
The Insertion Encoding
Michael Albert

Steve Linton, Nik Ruškuc

Department of Computer Science, University of Otago

CIRCA, University of St. Andrews

Permutation Patterns, 2004 – p.1/24

Constructing by inserting

The construction or generation of a permutation can be
thought of as proceeding by successive insertion of a
new maximum element.

The set of all permutations on [n] = {1, 2, . . . , n} is then
naturally viewed as the nodes at depth n in a tree,
where the children of any node are the permutations
obtained from it by insertion of a new maximum
element.

231

4231 2431 2341 2314 Permutation Patterns, 2004 – p.2/24

Insertions and classes

The construction of permutations in a pattern class may
(and generally does) restrict the positions in which the
maximum element can be inserted, thereby pruning the
tree.

This observation is used in the method of generating
trees (West, etc.)

231

2431 2341 2314

Permutation Patterns, 2004 – p.3/24

Generating trees

Given a permutation π in some pattern class C there will
generally be one or more positions where a new
maximum element can be inserted into π without
leaving C.

These positions are called active sites.

But note, after an insertion elsewhere, a previously
active site may become inactive.

Permutation Patterns, 2004 – p.4/24

312-avoiders

Consider the class A(312) of 312-avoiders. In the
permutation

2 1 ↑ 4 ↑ 3 ↑

the active sites are marked with ↑.

The number of active sites after the next insertion depends
on which site is used (ranging from 4 if the leftmost site is
used down to 2 if the rightmost one is used).

The general rule is:

(k) → (k + 1)(k) · · · (2)

Permutation Patterns, 2004 – p.5/24

Summary

An active site is a position where an insertion may take
place.

The number of active sites is the number of children of
any node in the generating tree for C.

If the types of these nodes can be derived from the
types of their parent, then often the class can be
enumerated using the resulting recurrences.

See also the ECO (Enumeration of Combinatorial
Objects) methodology of the Italian group.

Permutation Patterns, 2004 – p.6/24

A change of perspective

Return to the generation of arbitrary permutations by
successive insertion. However, consider a specific
target permutation instead of the set of all permutations.

Now it makes sense only to consider those positions
where an insertion will take place. In order to avoid
confusing terminology we refer to these as slots rather
than active sites.

Permutation Patterns, 2004 – p.7/24

3546217

�

� 1 �

� 21 �

3 � 21 �

3 � 4 � 21 �

354 � 21 �

354621 �

3546217

Permutation Patterns, 2004 – p.8/24

Types of insertions

As seen in the example above there are four possible
types of insertions:

M In the middle of a slot, splitting it into two slots.

L At the left hand end of a slot, leaving a slot to the right.

R At the right hand end of a slot, leaving a slot to the left.

F Filling a slot (leaving no remaining slot).

Each of these should be subscripted by the number of
the slot in which the insertion is taking place.

Permutation Patterns, 2004 – p.9/24

Decoding an insertion sequence

Consider M1M2F2R1F2:

�

� 1 � M1

� 1 � 2 � M2

� 132 � F2

� 4132 � R1

� 41325 F2

Since there is still a slot open, this does not represent
the encoding of a permutation. Appending an F1 would
give us 641325.

Permutation Patterns, 2004 – p.10/24

The big picture

The language of permutations in the insertion encoding
can be thought of in terms of a stack automaton. In fact
the stack is simply used as a counter, k, for the number
of slots. The allowed transitions are:

From To Using
k k Li, Ri

k k + 1 Mi

k k − 1 Fi.

k > 0 and 1 ≤ i ≤ k. The initial state has k = 1 and k = 0
is the unique final state.

Permutation Patterns, 2004 – p.11/24

A minor observation

Any encoding beginning M1M2 · · · (as in our example)
will eventually produce a permutation containing the
pattern 312.

This is clear, since the situation after this beginning is
� 1 � 2 � , and eventually something will be placed in the
leftmost slot, resulting in a 312 pattern.

Indeed it’s clear that if the insertion encoding of π

contains any symbol Xj with a subscript other than 1,
then π contains the pattern 312 (witnessed by the
element which created the left boundary of slot j, the
element placed by Xj , and any later insertion with a
subscript smaller than j).

Permutation Patterns, 2004 – p.12/24

A(312)

The converse of the preceding observation also holds.
That is, any insertion encoding which has only 1
subscripts generates a 312-avoider.

Suppressing the subscript gives a language for
312-avoiders over the alphabet {M,L,R, F} whose
grammar is:

s → F |Ls |Rs |Mss

This immediately yields the Catalan generating function,
and a length preserving, symbol for symbol encoding.

A(321) can be handled similarly.

Permutation Patterns, 2004 – p.13/24

A(321)

To handle A(321) it’s slightly easier conceptually to
insist on an unfillable slot at the right hand end of the
permutation.

The acceptable operations are:
If there is exactly one slot, L, or M .
If there are two or more slots L1, F1, or L−1, M−1.

This gives a grammar (s encodes 321-avoiders including
the empty permutation):

s → ε |Ls |Mts

t → F1 |L1t |M−1tt |L−1t

Permutation Patterns, 2004 – p.14/24

Language issues

The full language for insertion encoding is infinite.
Generally speaking this is a problem for using the
machinery of formal languages. So how do we restrict
to a finite language?

One possibility (as above) is to restrict the locations
where insertions may take place at any time. In order to
ensure that a class is obtained some care is needed
here (example follows).

More violently, we could require that the number of slots
be bounded. This yields classes with regular encodings.

Permutation Patterns, 2004 – p.15/24

The regular case I

Consider permutations whose insertion encoding only
ever contains at most 2 slots. These form a pattern
class because the excluded conditions:

� a � b �

can be represented as a set of permutations.

These permutations are all those of the form:

xaybz

{a, b} = {1, 2}

{x, y, z} = {3, 4, 5}

Permutation Patterns, 2004 – p.16/24

The regular case II

The obvious generalization to at most k slots applies.

The basis of the pattern class of all permutations whose
insertion encoding never uses more than k slots at a
time consists of the set Bk of permutations of the form:

babab · · · ab

of length 2k + 1 where the b’s are from
{k + 1, k + 2, . . . , 2k + 1} and the a’s from {1, 2, . . . , k}.

Note that this is a rather large basis, it has k!(k + 1)!
elements.

Permutation Patterns, 2004 – p.17/24

Vatter’s theorem

Theorem: (V. Vatter) Let B be a finite set of
permutations. The generating tree for A(B) is
isomorphic to a finitely labelled tree if and only if B
contains both a child of an increasing permutation and
of a decreasing permutation.

Consequences include the existence of a rational g.f.
for such classes and (implicitly) efficient recognition
algorithms.

Permutation Patterns, 2004 – p.18/24

Prior notions of regularity

In TCS 306, Albert, Atkinson and Ruškuc introduced
several notions of regularity for permutation classes,
along with a mechanism for moving between classes
and their bases.

Roughly speaking these provided effective methods for
constructing a class from its basis and vice versa
(where “constructing” means “produce a finite state
automaton for”). As corollaries, all the usual nonsense
about generating functions and recognition.

Permutation Patterns, 2004 – p.19/24

Regular classes (Finis)

The classes covered by Vatter’s result are subclasses
of A(Bk) for suitable k as are the classes considered by
AAR.

Theorem: Let C be any regularly based subclass of
A(Bk). Then:

The language representing the insertion encoding of
C is regular.
C has a rational generating function.
There is a linear time recognition algorithm for C.

In fact the full AAR mechanism applies (so we can also
go from classes to bases).

Permutation Patterns, 2004 – p.20/24

Three and four

West provided enumerations for all pattern classes
having a basis element of length 3 and a basis element
of length 4 using generating trees in almost all cases.

In all these cases, the class (or one of its isomorphs) is
represented by a context free language in the insertion
encoding, recognized by a deterministic pushdown
automata.

All these automata are sufficiently simple that the
enumerative results follow using the standard
enumeration techniques for such languages.

Permutation Patterns, 2004 – p.21/24

Another example (after Kremer)

Take L1 = {M1, L1, R1, F1, L2, F2} and
L2 = {M1, L1, R1, F1, R−1, F−1}.

Both these languages define pattern classes for the
insertion encoding with bases:

{3142, 4132}

{3124, 4123}

So these classes are equinumerous (large Schroeder
numbers).

Their intersection has enumeration
(

2n−2

n−1

)

.

Permutation Patterns, 2004 – p.22/24

A conjecture

The subclasses of A(312) are, in some sense,
well-understood (they are all finitely based, all have
rational g.f’s, and in principle given a basis the g.f. can
be computed).

The same cannot be said of A(321). But:

Conjecture: Every finitely based subclass of A(321)
has an algebraic generating function.

This shows the flavour of the area where the insertion
encoding should be useful.

Permutation Patterns, 2004 – p.23/24

Conclusions

The insertion encoding provides a framework for
unifying many (most?) of the known explicit results on
permutation class enumeration.

Given a pattern class it can be used to answer the
enumeration, generation and recognition questions
pertinent to that class.

It can also be applied to other collections of
permutations (eg. Dumont plus pattern restrictions).

Much remains to discover . . .

Thank you!

Permutation Patterns, 2004 – p.24/24

	Constructing by inserting
	Insertions and classes
	Generating trees
	312-avoiders
	Summary
	A change of perspective
	3546217
	Types of insertions
	Decoding an insertion sequence
	The big picture
	A minor observation
	$A (312)$
	$A (321)$
	Language issues
	The regular case I
	The regular case II
	Vatter's theorem
	Prior notions of regularity
	Regular classes (Finis)
	Three and four
	Another example (after Kremer)
	A conjecture
	Conclusions

