Candy Nim

Michael H. Albert

Department of Computer Science
University of Otago
Dunedin, New Zealand
malbert@cs.otago.ac.nz
CMS, Halifax, 2004

- Definition of the game
- Basic results
- Three heap candy Nim

Nim is boring

- In a lost position, the first player's role in Nim is superfluous.

Nim is boring

- In a lost position, the first player's role in Nim is superfluous.
- How can we add some extra interest for him?

Nim is boring

- In a lost position, the first player's role in Nim is superfluous.
- How can we add some extra interest for him?
- He could decide to collect beans, or better yet, candies.

Candy Nim

- Candy Nim is played with candies (or coins) in place of beans.

Candy Nim

- Candy Nim is played with candies (or coins) in place of beans.
- The Nim winning player must still play to win the game of Nim (the mana of winning outweighs material gains!)

Candy Nim

- Candy Nim is played with candies (or coins) in place of beans.
- The Nim winning player must still play to win the game of Nim (the mana of winning outweighs material gains!)
- Subject to the above, both players play to maximize the number of candies which they collect.

Notation

- Nim positions are sequences of non-negative integers, denoted by letters like G or H.

Notation

- Nim positions are sequences of non-negative integers, denoted by letters like G or H.
- All positions of interest are second player wins.

Notation

- Nim positions are sequences of non-negative integers, denoted by letters like G or H.
- All positions of interest are second player wins.
- $G+H$ denotes the concatenation of G and H.

Notation

- Nim positions are sequences of non-negative integers, denoted by letters like G or H.
- All positions of interest are second player wins.
- $G+H$ denotes the concatenation of G and H.
- $v(G)$ denotes the value of G in candy Nim, that is, the difference between the number of candies collected by the first player, and the number collected by the second player under optimal play.

First player's advantage

Observation

For any Nim position G which is a second player win, $v(G) \geq 0$.

First player's advantage

Observation

For any Nim position G which is a second player win, $v(G) \geq 0$.

Proof.

The first player can guarantee that all the second player's removals match his, by always changing a single 1 bit to 0 .

First player's advantage

Observation

For any Nim position G which is a second player win, $v(G) \geq 0$.

Proof.

The first player can guarantee that all the second player's removals match his, by always changing a single 1 bit to 0 .

In fact, except in positions where every pile size occurs an even number of times, the first player can guarantee a positive outcome by always taking all of the largest pile.

Value is sub-additive

Proposition

Let G and H be second player wins for Nim. Then:

$$
v(G)-v(H) \leq v(G+H) \leq v(G)+v(H)
$$

Value is sub-additive

Proposition

Let G and H be second player wins for Nim. Then:

$$
v(G)-v(H) \leq v(G+H) \leq v(G)+v(H)
$$

Proof.

A variation on strategy stealing. For the right hand inequality, the second player plays separately in G and H. For the left, the first player avoids playing on H unless the second player answers a move in G with one in H. In that case he takes the second player's move there.

Both bounds are tight

- $v(1,2,3+8,16,24)=v(1,2,3)+v(8,16,24)$.

Both bounds are tight

- $v(1,2,3+8,16,24)=v(1,2,3)+v(8,16,24)$.
- $v(1,2,3+1,2,3)=0=v(1,2,3)-v(1,2,3)$.

Both bounds are tight

- $v(1,2,3+8,16,24)=v(1,2,3)+v(8,16,24)$.
- $v(1,2,3+1,2,3)=0=v(1,2,3)-v(1,2,3)$.
- The proposition implies that, in general, we can delete pairs of equal sized heaps when computing a value.

Three heaps

- Two heap candy Nim is as boring as ordinary two heap Nim.

Three heaps

- Two heap candy Nim is as boring as ordinary two heap Nim.
- Three heap candy Nim is already interesting enough!

Three heaps

- Two heap candy Nim is as boring as ordinary two heap Nim.
- Three heap candy Nim is already interesting enough!
- What is the value?

Three heaps

- Two heap candy Nim is as boring as ordinary two heap Nim.
- Three heap candy Nim is already interesting enough!
- What is the value?
- Where can the first player move effectively?

One tiny heap

- If the smallest heap is of size one, it is pointless to move there, unless you're in an egalitarian mood.

One tiny heap

- If the smallest heap is of size one, it is pointless to move there, unless you're in an egalitarian mood.
- By moving from $1,2 k, 2 k+1$ to $1,2 k, 2 k-2$, you get a 3 to 1 advantage when the second player makes her reply to $1,2 k-1,2 k-2$.

One tiny heap

- If the smallest heap is of size one, it is pointless to move there, unless you're in an egalitarian mood.
- By moving from $1,2 k, 2 k+1$ to $1,2 k, 2 k-2$, you get a 3 to 1 advantage when the second player makes her reply to $1,2 k-1,2 k-2$.
- This is easily seen to be optimal and so, inductively:

$$
v(1,2 k, 2 k+1)=2 k
$$

Move in biggest heap?

- Red means that there is a good move in the biggest heap.
- Plot is for $a, b, a \oplus b$ with $0 \leq a, b \leq 255$.

Unique good move?

- Red means that there is not a unique good move.

Fair first exchange?

- Red means that the first player cannot gain candies on the first exchange.

Conjectures

- For fixed a, the sequence $v(a, x, a \oplus x)$ is ultimately arithmeto-periodic.

Conjectures

- For fixed a, the sequence $v(a, x, a \oplus x)$ is ultimately arithmeto-periodic.
- The period length is the smallest power of 2 strictly greater than a.

Conjectures

- For fixed a, the sequence $v(a, x, a \oplus x)$ is ultimately arithmeto-periodic.
- The period length is the smallest power of 2 strictly greater than a.
- If $2^{k}-1 \leq a<2^{k+1}-1$ then asymptotically player one collects all but a proportion of 2^{-k-1} of the pot.

Conjectures

- For fixed a, the sequence $v(a, x, a \oplus x)$ is ultimately arithmeto-periodic.
- The period length is the smallest power of 2 strictly greater than a.
- If $2^{k}-1 \leq a<2^{k+1}-1$ then asymptotically player one collects all but a proportion of 2^{-k-1} of the pot.

Thank you.

