Aspects of Separability

M. H. Albert (Otago)

PP 2007, St Andrews

Outline

- Separable permutations
- Subclasses are small
- Six degrees of separation, not!
- An example

Separable permutations

The class \mathcal{S} of separable permutations consists of those that do not contain either of the patterns 2413 or 3142.

A more illuminating definition is that \mathcal{S} is the closure of the singleton permutation under the operations \oplus and \ominus, where:

$$
\begin{aligned}
& \alpha \oplus \beta=12[\alpha, \beta]=\frac{}{\alpha} \beta \\
& \alpha \ominus \beta=21[\alpha, \beta]=\frac{\alpha}{\mid \beta} \\
& \alpha \ominus
\end{aligned}
$$

The master equations

$$
\mathcal{S}=1 \cup 12[\mathcal{S}, \mathcal{S}] \cup 21[\mathcal{S}, \mathcal{S}]
$$

This is no good for computing generating functions, since the decomposition may not be unique. Let \mathcal{S}^{+}and \mathcal{S}^{-}be the plus indecomposable and minus indecomposable elements of \mathcal{S} respectively. Then:

$$
\begin{aligned}
\mathcal{S} & =1 \cup 12\left[\mathcal{S}^{+}, \mathcal{S}\right] \cup 21\left[\mathcal{S}^{-}, \mathcal{S}\right] \\
\mathcal{S}^{+} & =1 \cup 21\left[\mathcal{S}^{-}, \mathcal{S}\right] \\
\mathcal{S}^{-} & =1 \cup 12\left[\mathcal{S}^{+}, \mathcal{S}\right]
\end{aligned}
$$

and this does directly produce a system of equations for the generating functions s, s^{+}and s^{-}.

Details

The separable permutations are enumerated by the large Schröder numbers:

$$
\begin{aligned}
s & =\frac{1-t-\sqrt{1-6 t+t^{2}}}{2 t} \\
& =t+2 t^{2}+6 t^{3}+22 t^{4}+90 t^{5}+394 t^{6}+1806 t^{7}+8558 t^{8}+\cdots
\end{aligned}
$$

The radius of convergence of s is $r=3-2 \sqrt{2}$ and hence:

$$
\lim _{n \rightarrow \infty}\left|\mathcal{S}_{n}\right|^{1 / n}=\frac{1}{3-2 \sqrt{2}}=3+2 \sqrt{2}
$$

Growth rate criticality

A class, \mathcal{C}, of permutations is said to be growth rate critical if, for any proper subclass $\mathcal{D} \subset \mathcal{C}$:

$$
\limsup _{n \rightarrow \infty}\left|\mathcal{D}_{n}\right|^{1 / n}<\lim _{n \rightarrow \infty}\left|\mathcal{C u p}_{n}\right|^{1 / n}
$$

A few sufficient conditions for growth rate criticality are known, but they do not apply to \mathcal{S}. So:

Question

Is \mathcal{S} growth rate critical?

Yes

Consider subclasses \mathcal{S}_{π} defined by a single additional pattern restriction. Argue inductively on $|\pi|$. In the inductive step, suppose without loss of generality that $\pi=\alpha \ominus \beta$ where α is minus indecomposable. Then define a superset \mathcal{Q}_{π} of \mathcal{S}_{π}

$$
\begin{aligned}
\mathcal{Q}_{\pi} & =1 \cup 12\left[\mathcal{Q}_{\pi}^{+}, \mathcal{Q}_{\pi}\right] \cup 21\left[\mathcal{S}_{\alpha}^{-}, \mathcal{Q}_{\pi}\right] \cup 21\left[\mathcal{Q}_{\pi}^{-} \backslash \mathcal{S}_{\alpha}^{-}, \mathcal{S}_{\beta}\right] \\
\mathcal{Q}_{\pi}^{+} & =1 \cup 21\left[\mathcal{S}_{\alpha}^{-}, \mathcal{Q}_{\pi}\right] \cup 21\left[\mathcal{Q}_{\pi}^{-} \backslash \mathcal{S}_{\alpha}^{-}, \mathcal{S}_{\beta}\right] \\
\mathcal{Q}_{\pi}^{-} & =1 \cup 12\left[\mathcal{Q}_{\pi}^{+}, \mathcal{Q}_{\pi}\right]
\end{aligned}
$$

Now use the fact that the generating functions a and b of \mathcal{S}_{α}^{-}and \mathcal{S}_{β} have radius of convergence larger than r, as well as $a, b<s$ to establish that the solution of this system has its smallest positive singularity at some $r^{\prime}>r$.

Not many degrees of separation

Every proper subclass \mathcal{C} of \mathcal{S} has a generating function which is algebraic over $\mathbb{Q}(t)$. A strong subclass of a class C is one each of whose basis elements is involved in some basis element of \mathcal{C}.

Theorem

Let \mathcal{C} be a proper subclass of \mathcal{S}. If the basis of \mathcal{C} contains both plus and minus decomposable elements, then its generating function is rational over $\mathbb{Q}(t)$ and the generating functions of all its strong subclasses. Otherwise, it is of degree one or two over this field.

Corollary

The degree over $\mathbb{Q}(t)$ of the generating function of any subclass of \mathcal{S} is a power of 2 .

But as many as can be expected

Let $\left(\pi_{n}\right)_{n \geq 1}$ be the sequence of permutations:

$$
132,4132,15243,615243,1726354, \ldots
$$

that is, $\pi_{1}=132$ and

$$
\pi_{n+1}= \begin{cases}1 \oplus \pi_{n} & n \text { even } \\ 1 \ominus \pi_{n} & n \text { odd }\end{cases}
$$

Define \mathcal{C}_{n} to consist of those permutations in \mathcal{S} that also avoid π_{n}, and let $c_{n}(t)$ be its generating function.

Proposition

The degree over $\mathbb{Q}(t)$ of c_{n} is precisely 2^{n}.

Proof (sketch i)

The result is obvious by substituting in the master equation. But ... We must ensure that there's no accidental collapse - i.e. that the quadratic which c_{n} satisfies over $\mathbb{Q}\left(t, c_{n-1}\right)$ is truly irreducible. It turns out that:

$$
c_{n-1}=\frac{c_{n}-c_{n} t-t}{c_{n}^{2}+c_{n}+t}
$$

and this gives a recurrence for a polynomial satisfied by c_{n} namely:

$$
\left(x^{2}+x+t\right)^{d_{n-1}} P_{n-1}\left(\frac{x-x t-t}{x^{2}+x+t}\right)
$$

where P_{n-1} is the irreducible polynomial satisfied by c_{n-1} and d_{n-1} its degree.

Proof (sketch ii)

If, when we formally substitute $t=1$ in this recurrence we get a sequence of irreducible polynomials over \mathbb{Q}, we'd be done. And of course we do.
To see that we further reduce to work over $G F(2)$ rather than \mathbb{Q} and consider a sequence of elements in some algebraic closure defined by: $\alpha_{3}^{2}+\alpha_{3}+1=0$, and thereafter

$$
\alpha_{n}^{2}+\alpha_{n}+1=\frac{1}{\alpha_{n-1}}
$$

A bit of algebraic sleight of hand gives an infinite descent if α_{n} is rational in α_{n-1}.

Summary and questions

- The strong structure satisfied by \mathcal{S} imposes significant restrictions on the form of the generating functions of its subclasses.
- To some extent, parallel methods apply for any class containing only finitely many simples.
- It would be reasonable to ask, given a permutation $\pi \in \mathcal{S}$, what is the degree of the generating function of \mathcal{S}_{π} ? The last result suggests that this may well be related to the number of $\oplus-\ominus$ alternations in the description of π.

