Simple permutations and substitution closures

Mike Atkinson

Department of Computer Science, University of Otago

PP2007, St Andrews, June 2007

Outline of talk

Background: pattern classes and simple permutations

- Terminology
- Skeletons
- 2 Substitution closed pattern classes
 - Generating functions
 - Growth rates
- 3 Counting simple permutations
- Principal classes
 - Main questions
 - Finite types
 - Infinite types
 - A hint at the proofs

Terminology Skeletons

Terminology

Terminology

Terminology Skeletons

• Subpermutation: 3142 is a subpermutation of 5624713

• Pattern class: set of permutations closed under taking subpermutations.

Terminology

Terminology Skeletons

- Pattern class: set of permutations closed under taking subpermutations.
- Every pattern class \mathcal{X} is defined by a minimal forbidden set *B* (its *basis*) which may or may not be finite.

Terminology

Terminology Skeletons

- Pattern class: set of permutations closed under taking subpermutations.
- Every pattern class \mathcal{X} is defined by a minimal forbidden set B (its *basis*) which may or may not be finite.
- Write $\mathcal{X} = \operatorname{Av}(B)$ (because Av stands for "avoids").

Terminology

Terminology Skeletons

- Pattern class: set of permutations closed under taking subpermutations.
- Every pattern class \mathcal{X} is defined by a minimal forbidden set B (its *basis*) which may or may not be finite.
- Write $\mathcal{X} = \operatorname{Av}(B)$ (because Av stands for "avoids").
- Write \mathcal{X}_n for the permutations of \mathcal{X} of length n.

Terminology Skeletons

Terminology

- Subpermutation: 3142 is a subpermutation of 5624713
- Pattern class: set of permutations closed under taking subpermutations.
- Every pattern class \mathcal{X} is defined by a minimal forbidden set *B* (its *basis*) which may or may not be finite.
- Write $\mathcal{X} = \operatorname{Av}(B)$ (because Av stands for "avoids").
- Write \mathcal{X}_n for the permutations of \mathcal{X} of length n.
- Generating function of ${\mathcal X}$

$$f(u) = \sum_{n=0}^{\infty} |\mathcal{X}_n| u^n$$

Terminology Skeletons

Graphs

Example

The graph of 52863714

Mike Atkinson Simple permutations and substitution closures

Terminology Skeletons

Graphs

Example

Mike Atkinson Simple permutations and substitution closures

Background Substitution closed pattern classes

Counting simple permutations Principal classes Terminology Skeletons

Simple permutations

• An *interval* in a permutation is a segment that contains a set of contiguous values.

Background

Substitution closed pattern classes Counting simple permutations Principal classes Terminology Skeletons

Simple permutations

- An *interval* in a permutation is a segment that contains a set of contiguous values.
- Every permutation is an interval of itself, and every singleton segment is an interval.

Background

Substitution closed pattern classes Counting simple permutations Principal classes Terminology Skeletons

Simple permutations

- An *interval* in a permutation is a segment that contains a set of contiguous values.
- Every permutation is an interval of itself, and every singleton segment is an interval.
- If there are no other intervals the permutation is *simple*.

Background Substitution closed pattern classes

Counting simple permutations Principal classes **Terminology** Skeletons

Simple permutations

- An *interval* in a permutation is a segment that contains a set of contiguous values.
- Every permutation is an interval of itself, and every singleton segment is an interval.
- If there are no other intervals the permutation is *simple*.

Example

A permutation with non-trivial intervals, and a simple permutation

Mike Atkinson Simple permutations and substitution closures

Terminology Skeletons

Substitution

If τ_1, \ldots, τ_n are permutations and σ is a permutation of length n then $\sigma[\tau_1, \ldots, \tau_n]$ denotes the permutation with intervals τ'_1, \ldots, τ'_n (isomorphic to τ_1, \ldots, τ_n) whose relative order is given by σ .

Terminology Skeletons

Substitution

If τ_1, \ldots, τ_n are permutations and σ is a permutation of length n then $\sigma[\tau_1, \ldots, \tau_n]$ denotes the permutation with intervals τ'_1, \ldots, τ'_n (isomorphic to τ_1, \ldots, τ_n) whose relative order is given by σ .

Example

 $231[12,312,21] = 3475621; \ 123[21,1,21] = 21 \oplus 1 \oplus 21 = 21354.$

Mike Atkinson Simple permutations and substitution closures

Terminology Skeletons

The skeleton of a permutation

• Every permutation π has a representation of the form $\sigma[\tau_1, \ldots, \tau_n]$ with σ simple. The simple permutation σ is uniquely determined by π .

Terminology Skeletons

The skeleton of a permutation

- Every permutation π has a representation of the form σ[τ₁,...,τ_n] with σ simple. The simple permutation σ is uniquely determined by π.
- If n > 2, then τ₁,...,τ_n are also uniquely determined by π and then σ is the skeleton of π.

Terminology Skeletons

The skeleton of a permutation

- Every permutation π has a representation of the form σ[τ₁,...,τ_n] with σ simple. The simple permutation σ is uniquely determined by π.
- If n > 2, then τ₁,...,τ_n are also uniquely determined by π and then σ is the skeleton of π.
- If σ = 12 (similarly σ = 21) write π = ρ₁ ⊕ . . . ⊕ ρ_k with k maximal, then 12 · · · k is the skeleton of π

Background Substitution closed pattern classes

Terminolo Skeletons

Skeleton examples

Two permutations

Mike Atkinson Simple permutations and substitution closures

Background

Substitution closed pattern classes Counting simple permutations Principal classes Terminology Skeletons

Skeleton examples

Two permutations and their skeletons

Background Substitution closed pattern classes

Terminology Skeletons

Skeleton examples

Two skeletons

Mike Atkinson Simple permutations and substitution closures

Background Substitution closed pattern classes

Counting simple permutations

Terminology Skeletons

Substitution decomposition

Example

Mike Atkinson Simple permutations and substitution closures

Generating functions Growth rates

Substitution closed pattern classes

 A pattern class X is substitution closed if, whenever σ ∈ X with |σ| = n and τ₁,..., τ_n ∈ X, then also σ[τ₁,..., τ_n] ∈ X.

Generating functions Growth rates

Substitution closed pattern classes

- A pattern class X is substitution closed if, whenever σ ∈ X with |σ| = n and τ₁,..., τ_n ∈ X, then also σ[τ₁,..., τ_n] ∈ X.
- A pattern class is substitution closed if and only if its basis consists of simple permutations.

Generating functions Growth rates

Substitution closed pattern classes

- A pattern class X is substitution closed if, whenever σ ∈ X with |σ| = n and τ₁,..., τ_n ∈ X, then also σ[τ₁,..., τ_n] ∈ X.
- A pattern class is substitution closed if and only if its basis consists of simple permutations.
- An substitution closed pattern class \mathcal{X} is generated by permutations $\Gamma = \{\gamma_1, \gamma_2, \ldots\}$ if every permutation of \mathcal{X} can be obtained by iterated substitution from Γ (equivalently, \mathcal{X} is the smallest substitution closed class that contains Γ).

Generating functions Growth rates

Substitution closed pattern classes

- A pattern class X is substitution closed if, whenever σ ∈ X with |σ| = n and τ₁,..., τ_n ∈ X, then also σ[τ₁,..., τ_n] ∈ X.
- A pattern class is substitution closed if and only if its basis consists of simple permutations.
- An substitution closed pattern class \mathcal{X} is generated by permutations $\Gamma = \{\gamma_1, \gamma_2, \ldots\}$ if every permutation of \mathcal{X} can be obtained by iterated substitution from Γ (equivalently, \mathcal{X} is the smallest substitution closed class that contains Γ).
- Every substitution closed pattern class is generated by its simple permutations.

Generating functions Growth rates

Finitely generated substitution closed classes

Theorem

Every finitely generated substitution closed pattern class is finitely based and has an algebraic generating function. Furthermore this is true for every subclass.

equivalently

Theorem

Every pattern class which has only finitely many simple permutations is finitely based and has an algebraic generating function.

Generating functions Growth rates

Generating functions

• A pattern class with only finitely many simple permutations and that avoids some k, k - 1, ..., 1 has a rational generating function.

Generating functions Growth rates

Generating functions

- A pattern class with only finitely many simple permutations and that avoids some k, k - 1, ..., 1 has a rational generating function.
- A pattern class whose permutations contain at most d copies of 231 (for some d) has an algebraic generating function [Bóna, 1997].

Generating functions Growth rates

Generating functions

- A pattern class with only finitely many simple permutations and that avoids some k, k - 1, ..., 1 has a rational generating function.
- A pattern class whose permutations contain at most d copies of 231 (for some d) has an algebraic generating function [Bóna, 1997].
- Every proper subclass of Av(231) has a rational generating function.

Generating functions Growth rates

Growth rates

The growth rate of a class with generating function $f(x) = \sum_{n=0}^{\infty} v_n x^n$ is the limit (if it exists)

 $\lim_{n\to\infty}\sqrt[n]{v_n}$

Generating functions Growth rates

Growth rates

The growth rate of a class with generating function $f(x) = \sum_{n=0}^{\infty} v_n x^n$ is the limit (if it exists)

 $\lim_{n\to\infty}\sqrt[n]{v_n}$

Conjecture

Every pattern class has a growth rate.

Generating functions Growth rates

Growth rates

Put $\iota_k = 12 \cdots k$ and $\delta_k = k \cdots 21$.

The growth rate of a class Av(δ_k, ι_p ⊕ 231 ⊕ ι_q) is independent of p and q

Generating functions Growth rates

Growth rates

Put $\iota_k = 12 \cdots k$ and $\delta_k = k \cdots 21$.

- The growth rate of a class Av(δ_k, ι_p ⊕ 231 ⊕ ι_q) is independent of p and q
- The growth rate of a class $\operatorname{Av}(\delta_k, \iota_p \oplus 2413 \oplus \iota_q, \iota_r \oplus 3142 \oplus \iota_s)$ is independent of p, q, r, s

Generating functions Growth rates

Growth rates

Put $\iota_k = 12 \cdots k$ and $\delta_k = k \cdots 21$.

- The growth rate of a class $\operatorname{Av}(\delta_k, \iota_p \oplus 231 \oplus \iota_q)$ is independent of p and q
- The growth rate of a class $\operatorname{Av}(\delta_k, \iota_p \oplus 2413 \oplus \iota_q, \iota_r \oplus 3142 \oplus \iota_s)$ is independent of p, q, r, s
- The proofs of both these results begin with proving that these pattern classes have only finitely many simple permutations

Generating functions Growth rates

Finding the growth rate of $T_k = Av(\delta_k, 231)$

Let $t_k(x)$ be the generating function of T_k

Hence $t_k = 1 + xt_kt_{k-1}$ which gives

$$t_k = \frac{1}{1 - x t_{k-1}}$$

Generating functions Growth rates

Finding the growth rate of $T_k = Av(\delta_k, 231)$

Then t_k is a rational function q_{k-1}/q_k of x where $q_1 = 1, q_2 = 1 - x$ and, for k > 2,

 $q_k = q_{k-1} - xq_{k-2}$

Generating functions Growth rates

Finding the growth rate of $T_k = Av(\delta_k, 231)$

Then t_k is a rational function q_{k-1}/q_k of x where $q_1 = 1, q_2 = 1 - x$ and, for k > 2,

$$q_k = q_{k-1} - xq_{k-2}$$

Then

$$q_{k} = \frac{(1+\sqrt{1-4x})^{k+1}-(1-\sqrt{1-4x})^{k+1}}{2^{k+1}\sqrt{1-4x}} \\ = \sum_{i} \binom{k-i}{i} (-x)^{i}$$

Generating functions Growth rates

Finding the growth rate of $T_k = Av(\delta_k, 231)$

Theorem

The growth rate of the classes $Av(\delta_k, \iota_p \oplus 231 \oplus \iota_q)$ is

$$2+2\cos\left(\frac{2\pi}{k+1}\right)$$

Proof.

Solve $q_k(x) = 0$ for smallest root (requires taking a $(k + 1)^{\text{th}}$ root) and use reciprocal.

Generating functions Growth rates

Finding the growth rate of $U_k = Av(\delta_k, 2413, 3142)$

The same technology to find the generating function is much messier. For example U_4 has generating function

$$\frac{x\left(1-5 x+11 x^2-11 x^3+7 x^4-3 x^5+x^6\right)}{1-7 x+19 x^2-28 x^3+23 x^4-12 x^5+4 x^6-x^7}$$

Generating functions Growth rates

Finding the growth rate of $U_k = Av(\delta_k, 2413, 3142)$

The same technology to find the generating function is much messier. For example U_4 has generating function

$$\frac{x \left(1-5 x+11 x^2-11 x^3+7 x^4-3 x^5+x^6\right)}{1-7 x+19 x^2-28 x^3+23 x^4-12 x^5+4 x^6-x^7}$$

The degree Δ_k of the denominator of U_k rises rapidly with k. It appears that this denominator is always irreducible and that

$$\Delta_k = 1 + \sum_{i=2}^{k-1} \left\lfloor \frac{k-1}{i-1} \right\rfloor \Delta_i$$

											12
Δ_k	1	3	7	18	37	85	171	364	736	1513	3027

Density and growth rate of simple permutations

• On average one permutation in every 7.389... $(=e^2)$ is simple.

Density and growth rate of simple permutations

- On average one permutation in every 7.389... $(=e^2)$ is simple.
- What is the density of simple permutations in a particular pattern class?

Density and growth rate of simple permutations

- On average one permutation in every 7.389... $(=e^2)$ is simple.
- What is the density of simple permutations in a particular pattern class?
- Does the set of simple permutations in a pattern class always have a well-defined growth rate?

Density and growth rate of simple permutations

- On average one permutation in every 7.389... $(=e^2)$ is simple.
- What is the density of simple permutations in a particular pattern class?
- Does the set of simple permutations in a pattern class always have a well-defined growth rate?
- How does that compare with the growth rate of the pattern class?

Examples - Lutful Karim

• The number of simple permutations in Av(321,4123) satisfies

$$x_n = x_{n-2} + x_{n-3}$$

Examples - Lutful Karim

• The number of simple permutations in Av(321,4123) satisfies

$$x_n = x_{n-2} + x_{n-3}$$

• Known answers for every $\operatorname{Av}(\alpha,\beta)$ with $|\alpha|=3, |\beta|=4$

Examples - Lutful Karim

• The number of simple permutations in Av(321,4123) satisfies

$$x_n = x_{n-2} + x_{n-3}$$

- Known answers for every $\operatorname{Av}(lpha,eta)$ with |lpha|=3,|eta|=4
- The number of simple permutations of length *n* in Av(4321, 2413) is polynomial in *n* (two slightly different cubics for the even and odd cases)

Examples - Lutful Karim

• The number of simple permutations in Av(321,4123) satisfies

$$x_n = x_{n-2} + x_{n-3}$$

- Known answers for every $\operatorname{Av}(lpha,eta)$ with |lpha|=3,|eta|=4
- The number of simple permutations of length *n* in Av(4321, 2413) is polynomial in *n* (two slightly different cubics for the even and odd cases)

For which pattern classes does the number of simple permutations of length n grow as a polynomial? as a constant?

Main questions Finite types Infinite types A hint at proofs

Principal pattern classes

Definition

A pattern class of the form $Av(\alpha)$ is called a *principal* class.

Consider the substitution closure of such a class.

- For which α is it finitely based?
- For which α is it finitely generated?

Main questions Finite types Infinite types A hint at proofs

Principal pattern classes

Definition

A pattern class of the form $Av(\alpha)$ is called a *principal* class.

Consider the substitution closure of such a class.

- For which α is it finitely based?
- For which α is it finitely generated?

Theorem

The substitution closure of $Av(\alpha)$ is finitely generated if and only if $\alpha \in \{1, 12, 21, 132, 213, 231, 312\}$

The finite basis question is much more subtle!

Main questions Finite types Infinite types A hint at proofs

Finding the basis of the substitution closure of $Av(\alpha)$

 A simple permutation belongs to Av(α) if and only if it belongs to the substitution closure

Main questions Finite types Infinite types A hint at proofs

Finding the basis of the substitution closure of $Av(\alpha)$

- A simple permutation belongs to Av(α) if and only if it belongs to the substitution closure
- The simple permutations not in the substitution closure are precisely the simple permutations that contain α

Main questions Finite types Infinite types A hint at proofs

Finding the basis of the substitution closure of $Av(\alpha)$

- A simple permutation belongs to Av(α) if and only if it belongs to the substitution closure
- The simple permutations not in the substitution closure are precisely the simple permutations that contain α
- Hence the basis permutations of the substitution closure are precisely the minimal simple extensions of α

Main questions Finite types Infinite types A hint at proofs

Finite and infinite types

Definition

 α has *finite type* if the substitution closure of Av(α) is finitely based; otherwise α has *infinite type*.

Main questions Finite types Infinite types A hint at proofs

Finite and infinite types

Definition

 α has *finite type* if the substitution closure of Av(α) is finitely based; otherwise α has *infinite type*.

Question

How do we distinguish the permutations of finite type from those of infinite type?

Main questions Finite types Infinite types A hint at proofs

Finite types with skeleton 12

Up to symmetry the only finite types of the form $\alpha \oplus \beta$ with α,β indecomposable are

- $\alpha, \beta \in \{1, 21, 312, 231\}$
- $2413 \oplus 1 = 24135$

Main questions Finite types Infinite types A hint at proofs

Finite types with skeleton 123

Up to symmetry the only finite types of the form $\alpha \oplus \beta \oplus \gamma$ are

- $1 \oplus 1 \oplus 1 = 123$
- $1 \oplus 1 \oplus 21 = 1243$
- $1 \oplus 21 \oplus 1 = 1324$
- $21 \oplus 1 \oplus 21 = 21354$

Main questions Finite types Infinite types A hint at proofs

Finite types with skeleton 1234...

Up to symmetry the only finite types of the form $\alpha \oplus \beta \oplus \gamma \oplus \delta \oplus \ldots$ are

None

Main questions Finite types Infinite types A hint at proofs

Finite types with simple skeleton of length at least 4

If the skeleton of π is a simple permutation of length more than 2 and the associated intervals are all among

 $\{1,12,21,132,213,231,312\}$

then π also has finite type.

Main questions Finite types Infinite types A hint at proofs

The other finite types discounting symmetries

A permutation of finite type

Mike Atkinson

Main questions Finite types Infinite types A hint at proofs

1234 has infinite type

Minimal simple extensions of 1234

Mike Atkinson

Simple permutations and substitution closures

Main questions Finite types Infinite types A hint at proofs

241365 has infinite type

Minimal simple extensions of 241365

Mike Atkinson Simple permutations and substitution closures

Main questions Finite types Infinite types A hint at proofs

Proving that a permutation has finite type

- Potential intervals in simple permutations define pin sequences
- The simple extensions of a (non-simple) permutation all have pin sequences that intersect in various ways. If these pin sequences are sufficiently long...

Main questions Finite types Infinite types A hint at proofs

Proving that a permutation has finite type

Main questions Finite types Infinite types A hint at proofs

Proving that a permutation has finite type

Mike Atkinson Simple permutations and substitution closures

Main questions Finite types Infinite types A hint at proofs

Proving that a permutation has finite type

Mike Atkinson Simple permutations and substitution closures

Main questions Finite types Infinite types A hint at proofs

Some references

Michael Albert, Mike Atkinson

Simple permutations and pattern restricted permutations, Discrete Mathematics, 300 (2005), 1-15.

Miklos Bóna

The number of permutations with exactly r 132-subsequences is P-recursive in the size!,

Advances in Applied Mathematics, 18 (1997), 510-522.

- Robert Brignall, Sophie Huczynska, Vince Vatter Simple permutations and algebraic generating functions,
- Toufik Mansour, Alex Vainshtein Restricted permutations and Chebyshev polynomials, Sem. Lothar. Combin. (2001) 47, B47c.