Bubblesort and permutations

Mike Atkinson Michael Albert, Mathilde Bouvel, Anders Claesson, Mark Dukes

New Zealand Mathematical Society Colloquium December 2010

1 Permutations and Pattern classes: basic concepts

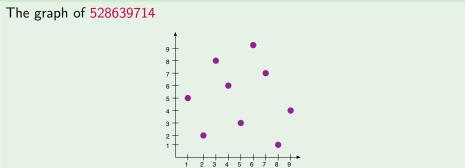
• A permutation of length *n* is an arrangement of 1, 2, ..., *n* (one-line notation, not cycle notation)

- A permutation of length *n* is an arrangement of 1, 2, ..., *n* (one-line notation, not cycle notation)
- Example: 528639714

- A permutation of length *n* is an arrangement of 1, 2, ..., *n* (one-line notation, not cycle notation)
- Example: 528639714
- Conveniently displayed as a graph

- A permutation of length *n* is an arrangement of 1, 2, ..., *n* (one-line notation, not cycle notation)
- Example: 528639714
- Conveniently displayed as a graph

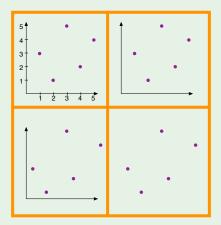
Example



The cardinal sin: unlabeled axes

Example

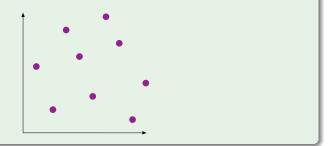
Increasingly sloppy graphs of 31524



Subpermutations

Example

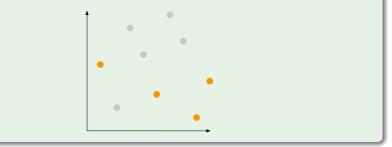
The graph of 528639714



Subpermutations

Example

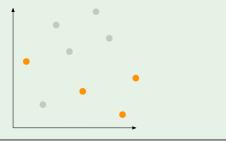
The graph of 528639714 and subpermutation 4213



Subpermutations

Example

The graph of 528639714 and subpermutation 4213



4213 is a subpermutation of 528639714.

Notation

4213 \preceq 528639714 and 54321 \preceq 528639714

The \preceq relation is a partial order on the set of all permutations

Pattern classes

Definition

A *pattern class* is a set of permutations closed under taking subpermutations (down-set in the partial order)

Every pattern class ${\mathcal X}$ can be defined by a set of avoided permutations.

Notation

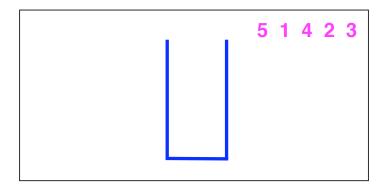
Av(B): the pattern class defined by avoiding permutations in the set B.

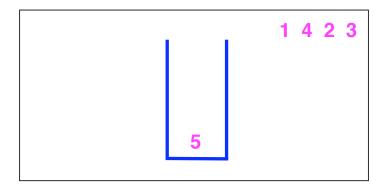
Main issues

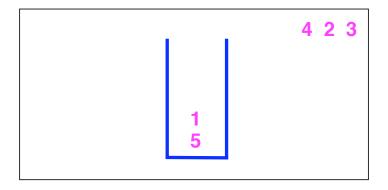
- Given a pattern class realise it in the form Av(B) for some set B
- Give structural description of permutations in some given Av(B)
- Count them of each length

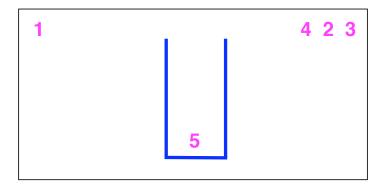
Example 1: all identity permutations

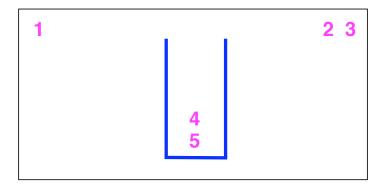
The set of all identity permutations $\{1, 12, 123, 1234, \ldots\}$ forms the pattern class Av(21). It has 1 permutation of every length *n*.

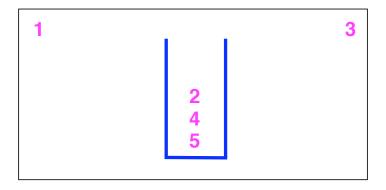


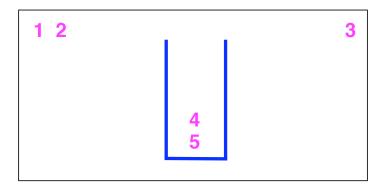


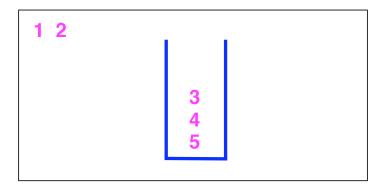


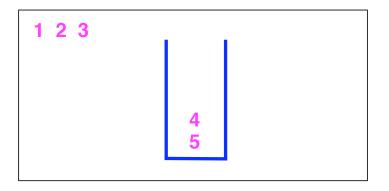


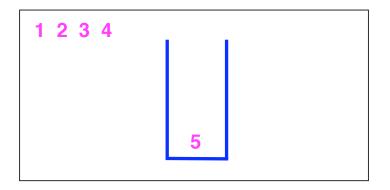


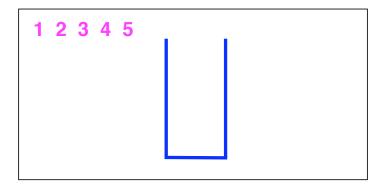


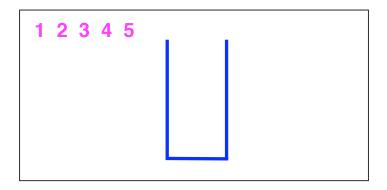












The stack-sortable permutations form the pattern class Av(231). It has $\frac{\binom{2n}{n}}{n+1}$ permutations of length n

Av(4312, 2143) – movie of length 13 permutations

- Bubblesort is an inefficient sorting algorithm that proceeds in a number of passes.
- 2 Each pass is a left to right scan

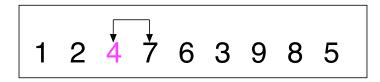
4 1 2 7 6 3 9 8 5

- Bubblesort is an inefficient sorting algorithm that proceeds in a number of passes.
- 2 Each pass is a left to right scan

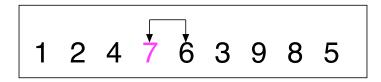


- Bubblesort is an inefficient sorting algorithm that proceeds in a number of passes.
- 2 Each pass is a left to right scan

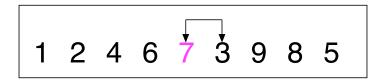
- Bubblesort is an inefficient sorting algorithm that proceeds in a number of passes.
- 2 Each pass is a left to right scan



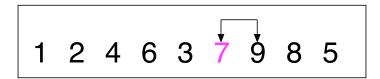
- Bubblesort is an inefficient sorting algorithm that proceeds in a number of passes.
- 2 Each pass is a left to right scan



- Bubblesort is an inefficient sorting algorithm that proceeds in a number of passes.
- 2 Each pass is a left to right scan



- Bubblesort is an inefficient sorting algorithm that proceeds in a number of passes.
- 2 Each pass is a left to right scan



- Bubblesort is an inefficient sorting algorithm that proceeds in a number of passes.
- 2 Each pass is a left to right scan

- Bubblesort is an inefficient sorting algorithm that proceeds in a number of passes.
- 2 Each pass is a left to right scan

- Bubblesort is an inefficient sorting algorithm that proceeds in a number of passes.
- 2 Each pass is a left to right scan

1 2 4 6 3 7 8 5 9

- Bubblesort is an inefficient sorting algorithm that proceeds in a number of passes.
- 2 Each pass is a left to right scan

The effect $\sigma \to B(\sigma)$ of one pass is given by

$$B(\epsilon) = \epsilon$$
 and

$$B(\alpha n\beta) = B(\alpha)\beta n$$

B sorts a pattern class

- **1** In general we need n passes to sort a permutation of length n
- 2 But B (applied once) sorts a small number of permutations
- The set sortable by B is Av(231, 321)

Theorem

$$B^{-1}(Av(21)) = Av(231, 321)$$

```
A general question
```

Formally generalising the statement of this theorem:

Question

- For an arbitrary pattern class $Av(\Pi)$ what is $B^{-1}(Av(\Pi))$?
- Is it even a pattern class? If so, which pattern class is it?

An answer would enable the study of composing B with other sorting operators.

Left to right maxima

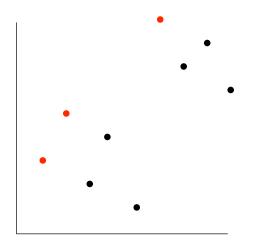


Figure: 352419786 has 3 left to right maxima

Theorems

Definition

A permutation is *good* if it either has at most 2 left to right maxima, or has 3 left to right maxima and ends with its largest term.

Theorems

Definition

A permutation is *good* if it either has at most 2 left to right maxima, or has 3 left to right maxima and ends with its largest term.

Theorem

If $\Pi = {\pi}$ then $B^{-1}(Av(\Pi))$ is a pattern class if and only if π is good.

Theorems

Definition

A permutation is *good* if it either has at most 2 left to right maxima, or has 3 left to right maxima and ends with its largest term.

Theorem

If $\Pi = {\pi}$ then $B^{-1}(Av(\Pi))$ is a pattern class if and only if π is good.

Theorem

If Π consists of good permutations then $B^{-1}(\operatorname{Av}(\Pi))$ is a pattern class. Moreover we have $B^{-1}(\operatorname{Av}(\Pi)) = \operatorname{Av}(\Sigma)$ for some set Σ that is explicitly computable in terms of Π – but this margin...

Question

How many permutations of length n can be sorted by one pass of Bubblesort followed by one pass of Stacksort?

• Stacksort is another simple sorting method: the permutations that it can sort form the pattern class Av(231).

Question

How many permutations of length n can be sorted by one pass of Bubblesort followed by one pass of Stacksort?

- Stacksort is another simple sorting method: the permutations that it can sort form the pattern class Av(231).
- Hence the set we are interested in is $B^{-1}(Av(231))$.

Question

How many permutations of length n can be sorted by one pass of Bubblesort followed by one pass of Stacksort?

- Stacksort is another simple sorting method: the permutations that it can sort form the pattern class Av(231).
- Hence the set we are interested in is $B^{-1}(Av(231))$.
- The explicit forms of the theorem above tells us that $B^{-1}(Av(231)) = Av(3241, 2341, 4231, 2431)$

Question

How many permutations of length n can be sorted by one pass of Bubblesort followed by one pass of Stacksort?

- Stacksort is another simple sorting method: the permutations that it can sort form the pattern class Av(231).
- Hence the set we are interested in is $B^{-1}(Av(231))$.
- The explicit forms of the theorem above tells us that $B^{-1}(Av(231)) = Av(3241, 2341, 4231, 2431)$
- Now a calculation that is quite commonplace in this subject shows that this set has $\binom{2n-2}{n-1}$ permutations of each length *n*.

Lots more questions

- Many other sorting algorithms sort in phases we can ask what permutations are sortable by a single phase – when is it a pattern class?
- Any answers then allow us to investigate the permutations sortable by combinations of phases from different sorting algorithms

Lots more questions

- Many other sorting algorithms sort in phases we can ask what permutations are sortable by a single phase – when is it a pattern class?
- Any answers then allow us to investigate the permutations sortable by combinations of phases from different sorting algorithms

Thank you for listening