The Insertion Encoding

Michael Albert
Steve Linton, Nik Ruškuc

Department of Computer Science, University of Otago
CIRCA, University of St. Andrews

Constructing by inserting

- The construction or generation of a permutation can be thought of as proceeding by successive insertion of a new maximum element.
- The set of all permutations on $[n]=\{1,2, \ldots, n\}$ is then naturally viewed as the nodes at depth n in a tree, where the children of any node are the permutations obtained from it by insertion of a new maximum element.

Insertions and classes

- The construction of permutations in a pattern class may (and generally does) restrict the positions in which the maximum element can be inserted, thereby pruning the tree.
- This observation is used in the method of generating trees (West, etc.)

Generating trees

- Given a permutation π in some pattern class \mathcal{C} there will generally be one or more positions where a new maximum element can be inserted into π without leaving \mathcal{C}.
- These positions are called active sites.
- But note, after an insertion elsewhere, a previously active site may become inactive.

312-avoiders

Consider the class $\mathcal{A}(312)$ of 312 -avoiders. In the permutation

$$
21_{\uparrow} 4 \uparrow 3 \uparrow
$$

the active sites are marked with \uparrow.
The number of active sites after the next insertion depends on which site is used (ranging from 4 if the leftmost site is used down to 2 if the rightmost one is used).

The general rule is:

$$
(k) \rightarrow(k+1)(k) \cdots(2)
$$

Summary

- An active site is a position where an insertion may take place.
- The number of active sites is the number of children of any node in the generating tree for \mathcal{C}.
- If the types of these nodes can be derived from the types of their parent, then often the class can be enumerated using the resulting recurrences.
- See also the ECO (Enumeration of Combinatorial Objects) methodology of the Italian group.

A change of perspective

- Return to the generation of arbitrary permutations by successive insertion. However, consider a specific target permutation instead of the set of all permutations.
- Now it makes sense only to consider those positions where an insertion will take place. In order to avoid confusing terminology we refer to these as slots rather than active sites.

3546217

\diamond
$\diamond 1 \diamond$ $\diamond 21 \diamond$ $3 \diamond 21 \diamond$
$3 \diamond 4 \diamond 21 \diamond$
$354 \diamond 21 \diamond$
$354621 \diamond$
3546217

Types of insertions

- As seen in the example above there are four possible types of insertions:
M In the middle of a slot, splitting it into two slots.
L At the left hand end of a slot, leaving a slot to the right.
R At the right hand end of a slot, leaving a slot to the left.
F Filling a slot (leaving no remaining slot).
- Each of these should be subscripted by the number of the slot in which the insertion is taking place.

Decoding an insertion sequence

- Consider $M_{1} M_{2} F_{2} R_{1} F_{2}$:

$\stackrel{ }{ }$	
$\diamond 1 \diamond$	M_{1}
$\diamond 1 \diamond 2 \diamond$	M_{2}
$\diamond 132 \diamond$	F_{2}
$\diamond 4132 \diamond$	R_{1}
$\diamond 41325$	F_{2}

- Since there is still a slot open, this does not represent the encoding of a permutation. Appending an F_{1} would give us 641325 .

The big picture

- The language of permutations in the insertion encoding can be thought of in terms of a stack automaton. In fact the stack is simply used as a counter, k, for the number of slots. The allowed transitions are:

From	To	Using
k	k	L_{i}, R_{i}
k	$k+1$	M_{i}
k	$k-1$	F_{i}.

$k>0$ and $1 \leq i \leq k$. The initial state has $k=1$ and $k=0$ is the unique final state.

A minor observation

- Any encoding beginning $M_{1} M_{2} \cdots$ (as in our example) will eventually produce a permutation containing the pattern 312.
- This is clear, since the situation after this beginning is $\diamond 1 \diamond 2 \diamond$, and eventually something will be placed in the leftmost slot, resulting in a 312 pattern.
- Indeed it's clear that if the insertion encoding of π contains any symbol X_{j} with a subscript other than 1, then π contains the pattern 312 (witnessed by the element which created the left boundary of slot j, the element placed by X_{j}, and any later insertion with a subscript smaller than j).
- The converse of the preceding observation also holds. That is, any insertion encoding which has only 1 subscripts generates a 312-avoider.
- Suppressing the subscript gives a language for 312 -avoiders over the alphabet $\{M, L, R, F\}$ whose grammar is:

$$
s \rightarrow F|L s| R s \mid M s s
$$

- This immediately yields the Catalan generating function, and a length preserving, symbol for symbol encoding.
- $\mathcal{A}(321)$ can be handled similarly.

$\mathcal{A}(321)$

- To handle $\mathcal{A}(321)$ it's slightly easier conceptually to insist on an unfillable slot at the right hand end of the permutation.
- The acceptable operations are:
- If there is exactly one slot, L, or M.
- If there are two or more slots L_{1}, F_{1}, or L_{-1}, M_{-1}.
- This gives a grammar (s encodes 321-avoiders including the empty permutation):

$$
\begin{aligned}
s & \rightarrow \epsilon|L s| M t s \\
t & \rightarrow F_{1}\left|L_{1} t\right| M_{-1} t t \mid L_{-1} t
\end{aligned}
$$

Language issues

- The full language for insertion encoding is infinite. Generally speaking this is a problem for using the machinery of formal languages. So how do we restrict to a finite language?
- One possibility (as above) is to restrict the locations where insertions may take place at any time. In order to ensure that a class is obtained some care is needed here (example follows).
- More violently, we could require that the number of slots be bounded. This yields classes with regular encodings.

The regular case I

- Consider permutations whose insertion encoding only ever contains at most 2 slots. These form a pattern class because the excluded conditions:

$$
\diamond a \diamond b \diamond
$$

can be represented as a set of permutations.

- These permutations are all those of the form:

$$
\begin{gathered}
x a y b z \\
\{a, b\}=\{1,2\} \\
\{x, y, z\}=\{3,4,5\}
\end{gathered}
$$

The regular case II

- The obvious generalization to at most k slots applies.
- The basis of the pattern class of all permutations whose insertion encoding never uses more than k slots at a time consists of the set \mathcal{B}_{k} of permutations of the form:

$$
b a b a b \cdots a b
$$

of length $2 k+1$ where the b 's are from $\{k+1, k+2, \ldots, 2 k+1\}$ and the a 's from $\{1,2, \ldots, k\}$.

- Note that this is a rather large basis, it has $k!(k+1)$! elements.

Vatter's theorem

- Theorem: (V. Vatter) Let \mathcal{B} be a finite set of permutations. The generating tree for $\mathcal{A}(\mathcal{B})$ is isomorphic to a finitely labelled tree if and only if \mathcal{B} contains both a child of an increasing permutation and of a decreasing permutation.
- Consequences include the existence of a rational g.f. for such classes and (implicitly) efficient recognition algorithms.

Prior notions of regularity

- In TCS 306, Albert, Atkinson and Ruškuc introduced several notions of regularity for permutation classes, along with a mechanism for moving between classes and their bases.
- Roughly speaking these provided effective methods for constructing a class from its basis and vice versa (where "constructing" means "produce a finite state automaton for"). As corollaries, all the usual nonsense about generating functions and recognition.

Regular classes (Finis)

- The classes covered by Vatter's result are subclasses of $\mathcal{A}\left(\mathcal{B}_{k}\right)$ for suitable k as are the classes considered by AAR.
- Theorem: Let \mathcal{C} be any regularly based subclass of $\mathcal{A}\left(\mathcal{B}_{k}\right)$. Then:
- The language representing the insertion encoding of \mathcal{C} is regular.
- \mathcal{C} has a rational generating function.
- There is a linear time recognition algorithm for \mathcal{C}.
- In fact the full AAR mechanism applies (so we can also go from classes to bases).

Three and four

- West provided enumerations for all pattern classes having a basis element of length 3 and a basis element of length 4 using generating trees in almost all cases.
- In all these cases, the class (or one of its isomorphs) is represented by a context free language in the insertion encoding, recognized by a deterministic pushdown automata.
- All these automata are sufficiently simple that the enumerative results follow using the standard enumeration techniques for such languages.

Another example (after Kremer)

- Take $\mathcal{L}_{1}=\left\{M_{1}, L_{1}, R_{1}, F_{1}, L_{2}, F_{2}\right\}$ and $\mathcal{L}_{2}=\left\{M_{1}, L_{1}, R_{1}, F_{1}, R_{-1}, F_{-1}\right\}$.
- Both these languages define pattern classes for the insertion encoding with bases:

$$
\begin{aligned}
& \{3142,4132\} \\
& \{3124,4123\}
\end{aligned}
$$

- So these classes are equinumerous (large Schroeder numbers).

A conjecture

- The subclasses of $\mathcal{A}(312)$ are, in some sense, well-understood (they are all finitely based, all have rational g.f's, and in principle given a basis the g.f. can be computed).
- The same cannot be said of $\mathcal{A}(321)$. But:

Conjecture: Every finitely based subclass of $\mathcal{A}(321)$ has an algebraic generating function.

- This shows the flavour of the area where the insertion encoding should be useful.

Conclusions

- The insertion encoding provides a framework for unifying many (most?) of the known explicit results on permutation class enumeration.
- Given a pattern class it can be used to answer the enumeration, generation and recognition questions pertinent to that class.
- It can also be applied to other collections of permutations (eg. Dumont plus pattern restrictions).
- Much remains to discover ...

> Thank you!

