# Nouvelles perspectives sur l'énumération des classes de permutations 

Michael Albert

Department of Computer Science, University of Otago
Sep 7, 2012, LaBRI

# New perspectives on the enumeration of permutation classes 

Michael Albert

Department of Computer Science, University of Otago
Sep 7, 2012, LaBRI

## Permutation classes

## Definition

A permutation class is a collection of permutations, $\mathcal{C}$, with the property that, if $\pi \in \mathcal{C}$ and we erase some points from its plot, then the permutation defined by the remaining points is also in $\mathcal{C}$.

$492713685 \in \mathcal{C}$

$21543 \in \mathcal{C}$

## Permutation classes

- Permutation classes are simply downward closed sets in the subpermutation ordering


## Permutation classes

- Permutation classes are simply downward closed sets in the subpermutation ordering
- The objective is to try to understand the structure of permutation classes (or to identify when this is possible)


## Permutation classes

- Permutation classes are simply downward closed sets in the subpermutation ordering
- The objective is to try to understand the structure of permutation classes (or to identify when this is possible)
- Enumeration is a consequence or symptom of such understanding


## Permutation classes

- Permutation classes are simply downward closed sets in the subpermutation ordering
- The objective is to try to understand the structure of permutation classes (or to identify when this is possible)
- Enumeration is a consequence or symptom of such understanding
- If $X$ is a set of permutations, then $\operatorname{Av}(X)$ is the permutation class consisting of those permutations which do not dominate any permutation of $X$


## First steps

- It seems plausible that the fewer permutations there are in a class, or alternatively the more restrictive the conditions of membership, then the more likely it is to have good structure


## First steps

- It seems plausible that the fewer permutations there are in a class, or alternatively the more restrictive the conditions of membership, then the more likely it is to have good structure
- Simion and Schmidt (1985) successfully enumerated all classes $\operatorname{Av}(X)$ for $X \subseteq \mathcal{S}_{3}$


## First steps

- It seems plausible that the fewer permutations there are in a class, or alternatively the more restrictive the conditions of membership, then the more likely it is to have good structure
- Simion and Schmidt (1985) successfully enumerated all classes $\operatorname{Av}(X)$ for $X \subseteq \mathcal{S}_{3}$
- For a single avoided pattern of length 4, it turns out there are only three possible enumerations (based on both specific and general symmetries)


## First steps

- It seems plausible that the fewer permutations there are in a class, or alternatively the more restrictive the conditions of membership, then the more likely it is to have good structure
- Simion and Schmidt (1985) successfully enumerated all classes $\operatorname{Av}(X)$ for $X \subseteq \mathcal{S}_{3}$
- For a single avoided pattern of length 4, it turns out there are only three possible enumerations (based on both specific and general symmetries)
- Av(1234) was enumerated by Gessel (1990)


## First steps

- It seems plausible that the fewer permutations there are in a class, or alternatively the more restrictive the conditions of membership, then the more likely it is to have good structure
- Simion and Schmidt (1985) successfully enumerated all classes $\operatorname{Av}(X)$ for $X \subseteq \mathcal{S}_{3}$
- For a single avoided pattern of length 4, it turns out there are only three possible enumerations (based on both specific and general symmetries)
- Av(1234) was enumerated by Gessel (1990)
- Av(1342) by Bóna (1997)


## First steps

- It seems plausible that the fewer permutations there are in a class, or alternatively the more restrictive the conditions of membership, then the more likely it is to have good structure
- Simion and Schmidt (1985) successfully enumerated all classes $\operatorname{Av}(X)$ for $X \subseteq \mathcal{S}_{3}$
- For a single avoided pattern of length 4, it turns out there are only three possible enumerations (based on both specific and general symmetries)
- Av(1234) was enumerated by Gessel (1990)
- Av(1342) by Bóna (1997)
- The enumeration of $\operatorname{Av}(1324)$ is still unknown


## First steps

- It seems plausible that the fewer permutations there are in a class, or alternatively the more restrictive the conditions of membership, then the more likely it is to have good structure
- Simion and Schmidt (1985) successfully enumerated all classes $\operatorname{Av}(X)$ for $X \subseteq \mathcal{S}_{3}$
- For a single avoided pattern of length 4, it turns out there are only three possible enumerations (based on both specific and general symmetries)
- Av(1234) was enumerated by Gessel (1990)
- Av(1342) by Bóna (1997)
- The enumeration of $\operatorname{Av}(1324)$ is still unknown
- For single element bases of length 5 or more, nothing much is known in the non-monotone case


## First steps

- It seems plausible that the fewer permutations there are in a class, or alternatively the more restrictive the conditions of membership, then the more likely it is to have good structure
- Simion and Schmidt (1985) successfully enumerated all classes $\operatorname{Av}(X)$ for $X \subseteq \mathcal{S}_{3}$
- For a single avoided pattern of length 4, it turns out there are only three possible enumerations (based on both specific and general symmetries)
- Av(1234) was enumerated by Gessel (1990)
- Av(1342) by Bóna (1997)
- The enumeration of $\operatorname{Av}(1324)$ is still unknown
- For single element bases of length 5 or more, nothing much is known in the non-monotone case
- All doubleton bases of lengths 4 and 3 , and many of length 4 and 4 are known


## Stanley-Wilf conjecture

Relative to the set of all permutations, proper permutation classes are small. Specifically:

## Theorem

Let $\mathcal{C}$ be a proper permutation class. Then, the growth rate of $\mathcal{C}$,

$$
\operatorname{gr}(\mathcal{C})=\lim \sup \left|\mathcal{C} \cap \mathcal{S}_{n}\right|^{1 / n}
$$

is finite.
This was known as the Stanley-Wilf conjecture and it was proven in 2004 by Marcus and Tardos.
The obvious next questions are:

- What growth rates can occur?
- What can be said about classes of particular growth rates?


## Antichains

The subpermutation order contains infinite antichains.


Consequently, there exist $2^{N_{0}}$ distinct enumeration sequences for permutation classes - we must be careful not to try to do too much.

## Small growth rates

- Kaiser and Klazar (EJC, 2003) showed that the only possible values of $\operatorname{gr}(\mathcal{C})$ less than 2 are the greatest positive solutions of:

$$
x^{k}-x^{k-1}-x^{k-2}-\cdots-x-1=0
$$

## Small growth rates

- Kaiser and Klazar (EJC, 2003) showed that the only possible values of $\operatorname{gr}(\mathcal{C})$ less than 2 are the greatest positive solutions of:

$$
x^{k}-x^{k-1}-x^{k-2}-\cdots-x-1=0
$$

- Vatter (Mathematika, 2010) showed that every real number larger than the unique real solution (approx. 2.482) of

$$
x^{5}-2 x^{4}-2 x^{2}-2 x-1=0
$$

occurs as a growth rate

## Small growth rates

- Kaiser and Klazar (EJC, 2003) showed that the only possible values of $\operatorname{gr}(\mathcal{C})$ less than 2 are the greatest positive solutions of:

$$
x^{k}-x^{k-1}-x^{k-2}-\cdots-x-1=0
$$

- Vatter (Mathematika, 2010) showed that every real number larger than the unique real solution (approx. 2.482) of

$$
x^{5}-2 x^{4}-2 x^{2}-2 x-1=0
$$

occurs as a growth rate

- V (PLMS, 2011) further showed that the smallest growth rate of a class containing an infinite antichain is the unique positive solution, $\kappa \simeq 2.20557$ of

$$
x^{3}-2 x^{2}-1=0
$$

and completely characterized the set of possible growth rates below $\kappa$

## Simple permutations

## Definition

A permutation is simple if it contains no nontrivial consecutive subsequence whose values are also consecutive (though not necessarily in order)

## Simple permutations

## Definition

A permutation is simple if it contains no nontrivial consecutive subsequence whose values are also consecutive (though not necessarily in order)


## Simple permutations

## Definition

A permutation is simple if it contains no nontrivial consecutive subsequence whose values are also consecutive (though not necessarily in order)


Simple

## Simple permutations

## Definition

A permutation is simple if it contains no nontrivial consecutive subsequence whose values are also consecutive (though not necessarily in order)

- Simple permutations form a positive proportion of all permutations (asymptotically $1 / e^{2}$ )
- In many (conjecturally all) proper permutation classes they have density 0
- We can hope to understand a class by understanding its simples and how they inflate
- Specifically, this may yield functional equations of the generating function and hence computations of the enumeration and/or growth rate


## Finitely many simple permutations

## Theorem

If a class has only finitely many simple permutations then it has an algebraic generating function.

- A and Atkinson (2005)
- Effective 'in principle', i.e. an algorithm for computing a defining system of equations for the generating function
- Some interesting corollaries, e.g. if a class has finitely many simples and does not contain arbitrarily long decreasing permutations then it has a rational generating function
- "The prime reason for giving this example is to show that we are not necessarily stymied if the number of simple permutations is infinite."


## Encodings

- The enumerative combinatorics of words and trees is better understood


## Encodings

- The enumerative combinatorics of words and trees is better understood
- So, apply leverage from there by encoding permutation classes


## Encodings

- The enumerative combinatorics of words and trees is better understood
- So, apply leverage from there by encoding permutation classes
- For trees this approach goes by many names


## Encodings

- The enumerative combinatorics of words and trees is better understood
- So, apply leverage from there by encoding permutation classes
- For trees this approach goes by many names
- For words, A, At and Ruškuc (2003) give (fairly) general criteria for the encoding of a permutation class by a regular language


## Encodings

- The enumerative combinatorics of words and trees is better understood
- So, apply leverage from there by encoding permutation classes
- For trees this approach goes by many names
- For words, A, At and Ruškuc (2003) give (fairly) general criteria for the encoding of a permutation class by a regular language
- Extended to a new type of encoding, the insertion encoding (prefigured by Viennot) by A, Linton and R (2005)


## Grid classes

- The notion of griddable class was central to V's characterization of small permutation classes
- Loosely, a griddable class is associated with a matrix whose entries are (simpler) permutation classes
- All permutations in the class can be chopped apart into sections that correspond to the matrix entries



## Geometric monotone grid classes

In a geometric grid class, the permutations need to be drawn from the points of a particular representation in $\mathbb{R}^{2}$

## Theorem (A, At, Bouvel, R and V (to appear TAMS))

Every geometrically griddable class:

- is partially well ordered;
- is finitely based;
- is in bijection with a regular language and thus has a rational generating function.





## Beyond grid classes

Results from Inflations of Geometric Grid Classes of Permutations, A, R and V (arxiv.org/abs/1202.1833):

## Beyond grid classes

Results from Inflations of Geometric Grid Classes of Permutations, A, R and V (arxiv.org/abs/1202.1833):

- Let $\mathcal{C}[\mathcal{D}]$ represent the inflations of permutations in $\mathcal{C}$ by permutations in $\mathcal{D}$, and let $\langle\mathcal{C}\rangle$ denote the closure of $\mathcal{C}$ under inflation


## Beyond grid classes

Results from Inflations of Geometric Grid Classes of Permutations, A, R and V (arxiv.org/abs/1202.1833):

- Let $\mathcal{C}[\mathcal{D}]$ represent the inflations of permutations in $\mathcal{C}$ by permutations in $\mathcal{D}$, and let $\langle\mathcal{C}\rangle$ denote the closure of $\mathcal{C}$ under inflation
- If $\mathcal{C}$ is geometrically griddable, then every subclass of $\langle\mathcal{C}\rangle$ is finitely based and partially well ordered


## Beyond grid classes

Results from Inflations of Geometric Grid Classes of Permutations, A, R and V (arxiv.org/abs/1202.1833):

- Let $\mathcal{C}[\mathcal{D}]$ represent the inflations of permutations in $\mathcal{C}$ by permutations in $\mathcal{D}$, and let $\langle\mathcal{C}\rangle$ denote the closure of $\mathcal{C}$ under inflation
- If $\mathcal{C}$ is geometrically griddable, then every subclass of $\langle\mathcal{C}\rangle$ is finitely based and partially well ordered
- If $\mathcal{C}$ is geometrically griddable, then every subclass of $\langle\mathcal{C}\rangle$ has an algebraic generating function


## Beyond grid classes

Results from Inflations of Geometric Grid Classes of Permutations, A, R and V (arxiv.org/abs/1202.1833):

- Let $\mathcal{C}[\mathcal{D}]$ represent the inflations of permutations in $\mathcal{C}$ by permutations in $\mathcal{D}$, and let $\langle\mathcal{C}\rangle$ denote the closure of $\mathcal{C}$ under inflation
- If $\mathcal{C}$ is geometrically griddable, then every subclass of $\langle\mathcal{C}\rangle$ is finitely based and partially well ordered
- If $\mathcal{C}$ is geometrically griddable, then every subclass of $\langle\mathcal{C}\rangle$ has an algebraic generating function
- If $\mathcal{C}$ is geometrically griddable and $\mathcal{U}$ is strongly rational, then $\mathcal{C}[\mathcal{U}]$ is also strongly rational


## Beyond grid classes

Results from Inflations of Geometric Grid Classes of Permutations, A, R and V (arxiv.org/abs/1202.1833):

- Let $\mathcal{C}[\mathcal{D}]$ represent the inflations of permutations in $\mathcal{C}$ by permutations in $\mathcal{D}$, and let $\langle\mathcal{C}\rangle$ denote the closure of $\mathcal{C}$ under inflation
- If $\mathcal{C}$ is geometrically griddable, then every subclass of $\langle\mathcal{C}\rangle$ is finitely based and partially well ordered
- If $\mathcal{C}$ is geometrically griddable, then every subclass of $\langle\mathcal{C}\rangle$ has an algebraic generating function
- If $\mathcal{C}$ is geometrically griddable and $\mathcal{U}$ is strongly rational, then $\mathcal{C}[\mathcal{U}]$ is also strongly rational
- Every small permutation class has a rational generating function


## Quasi-applications

- These ideas, together with a certain amount of number eight wire or duct tape, i.e. "un peu de rafistolage" can be used to compute enumerations for some (arguably) interesting classes
- Examples from the basic environment of geometric grid classes are considered in A, At and Brignall: The Enumeration of Three Pattern Classes using Monotone Grid Classes (EJC 19.3 (2012) P20)
- Examples for inflations of geometric grid classes are considered in A, At and V: Inflations of Geometric Grid Classes: Three Case Studies (arxiv.org/abs/1209.0425)


## $\operatorname{Av}(4312,3142)$

- Every simple permutation in this class lies in the geometric grid class:

- This yields a regular language for the simple permutations
- The allowed inflations of these permutations are easily described, yielding a recursive description of the class
- This leads to an equation for its generating function:

$$
\begin{align*}
\left(x^{3}-2 x^{2}+x\right) f^{4} & +\left(4 x^{3}-9 x^{2}+6 x-1\right) f^{3} \\
& +\left(6 x^{3}-12 x^{2}+7 x-1\right) f^{2} \\
& +\left(4 x^{3}-5 x^{2}+x\right) f \\
& +x^{3}
\end{align*}
$$

## $\operatorname{Av}(321)$

This class is in some sense a limit of geometric grid classes:


## $\operatorname{Av}(321)$

This class is in some sense a limit of geometric grid classes:


## $\operatorname{Av}(321)$

This class is in some sense a limit of geometric grid classes:


## $\operatorname{Av}(321)$

This class is in some sense a limit of geometric grid classes:


## $\operatorname{Av}(321)$

This class is in some sense a limit of geometric grid classes:


## $\operatorname{Av}(321)$

This class is in some sense a limit of geometric grid classes:


## $\operatorname{Av}(321)$

This class is in some sense a limit of geometric grid classes:


## $\operatorname{Av}(321)$

This class is in some sense a limit of geometric grid classes:


## Conjecture

Every finitely based proper subclass of $\mathrm{Av}(321)$ has a rational generating function

## $\operatorname{Av}(4231,35142,42513,351624)$

- Enumerating this class was mentioned as a challenge problem by Alexander Woo at Permutation Patterns 2012
- These permutations index "Schubert varieties defined by inclusions"
- The simple permutations look like

- Somehow, this leads to an enumeration of the class (a complicated rational function in $\sqrt{1-4 x}$ )


## Where to from here?

- Underlying the main results on geometric grid classes and their inflations is a notion of natural encoding, in this case of permutations by words, which may be applicable to other types of combinatorial structure particularly those carrying a linear order


## Where to from here?

- Underlying the main results on geometric grid classes and their inflations is a notion of natural encoding, in this case of permutations by words, which may be applicable to other types of combinatorial structure particularly those carrying a linear order
- Understanding the limit case for geometric grid classes better


## Where to from here?

- Underlying the main results on geometric grid classes and their inflations is a notion of natural encoding, in this case of permutations by words, which may be applicable to other types of combinatorial structure particularly those carrying a linear order
- Understanding the limit case for geometric grid classes better
- Understanding non-geometric grid classes (David Bevan, a student of R. Brignall has some nice results in the case where there is only one cycle, and is working on more general cases)


## Where to from here?

- Underlying the main results on geometric grid classes and their inflations is a notion of natural encoding, in this case of permutations by words, which may be applicable to other types of combinatorial structure particularly those carrying a linear order
- Understanding the limit case for geometric grid classes better
- Understanding non-geometric grid classes (David Bevan, a student of R. Brignall has some nice results in the case where there is only one cycle, and is working on more general cases)
- Permutation Patterns 2013: July 1-5, Paris

