
Two Things
Things you did know

Things you may not know
Recent Things

Some things you didn’t know about priority queues

Mike Atkinson

CS Seminar, Carleton University, 4 October 2012
Joint work with Michael Albert

Aspects of Separability

M. H. Albert (Otago)

PP 2007, St Andrews

M. H. Albert (Otago) Aspects of Separability PP 2007, St Andrews 1 / 12

1



Two Things
Things you did know

Things you may not know
Recent Things

Outline of talk

1 Two Things

2 Things you did know

3 Things you may not know

4 Recent Things

2



Two Things
Things you did know

Things you may not know
Recent Things

Thing One: hashing

We can model hashing by thinking of parking n cars on a
1-way street with n parking spaces
The cars arrive in order
Each car has a preferred space it tries first
If that space is full it tries the next available spaces one by
one, parking at the first free space
If it reaches the end of the street having failed to park we
have failure
If all cars can park we have success

3



Two Things
Things you did know

Things you may not know
Recent Things

Thing One: hashing

We can model hashing by thinking of parking n cars on a
1-way street with n parking spaces
The cars arrive in order
Each car has a preferred space it tries first
If that space is full it tries the next available spaces one by
one, parking at the first free space
If it reaches the end of the street having failed to park we
have failure
If all cars can park we have success

3



Two Things
Things you did know

Things you may not know
Recent Things

Thing One: hashing

We can model hashing by thinking of parking n cars on a
1-way street with n parking spaces
The cars arrive in order
Each car has a preferred space it tries first
If that space is full it tries the next available spaces one by
one, parking at the first free space
If it reaches the end of the street having failed to park we
have failure
If all cars can park we have success

Example

Suppose n = 5 and the preferences are
Car 1 2 3 4 5
Preferred space 3 4 1 4 3

3



Two Things
Things you did know

Things you may not know
Recent Things

Thing One: hashing

We can model hashing by thinking of parking n cars on a
1-way street with n parking spaces
The cars arrive in order
Each car has a preferred space it tries first
If that space is full it tries the next available spaces one by
one, parking at the first free space
If it reaches the end of the street having failed to park we
have failure
If all cars can park we have success

Example

Suppose n = 5 and the preferences are
Car 1 2 3 4 5
Preferred space 3 1 1 3 2

3



Two Things
Things you did know

Things you may not know
Recent Things

3 cars

Preference functions
111 112 113 121 122 123 131 132 133
211 212 213 221 222 223 231 232 233
311 312 313 321 322 323 331 332 333

4



Two Things
Things you did know

Things you may not know
Recent Things

3 cars

Successful functions
111 112 113 121 122 123 131 132 133
211 212 213 221 222 223 231 232 233
311 312 313 321 322 323 331 332 333

4



Two Things
Things you did know

Things you may not know
Recent Things

With n cars there are nn preference functions

But only (n + 1)n−1 successful ones (parking functions)

5



Two Things
Things you did know

Things you may not know
Recent Things

With n cars there are nn preference functions

But only (n + 1)n−1 successful ones (parking functions)

5



Two Things
Things you did know

Things you may not know
Recent Things

Thing two: labeled (unrooted) (unordered) trees

1

1

1

1

1

1

1

1

1

1

2

1

1

2

2

2

2

2

2

2

3

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

2

2

2

2 1

1

1

1

All the trees on 4 labeled nodes

There are (n + 1)n−1 labeled trees on n + 1 nodes.6



Two Things
Things you did know

Things you may not know
Recent Things

Thing two: labeled (unrooted) (unordered) trees

1

1

1

1

1

1

1

1

1

1

2

1

1

2

2

2

2

2

2

2

3

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

3

3

3

3

2

2

2

2 1

1

1

1

All the trees on 4 labeled nodes

There are (n + 1)n−1 labeled trees on n + 1 nodes.6



Two Things
Things you did know

Things you may not know
Recent Things

What is a priority queue?

A priority queue is a container which can contain priorities (or data
items which have a priority). There are two main operations that
can be applied to the container:

Insert Insert a new item into the container

Delete-Min Delete the item of smallest priority from the container

7



Two Things
Things you did know

Things you may not know
Recent Things

. . . and you also knew

Several implementations: heap, binary search tree

Insert and Delete-Min operations in log n time

Applications to scheduling and sorting - particularly Heapsort

8



Two Things
Things you did know

Things you may not know
Recent Things

Priority queue computations

A priority queue computation is a sequence of Insert (I ) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput
3 2 4 1 5

9



Two Things
Things you did know

Things you may not know
Recent Things

Priority queue computations

A priority queue computation is a sequence of Insert (I ) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput

3

2 4 1 53

9



Two Things
Things you did know

Things you may not know
Recent Things

Priority queue computations

A priority queue computation is a sequence of Insert (I ) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput

3 2

4 1 523

9



Two Things
Things you did know

Things you may not know
Recent Things

Priority queue computations

A priority queue computation is a sequence of Insert (I ) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput

3

2 4 1 523

9



Two Things
Things you did know

Things you may not know
Recent Things

Priority queue computations

A priority queue computation is a sequence of Insert (I ) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput

3

2

4

1 5423

9



Two Things
Things you did know

Things you may not know
Recent Things

Priority queue computations

A priority queue computation is a sequence of Insert (I ) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput
32

4

1 5423

9



Two Things
Things you did know

Things you may not know
Recent Things

Priority queue computations

A priority queue computation is a sequence of Insert (I ) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput
32

41

51423

9



Two Things
Things you did know

Things you may not know
Recent Things

Priority queue computations

A priority queue computation is a sequence of Insert (I ) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput
32

4

1 51423

9



Two Things
Things you did know

Things you may not know
Recent Things

Priority queue computations

A priority queue computation is a sequence of Insert (I ) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput
32

4

1

5

51423

9



Two Things
Things you did know

Things you may not know
Recent Things

Priority queue computations

A priority queue computation is a sequence of Insert (I ) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput
32 41

5

51423

9



Two Things
Things you did know

Things you may not know
Recent Things

Priority queue computations

A priority queue computation is a sequence of Insert (I ) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

The input 32415 has been 
transformed into the output 23145

InputOutput
32 41 5 51423

9



Two Things
Things you did know

Things you may not know
Recent Things

Allowable pairs

We have just seen a priority queue computation that
transformed the input sequence 32415 into the output
sequence 23145.

(32415, 23145) is an allowable pair

Not every pair of permutations is an allowable pair

(12, 21) is not allowable
(321, 132) is not allowable

10



Two Things
Things you did know

Things you may not know
Recent Things

Serendipity

I was sitting at my 
desk at Carleton 
in February 1992 
….	



11



Two Things
Things you did know

Things you may not know
Recent Things

The number of allowable pairs

Theorem

There are (n + 1)n−1 allowable pairs of length n.

There are direct correspondences with parking functions and trees

12



Two Things
Things you did know

Things you may not know
Recent Things

Lots of related results

Algorithm for computing the number of outputs that a given
input of length n can produce: O(n4)

Algorithm for computing the number of inputs that can
produce a given output of length n: O(n)

What happens if we place a bound on the capacity of the
priority queue?

What happens if we allow the priorities to have duplicates?

What happens if we chain the output of a priority queue so
that it is the input to a second priority queue?

What if we allow any number of priority queues in series?

13



Two Things
Things you did know

Things you may not know
Recent Things

Lots of related results

Algorithm for computing the number of outputs that a given
input of length n can produce: O(n4)

Algorithm for computing the number of inputs that can
produce a given output of length n: O(n)

What happens if we place a bound on the capacity of the
priority queue?

What happens if we allow the priorities to have duplicates?

What happens if we chain the output of a priority queue so
that it is the input to a second priority queue?

What if we allow any number of priority queues in series?

13



Two Things
Things you did know

Things you may not know
Recent Things

Lots of related results

Algorithm for computing the number of outputs that a given
input of length n can produce: O(n4)

Algorithm for computing the number of inputs that can
produce a given output of length n: O(n)

What happens if we place a bound on the capacity of the
priority queue?

What happens if we allow the priorities to have duplicates?

What happens if we chain the output of a priority queue so
that it is the input to a second priority queue?

What if we allow any number of priority queues in series?

13



Two Things
Things you did know

Things you may not know
Recent Things

Lots of related results

Algorithm for computing the number of outputs that a given
input of length n can produce: O(n4)

Algorithm for computing the number of inputs that can
produce a given output of length n: O(n)

What happens if we place a bound on the capacity of the
priority queue?

What happens if we allow the priorities to have duplicates?

What happens if we chain the output of a priority queue so
that it is the input to a second priority queue?

What if we allow any number of priority queues in series?

13



Two Things
Things you did know

Things you may not know
Recent Things

Lots of related results

Algorithm for computing the number of outputs that a given
input of length n can produce: O(n4)

Algorithm for computing the number of inputs that can
produce a given output of length n: O(n)

What happens if we place a bound on the capacity of the
priority queue?

What happens if we allow the priorities to have duplicates?

What happens if we chain the output of a priority queue so
that it is the input to a second priority queue?

What if we allow any number of priority queues in series?

13



Two Things
Things you did know

Things you may not know
Recent Things

Lots of related results

Algorithm for computing the number of outputs that a given
input of length n can produce: O(n4)

Algorithm for computing the number of inputs that can
produce a given output of length n: O(n)

What happens if we place a bound on the capacity of the
priority queue?

What happens if we allow the priorities to have duplicates?

What happens if we chain the output of a priority queue so
that it is the input to a second priority queue?

What if we allow any number of priority queues in series?

13



Two Things
Things you did know

Things you may not know
Recent Things

Closure: new allowable pairs from old

We know that (32415, 23145) is allowable

Fix on a subset of the priorities e.g. {1, 3, 4}
So (32415, 23145)

So (341, 314) is also allowable

i.e. (231, 213) is allowable

This “downward closure” property suggests a connection with
Permutation Pattern Classes

14



Two Things
Things you did know

Things you may not know
Recent Things

Closure: new allowable pairs from old

We know that (32415, 23145) is allowable

Fix on a subset of the priorities e.g. {1, 3, 4}
So (32415, 23145)

So (341, 314) is also allowable

i.e. (231, 213) is allowable

This “downward closure” property suggests a connection with
Permutation Pattern Classes

14



Two Things
Things you did know

Things you may not know
Recent Things

Closure: new allowable pairs from old

We know that (32415, 23145) is allowable

Fix on a subset of the priorities e.g. {1, 3, 4}
So (32415, 23145)

So (341, 314) is also allowable

i.e. (231, 213) is allowable

This “downward closure” property suggests a connection with
Permutation Pattern Classes

14



Two Things
Things you did know

Things you may not know
Recent Things

Closure: new allowable pairs from old

We know that (32415, 23145) is allowable

Fix on a subset of the priorities e.g. {1, 3, 4}
So (32415, 23145)

So (341, 314) is also allowable

i.e. (231, 213) is allowable

This “downward closure” property suggests a connection with
Permutation Pattern Classes

14



Two Things
Things you did know

Things you may not know
Recent Things

Closure: new allowable pairs from old

We know that (32415, 23145) is allowable

Fix on a subset of the priorities e.g. {1, 3, 4}
So (32415, 23145)

So (341, 314) is also allowable

i.e. (231, 213) is allowable

This “downward closure” property suggests a connection with
Permutation Pattern Classes

14



Two Things
Things you did know

Things you may not know
Recent Things

Closure: new allowable pairs from old

We know that (32415, 23145) is allowable

Fix on a subset of the priorities e.g. {1, 3, 4}
So (32415, 23145)

So (341, 314) is also allowable

i.e. (231, 213) is allowable

This “downward closure” property suggests a connection with
Permutation Pattern Classes

14



Two Things
Things you did know

Things you may not know
Recent Things

Pattern classes

A pattern class X of permutations is a set of permutations
with a downward closure property like the one we just saw
(but single permutations rather than pairs).

Eg. if 426315 ∈ X then (considering the red elements 461)
also 231 ∈ X . (We say 426315 contains 231).

Every pattern class is defined by a set of avoided (= not
contained) permutations.

e.g. The set of permutations that a stack can sort is a pattern
class

15



Two Things
Things you did know

Things you may not know
Recent Things

Sorting a permutation with a stack

5 1 4 2 3

16



Two Things
Things you did know

Things you may not know
Recent Things

Sorting a permutation with a stack

5

1 4 2 3

16



Two Things
Things you did know

Things you may not know
Recent Things

Sorting a permutation with a stack

5
1

4 2 3

16



Two Things
Things you did know

Things you may not know
Recent Things

Sorting a permutation with a stack

5

1 4 2 3

16



Two Things
Things you did know

Things you may not know
Recent Things

Sorting a permutation with a stack

5

1

4

2 3

16



Two Things
Things you did know

Things you may not know
Recent Things

Sorting a permutation with a stack

5

1

4
2

3

16



Two Things
Things you did know

Things you may not know
Recent Things

Sorting a permutation with a stack

5

1

4

2 3

16



Two Things
Things you did know

Things you may not know
Recent Things

Sorting a permutation with a stack

5

1

4

2

3

16



Two Things
Things you did know

Things you may not know
Recent Things

Sorting a permutation with a stack

5

1

4

2 3

16



Two Things
Things you did know

Things you may not know
Recent Things

Sorting a permutation with a stack

5

1 42 3

16



Two Things
Things you did know

Things you may not know
Recent Things

Sorting a permutation with a stack

51 42 3

16



Two Things
Things you did know

Things you may not know
Recent Things

Knuth theorem

Theorem

A permutation can be sorted via a stack if and only if it avoids the
permutation 231.

This was the first of very many connections between Pattern
classes and various structures in Computer Science.

17



Two Things
Things you did know

Things you may not know
Recent Things

Conjuring with Av(132, 312)

♠ ♦ ♥ ♣ ♦ ♠ ♣ ♦ ♥ ♣ ♠ ♥ ♦ ♦ ♠ ♥ ♣ ♠ ♣ ♦ ♣ ♥

18



Two Things
Things you did know

Things you may not know
Recent Things

A hint at the reveal

The initial deck is rigged before the cut and shuffle

The shuffle produces a permutation p in Av(132, 312)

i

p(i)

The graph of a permutation p ∈ Av(132, 312)

19



Two Things
Things you did know

Things you may not know
Recent Things

How are priority queues and pattern classes connected?

There ought to be a connection between allowable pairs and
pattern classes because each have a similar looking downward
closure property (one on pairs of permutations, the other on
single permutations)

And by following definitions we get

Theorem

If a priority queue is presented with the permutations of a fixed
pattern class X as a set of inputs then the set of all possible
outputs is also a pattern class X ∗.

So we have a map X −→ X ∗ defined on the set of all pattern
classes.
Most of the results are about this X −→ X ∗ map.

20



Two Things
Things you did know

Things you may not know
Recent Things

How are priority queues and pattern classes connected?

There ought to be a connection between allowable pairs and
pattern classes because each have a similar looking downward
closure property (one on pairs of permutations, the other on
single permutations)

And by following definitions we get

Theorem

If a priority queue is presented with the permutations of a fixed
pattern class X as a set of inputs then the set of all possible
outputs is also a pattern class X ∗.

So we have a map X −→ X ∗ defined on the set of all pattern
classes.
Most of the results are about this X −→ X ∗ map.

20



Two Things
Things you did know

Things you may not know
Recent Things

How are priority queues and pattern classes connected?

There ought to be a connection between allowable pairs and
pattern classes because each have a similar looking downward
closure property (one on pairs of permutations, the other on
single permutations)

And by following definitions we get

Theorem

If a priority queue is presented with the permutations of a fixed
pattern class X as a set of inputs then the set of all possible
outputs is also a pattern class X ∗.

So we have a map X −→ X ∗ defined on the set of all pattern
classes.
Most of the results are about this X −→ X ∗ map.

20



Two Things
Things you did know

Things you may not know
Recent Things

How are priority queues and pattern classes connected?

There ought to be a connection between allowable pairs and
pattern classes because each have a similar looking downward
closure property (one on pairs of permutations, the other on
single permutations)

And by following definitions we get

Theorem

If a priority queue is presented with the permutations of a fixed
pattern class X as a set of inputs then the set of all possible
outputs is also a pattern class X ∗.

So we have a map X −→ X ∗ defined on the set of all pattern
classes.
Most of the results are about this X −→ X ∗ map.

20



Two Things
Things you did know

Things you may not know
Recent Things

Simple examples of the X −→ X ∗ map

Suppose X is the set of all increasing permutations 12 · · · n
(one permutation of every length). No priority queue
computation can disorder 12 · · · n so X ∗ = X .

Suppose X is the set of all decreasing permutations n · · · 21
(one permutation of every length). Priority queue
computations now behave just as though the priority queue
was a stack. So (Knuth’s theorem) X ∗ is the set of
permutations that avoid 132.

21



Two Things
Things you did know

Things you may not know
Recent Things

Simple examples of the X −→ X ∗ map

Suppose X is the set of all increasing permutations 12 · · · n
(one permutation of every length). No priority queue
computation can disorder 12 · · · n so X ∗ = X .

Suppose X is the set of all decreasing permutations n · · · 21
(one permutation of every length). Priority queue
computations now behave just as though the priority queue
was a stack. So (Knuth’s theorem) X ∗ is the set of
permutations that avoid 132.

21



Two Things
Things you did know

Things you may not know
Recent Things

Simple examples of the X −→ X ∗ map

Suppose X is the set of all increasing permutations 12 · · · n
(one permutation of every length). No priority queue
computation can disorder 12 · · · n so X ∗ = X .

Suppose X is the set of all decreasing permutations n · · · 21
(one permutation of every length). Priority queue
computations now behave just as though the priority queue
was a stack. So (Knuth’s theorem) X ∗ is the set of
permutations that avoid 132.

21



Two Things
Things you did know

Things you may not know
Recent Things

The boring main theorems

X defined by avoiding X ∗ defined by avoiding

21 21
12 132

X defined by avoiding X ∗ defined by avoiding

321 321
312 3142, 4132
231 2431
213 2143
132 1432
123 13254, 14253, 15243

22



Two Things
Things you did know

Things you may not know
Recent Things

The boring main theorems

X defined by avoiding X ∗ defined by avoiding

21 21
12 132

X defined by avoiding X ∗ defined by avoiding

321 321
312 3142, 4132
231 2431
213 2143
132 1432
123 13254, 14253, 15243

22



Two Things
Things you did know

Things you may not know
Recent Things

The boring main theorems. Stay awake, almost done!

X defined by avoiding X ∗ defined by avoiding

132, 321 321, 2143, 2413
213, 321 321, 2143, 2413
231, 312 2413, 2431, 3142, 4132
231, 321 231, 321
123, 132 1423, 1432, 13254
. . . About 50 further cases!!

But if X is defined by avoiding 2431 there is no finite avoided list
defining X ∗

23



Two Things
Things you did know

Things you may not know
Recent Things

The boring main theorems. Stay awake, almost done!

X defined by avoiding X ∗ defined by avoiding

132, 321 321, 2143, 2413
213, 321 321, 2143, 2413
231, 312 2413, 2431, 3142, 4132
231, 321 231, 321
123, 132 1423, 1432, 13254
. . . About 50 further cases!!

But if X is defined by avoiding 2431 there is no finite avoided list
defining X ∗

23


	Two Things
	Things you did know
	Things you may not know
	Recent Things

