
Double bubble trouble

M. Albert, M. Atkinson, M. Bouvel, A. Claesson, M. Dukes

Department of Computer Science, University of Otago

PP2011

http://arxiv.org/abs/1008.5299

http://arxiv.org/abs/1008.5299

Stack sorting

I A stack is a last in/first out data structure
I If we present data to a stack, popping if the newly arrived

data is larger than the stack top, and pushing otherwise
then we sort some input sequences

I Precisely, we sort Av(231)

I If we think of the input as a permutation of length n, written
in one line notation as αnβ then the effect of a pass
through a stack operating above is:

S(αnβ) = S(α)S(β)n

Bubble sort

I Bubble sort is a familiar elementary sorting algorithm
I In a single pass, we always ‘hold’ the current maximum

element
I When a smaller element is encountered it is simply output,

when a larger element is encountered it replaces the
current maximum (which is output)

I Essentially, we have a buffer capable of holding two items
and an atomic step consists of outputting the smaller of the
two (if the buffer is full), and replacing it by the next input
item

I Functionally:
B(αnβ) = B(α)βn

Bubble sort sorts?

Recall:
B(αnβ) = B(α)βn

I For the RHS to be sorted, β must be increasing and
consist of an interval of values from |α|+ 1 through n − 1

I And of course α must be sortable
I So

B−1(Av(21)) =
⊕
{1,21,312,4123, . . .}

I Alternative:

B−1(Av(21)) = Av(231,321)

I This contains 2n−1 permutations of length n (one to one
correspondence with compositions)

I So, in some sense, B is optimal in as much as it performs
only n − 1 comparisons

Double bubble sorts?

I The sequence sorted by S ◦ S are not a classical pattern
class (they can be characterized in terms of barred pattern
avoidance – West)

I For B the situation is more clear cut, which is easily seen
by chaining together two element buffers

I A chain of k two element buffers behaves like a k + 1
element buffer

I So long as the smallest remaining item is always among
the first k + 1 elements Bk will sort correctly, i.e.

B−k (Av(21)) = Av(Sk+1 	 1)

I Unfortunately, optimality is gone – this class has growth
rate k + 1 while requiring O(kn) comparisons

More generally

I As noted above, S−2(Av(21)) is not a classical pattern
class, or put another way S−1(Av(231)) is not a pattern
class

I Whenever we have a sorting operator (whatever that
means), we might consider the general problem of its
(inverse) effect on pattern classes

I For example, what permutations are sorted by an
application of B and then one of S?

(S ◦ B)−1(Av(21)) = B−1 ◦ S−1(Av(21)) = B−1(Av(231))

All about B

Theorem
Let π be a single permutation. Then, B−1(Av(π)) is a pattern
class if and only if:

I π has two or fewer left to right maxima, or
I π has exactly three left to right maxima the last of which is

the final element of π.

Proof.
In 20+ minutes? Don’t be silly.

Remarks on the theorem

I In the positive cases it is actually possible to explicitly
compute bases

I It is not automatically possible to compute enumerations or
growth rates

I For B−1(Av(231)) the basis is {3241,2341,4231,2431}
I The number of permutations sorted by “B then S” is

actually
(2n−2

n−1

)
, so we don’t actually gain on S alone in

growth rate

Points to ponder

I Just what is a sorting operator? What is the weakest useful
definition? What are the strongest reasonable properties?
Straw men:

I A length preserving map X : S → S is a sorting operator if
the inverted values of X (π) are always a subset of those of
π

I A sorting operator X is blocking if for every σ such that
some inversion of σ is not repaired by X , then for every π
containing σ the corresponding inversion of π is not
repaired by X

I What are the nice, but non-trivial, examples of operators X
such that X−1(C) is always a pattern class when C is?

I Are there nice asymptotically optimal operators more
powerful than B?

