → ψ, while [!ϕ]ψ is not equivalent toϕ → ψ in PALAT. Second,
[!!ϕ]⊥ is unsatisfiable inPALAT, while the dynamic logic formula[ϕ?]⊥ is not.
Also note the difference between our reading of !!ϕ as ‘testwhether or notϕ’, and
the dynamic logic reading ofϕ? as ‘testthat ϕ’.

3.4 Reduction to epistemic logic

PALAT is axiomatized by the axioms and inference rules of the logicS5 plus the
following axioms (van Benthem et al., 2006; Kooi, 2007) (theaxiom for !! is our
addition):

[σ]p↔ σ(p)

[σ]¬ϕ ↔¬[σ]ϕ
[σ](ϕ1∧ϕ2) ↔ ([σ]ϕ1∧ [σ]ϕ2)

[σ]Kϕ ↔ K[σ]ϕ
[!ψ]p↔ (ψ → p)

[!ψ]¬ϕ ↔ (ψ →¬[!ψ]ϕ)

[!ψ](ϕ1∧ϕ2) ↔ ([!ψ]ϕ1∧ [!ψ]ϕ2)

[!ψ]Kϕ ↔ (ψ → K[!ψ]ϕ)

[!!ψ]ϕ ↔ ([!ψ]ϕ∧ [!¬ψ]ϕ)

These axioms provide equivalences for all possible combinations of the logical con-
nectives with dynamic modal operators. The right hand side of these equivalences
is simpler than the left hand side, and for that reason they are called reduction
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axioms (see e.g. Kooi (2007) for a precise definition of what it means to be ‘sim-
pler’). Such axioms provide at the same time a proof method: they allow to rewrite
everyPALAT-formula into an equivalentEL-formula, which can then be checked
by independent means.

Let red(ϕ) be the formula that is obtained in this way.

THEOREM 21 (van Benthem et al., 2006; Kooi, 2007) Letϕ be aLPALAT-formula.
Then|=PALAT ϕ if and only if |=EL red(ϕ).

However, this method has the same problem asES regression of Section 2.4: in the
worst case red(ϕ) is exponentially larger thanϕ. This cannot be avoided: at least in
the multiagent case it can be shown thatPAL is more succinct thanEL (Lutz, 2006).
This means that there arePAL formulas such that every equivalentEL formula is
exponentially longer, see Example 33 in Section 6.

In Section 5 we provide a better method that performs a reduction from PALA to
EL in polynomial time. But first we establish the link betweenES andPALAT.

4 Translation from ES to PALAT

Reiter’s regression of Section 2 is similar in spirit toPALAT reduction of Section 3.
We will show in this section that the problem of entailment inES can be translated
to a validity problem inPALAT: the changes brought about by an actiona described
by a basic action theoryΘ can be modelled as aPALAT test ofϕSF(a) followed by
a set of assignments simulating Reiter’s SSAs.

4.1 Finite change constraint

In order to make our proof method work we moreover have to require basic action
theoriesΘ to satisfy a constraint of ‘finite potential change’: for every actiona, the
set of fluent constants whose truth value may be flipped by the execution ofa is
finite.

Remember thatEffΘ(a) is the set of fluents for whicha is relevant (Definition 6 of
Section 2.3).

DEFINITION 22 Let Θ be a basic action theory.Θ satisfies thefinite change con-
straint if and onlyEffΘ(a) is finite for every actiona∈ A.

EXAMPLE 23 Here is a basic action theory that does not satisfy the finite change
constraint. Consider the set of fluentsP= {ati : i ∈Z} whereZ is the set of integers,
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and the singleton set of actionsA = {inc}. ati means that the value of the counter
is i, and inc increments the value of the counter. Thenγ+(inc,ati) = ati−1, and
γ−(inc,ati) = ati . Hence the set of fluents that are possibly changed byinc is the
entire set of fluents:EffΘ(inc) = P0. ThereforeΘ does not satisfy the finite change
constraint.

We nevertheless believe that finite change action theories are sufficiently expressive
to be of interest. For such theoriesΘ we are going to define a translation traΘ such
that for every ground box-free sentenceϕ of L

0
ES

, Θ entailsϕ in ES if and only if
traΘ(ϕ) is PALAT valid.

4.2 Polynomial transformation

DEFINITION 24 Let Θ be a basic action theory satisfying the finite change con-
straint (Definition 22). We inductively define a mapping traΘ from the set of ground
box-free formulasL0

ES
to LPALAT:

(1) traΘ(p) = p for p∈ P0

(2) traΘ(a1=a2) =

{

⊤ if a1 anda2 are (syntactically) identical
⊥ otherwise

(3) traΘ(Poss(a)) = ϕPoss(a)
(4) traΘ(SF(a)) = ϕSF(a)
(5) traΘ(¬ϕ) = ¬ traΘ(ϕ)
(6) traΘ(ϕ1∧ϕ2) = traΘ(ϕ1)∧ traΘ(ϕ2)
(7) traΘ(Kϕ) = K traΘ(ϕ)
(8) traΘ([a]ϕ) = [!!ϕSF(a)][σa] traΘ(ϕ),

whereσa is the complex assignment defined by:

{p:=(γ+(a, p)∨ p) : p∈ Eff+Θ(a) andp 6∈ Eff−Θ(a)} ∪

{p:=(p∧¬γ−(a, p)) : p 6∈ Eff+Θ(a) andp∈ Eff−Θ(a)} ∪

{p:=(γ+(a, p)∨ (p∧¬γ−(a, p))) : p∈ Eff+Θ(a)∩Eff−Θ(a)}

The formulasϕPoss(a), ϕSF(a), γ+(a, p) andγ−(a, p) are those fromΘ (Definition
3).

Note that in the last item the setσa is finite becauseΘ satisfies the finite change
constraint. Therefore the mapping traΘ is well-defined. For the theory of Exam-
ple 23 which does not have that property, the setσinc would be infinite and thus
traΘ([inc]ati) would not be a well-formed formula.

EXAMPLE 25 Consider again our running example. For the epistemic action listen1
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we get:

traΘ([listen1]Klady1) = [!! lady1][ε] traΘ(Klady1)

= [!! lady1][ε]Klady1

that is equivalent to[!! lady1]Klady1. For the ontic actionopen1 we get:

traΘ([open1]alive) = [!!⊤][alive:= lady1∧alive,married:= lady1∨married]alive

Since[!!⊤]ϕ is equivalent toϕ by Proposition 18, and since
[alive:= lady1∧alive,married:= lady1∨married]alive

is equivalent tolady1∧alive, the formula traΘ([open1]alive) is equivalent tolady1∧
alive.

THEOREM 26 LetΘ be a basic action theory satisfying the finite change constraint,
and letϕ be a ground box-free formula ofL

0
ES

. Then

Θ |=ES ϕ if and only if |=PALAT traΘ(ϕ).

PROOF. We take advantage of both regression and reduction: by Theorem 11,
Θ |=ES ϕ iff |=EL regΘ(ϕ); by Theorem 21,|=PALAT traΘ(ϕ) iff |=EL red(traΘ(ϕ)).
It therefore suffices to prove that|=EL regΘ(ϕ) iff |=EL red(traΘ(ϕ)). The details
are in Appendix A.

In order to prove that this transformation is polynomial, wedefine the function len
that returns thelengthof a given expression. In the case of sets and tuples, we count
the length of each element and also the commas and delimiters. That is, the length
of a setX is len(X) = 1+∑x∈X (1+ len(x)), while for a tupleY = 〈y1, . . . ,yn〉, it is
len(Y) = 1+∑n

k=1(1+ len(yk)). Note that len(X)≥ 1 for every setX; in particular
len( /0) = 1.

For formulas inLEL, we inductively define:

len(p) = 1
len(¬ϕ) = 1+ len(ϕ)

len(ϕ∧ψ) = 1+ len(ϕ)+ len(ψ)

len(Kϕ) = 1+ len(ϕ)

For formulas inL
0
ES

we also use:

len(a1=a2) = 3
len([a]ϕ) = 2+ len(ϕ)
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and for formulas ofLPALAT we also use:

len([!ϕ]ψ) = 1+ len(ϕ)+ len(ψ)

len([!!ϕ]ψ) = 1+ len(ϕ)+ len(ψ)

len([σ]ϕ) = 1+ len(σ)+ len(ϕ)

len(p:=ϕ) = 2+ len(ϕ)

where we considerσ as a set of assignments.

For example, len(⊥) = 4, len(⊤) = 5, and

len([{p:=q,q:= p∧q}]Kp = 1+ len({p:=q,q:= p∧q})+ len(Kp)

= 1+(1+(1+3)+(1+5))+2
= 14

THEOREM 27 LetΘ be a basic action theory satisfying the finite change constraint,
and letϕ ∈ L

0
ES

. Then len(traΘ(ϕ)) ≤ O(len(Θ)× len(ϕ)).

PROOF. Please, see Appendix B.

Hence for finite change basic action theories the problem of deciding whether
Θ |=ES ϕ can be polynomially reduced to a validity problem inPALAT. This is
our first main result.

It remains to define a proof method forPALAT. In the next section we give a method
that is optimal for the fragmentPALA of PALAT.

5 Optimal reduction for PALA

Our optimal reduction is based on a recent method that allowsto eliminate an-
nouncements fromPAL formulas by means of subformula renaming (Lutz, 2006).
The transformation is polynomial, and provides an optimal decision procedure for
PAL.

First note that the reduction axioms for assignment operators also cause a combi-
natorial explosion. Indeed, consider the family of formulas inductively defined by:
ψ1 = p1, andψn = [pn−1 := pn∧ pn] . . . [p1 := p2∧ p2]p1. By the reduction axioms
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we get:

[pn−1 := pn∧ pn] . . . [p2 := p3∧ p3][p1 := p2∧ p2]p1

↔ [pn−1 := pn∧ pn] . . . [p2 := p3∧ p3](p2∧ p2)

↔ [pn−1 := pn∧ pn] . . .((p3∧ p3)∧ (p3∧ p3))

↔ (. . .(pn∧ pn)∧ . . .) . . .)

The last formula is red(ψn). According to the definition of the length of a formula
we have that len(ψn) = 6n−5 and len(red(ψn)) = 2n−1. Therefore, the length of
red(ψn) is exponential in the length ofψn.

By using a subformula renaming technique similar to Lutz’s we define a poly-
nomial reduction that allows to eliminate assignments fromPALA formulas. The
combination of these two polynomial transformations is again polynomial.

In this section we only consider formulas ofLPALA, i.e. LPALAT without the test
operator ‘!!’. The reason for this restriction is that we didnot succeed in finding
a polynomial reduction when formulas contain that operator: in the worst case the
reduction method proposed here is not polynomial any more. However, note that
by Proposition 18, tests can be decomposed into two announcements: the formula
[!!ϕ]ψ is equivalent to[!ϕ]ψ∧ [!¬ϕ]ψ. Therefore this syntactic restriction does not
restrict the expressivity of the logic.

Our method takes a formula inLPALA as input and returns a satisfiability-equivalent
formula inLEL. The first step eliminates assignments and returns a formulain LPAL;
the second step eliminates announcements and returns a satisfiability-equivalent
formula inLEL.

5.1 Eliminating assignments

In order to eliminate assignments fromPALAT formulas we apply a technique that
is fairly standard in automated theorem proving, see e.g. (Nonnengart and Weiden-
bach, 2001), and that is based on the theorem below.

THEOREM 28 Letϕ ∈ LPALA, and let[p1 :=ϕ1, . . . , pn :=ϕn]ϕn+1 be a subformula
of ϕ. Letψn+1 be obtained fromϕn+1 by substituting every occurrence ofpk by xpk,
wherexpk is a new propositional letter not occurring inϕ. Let ψ be obtained from
ϕ by replacing[p1 :=ϕ1, . . . , pn :=ϕn]ϕn+1 by ψn+1. Then,ϕ is PALA satisfiable if
and only if:

K
(

^

1≤k≤n

xpk ↔ ϕk

)

∧ψ

is PALA satisfiable.
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PROOF. To simplify the exposition let us suppose singleton assignments, i.e., the
subformula ofϕ is [p:=ϕ1]ϕ2.

From the left to the right suppose thatM = 〈W,R,V〉 is an epistemic model such that
for somew∈W, (M,w) |= ϕ. Now consider the epistemic modelMxp = 〈W,R,Vxp〉
such thatVxp(p) = V(p) for all p 6= xp, andVxp(xp) = Jϕ1KM. First, note that
(Mxp,w) |= ϕ (becausexp does not appear inϕ). Second, note thatMxp |= xp ↔ ϕ1

(becauseJxpKMxp
= Jϕ1KMxp

). Therefore(Mxp,w) |= K(xp ↔ ϕ1). Third, note that

for everyv∈W, (Mxp,v) |= [p:=ϕ1]ϕ2 iff (Mp:=ϕ1
xp ,v) |= ϕ2 iff (Mp:=ϕ1

xp ,v) |= ψ2

(becauseV p:=ϕ1
xp (p) =V p:=ϕ1

xp (xp)). ThereforeMxp |= [p:=ϕ1]ϕ2 ↔ ψ2, and there-
fore (Mxp,w) |= K(xp ↔ ϕ1

)

∧ψ.

From the right to the left suppose w.l.o.g. that the epistemic modelM = 〈W,R,V〉
is point-generated from the worldw ∈ W. Now suppose that(M,w) |= K(xp ↔
ϕ1)∧ψ. ThenM |= xp ↔ ϕ1, i.e.,V(xp) = Jϕ1KM. Hence for allv∈ W, (M,v) |=
ψ2 iff (Mp:=ϕ1,v) |= ϕ2 (becauseV(xp) = Jϕ1KM = V p:=ϕ1(p)). In other words,
M |= ψ2 ↔ [p:=ϕ1]ϕ2. ThereforeM,w |= ϕ.

Intuitively, the formulaK
(

V

1≤k≤n(xpk ↔ ϕk)
)

sets the value of each new proposi-
tional letterxpk to that ofϕk in all accessible worlds.

We are ready to define the first step of our reduction method. Inorder to improve
readability the definition below only considers singleton assignments. The exten-
sion to complex assignments is straightforward. The below mapping regPALA col-
lects the announcements occurring in a given formulaϕ and relates them to new
propositional letters.

DEFINITION 29 Letϕ∈LPALA, and letα, α1 andα2 denote lists of formulas. Letε
be the empty list, and let ‘·’ be concatenation. The assignment elimination operator
regPALA is defined inductively as follows:

(1) regPALA(ϕ) =
(

V

χ∈α χ
)

∧ψ,
where regPALA(ε,ϕ) = (α,ψ)

(2) regPALA(α, p) = (α, p)
(3) regPALA(α,¬ϕ) = (α ·α1,¬ψ),

where regPALA(ε,ϕ) = (α1,ψ)
(4) regPALA(α,ϕ1∧ϕ2) = (α ·α1 ·α2,ψ1∧ψ2),

where regPALA(ε,ϕ1) = (α1,ψ1) and regPALA(ε,ϕ2) = (α2,ψ2)
(5) regPALA(α,Kϕ) = (α ·α1,Kψ),

where regPALA(ε,ϕ) = (α1,ψ)
(6) regPALA(α, [!ϕ1]ϕ2) = (α ·α1 ·α2, [!ψ1]ψ2),

where regPALA(ε,ϕ1) = (α1,ψ1) and regPALA(ε,ϕ2) = (α2,ψ2)
(7) regPALA(α, [p:=ϕ1]ϕ2) = (α ·α1 ·α2 ·K(xp ↔ ψ1),ψ2[xp\p]),

where regPALA(ε,ϕ1) = (α1,ψ1) and regPALA(ε,ϕ2) = (α2,ψ2)
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The crucial point is Clause 7, that applies Theorem 28. Note that there, and in the
other clauses, exponential blowup is avoided by starting onthe innermost assign-
ment and then simply concatenating the conjunctions of bi-implications one after
another. Also note that the bi-implications do not need to bereduced since they link
formulas inLPAL.

For example, consider the valid formula[!p][p:=¬p]K¬p, which means that after
the announcement ofp and then toggling its truth value, the agent knows thatp is
false. We have

regPALA([!p][p:=¬p]K¬p) = K(xp ↔¬p)∧ [!p]K¬xp.
The steps are below.

regPALA(ε, p) = (ε, p)

regPALA(ε,¬p) = (ε,¬p)

regPALA(ε,K¬p) = (ε,K¬p)

regPALA(ε, [p:=¬p]K¬p) = (K(xp ↔¬p),K¬p[xp\p])

regPALA(ε, [!p][p:=¬p]K¬p) = (K(xp ↔¬p), [!p]K¬xp)

THEOREM 30 regPALA is a polynomial transformation that preserves satisfiability
of formulas.

PROOF. Satisfiability-equivalence follows from Theorem 28.

Concerning the length of the translated formulas: letϕ be a formula ofLPALA,
and let regPALA(ε,ϕ) = (α,ψ). Note that the length ofψ is bounded by len(ϕ),
becauseψ is obtained fromϕ by dropping its assignments and substituting some
of its subformulas by propositional letters. To simplify the presentation suppose
that the assignments inϕ are singletons, i.e., there are no assignments in parallel.
In the sequel we show that len(α) ≤ 2× len(ϕ)2, which implies that regPALA(ϕ) =
O(len(ϕ)2).

The proof is by induction on the the maximal number of nested assignment op-
erators inϕ, i.e., theassignment depthof ϕ. For the induction base, suppose that
the assignment depth ofϕ is 0. That is,ϕ ∈ LPAL. Then clearly len(α) = 0, be-
cause Clause 7 is never triggered. The induction hypothesisis: if the assignment
depth ofϕ is at mostn, then len(α) ≤ 2n× len(ϕ). For the induction step, suppose
that the assignment depth ofϕ is n+ 1, and let the formula[p:=ϕ1]ϕ2 be a sub-
formula of ϕ such thatϕ1 or ϕ2 have assignment depth equal ton, and such that
regPALA(ϕ1,ε) = (α1,ψ1) and regPALA(ϕ2,ε) = (α2,ψ2). By induction hypothesis
len(α1) ≤ 2n× len(ϕ1) and analogously for len(α2). Then len(α1) + len(α2) ≤
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2n× len(ϕ), because len(ϕ1)+ len(ϕ2) ≤ len(ϕ). Therefore:

len(α1)+ len(α2)+ len(K(xp ↔ ψ1))

≤ len(α1)+ len(α2)+1+2× (3+ len(ψ1)))) (because↔ is an abbreviation)
≤ len(α1)+ len(α2)+1+2× len(ϕ1)) (because len(ϕ1) ≥ 4+ len(ψ1))
≤ len(α1)+ len(α2)+2× len(ϕ) (because len(ϕ) > 1+ len(ϕ1))
= 2(n+1)× len(ϕ) (by the observation above).

And therefore len(α) ≤ 2× len(ϕ)2, becauseϕ has at most len(ϕ) subformulas
containing assignments.

5.2 Eliminating announcements

Once assignments are eliminated, we can eliminate announcements by Lutz’ proce-
dure that we recall here. First we compute the set of contextual subformulas which
is inductively defined as follows:

Sub(p) = {(ε, p)}

Sub(¬ϕ) = Sub(ϕ)∪{(ε,¬ϕ)}

Sub(ϕ∧ψ) = Sub(ϕ)∪Sub(ψ)∪{(ε,ϕ∧ψ)}

Sub(Kϕ) = Sub(ϕ)∪{(ε,Kϕ)}

Sub([!ϕ]ψ) = Sub(ϕ)∪{(ϕ ·α,χ) | (α,χ) ∈ Sub(ψ)}∪{(ε, [!ϕ]ψ)}

Intuitively, Sub(ϕ) is the set of “relevant” subformulas ofϕ together with the se-
quence of announcements in the scope of which they occur.(α,ψ)∈ Sub(ϕ) means
that the subformulaψ of ϕ is in the scope of the sequenceα of announcements.

Let ϕ be formula whosePAL satisfiability is to be decided. We introduce a set of
fresh propositional lettersPϕ

0 = {xα
ψ : (α,ψ) ∈ Sub(ϕ)}. Then the reduction ofϕ is:

regPAL(ϕ) =

(

^

(α,ψ)∈Sub(ϕ)

Kβα
ψ

)

∧xε
ϕ

where the bi-implicationsβα
ψ are inductively defined as follows:

βα
p = xα

p ↔ p

βα
¬ϕ = xα

¬ϕ ↔¬xα
ϕ

βα
ϕ∧ψ = xα

ϕ∧ψ ↔ (xα
ϕ ∧xα

ψ)

βα
Kϕ = xα

Kϕ ↔ K(
V

µ∈pre(α) xµ
µ/α → xα

ϕ)

βα
[!ϕ]ψ = xα

[!ϕ]ψ ↔ (xα
ϕ → xα·ϕ

ψ )
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and where pre(α) is the set of true prefixes ofα, andµ/α is the leftmost symbol of
α that is not inµ. When the sequenceα is empty, then the conjunction collapses to
⊤.

Intuitively βα
ψ guarantees thatxα

ψ is true exactly whereψ is true. For example, con-
sider the inconsistent formula¬[!p]Kp. The set of its relevant bi-implications is:

B = {xε
¬[!p]K p ↔¬xε

[!p]K p,

xε
[!p]K p ↔ (xε

p → xε·p
K p),

xε·p
K p ↔ K(xε

p → xε·p
p ),

xε·p ↔ p,

xε ↔ p }

Then regPAL(¬[!p]Kp) =
(

V

χ∈Bχ
)

∧K
(

V

χ∈Bχ
)

∧ xε
¬[!p]K p, which successively

impliesxε
p, ¬xε·p

K p, and¬K(xε
p → xε·p

p ). The latter is inconsistent withK(xε·p ↔ p)

andK(xε ↔ p) which are the last two bi-implications prefixed byK.

THEOREM 31 (Lutz, 2006) regPAL is a polynomial transformation that preserves
satisfiability of formulas.

5.3 Complexity results

Via Theorems 26, 27, 30 and 31 we obtain our second main result.

THEOREM 32 LetΘ be a basic action theory satisfying the finite change constraint,
and letϕ∈L

0
ES

be a ground box-free formula. The problem of checking entailments
Θ |=ES ϕ is NP-complete.

We thus do much better than the regression method of Theorem 11 and the reduc-
tion method of Theorem 21, which both may cause exponential blowup.

This results also apply to theplan verification problem(called projection problem
in (Scherl and Levesque, 2003, p.22)).

6 Multiagent extensions

We now show that the results of the previous section can be extended straightfor-
wardly to the multiagent case.
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6.1 Background: multiagent epistemic logics

As for the monoagent case, letP0 be a countable set of propositional letters, and let
N be a nonempty finite set of agents. So far we have investigatedthe case whereN
is a singleton.

The language of multiagent epistemic logic with common knowledgeL
EL

C is the
set of formulasϕ defined by the following BNF:

ϕ ::= p | ¬ϕ | ϕ∧ϕ | Kiϕ | EGϕ | CGϕ

wherep ranges overP0, i ranges overN, andG ranges over℘(N). Thelanguage of
multiagent epistemic logic without common knowledgeLEL is obtained fromL

EL
C

by dropping operatorsCG. (We useEL in both the monoagent and the multiagent
case in order to simplify notation.)

The formulaKiϕ reads ‘agenti knows thatϕ’, The formulaEGϕ reads ‘all agents in
groupG know thatϕ’, and the formulaCGϕ reads ‘all agents in groupG commonly
know thatϕ’.

Eℓ
Gϕ abbreviates theℓ-fold nestingEG . . .EGϕ.

A multiagent epistemic modelis a tuple〈W,R,V〉 whereW andV are as in Defini-
tion 13, and:

• R : N →℘(W×W) associates an equivalence relationR(i) to eachi ∈ N.

For convenience, instead ofR(i) we writeRi.

We have the usual truth conditions forEL, plus

M,w |= Kiϕ iff Ri(w) ⊆ JϕKM

M,w |= EGϕ iff
[

i∈G

Ri(w) ⊆ JϕKM

M,w |= CGϕ iff

(

[

i∈G

Ri

)+

(w) ⊆ JϕKM

where ‘+’ is transitive closure. Truth in a model, validity and satisfiability are de-
fined as usual.

If the set of agentsN contains at least two elements then the problem of deciding
satisfiability is PSPACE-complete forLEL-formulas, and EXPTIME-complete for
L

EL
C-formulas (Halpern and Moses, 1992).
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6.2 Syntax and semantics of multiagentPALAT andPALAT
C

The language of multiagentPALAT extends that of multiagentEL by announce-
ments, assignments and test operators.

Models for multiagentPALAT are just multiagent epistemic models of the previous
section. The truth conditions for the epistemic operators are those for multiagent
epistemic logic, and the truth conditions for the dynamic operators are those for
monoagentPALAT, the only difference being that we have to manage the agent-
subscripts of accessibility relations. Thus for example the accessibility relationR!ϕ

i
of M!ϕ is Ri ∩ (JϕKM × JϕKM). Validity and satisfiability are defined as before.

MultiagentPALAT can be axiomatized by means of reduction axioms just as monoa-
gentPALAT. As we have announced in Section 3, there are formulasϕ whose mul-
tiagentEL-equivalent is exponentially longer thanϕ (Lutz, 2006, Theorem 2).

EXAMPLE 33 (Theorem 2 of Lutz, 2006) Suppose the underlying epistemic logic
is notS5 butK, i.e. accessibility relations are not necessarily equivalence relations.
Consider the following family of formulas of multiagentPAL.

ϕ0 = ⊤

ϕn+1 = ¬[!¬[!ϕn]Ki¬⊤]K j⊥

EveryEL-formula that is equivalent toϕn has length at least exponential inn.

It follows thatPAL is more succinct thanEL.

6.3 Complexity results

In the monoagent case we had eliminated assignments by proving that aLPALA

formulaϕ is PALA satisfiable if and only if:

K
(

^

1≤k≤n

(xpk ↔ ϕk)

)

∧ψ

is PALA satisfiable. In multiagentPALA, the same result is obtained by replacing
the operatorK by the ‘everybody knows’ operatorEN. In this case, however, we
need to iterate the operator up to the horizon of the formula.

THEOREM 34 Let ϕ be aPALA formula, and letxpk, ϕk andψ be as in Theorem
28. Thenϕ is PALA satisfiable if and only if

(

^

ℓ≤md(ϕ)

Eℓ
N

(

^

1≤k≤n

(xpk ↔ ϕk)

))

∧ψ
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is EL satisfiable, where md(ϕ) is the modal depth ofϕ (the maximal number of
nested modal operators inϕ).

If the common knowledge operator is available then a single conjunct suffices.

THEOREM 35 Letϕ be aPALA
C formula, and letxpk, ϕk andψ be as in Theorem

28. Thenϕ is PALA
C satisfiable if and only if

CN

(

^

1≤k≤n

(xpk ↔ ϕk)

)

∧ψ

is EL
C satisfiable.

Both equivalences lead to polynomial transformations.3 Then Lutz’s reduction
method for multi-agentPAL can be applied. In other words, we again obtain an
optimal theorem proving method.

7 Discussion and conclusion

We have modelled the frame problem in a dynamic epistemic logic by providing
counterparts for situation calculus style ontic and sensing actions, and we have
given complexity results using that translation. As far as we know, this is the first
optimal decision procedure for a Reiter-style solution to the frame problem.

A similar approach for epistemic actions has been proposed in (Herzig et al., 2000b).
The logic for epistemic tests therein has an operator that corresponds to the public
announcement operator. However, that logic has no ontic actions, and the regression
procedure is suboptimal. In addition, the complexity result given there is restricted
to non-nested tests, while here we permit any formula under the scope of the dy-
namic operators.

Scherl&Levesque’s epistemic extension of Reiter’s solution allows for sensing ac-
tions !!ϕ, which test whether some formulaϕ is true. Such sensing actions can be
viewed as abbreviating the nondeterministic composition of two announcements,
and we could have defined them as: !!ϕ = (!ϕ∪!¬ϕ), where∪ is nondeterminis-
tic choice. The expansion of such abbreviations however leads to an exponential
blowup, which does not allow to extend our approach to integrate primitive sensing

3 Note that it is crucial that the ‘everbody knows’ operator isprimitive in the language
LPALA: if we had defined it as an abbreviation

EGϕ def
=

V

i∈G Kiϕ
then we would get an exponential blowup in the reduction. (Weare grateful to Balder ten
Cate for pointing this out to us.)
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actions. It is not clear for us how the associated successor state axiom (cf. axiom
SSAK in Section 2):

[!!ϕ]Kiψ ↔ ((ϕ → Ki(ϕ → [!!ϕ]ψ))∧ (¬ϕ → Ki(¬ϕ → [!!ϕ]ψ)))

could be integrated into the polynomial transformations ofsections 5 and 6. Further
evidence that the presence of sensing actions increases complexity is provided by
the result in (Herzig et al., 2000a) that plan verification inthis case isΠp

2-complete.
We therefore leave integration of sensing actions to futurework.

The present article also shows that research carried out by situation calculus and dy-
namic epistemic logic communities go into the same direction. Close similarities
between situation calculus and dynamic epistemic logics are also outlined by van
Benthem (2007). We believe that this kind of work can aid to bring about advance-
ments on both sides. For example, Scherl&Levesque do not allow for epistemic
operators in the formulasϕPoss(a), ϕSF(a), γ+(ai , p) andγ−(a′i, p) of basic action
theories, while both the announcement !ϕ and the assignmentp:=ϕ may contain
such operators. Another example are non-public actions: they were studied exten-
sively in dynamic epistemic logics, while there is only little work in the situation
calculus framework. For integrating such actions one couldproceed as in (Baltag
et al., 1998; Baltag and Moss, 2004) and add so-called event models that represent
the agents’ perception of events. The resulting logic comeswith a reduction method
that extends the one in Theorem 21. One could also use existing model checkers for
PALA such as DEMO (van Eijck, 2004) or MCK (Gammie and van der Meyden,
2004).

Going into the other direction, we can cite the high expressivity of the entire lan-
guage of situation calculus (and alsoES). With the argument of keeping decidabil-
ity and elegance, the dynamic epistemic logics community frequently avoids adding
quantifiers, predicates, functions, etc, to its formalisms. Reiter’s, Scherl&Levesque’s
and Lakemeyer&Levesques’s approaches show that, under reasonable restrictions,
these components can be added and even be used in practice, asdone in the GOLOG
programming language (Levesque et al., 1997). Our optimality results could be im-
plemented in order to improve GOLOG’s efficiency.
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A Proof of Theorem 26

THEOREM 26 LetΘ be a basic action theory satisfying the finite change constraint,
and letϕ ∈ L

0
ES

. ThenΘ |=ES ϕ if and only if |=PALAT traΘ(ϕ).

PROOF. We take advantage of both regression and reduction: by Theorem 11,
Θ |=ES ϕ iff |=EL regΘ(ϕ); by Theorem 21,|=PALAT traΘ(ϕ) iff |=EL red(traΘ(ϕ)).

It remains to prove that|=EL regΘ(ϕ) iff |=EL red(traΘ(ϕ)). To that end we prove
that |=ES regΘ(ϕ) ↔ red(traΘ(ϕ)) by induction on the length ofϕ, where the case
[a]ϕ is decomposed into subcases. Our proof extensively uses thefollowing lemma.

LEMMA 36 If |=PALAT ϕ1 ↔ ϕ2 then|=ES red(ϕ1) ↔ red(ϕ2).

PROOF. Suppose that|=PALAT ϕ1 ↔ ϕ2. By the Reduction Theorem 21,|=PALAT

ϕ1 ↔ red(ϕ1) and|=PALAT ϕ2 ↔ red(ϕ2). Therefore|=PALAT red(ϕ1) ↔ red(ϕ2).

The formula red(ϕ1) ↔ red(ϕ2) being in the language ofEL we use that both
PALAT andES are conservative extensions ofEL: first, |=EL red(ϕ1) ↔ red(ϕ2)
by Proposition 19, and second,|=ES red(ϕ1) ↔ red(ϕ2) by Proposition 15.

Let us now prove that|=ES regΘ(ϕ) ↔ red(traΘ(ϕ)) by induction on the length of
ϕ. We analyze the possible cases and subcases concerning the form ofϕ.

(1) |=ES regΘ(p) ↔ red(traΘ(p))
This clearly holds, given that regΘ(p) = p = traΘ(p) = red(traΘ(p)).

(2) |=ES regΘ(a1 = a2) ↔ red(traΘ(a1 = a2))
This can be proved by checking the cases wherea1 anda2 are (syntactically)
equal, and where they are different.

(3) |=ES regΘ(¬ψ) ↔ red(traΘ(¬ψ))
We have red(traΘ(¬ψ)) = red(¬ traΘ(ψ)) = ¬ red(traΘ(ψ)). By induction hy-
pothesis (and by the rule of substitution of equivalents ofES) the latter isES

equivalent to¬ regΘ(ψ). Finally,¬ regΘ(ψ) = regΘ(¬ψ).
(4) |=ES regΘ(ψ∧ψ′) ↔ red(traΘ(ψ∧ψ′))

Similar to the case of negation.
(5) |=ES regΘ([a]p)↔ red(traΘ([a]p))

We have

regΘ([a]p) = (a=a1∧ γ+(a1, p))∨· · ·∨ (a=an∧ γ+(an, p)) ∨

(p∧¬(a=a′1∧ γ−(a′1, p))∧· · ·∧¬(a=a′m∧ γ−(a′m, p)))

The latter isES equivalent to:

30



• p if p 6∈ Eff−(a)∪Eff+(a);
• γ+(a, p)∨ p if p∈ Eff+(a)\Eff−(a);
• p∧¬γ−(a, p) if p∈ Eff−(a)\Eff+(a);
• γ+(a, p)∨ (p∧¬γ−(a, p)) if p∈ Eff−(a)∩Eff+(a).
The latter are syntactically equal toσa(p), whereσa is as in Definition 24.
Now σa(p) = red(σa(p)) becauseσa(p) is a Boolean formula. For the same
reason, by Proposition 18 we have|=PALAT σa(p) ↔ [!!ϕSF(a)]σa(p). There-
fore |=PALAT red(σa(p)) ↔ red([!!ϕSF(a)][σa]p). Finally, the latter is nothing
but red(traΘ([a]p)).

(6) |=ES regΘ([a]a1 = a2) ↔ red(traΘ([a]a1 = a2))
Straightforward by checking the cases.

(7) |=ES regΘ([a]¬ψ) ↔ red(traΘ([a]¬ψ))
Straightforward by the induction hypothesis and using thattraΘ([a]¬ψ) ↔
traΘ(¬[a]ψ) holds (because tests and assignments are both deterministic and
executable by Proposition 18).

(8) |=ES regΘ([a](ψ∧ψ′)) ↔ red(traΘ([a](ψ∧ψ′)))
Straightforward by applying the induction hypothesis and the equivalence
[a](ψ∧ψ′) ↔ ([a]ψ∧ [a]ψ′) that is bothES andPALAT valid.

(9) |=ES regΘ([a]Kψ)↔ red(traΘ([a]Kψ))
We regress the left hand side: regΘ([a]Kψ) is ES equivalent to

regΘ((ϕSF(a) → K(ϕSF(a) → [a]ψ))∧ (¬ϕSF(a) → K(¬ϕSF(a) → [a]ψ)))

which isES equivalent to

(ϕSF(a) → K(ϕSF(a) → regΘ([a]ψ)))∧

(¬ϕSF(a) → K(¬ϕSF(a) → regΘ([a]ψ)))

becauseϕSF(a) is Boolean.
We reduce the right hand side by means ofES equivalences, using the above

Lemma 36:

red(traΘ([a]Kψ))↔ red([!!ϕSF(a)][σa]Kψ)

↔ red([!!ϕSF(a)]K[σa]ψ)

↔ red([!ϕSF(a)]K[σa]ψ∧ [!¬ϕSF(a)]K[σa]ψ)

↔ϕSF(a) → K red([!ϕSF(a)][σa]ψ) ∧

¬ϕSF(a) → K red([!¬ϕSF(a)][σa]ψ)

↔ϕSF(a) → K(ϕSF(a) → [!!ϕSF(a)][σa]ψ) ∧

¬ϕSF(a) → K(¬ϕSF(a) → [!!ϕSF(a)][σa]ψ)

↔ϕSF(a) → K(ϕSF(a) → traΘ([a]ψ)) ∧

¬ϕSF(a) → K(¬ϕSF(a) → traΘ([a]ψ))

The last but one step uses that by Proposition 18 announcements can be de-
fined by means of tests.
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Finally, by induction hypothesis the regressed left hand side and the reduced
right hand side are equivalent.

This ends the proof.

B Proof of Theorem 27

THEOREM 27 LetΘ be a basic action theory satisfying the final change constraint,
and letϕ ∈ L

0
ES

. Then len(traΘ(ϕ)) ≤ O(len(Θ)× len(ϕ)).

PROOF. We prove by induction on the structure ofϕ that len(traΘ(ϕ)) ≤ 3×
len(Θ)× len(ϕ).

(1) len(traΘ(p)) = len(p) = 1≤ 3× len(Θ)
(2) len(traΘ(a1 = a2)) ≤ 5≤ 3× len(Θ)×3

This can be proved by analyzing the two possible cases traΘ(ϕ) = ⊤ and
traΘ(ϕ) = ⊥. (Note that len(Θ) ≥ 1, and remember that⊤ and⊥ are ab-
breviations.)

(3) len(traΘ(Poss(a)) = len(ϕPoss(a)) ≤ len(Θ)
(4) len(traΘ(SF(a)) = len(ϕSF(a)) ≤ len(Θ)
(5) len(traΘ(¬ϕ1)

= len(¬ traΘ(ϕ1))
= 1+ len(traΘ(ϕ1))
< 3× len(Θ)+ len(traΘ(ϕ1)) (because 1< 3× len(Θ))
≤ 3× len(Θ)+3× len(Θ)× len(ϕ1) (by induction hypothesis)
= 3× len(Θ)× (1+ len(ϕ1))
= 3× len(Θ)× len(¬ϕ1).

(6) len(traΘ(ϕ1∧ϕ2)) ≤ 3× len(Θ)× len(ϕ1∧ϕ2)
Similar to the case of negation.

(7) len(traΘ(Kϕ1)) ≤ 3× len(Θ)× len(Kϕ1)
Similar to the case of negation.

(8) len(traΘ([a]ϕ1))
= len([!!ϕSF(a)][σa] traΘ(ϕ1))
= 2+ len(ϕSF(a))+ len(σa)+ len(traΘ(ϕ1))
≤ 2+ len(Θ)+ len(Θ)+ len(traΘ(ϕ1))
≤ 3× len(Θ)+ len(traΘ(ϕ1)) (because len(Θ) ≥ 3 sinceΘ is not empty)
≤ 3× len(Θ)+3× len(Θ)× len(ϕ1) (by induction hypothesis)
= 3× len(Θ)× (1+ len(ϕ1))
≤ 3× len(Θ)× (2+ len(ϕ1))
= 3× len(Θ)× len([a]ϕ1).

This ends the proof.
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