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Permutation classes

Definition
A permutation class is a collection of permutations, C, with
the property that, if π ∈ C and we erase some points from its
plot, then the permutation defined by the remaining points is
also in C.

492713685 ∈ C 21543 ∈ Cimplies
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◮ Permutation classes are simply downward closed sets in
the subpermutation ordering

◮ The objective is to try to understand the structure of
permutation classes (or to identify when this is possible)

◮ Enumeration is a consequence or symptom of such
understanding

◮ If X is a set of permutations, then Av(X ) is the permutation
class consisting of those permutations which do not
dominate any permutation of X
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First steps
◮ It seems plausible that the fewer permutations there are in

a class, or alternatively the more restrictive the conditions
of membership, then the more likely it is to have good
structure

◮ Simion and Schmidt (1985) successfully enumerated all
classes Av(X ) for X ⊆ S3

◮ For a single avoided pattern of length 4, it turns out there
are only three possible enumerations (based on both
specific and general symmetries)

◮ Av(1234) was enumerated by Gessel (1990)
◮ Av(1342) by Bóna (1997)
◮ The enumeration of Av(1324) is still unknown
◮ For single element bases of length 5 or more, nothing

much is known in the non-monotone case
◮ All doubleton bases of lengths 4 and 3, and many of length

4 and 4 are known



Stanley-Wilf conjecture

Relative to the set of all permutations, proper permutation
classes are small. Specifically:

Theorem
Let C be a proper permutation class. Then, the growth rate of C,

gr(C) = lim sup |C ∩ Sn|1/n

is finite.

This was known as the Stanley-Wilf conjecture and it was
proven in 2004 by Marcus and Tardos.
The obvious next questions are:

◮ What growth rates can occur?
◮ What can be said about classes of particular growth rates?



Antichains

The subpermutation order contains infinite antichains.

Consequently, there exist 2ℵ0 distinct enumeration
sequences for permutation classes – we must be careful
not to try to do too much.
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Small growth rates
◮ Kaiser and Klazar (EJC, 2003) showed that the only

possible values of gr(C) less than 2 are the greatest
positive solutions of:

xk − xk−1 − xk−2 − · · · − x − 1 = 0

◮ Vatter (Mathematika, 2010) showed that every real number
larger than the unique real solution (approx. 2.482) of

x5 − 2x4 − 2x2 − 2x − 1 = 0

occurs as a growth rate
◮ V (PLMS, 2011) further showed that the smallest growth

rate of a class containing an infinite antichain is the unique
positive solution, κ ≃ 2.20557 of

x3 − 2x2 − 1 = 0

and completely characterized the set of possible growth
rates below κ
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Simple permutations

Definition
A permutation is simple if it contains no nontrivial consecutive
subsequence whose values are also consecutive (though not
necessarily in order)

◮ Simple permutations form a positive proportion of all
permutations (asymptotically 1/e2)

◮ In many (conjecturally all) proper permutation classes
they have density 0

◮ We can hope to understand a class by understanding
its simples and how they inflate

◮ Specifically, this may yield functional equations of the
generating function and hence computations of the
enumeration and/or growth rate



Finitely many simple permutations

Theorem
If a class has only finitely many simple permutations then it has
an algebraic generating function.

◮ A and Atkinson (2005)
◮ Effective ‘in principle’, i.e. an algorithm for computing a

defining system of equations for the generating function
◮ Some interesting corollaries, e.g. if a class has finitely

many simples and does not contain arbitrarily long
decreasing permutations then it has a rational generating
function

◮ “The prime reason for giving this example is to show that
we are not necessarily stymied if the number of simple
permutations is infinite.”
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Encodings

◮ The enumerative combinatorics of words and trees is
better understood

◮ So, apply leverage from there by encoding permutation
classes

◮ For trees this approach goes by many names
◮ For words, A, At and Ruškuc (2003) give (fairly) general

criteria for the encoding of a permutation class by a regular
language

◮ Extended to a new type of encoding, the insertion
encoding (prefigured by Viennot) by A, Linton and R (2005)



Grid classes

◮ The notion of griddable class was central to V’s
characterization of small permutation classes

◮ Loosely, a griddable class is associated with a matrix
whose entries are (simpler) permutation classes

◮ All permutations in the class can be chopped apart into
sections that correspond to the matrix entries



Geometric monotone grid classes

In a geometric grid class, the permutations need to be drawn
from the points of a particular representation in R

2

Theorem (A, At, Bouvel, R and V (to appear TAMS))
Every geometrically griddable class:

◮ is partially well ordered;
◮ is finitely based;
◮ is in bijection with a regular language and thus has a

rational generating function.
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Beyond grid classes

Results from Inflations of Geometric Grid Classes of
Permutations, A, R and V (arxiv.org/abs/1202.1833):

◮ Let C[D] represent the inflations of permutations in C by
permutations in D, and let 〈C〉 denote the closure of C
under inflation

◮ If C is geometrically griddable, then every subclass of 〈C〉 is
finitely based and partially well ordered

◮ If C is geometrically griddable, then every subclass of 〈C〉
has an algebraic generating function

◮ If C is geometrically griddable and U is strongly rational,
then C[U ] is also strongly rational

◮ Every small permutation class has a rational generating
function



Quasi-applications

◮ These ideas, together with a certain amount of number
eight wire or duct tape, i.e. “un peu de rafistolage” can be
used to compute enumerations for some (arguably)
interesting classes

◮ Examples from the basic environment of geometric grid
classes are considered in A, At and Brignall: The
Enumeration of Three Pattern Classes using Monotone
Grid Classes (EJC 19.3 (2012) P20)

◮ Examples for inflations of geometric grid classes are
considered in A, At and V: Inflations of Geometric Grid
Classes: Three Case Studies (arxiv.org/abs/1209.0425)



Av(4312, 3142)

◮ Every simple permutation in this class lies in the geometric
grid class:

◮ This yields a regular language for the simple permutations
◮ The allowed inflations of these permutations are easily

described, yielding a recursive description of the class
◮ This leads to an equation for its generating function:

(x3 − 2x2 + x)f 4 + (4x3 − 9x2 + 6x − 1)f 3

+ (6x3 − 12x2 + 7x − 1)f 2

+ (4x3 − 5x2 + x)f
+ x3 = 0
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Av(321)

Conjecture
Every finitely based proper subclass of Av(321) has a rational
generating function

This class is in some sense a limit of geometric grid classes:



Av(4231, 35142, 42513, 351624)

◮ Enumerating this class was mentioned as a challenge
problem by Alexander Woo at Permutation Patterns 2012

◮ These permutations index “Schubert varieties defined by
inclusions”

◮ The simple permutations look like

◮ Somehow, this leads to an enumeration of the class (a
complicated rational function in

√
1 − 4x)
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Where to from here?

◮ Underlying the main results on geometric grid classes and
their inflations is a notion of natural encoding, in this case
of permutations by words, which may be applicable to
other types of combinatorial structure particularly those
carrying a linear order

◮ Understanding the limit case for geometric grid classes
better

◮ Understanding non-geometric grid classes (David Bevan, a
student of R. Brignall has some nice results in the case
where there is only one cycle, and is working on more
general cases)

◮ Permutation Patterns 2013: July 1-5, Paris


