
Background
Substitution closed pattern classes

Counting simple permutations
Principal classes

Simple permutations and substitution closures

Mike Atkinson

Department of Computer Science, University of Otago

PP2007, St Andrews, June 2007

Aspects of Separability

M. H. Albert (Otago)

PP 2007, St Andrews

M. H. Albert (Otago) Aspects of Separability PP 2007, St Andrews 1 / 12

Mike Atkinson Simple permutations and substitution closures



Background
Substitution closed pattern classes

Counting simple permutations
Principal classes

Outline of talk

1 Background: pattern classes and simple permutations
Terminology
Skeletons

2 Substitution closed pattern classes
Generating functions
Growth rates

3 Counting simple permutations

4 Principal classes
Main questions
Finite types
Infinite types
A hint at the proofs

Mike Atkinson Simple permutations and substitution closures



Background
Substitution closed pattern classes

Counting simple permutations
Principal classes

Terminology
Skeletons

Terminology

Subpermutation: 3142 is a subpermutation of 5624713

Pattern class: set of permutations closed under taking
subpermutations.

Every pattern class X is defined by a minimal forbidden set B
(its basis) which may or may not be finite.

Write X = Av(B) (because Av stands for “avoids”).

Write Xn for the permutations of X of length n.

Generating function of X

f (u) =
∞∑

n=0

|Xn|un
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Graphs
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The graph of 52863714
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Graphs

Example

The graph of 52863714 and subpermutation 4213
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Simple permutations

An interval in a permutation is a segment that contains a set
of contiguous values.

Every permutation is an interval of itself, and every singleton
segment is an interval.
If there are no other intervals the permutation is simple.

Example

A permutation with non-trivial intervals, and a simple permutation

36857214 3746152
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Substitution

If τ1, . . . , τn are permutations and σ is a permutation of length n
then σ[τ1, . . . , τn] denotes the permutation with intervals τ ′1, . . . , τ

′
n

(isomorphic to τ1, . . . , τn) whose relative order is given by σ.

Example

231[12, 312, 21] = 3475621; 123[21, 1, 21] = 21⊕ 1⊕ 21 = 21354.
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The skeleton of a permutation

Every permutation π has a representation of the form
σ[τ1, . . . , τn] with σ simple. The simple permutation σ is
uniquely determined by π.

If n > 2, then τ1, . . . , τn are also uniquely determined by π
and then σ is the skeleton of π.

If σ = 12 (similarly σ = 21) write π = ρ1 ⊕ . . .⊕ ρk with k
maximal, then 12 · · · k is the skeleton of π
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Skeleton examples

2413 1234

Two skeletons
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Substitution decomposition

Example

123

213142 12

241321

The decomposition of 3142657C 9B8A
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Substitution closed pattern classes

A pattern class X is substitution closed if, whenever σ ∈ X
with |σ| = n and τ1, . . . , τn ∈ X , then also σ[τ1, . . . , τn] ∈ X .

A pattern class is substitution closed if and only if its basis
consists of simple permutations.

An substitution closed pattern class X is generated by
permutations Γ = {γ1, γ2, . . .} if every permutation of X can
be obtained by iterated substitution from Γ (equivalently, X is
the smallest substitution closed class that contains Γ).

Every substitution closed pattern class is generated by its
simple permutations.
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Finitely generated substitution closed classes

Theorem

Every finitely generated substitution closed pattern class is finitely
based and has an algebraic generating function. Furthermore this
is true for every subclass.

equivalently

Theorem

Every pattern class which has only finitely many simple
permutations is finitely based and has an algebraic generating
function.
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Generating functions

A pattern class with only finitely many simple permutations
and that avoids some k , k − 1, . . . , 1 has a rational generating
function.

A pattern class whose permutations contain at most d copies
of 231 (for some d) has an algebraic generating function
[Bóna, 1997].

Every proper subclass of Av(231) has a rational generating
function.
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Growth rates

The growth rate of a class with generating function
f (x) =

∑∞
n=0 vnxn is the limit (if it exists)

lim
n→∞

n
√

vn

Conjecture

Every pattern class has a growth rate.
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Growth rates

Put ιk = 12 · · · k and δk = k · · · 21.

The growth rate of a class Av(δk , ιp ⊕ 231⊕ ιq) is
independent of p and q

The growth rate of a class
Av(δk , ιp ⊕ 2413⊕ ιq, ιr ⊕ 3142⊕ ιs) is independent of
p, q, r , s

The proofs of both these results begin with proving that these
pattern classes have only finitely many simple permutations
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Finding the growth rate of Tk = Av(δk , 231)

Let tk(x) be the generating function of Tk

Tk-1

Tk

Non-empty permutation of Tk

Hence tk = 1 + xtktk−1 which gives

tk =
1

1− xtk−1
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Finding the growth rate of Tk = Av(δk , 231)

Then tk is a rational function qk−1/qk of x where
q1 = 1, q2 = 1− x and, for k > 2,

qk = qk−1 − xqk−2

Then

qk =
(1 +

√
1− 4x)k+1 − (1−

√
1− 4x)k+1

2k+1
√

1− 4x

=
∑

i

(
k − i

i

)
(−x)i
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Finding the growth rate of Tk = Av(δk , 231)

Theorem

The growth rate of the classes Av(δk , ιp ⊕ 231⊕ ιq) is

2 + 2 cos

(
2π

k + 1

)

Proof.

Solve qk(x) = 0 for smallest root (requires taking a (k + 1)th root)
and use reciprocal.
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Finding the growth rate of Uk = Av(δk , 2413, 3142)

The same technology to find the generating function is much
messier. For example U4 has generating function

x
(
1− 5 x + 11 x2 − 11 x3 + 7 x4 − 3 x5 + x6

)
1− 7 x + 19 x2 − 28 x3 + 23 x4 − 12 x5 + 4 x6 − x7

The degree ∆k of the denominator of Uk rises rapidly with k . It
appears that this denominator is always irreducible and that

∆k = 1 +
k−1∑
i=2

⌊
k − 1

i − 1

⌋
∆i

k 2 3 4 5 6 7 8 9 10 11 12

∆k 1 3 7 18 37 85 171 364 736 1513 3027
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Density and growth rate of simple permutations

On average one permutation in every 7.389... (= e2) is simple.

What is the density of simple permutations in a particular
pattern class?

Does the set of simple permutations in a pattern class always
have a well-defined growth rate?

How does that compare with the growth rate of the pattern
class?
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Examples - Lutful Karim

The number of simple permutations in Av(321, 4123) satisfies

xn = xn−2 + xn−3

Known answers for every Av(α, β) with |α| = 3, |β| = 4

The number of simple permutations of length n in
Av(4321, 2413) is polynomial in n (two slightly different
cubics for the even and odd cases)

For which pattern classes does the number of simple permutations
of length n grow as a polynomial? as a constant?
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Main questions
Finite types
Infinite types
A hint at proofs

Principal pattern classes

Definition

A pattern class of the form Av(α) is called a principal class.

Consider the substitution closure of such a class.

For which α is it finitely based?

For which α is it finitely generated?

Theorem

The substitution closure of Av(α) is finitely generated if and only
if α ∈ {1, 12, 21, 132, 213, 231, 312}

The finite basis question is much more subtle!
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A hint at proofs

Finding the basis of the substitution closure of Av(α)

A simple permutation belongs to Av(α) if and only if it
belongs to the substitution closure

The simple permutations not in the substitution closure are
precisely the simple permutations that contain α

Hence the basis permutations of the substitution closure are
precisely the minimal simple extensions of α
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Finite types
Infinite types
A hint at proofs

Finite and infinite types

Definition

α has finite type if the substitution closure of Av(α) is finitely
based; otherwise α has infinite type.

Question

How do we distinguish the permutations of finite type from those
of infinite type?

Mike Atkinson Simple permutations and substitution closures



Background
Substitution closed pattern classes

Counting simple permutations
Principal classes

Main questions
Finite types
Infinite types
A hint at proofs

Finite and infinite types

Definition

α has finite type if the substitution closure of Av(α) is finitely
based; otherwise α has infinite type.

Question

How do we distinguish the permutations of finite type from those
of infinite type?

Mike Atkinson Simple permutations and substitution closures



Background
Substitution closed pattern classes

Counting simple permutations
Principal classes

Main questions
Finite types
Infinite types
A hint at proofs

Finite types with skeleton 12

Up to symmetry the only finite types of the form α⊕ β with α, β
indecomposable are

α, β ∈ {1, 21, 312, 231}
2413⊕ 1 = 24135
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Finite types with skeleton 123

Up to symmetry the only finite types of the form α⊕ β ⊕ γ are

1⊕ 1⊕ 1 = 123

1⊕ 1⊕ 21 = 1243

1⊕ 21⊕ 1 = 1324

21⊕ 1⊕ 21 = 21354
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Finite types with skeleton 1234. . .

Up to symmetry the only finite types of the form
α⊕ β ⊕ γ ⊕ δ ⊕ . . . are

None
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Finite types with simple skeleton of length at least 4

If the skeleton of π is a simple permutation of length more than 2
and the associated intervals are all among

{1, 12, 21, 132, 213, 231, 312}

then π also has finite type.
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The other finite types discounting symmetries

A permutation of finite type
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1234 has infinite type

Minimal simple extensions of 1234
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241365 has infinite type

Minimal simple extensions of 241365
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Proving that a permutation has finite type

Potential intervals in simple permutations define pin sequences

The simple extensions of a (non-simple) permutation all have
pin sequences that intersect in various ways. If these pin
sequences are sufficiently long...
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Proving that a permutation has finite type

Pin sequences out of
intervals
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