Sorting classes, the weak and strong orders

Michael Albert ${ }^{1}$ Robert Aldred ${ }^{2}$ Mike Atkinson ${ }^{1}$ Chris Handley ${ }^{1}$ Derek Holton ${ }^{2}$ Dennis McCaughan ${ }^{2}$ Hans van Ditmarsch ${ }^{1}$
${ }^{1}$ Department of Computer Science, University of Otago
${ }^{2}$ Department of Mathematics and Statistics, University of Otago
PP2005, University of Florida

Outline of talk

(1) Permuting machines and permutation classes
(2) Sorting machines
(3) Sorting classes

4 Strong sorting classes

Permuting machines

- The output β is a (non-deterministic) rearrangement of the input α
- The names of the input items are immaterial; use names $1,2, \ldots$
- If some input items are omitted the machine can rearrange the remaining ones as they were arranged in the original

Pattern containment

- Given permutations π, σ say $\pi \mathcal{I} \sigma$ if σ has a subsequence ordered in the same relative way as π
- Example: 312 I 7531462

Pattern containment

- Given permutations π, σ say $\pi \mathcal{I} \sigma$ if σ has a subsequence ordered in the same relative way as π
- Example: 312 I 7531462

Why the non-standard notation for the usual pattern-containment order? Because some other orders are going to be defined on permutations soon.

Pattern containment

- Given permutations π, σ say $\pi \mathcal{I} \sigma$ if σ has a subsequence ordered in the same relative way as π
- Example: 312 I 7531462
- A permutation class is a set of permutations closed downwards in the \mathcal{I} order

Why the non-standard notation for the usual pattern-containment order? Because some other orders are going to be defined on permutations soon.

Pattern containment

- Given permutations π, σ say $\pi \mathcal{I} \sigma$ if σ has a subsequence ordered in the same relative way as π
- Example: 312 I 7531462
- A permutation class is a set of permutations closed downwards in the \mathcal{I} order
- The set of sortable inputs of a permuting machine is always a permutation class (it is $\operatorname{av}\left(\pi_{1}, \pi_{2} \ldots\right)$)

Why the non-standard notation for the usual pattern-containment order? Because some other orders are going to be defined on permutations soon.

Example 1 - from Knuth [1]

- Symbols are stuffed into the tube and exit at either end. The tube is too thin for symbols to exchange inside.

Example 1 - from Knuth [1]

- Symbols are stuffed into the tube and exit at either end. The tube is too thin for symbols to exchange inside.
- A permutation is tube-sortable if and only if contains neither 3241 or 4231 as a subpattern (i.e. $\{3241,4231\}$ is the basis)

Example 1 - from Knuth [1]

- Symbols are stuffed into the tube and exit at either end. The tube is too thin for symbols to exchange inside.
- A permutation is tube-sortable if and only if contains neither 3241 or 4231 as a subpattern (i.e. $\{3241,4231\}$ is the basis)
- If there are s_{n} sortable permutations of length n then

$$
\sum_{n=0}^{\infty} s_{n} x^{n}=\frac{1}{2}\left(3-x-\sqrt{1-6 x+x^{2}}\right)
$$

Example 2: the male-female sorting machine

Operates in two phases: a male phase then a female phase.

Female phase

c	b	f	a	e	i	g	d	h	j	k

Example 2: the male-female sorting machine

Operates in two phases: a male phase then a female phase.

Defined by excluded patterns $\{3412,3421,4312,4321\}$

Example 2: the male-female sorting machine

Operates in two phases: a male phase then a female phase.

Female phase

c	b	f	a	e	i	g	d	h	j	k

Defined by excluded patterns $\{3412,3421,4312,4321\}$ If there are t_{n} sortable permutations of length n then

$$
\sum_{n=0}^{\infty} t_{n} x^{n}=\frac{1-3 x}{1-4 x+2 x^{2}}
$$

Sorting machines

- Many permuting machines are "designed" to sort. If they can sort some permutation they should be able to cope with "easier" permutations.

Sorting machines

- Many permuting machines are "designed" to sort. If they can sort some permutation they should be able to cope with "easier" permutations.
- The tube machine can sort 4321 but it cannot sort the "easier" permutation 4231. It's not designed to sort. But how do we define "easier"?

Sorting machines

- Many permuting machines are "designed" to sort. If they can sort some permutation they should be able to cope with "easier" permutations.
- The tube machine can sort 4321 but it cannot sort the "easier" permutation 4231. It's not designed to sort. But how do we define "easier"?
- Any definitions of "easier" must deem subpermutations of π to be easier than π itself. What about comparing permutations of the same length?

Sorting machines

- Many permuting machines are "designed" to sort. If they can sort some permutation they should be able to cope with "easier" permutations.
- The tube machine can sort 4321 but it cannot sort the "easier" permutation 4231. It's not designed to sort. But how do we define "easier"?
- Any definitions of "easier" must deem subpermutations of π to be easier than π itself. What about comparing permutations of the same length?
- Enter the weak and strong (Bruhat) orders.

The weak and strong orders

- The weak order \mathcal{W} is the transitive closure of the relations
$\lambda a b \mu \mathcal{W} \lambda b a \mu$ where $b>a$
Example: $41523 \mathcal{W} 45123 \mathcal{W} 45132 \mathcal{W} 45312$
- The strong order \mathcal{S} is the transitive closure of the relations

$$
\lambda a \mu b \nu \mathcal{S} \lambda b \mu a \nu \text { where } b>a
$$

Example: $41523 \mathcal{S} 51423 \mathcal{S} 53421 \mathcal{S} 54321$

The weak and strong orders on S_{3}

The weak and strong orders on S_{4}

Weak and Strong Sorting Machines

- Weak sorting machine: a permuting machine that, if it can sort α, can also sort any β with $\beta \mathcal{W} \alpha$.
- Strong sorting machine: a permuting machine that, if it can sort α, can also sort any β with $\beta \mathcal{S} \alpha$.

Weak and Strong Sorting Machines

- Weak sorting machine: a permuting machine that, if it can sort α, can also sort any β with $\beta \mathcal{W} \alpha$.
- Strong sorting machine: a permuting machine that, if it can sort α, can also sort any β with $\beta \mathcal{S} \alpha$.
- The set of sortable permutations for a sorting machine is a sorting class

Weak and Strong Sorting Classes

Weak and Strong Sorting Classes

- Weak sorting class: permutation class closed downwards in the weak order
- Example: permutations that are the union of two increasing subsequences

Weak and Strong Sorting Classes

- Weak sorting class: permutation class closed downwards in the weak order
- Example: permutations that are the union of two increasing subsequences

- Strong sorting class: permutation class closed downwards in the strong order
- Example: The permutations sortable by the male-female sorting machine

Extending the pattern containment order

Weak and strong sorting classes are down-ideals in the partial orders $\{\mathcal{I} \cup \mathcal{W}\}^{*}$ and $\{\mathcal{I} \cup \mathcal{S}\}^{*}$ (respectively). What do these orders look like?

Extending the pattern containment order

Weak and strong sorting classes are down-ideals in the partial orders $\{\mathcal{I} \cup \mathcal{W}\}^{*}$ and $\{\mathcal{I} \cup \mathcal{S}\}^{*}$ (respectively). What do these orders look like?

Lemma
(1) $\{\mathcal{I} \cup \mathcal{W}\}^{*}=\mathcal{I} \mathcal{W}=\mathcal{W I}$, and
(2) $\{\mathcal{I} \cup \mathcal{S}\}^{*}=\mathcal{I S} \neq \mathcal{S I}$

Extending the pattern containment order

Weak and strong sorting classes are down-ideals in the partial orders $\{\mathcal{I} \cup \mathcal{W}\}^{*}$ and $\{\mathcal{I} \cup \mathcal{S}\}^{*}$ (respectively). What do these orders look like?

Lemma

(1) $\{\mathcal{I} \cup \mathcal{W}\}^{*}=\mathcal{I} \mathcal{W}=\mathcal{W I}$, and
(2) $\{\mathcal{I} \cup \mathcal{S}\}^{*}=\mathcal{I S} \neq \mathcal{S I}$

We can study weak and strong sorting classes by their forbidden patterns in these orders, imitating ordinary pattern class studies.

Representative questions and answers

- Is av(321) a weak sorting class? YES. A strong sorting class? NO.

Representative questions and answers

- Is av(321) a weak sorting class? YES. A strong sorting class? NO.
- Can we decide whether $\operatorname{av}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)$ is a weak or strong sorting class? YES, in both cases.

Representative questions and answers

- Is av(321) a weak sorting class? YES. A strong sorting class? NO.
- Can we decide whether $\operatorname{av}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)$ is a weak or strong sorting class? YES, in both cases.
- What is the weak sorting class defined by avoiding (in the $\{\mathcal{I} \cup \mathcal{W}\}^{*}$ sense) the permutations 4312 and 3421 ? It is $\operatorname{av}(4312,3421,4321)$.

Representative questions and answers

- Is av(321) a weak sorting class? YES. A strong sorting class? NO.
- Can we decide whether $\operatorname{av}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)$ is a weak or strong sorting class? YES, in both cases.
- What is the weak sorting class defined by avoiding (in the $\{\mathcal{I} \cup \mathcal{W}\}^{*}$ sense) the permutations 4312 and 3421 ? It is $\operatorname{av}(4312,3421,4321)$.
- What is the strong sorting class defined by avoiding (in the $\{\mathcal{I} \cup \mathcal{S}\}^{*}$ sense) the permutation 3421? It is $\operatorname{av}(3421,4321,34512,43512,35412,53412)$.

Representative questions and answers

- Is av(321) a weak sorting class? YES. A strong sorting class? NO.
- Can we decide whether $\operatorname{av}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)$ is a weak or strong sorting class? YES, in both cases.
- What is the weak sorting class defined by avoiding (in the $\{\mathcal{I} \cup \mathcal{W}\}^{*}$ sense) the permutations 4312 and 3421 ? It is $\operatorname{av}(4312,3421,4321)$.
- What is the strong sorting class defined by avoiding (in the $\{\mathcal{I} \cup \mathcal{S}\}^{*}$ sense) the permutation 3421? It is $\operatorname{av}(3421,4321,34512,43512,35412,53412)$.
- Do weak and strong sorting classes have special structural properties that help us (e.g.) to solve their enumeration problems? YES for strong sorting classes, not so clear for weak sorting classes.

Weak sorting classes

Most results stem from $\{\mathcal{I} \cup \mathcal{W}\}^{*}=\mathcal{I W}=\mathcal{W} \mathcal{I}$.
For example:

Lemma

$\operatorname{av}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{k}\right)$ is a weak sorting class if and only if every permutation above any π_{i} (in the weak order) contains one of the π_{j} as a pattern.
E.g. $\operatorname{av}(321,3124)$ is not a weak sorting class because $3124 \mathcal{W} 3142$ but 3142 contains neither 321 or 3124 as a pattern.

Strong sorting classes

- The theory of strong sorting classes is quite different because $\mathcal{I S} \neq \mathcal{S I}$.
- Example: $321 \mathcal{I} 3214 \mathcal{S} 3412$ but no δ with $321 \mathcal{S} \delta \mathcal{I} 3412$.
- Despite this the structure of strong sorting classes is much more constrained than the structure of weak sorting classes.

The classes $\mathcal{B}(r, s)$ - see also Mansour and Vainshtein [2]

The classes $\mathcal{B}(r, s)$ - see also Mansour and Vainshtein [2]

$\mathcal{B}(r, s)$ is the class of all permutations which do not have a subsequence of $r+s$ elements the first r all larger than the last s. This is a strong sorting class.

$\begin{array}{lllllllllll}7 & 4 & 12 & 8 & 5 & 9 & 2 & 11 & 6 & 10 & 1\end{array}$ Not in $B(3,3)$

The role of $\mathcal{B}(r, s)$

Theorem

If \mathcal{X} is a strong sorting class not containing all permutations then $\mathcal{X} \subseteq \mathcal{B}(r, r)$ for some r

Properties of $\mathcal{B}(r, s)$

Theorem

$\mathcal{B}(r, r)$ is the set of permutations sortable by $r-1$ copies of the male-female sorting machine in series.

Properties of $\mathcal{B}(r, s)$

Theorem

$\mathcal{B}(r, r)$ is the set of permutations sortable by $r-1$ copies of the male-female sorting machine in series.

Theorem

$\mathcal{B}(r, s)$ is the set of permutations sortable by $r-1$ male and $s-1$ female sorting machines in any prescribed order in series.

Properties of $\mathcal{B}(r, s)$

Theorem

Let b_{n} be the number of permutations of length n in $\mathcal{B}(r, s)$. Then

$$
b_{n}=r s b_{n-1}-2!\binom{r}{2}\binom{s}{2} b_{n-2}+3!\binom{r}{3}\binom{s}{3} b_{n-3}-\cdots
$$

Main theorem

Theorem

Let \mathcal{X} be any finitely based strong sorting class and let t_{n} be the number of permutations in \mathcal{X} of length n. Then

$$
\sum_{n=0}^{\infty} t_{n} x^{n}
$$

is a rational function.
D. E. Knuth: Fundamental Algorithms, The Art of Computer Programming Vol. 1 (Second Edition), Addison-Wesley, Reading, Mass. (1973).
T. Mansour, A. Vainshtein: Avoiding maximal parabolic subgroups of S_{k}, Discrete Mathematics and Theoretical Computer Science 4 (2000), 67-77.

