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Permuting machines

r, s, t, …..a, b, c, …..

!"

The output β is a (non-deterministic) rearrangement of the
input α

The names of the input items are immaterial; use names
1, 2, . . .

If some input items are omitted the machine can rearrange the
remaining ones as they were arranged in the original
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Pattern containment

Given permutations π, σ say π I σ if σ has a subsequence
ordered in the same relative way as π

Example: 312 I 7531462

A permutation class is a set of permutations closed
downwards in the I order

The set of sortable inputs of a permuting machine is always a
permutation class (it is av(π1, π2 . . .))

Why the non-standard notation for the usual pattern-containment
order? Because some other orders are going to be defined on
permutations soon.
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Example 1 – from Knuth [1]

Sorting with a tube

x1,x2,…1,2,…

Symbols are stuffed into the tube and exit at either end. The
tube is too thin for symbols to exchange inside.

A permutation is tube-sortable if and only if contains neither
3241 or 4231 as a subpattern (i.e. {3241, 4231} is the basis)
If there are sn sortable permutations of length n then

∞∑
n=0

snx
n =

1

2
(3− x −

√
1− 6x + x2)
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Example 2: the male-female sorting machine

Operates in two phases: a male phase then a female phase.

a b c d e f g h i j k

ab c de f g hi j k

a b c d e f g h i j k

ab c de f g hi j k

ac b def g hi j k

Male phase

Female phase

Defined by excluded patterns {3412, 3421, 4312, 4321}
If there are tn sortable permutations of length n then

∞∑
n=0

tnx
n =

1− 3x

1− 4x + 2x2
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Sorting machines

Many permuting machines are “designed” to sort. If they can
sort some permutation they should be able to cope with
“easier” permutations.

The tube machine can sort 4321 but it cannot sort the
“easier” permutation 4231. It’s not designed to sort. But how
do we define “easier”?

Any definitions of “easier” must deem subpermutations of π
to be easier than π itself. What about comparing
permutations of the same length?

Enter the weak and strong (Bruhat) orders.
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The weak and strong orders

The weak order W is the transitive closure of the relations

λabµ W λbaµ where b > a

Example: 41523 W 45123 W 45132 W 45312

The strong order S is the transitive closure of the relations

λaµbν S λbµaν where b > a

Example: 41523 S 51423 S 53421 S 54321
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The weak and strong orders on S3

321

123

312

213

231

132

321

123

312

213

231

132

The weak order The strong order
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The weak and strong orders on S4
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Weak and Strong Sorting Machines

Weak sorting machine: a permuting machine that, if it can
sort α, can also sort any β with β W α.

Strong sorting machine: a permuting machine that, if it can
sort α, can also sort any β with β S α.

The set of sortable permutations for a sorting machine is a
sorting class
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Weak and Strong Sorting Classes

Weak sorting class: permutation class closed downwards in
the weak order

Example: permutations that are the union of two increasing
subsequences

Strong sorting class: permutation class closed downwards in
the strong order

Example: The permutations sortable by the male-female
sorting machine
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Extending the pattern containment order

Weak and strong sorting classes are down-ideals in the partial
orders {I ∪W}∗ and {I ∪ S}∗ (respectively). What do these
orders look like?

Lemma

1 {I ∪W}∗ = IW = WI, and

2 {I ∪ S}∗ = IS 6= SI

We can study weak and strong sorting classes by their forbidden
patterns in these orders, imitating ordinary pattern class studies.
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Representative questions and answers

Is av(321) a weak sorting class? YES. A strong sorting class?
NO.

Can we decide whether av(π1, π2, . . . , πk) is a weak or strong
sorting class? YES, in both cases.

What is the weak sorting class defined by avoiding (in the
{I ∪W}∗ sense) the permutations 4312 and 3421? It is
av(4312, 3421, 4321).

What is the strong sorting class defined by avoiding (in the
{I ∪ S}∗ sense) the permutation 3421? It is
av(3421, 4321, 34512, 43512, 35412, 53412).

Do weak and strong sorting classes have special structural
properties that help us (e.g.) to solve their enumeration
problems? YES for strong sorting classes, not so clear for
weak sorting classes.
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Weak sorting classes

Most results stem from {I ∪W}∗ = IW = WI.
For example:

Lemma

av(π1, π2, . . . , πk) is a weak sorting class if and only if every
permutation above any πi (in the weak order) contains one of the
πj as a pattern.

E.g. av(321, 3124) is not a weak sorting class because
3124 W 3142 but 3142 contains neither 321 or 3124 as a pattern.
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Strong sorting classes

The theory of strong sorting classes is quite different because
IS 6= SI.

Example: 321 I 3214 S 3412 but no δ with 321 S δ I 3412.

Despite this the structure of strong sorting classes is much
more constrained than the structure of weak sorting classes.
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The classes B(r , s) – see also Mansour and Vainshtein [2]

B(r , s) is the class of all permutations which do not have a
subsequence of r + s elements the first r all larger than the last s.
This is a strong sorting class.

 

7 4 12 8 5 9 2 11 6 10 1 3 

Not in B(3,3) 
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The role of B(r , s)

Theorem

If X is a strong sorting class not containing all permutations then
X ⊆ B(r , r) for some r
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Properties of B(r , s)

Theorem

B(r , r) is the set of permutations sortable by r − 1 copies of the
male-female sorting machine in series.

1,2,...,n a1,a2,...,an
MF MF MF

Theorem

B(r , s) is the set of permutations sortable by r − 1 male and s − 1
female sorting machines in any prescribed order in series.

 

1,2,...,n a1,a2,...,an 
F M M F M 
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Properties of B(r , s)

Theorem

Let bn be the number of permutations of length n in B(r , s). Then

bn = rsbn−1 − 2!

(
r

2

)(
s

2

)
bn−2 + 3!

(
r

3

)(
s

3

)
bn−3 − · · ·
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Main theorem

Theorem

Let X be any finitely based strong sorting class and let tn be the
number of permutations in X of length n. Then

∞∑
n=0

tnx
n

is a rational function.
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D. E. Knuth: Fundamental Algorithms, The Art of Computer
Programming Vol. 1 (Second Edition), Addison-Wesley,
Reading, Mass. (1973).

T. Mansour, A. Vainshtein: Avoiding maximal parabolic
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Computer Science 4 (2000), 67–77.
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