Priority queues and pattern classes

Mike Atkinson

PP 2012
13 June 2012
Joint work with Michael Albert

Outline of talk

(1) New pattern classes from old
(2) Priority queues
(3) The main theorems
4) Proof techniques

New pattern classes from old

- We know many "constructions" that transform pattern classes into pattern classes.
- $\mathcal{X} \longrightarrow \mathcal{X} \oplus \mathcal{C}$ for some fixed pattern class \mathcal{C}.
- $\mathcal{X} \longrightarrow \mathcal{X C}$ for some fixed pattern class \mathcal{C}.
- $\mathcal{X} \longrightarrow w k(\mathcal{X})$ (weak closure of \mathcal{X}).
- lots more.
\qquad So any construction allows us to incrementally explore the domain of pattern classes

New pattern classes from old

- We know many "constructions" that transform pattern classes into pattern classes.
- $\mathcal{X} \longrightarrow \mathcal{X} \oplus \mathcal{C}$ for some fixed pattern class \mathcal{C}.
- $\mathcal{X} \longrightarrow \mathcal{X C}$ for some fixed pattern class \mathcal{C}.
- $\mathcal{X} \longrightarrow w k(\mathcal{X})$ (weak closure of \mathcal{X}).
- lots more.
- Given any such construction $\mathcal{X} \longrightarrow \mathcal{X}^{*}$ we try to find methods to deduce properties of \mathcal{X}^{*} from properties of \mathcal{X}.
- So any construction allows us to incrementally explore the domain of pattern classes

Uncountably many constructions

- Generalize the pattern class order to an order on pairs of permutations.

Uncountably many constructions

- Generalize the pattern class order to an order on pairs of permutations.
- Consider the pair $(32415,23145)$

Uncountably many constructions

- Generalize the pattern class order to an order on pairs of permutations.
- Consider the pair $(32415,23145)$
- ... and any subset of the elements e.g. $\{1,3,4\}$
- So $(32415,23145)$

Uncountably many constructions

- Generalize the pattern class order to an order on pairs of permutations.
- Consider the pair $(32415,23145)$
- ... and any subset of the elements e.g. $\{1,3,4\}$
- So $(32415,23145)$
- Pick out the pair $(341,314)$
- and relabel to get the pair $(231,213)$
- This is a partial order on the set of pairs of permutations.

Uncountably many constructions

- Generalize the pattern class order to an order on pairs of permutations.
- Consider the pair $(32415,23145)$
- ... and any subset of the elements e.g. $\{1,3,4\}$
- So $(32415,23145)$
- Pick out the pair $(341,314)$
- and relabel to get the pair $(231,213)$
- Then $(231,213) \leq(32415,23145)$
- This is a partial order on the set of pairs of permutations.

Uncountably many constructions

- Generalize the pattern class order to an order on pairs of permutations.
- Consider the pair $(32415,23145)$
-and any subset of the elements e.g. $\{1,3,4\}$
- So $(32415,23145)$
- Pick out the pair $(341,314)$
- and relabel to get the pair $(231,213)$
- Then $(231,213) \leq(32415,23145)$
- This is a partial order on the set of pairs of permutations.

Uncountably many constructions

Definition

A pair pattern class is a down set in the order on pairs.

- There are uncountably many pair pattern classes and very little is known about them.

```
permutations from 2 dimensions to 3 dimensions
```


Uncountably many constructions

Definition

A pair pattern class is a down set in the order on pairs.

- There are uncountably many pair pattern classes and very little is known about them.
- Pairs of permutations are the natural generalization of permutations from 2 dimensions to 3 dimensions.

Uncountably many constructions

Definition

A pair pattern class is a down set in the order on pairs.

- There are uncountably many pair pattern classes and very little is known about them.
- Pairs of permutations are the natural generalization of permutations from 2 dimensions to 3 dimensions.

Theorem

Let \mathcal{R} be any pair pattern class. For every pattern class \mathcal{X}

$$
\mathcal{X} \mathcal{R}=\{\tau \mid(\sigma, \tau) \in \mathcal{R} \text { for some } \sigma \in \mathcal{X}\}
$$

is also a pattern class.

What is a priority queue?

A priority queue is a container which can contain priorities (or data items which have a priority). There are two main operations possible on the container:

Insert Insert a new item into the container
Delete-Min Delete the item of smallest priority from the container

Priority queue computations

A priority queue computation is a sequence of Insert (I) and Delete-Min (D) operations that begins and ends with the priority queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of output items

Priority queue computations

A priority queue computation is a sequence of Insert (I) and Delete-Min (D) operations that begins and ends with the priority queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of output items

Priority queue computations

A priority queue computation is a sequence of Insert (I) and Delete-Min (D) operations that begins and ends with the priority queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of output items

Priority queue computations

A priority queue computation is a sequence of Insert (I) and Delete-Min (D) operations that begins and ends with the priority queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of output items

Priority queue computations

A priority queue computation is a sequence of Insert (I) and Delete-Min (D) operations that begins and ends with the priority queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of output items

Priority queue computations

A priority queue computation is a sequence of Insert (I) and Delete-Min (D) operations that begins and ends with the priority queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of output items

Priority queue computations

A priority queue computation is a sequence of Insert (I) and Delete-Min (D) operations that begins and ends with the priority queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of output items

Priority queue computations

A priority queue computation is a sequence of Insert (I) and Delete-Min (D) operations that begins and ends with the priority queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of output items

Priority queue computations

A priority queue computation is a sequence of Insert (I) and Delete-Min (D) operations that begins and ends with the priority queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of output items

Priority queue computations

A priority queue computation is a sequence of Insert (I) and Delete-Min (D) operations that begins and ends with the priority queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of output items

Priority queue computations

A priority queue computation is a sequence of Insert (I) and Delete-Min (D) operations that begins and ends with the priority queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of output items

Output	Input
23145	32415
The input 32415 has been transformed into the output 23145	

Allowable pairs

- We have just seen a priority queue computation that transformed the input sequence 32415 into the output sequence 23145.
- $(32415,23145)$ is an allowable pair

Allowable pairs

- We have just seen a priority queue computation that transformed the input sequence 32415 into the output sequence 23145.
- $(32415,23145)$ is an allowable pair
- The set \mathcal{A} of allowable pairs is a pair pattern class

Allowable pairs

- We have just seen a priority queue computation that transformed the input sequence 32415 into the output sequence 23145.
- $(32415,23145)$ is an allowable pair
- The set \mathcal{A} of allowable pairs is a pair pattern class
- There are $(n+1)^{n-1}$ allowable pairs of length n
- The basis of \mathcal{A} is $\{(12,21),(321,132)\}$

Restatement of previous theorem

Abstract

Theorem If a priority queue is presented with the permutations of a fixed pattern class \mathcal{X} as a set of inputs then the set of all possible outputs is also a pattern class \mathcal{X}^{*}.

We study the map $\mathcal{X} \longrightarrow \mathcal{X}^{*}$ defined on the set of all pattern classes.

Simple examples of the $\mathcal{X} \longrightarrow \mathcal{X}^{*}$ map

- Suppose \mathcal{X} is the set of all increasing permutations $12 \cdots n$ (one permutation of every length). No priority queue computation can disorder $12 \cdots n$ so $\mathcal{X}^{*}=\mathcal{X}$.
(one permutation of every length). Priority queue
comnutations are now iust as thomgh the nrinrity sueue was a stack. So \mathcal{X}^{*} is the set of permutations that avoid 132

Simple examples of the $\mathcal{X} \longrightarrow \mathcal{X}^{*}$ map

Suppose \mathcal{X} is the set of all increasing permutations 12 .
(one permutation of every length). No priority queue
computation can disorder $12 \cdots n$ so $\mathcal{X}^{*}=\mathcal{X}$.

- Suppose \mathcal{X} is the set of all decreasing permutations $n \cdots 21$ (one permutation of every length). Priority queue computations are now just as though the priority queue was a stack. So \mathcal{X}^{*} is the set of permutations that avoid 132.

Simple examples of the $\mathcal{X} \longrightarrow \mathcal{X}^{*}$ map

- Suppose \mathcal{X} is the set of all increasing permutations $12 \cdots n$ (one permutation of every length). No priority queue computation can disorder $12 \cdots n$ so $\mathcal{X}^{*}=\mathcal{X}$.
- Suppose \mathcal{X} is the set of all decreasing permutations $n \cdots 21$ (one permutation of every length). Priority queue computations are now just as though the priority queue was a stack. So \mathcal{X}^{*} is the set of permutations that avoid 132.

Basis of \mathcal{X}	Basis of \mathcal{X}^{*}
21	21
12	132

The main theorems

Basis of \mathcal{X}	Basis of \mathcal{X}^{*}
321	321
312	3142,4132
231	2431
213	2143
132	1432
123	$13254,14253,15243$

The main theorems continued.

Basis of \mathcal{X}	Basis of \mathcal{X}^{*}
132,321	$321,2143,2413$
213,321	$321,2143,2413$
231,312	$2413,2431,3142,4132$
231,321	231,321
123,132	$1423,1432,13254$
\ldots	\ldots
Any length 3 permutations	Finite basis
\ldots	\ldots

The main theorems continued.

$$
\text { But, if } \mathcal{X}=\operatorname{Av}(2431), \mathcal{X}^{*} \text { is not finitely based. }
$$

When is $\mathcal{X}=\mathcal{X}^{*} ?$

Theorem

$\mathcal{X}=\mathcal{X}^{*}$ if and only if \mathcal{X} is closed downwards in the weak order.

$$
\text { It is easily detectable from the basis of } \mathcal{X} \text { when the weak order }
$$ condition holds (every basis element β has the property that all permutations above β in the weak order must have some (other) basis element as a subpermutation)

When is $\mathcal{X}=\mathcal{X}^{*} ?$

Theorem

$\mathcal{X}=\mathcal{X}^{*}$ if and only if \mathcal{X} is closed downwards in the weak order.

It is easily detectable from the basis of \mathcal{X} when the weak order condition holds (every basis element β has the property that all permutations above β in the weak order must have some (other) basis element as a subpermutation).

When is $\mathcal{X}=\mathcal{X}^{*}$?

Theorem

$\mathcal{X}=\mathcal{X}^{*}$ if and only if \mathcal{X} is closed downwards in the weak order.

Corollary
 If $\mathcal{X}=\operatorname{Av}(k \cdots 21)$ then $\mathcal{X}=\mathcal{X}^{*}$.

It is easily detectable from the basis of \mathcal{X} when the weak order condition holds (every basis element β has the property that all permutations above β in the weak order must have some (other) basis element as a subpermutation).

Easy proof techniques

Sometimes we know so much about the structure of a pattern class that we can directly compute the outputs of a priority queue given an input permutation.

Example

If $\mathcal{X}=\operatorname{Av}(231,312)$ then $\mathcal{X}^{*}=\operatorname{Av}(2413,2431,3142,4132)$

Easy proof techniques

Sometimes we know so much about the structure of a pattern class that we can directly compute the outputs of a priority queue given an input permutation.

Example
If $\mathcal{X}=\operatorname{Av}(231,312)$ then $\mathcal{X}^{*}=\operatorname{Av}(2413,2431,3142,4132)$

Proof.

Permutations of \mathcal{X} are sums of decreasing permutations. Hence \mathcal{X}^{*} consists of permutations that are sums of 132 -avoiding permutations.

Main proof technique

Given a permutation $\tau=t_{1} t_{2} \cdots t_{n}$ we define a partial order $P(\tau)$ on $\{1, \ldots, n\}$ by defining $t_{i} \prec t_{j}$ if either

- $i<j$ and $t_{i}>t_{j}$, or
- $i<j$ and, for some k with $i<k<j, t_{i} t_{k} t_{j} \sim 132$

Main proof technique

Given a permutation $\tau=t_{1} t_{2} \cdots t_{n}$ we define a partial order $P(\tau)$ on $\{1, \ldots, n\}$ by defining $t_{i} \prec t_{j}$ if either

- $i<j$ and $t_{i}>t_{j}$, or
- $i<j$ and, for some k with $i<k<j, t_{i} t_{k} t_{j} \sim 132$

Example

If $\tau=31524$ then $P(\tau)$ has constraints $5 \prec 2,5 \prec 4$, $\{3,1\} \prec\{2,4\}$, and $3 \prec 1$.

Main proof technique

Given a permutation $\tau=t_{1} t_{2} \cdots t_{n}$ we define a partial order $P(\tau)$ on $\{1, \ldots, n\}$ by defining $t_{i} \prec t_{j}$ if either

- $i<j$ and $t_{i}>t_{j}$, or
- $i<j$ and, for some k with $i<k<j, t_{i} t_{k} t_{j} \sim 132$

Lemma

(σ, τ) is allowable if and only if σ is a linear extension of $P(\tau)$.

Main proof technique

Given a permutation $\tau=t_{1} t_{2} \cdots t_{n}$ we define a partial order $P(\tau)$ on $\{1, \ldots, n\}$ by defining $t_{i} \prec t_{j}$ if either

- $i<j$ and $t_{i}>t_{j}$, or
- $i<j$ and, for some k with $i<k<j, t_{i} t_{k} t_{j} \sim 132$

Example

If $\tau=31524$ then $P(\tau)$ has constraints $5 \prec 2,5 \prec 4$, $\{3,1\} \prec\{2,4\}$, and $3 \prec 1$.

Linear extensions
315243154235124
351425312453142

Lemma

(σ, τ) is allowable if and only if σ is a linear extension of $P(\tau)$.

Principal classes

- Suppose $\mathcal{X}=\operatorname{Av}(\alpha)$ and we want the basis for \mathcal{X}^{*}.

Principal classes

- Suppose $\mathcal{X}=\operatorname{Av}(\alpha)$ and we want the basis for \mathcal{X}^{*}.
- In order that $\tau \notin \mathcal{X}^{*}$ we require that none of the linear extensions of $P(\tau)$ belong to \mathcal{X}.
- So all the linear extensions of $P(\tau)$ must contain α.

Principal classes

- Suppose $\mathcal{X}=\operatorname{Av}(\alpha)$ and we want the basis for \mathcal{X}^{*}.
- In order that $\tau \notin \mathcal{X}^{*}$ we require that none of the linear extensions of $P(\tau)$ belong to \mathcal{X}.
- So all the linear extensions of $P(\tau)$ must contain α.
- It is sufficient that $P(\tau)$ contains a chain $a_{1} \prec a_{2} \cdots \prec a_{r}$ with $a_{1} a_{2} \cdots a_{r} \sim \alpha$ (an α-chain).
put elements to ensure $a_{i} \prec a_{i+1}$ in $P(\tau)$.

Principal classes

- Suppose $\mathcal{X}=\operatorname{Av}(\alpha)$ and we want the basis for \mathcal{X}^{*}.
- In order that $\tau \notin \mathcal{X}^{*}$ we require that none of the linear extensions of $P(\tau)$ belong to \mathcal{X}.
- So all the linear extensions of $P(\tau)$ must contain α.
- It is sufficient that $P(\tau)$ contains a chain $a_{1} \prec a_{2} \cdots \prec a_{r}$ with $a_{1} a_{2} \cdots a_{r} \sim \alpha$ (an α-chain).
- So some basis elements τ of \mathcal{X}^{*} may be found by taking $\tau=\cdots a_{1} \cdots a_{2} \cdots \ldots \cdots a_{r} \cdots$ where, in between the a_{i}, we put elements to ensure $a_{i} \prec a_{i+1}$ in $P(\tau)$.

Principal classes

- Suppose $\mathcal{X}=\operatorname{Av}(\alpha)$ and we want the basis for \mathcal{X}^{*}.
- In order that $\tau \notin \mathcal{X}^{*}$ we require that none of the linear extensions of $P(\tau)$ belong to \mathcal{X}.
- So all the linear extensions of $P(\tau)$ must contain α.
- It is sufficient that $P(\tau)$ contains a chain $a_{1} \prec a_{2} \cdots \prec a_{r}$ with $a_{1} a_{2} \cdots a_{r} \sim \alpha$ (an α-chain).
- So some basis elements τ of \mathcal{X}^{*} may be found by taking $\tau=\cdots a_{1} \cdots a_{2} \cdots \ldots \cdots a_{r} \cdots$ where, in between the a_{i}, we put elements to ensure $a_{i} \prec a_{i+1}$ in $P(\tau)$.
- If $a_{i}>a_{i+1}$ then automatically $a_{i} \prec a_{i+1}$
- If $a_{i}<a_{i+1}$ then we need $\cdots a_{i} c_{i} a_{i+1} \cdots$ with $c_{i}>a_{i+1}$

Some basis elements

Example

Let $\mathcal{X}=\operatorname{Av}(13524)$. Some elements in the basis of \mathcal{X}^{*} arise from permutations axcyebzd where acebd ~ 13524 and $x>c, y>e, z>d$.

There are 15 such permutations.

Sometimes we are lucky

In general this method only generates some of the basis elements. But for $\operatorname{Av}(\alpha)$ with $|\alpha| \leq 3$ it produces them all because of:

Theorem

Suppose $|\alpha| \leq 3$. For all $\tau, P(\tau)$ has no α-chain implies $P(\tau)$ has an α-avoiding linear extension.

Corollary

Suppose $|\alpha| \leq 3$ and $X=\operatorname{Av}(\alpha)$. The basis elements of \mathcal{X}^{*} are those minimal τ for which $P(\tau)$ has an α-chain.

Proof.

6 different cases!

One of the easy cases: $\alpha=312$

- Consider any $\tau=m_{1} \tau_{1} m_{2} \tau_{2} \cdots m_{k} \tau_{k}$ with left to right maxima m_{i} and where $P(\tau)$ has no 312-chain

One of the easy cases: $\alpha=312$

- Consider any $\tau=m_{1} \tau_{1} m_{2} \tau_{2} \cdots m_{k} \tau_{k}$ with left to right maxima m_{i} and where $P(\tau)$ has no 312-chain
- Define $\lambda=m_{1} \lambda_{1} m_{2} \lambda_{2} \cdots m_{k} \lambda_{k}$ with λ_{i} decreasing.

One of the easy cases: $\alpha=312$

- Consider any $\tau=m_{1} \tau_{1} m_{2} \tau_{2} \cdots m_{k} \tau_{k}$ with left to right maxima m_{i} and where $P(\tau)$ has no 312-chain
- Define $\lambda=m_{1} \lambda_{1} m_{2} \lambda_{2} \cdots m_{k} \lambda_{k}$ with λ_{i} decreasing.
(1) λ is a linear extension of $P(\tau)$

The only problem could be that, in some τ_{i}, we have $s \prec t$ with $s<t$ (which would prevent our arranging λ_{i} in decreasing order) Rut then $m: \prec \leqslant \prec+$ would he a 312 -chain
(2) λ does not contain 312

One of the easy cases: $\alpha=312$

- Consider any $\tau=m_{1} \tau_{1} m_{2} \tau_{2} \cdots m_{k} \tau_{k}$ with left to right maxima m_{i} and where $P(\tau)$ has no 312-chain
- Define $\lambda=m_{1} \lambda_{1} m_{2} \lambda_{2} \cdots m_{k} \lambda_{k}$ with λ_{i} decreasing.
(1) λ is a linear extension of $P(\tau)$

(2) λ does not contain 312

One of the easy cases: $\alpha=312$

- Consider any $\tau=m_{1} \tau_{1} m_{2} \tau_{2} \cdots m_{k} \tau_{k}$ with left to right maxima m_{i} and where $P(\tau)$ has no 312-chain
- Define $\lambda=m_{1} \lambda_{1} m_{2} \lambda_{2} \cdots m_{k} \lambda_{k}$ with λ_{i} decreasing.
(1) λ is a linear extension of $P(\tau)$

The only problem could be that, in some τ_{i}, we have $s \prec t$ with $s<t$ (which would prevent our arranging λ_{i} in decreasing order). But then $m_{i} \prec s \prec t$ would be a 312-chain in $P(\tau)$.
(2) λ does not contain 312

One of the easy cases: $\alpha=312$

- Consider any $\tau=m_{1} \tau_{1} m_{2} \tau_{2} \cdots m_{k} \tau_{k}$ with left to right maxima m_{i} and where $P(\tau)$ has no 312-chain
- Define $\lambda=m_{1} \lambda_{1} m_{2} \lambda_{2} \cdots m_{k} \lambda_{k}$ with λ_{i} decreasing.
(1) λ is a linear extension of $P(\tau)$

The only problem could be that, in some τ_{i}, we have $s \prec t$ with $s<t$ (which would prevent our arranging λ_{i} in decreasing order)

(2) λ does not contain 312

If λ contains some 312 we can take one of the form $m_{i} a b$ with $a \in \lambda_{i}$ and $b \in \lambda_{j}$ for some $j>i$. But, because of $a m_{j} b \sim 132$ we have $a \prec b$. In addition $m_{i} \prec a$ because $m_{i}>a$ and so $m_{i} \prec a \prec b$ is a 312-chain in $P(\tau)$.

Further work and open problems

- Characterize the principal classes $\mathcal{X}=\operatorname{Av}(\alpha)$ for which \mathcal{X}^{*} is finitely based. We have some suggestive numerical results for all α with $|\alpha|=4$.

Further work and open problems

- Characterize the principal classes $\mathcal{X}=\operatorname{Av}(\alpha)$ for which \mathcal{X}^{*} is finitely based. We have some suggestive numerical results for all α with $|\alpha|=4$.
- Solve the 'opposite' problem: given a pattern class \mathcal{X}, what is the pattern class of inputs that gives rise to \mathcal{X} as a set of outputs. This may be an easier problem since, if \mathcal{X} contains every increasing permutation, the answer is "All permutations".

Further work and open problems

- Characterize the principal classes $\mathcal{X}=\operatorname{Av}(\alpha)$ for which \mathcal{X}^{*} is finitely based. We have some suggestive numerical results for all α with $|\alpha|=4$.
- Solve the 'opposite' problem: given a pattern class \mathcal{X}, what is the pattern class of inputs that gives rise to \mathcal{X} as a set of outputs. This may be an easier problem since, if \mathcal{X} contains every increasing permutation, the answer is "All permutations".
- Carry out similar investigations for pair pattern classes other than \mathcal{A}. This almost certainly rather hard since pair pattern classes are far less studied than ordinary pattern classes.

Further work and open problems

- Characterize the principal classes $\mathcal{X}=\operatorname{Av}(\alpha)$ for which \mathcal{X}^{*} is finitely based. We have some suggestive numerical results for all α with $|\alpha|=4$.
- Solve the 'opposite' problem: given a pattern class \mathcal{X}, what is the pattern class of inputs that gives rise to \mathcal{X} as a set of outputs. This may be an easier problem since, if \mathcal{X} contains every increasing permutation, the answer is "All permutations".
- Carry out similar investigations for pair pattern classes other than \mathcal{A}. This almost certainly rather hard since pair pattern classes are far less studied than ordinary pattern classes.
— That's all folks -

