
New pattern classes from old
Priority queues

The main theorems
Proof techniques

Priority queues and pattern classes

Mike Atkinson

PP 2012
13 June 2012

Joint work with Michael Albert

Aspects of Separability

M. H. Albert (Otago)

PP 2007, St Andrews

M. H. Albert (Otago) Aspects of Separability PP 2007, St Andrews 1 / 12

1

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Outline of talk

1 New pattern classes from old

2 Priority queues

3 The main theorems

4 Proof techniques

2

New pattern classes from old
Priority queues

The main theorems
Proof techniques

New pattern classes from old

We know many “constructions” that transform pattern classes
into pattern classes.

X −→ X ⊕ C for some fixed pattern class C.
X −→ XC for some fixed pattern class C.
X −→ wk(X) (weak closure of X).
lots more.

Given any such construction X −→ X ∗ we try to find
methods to deduce properties of X ∗ from properties of X .

So any construction allows us to incrementally explore the
domain of pattern classes

3

New pattern classes from old
Priority queues

The main theorems
Proof techniques

New pattern classes from old

We know many “constructions” that transform pattern classes
into pattern classes.

X −→ X ⊕ C for some fixed pattern class C.
X −→ XC for some fixed pattern class C.
X −→ wk(X) (weak closure of X).
lots more.

Given any such construction X −→ X ∗ we try to find
methods to deduce properties of X ∗ from properties of X .

So any construction allows us to incrementally explore the
domain of pattern classes

3

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Uncountably many constructions

Generalize the pattern class order to an order on pairs of
permutations.

Consider the pair (32415, 23145)

. . . and any subset of the elements e.g. {1, 3, 4}
So (32415, 23145)
Pick out the pair (341, 314)
and relabel to get the pair (231, 213)
Then (231, 213) ≤ (32415, 23145)

This is a partial order on the set of pairs of permutations.

4

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Uncountably many constructions

Generalize the pattern class order to an order on pairs of
permutations.

Consider the pair (32415, 23145)

. . . and any subset of the elements e.g. {1, 3, 4}
So (32415, 23145)
Pick out the pair (341, 314)
and relabel to get the pair (231, 213)
Then (231, 213) ≤ (32415, 23145)

This is a partial order on the set of pairs of permutations.

4

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Uncountably many constructions

Generalize the pattern class order to an order on pairs of
permutations.

Consider the pair (32415, 23145)

. . . and any subset of the elements e.g. {1, 3, 4}
So (32415, 23145)
Pick out the pair (341, 314)
and relabel to get the pair (231, 213)
Then (231, 213) ≤ (32415, 23145)

This is a partial order on the set of pairs of permutations.

4

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Uncountably many constructions

Generalize the pattern class order to an order on pairs of
permutations.

Consider the pair (32415, 23145)

. . . and any subset of the elements e.g. {1, 3, 4}
So (32415, 23145)
Pick out the pair (341, 314)
and relabel to get the pair (231, 213)
Then (231, 213) ≤ (32415, 23145)

This is a partial order on the set of pairs of permutations.

4

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Uncountably many constructions

Generalize the pattern class order to an order on pairs of
permutations.

Consider the pair (32415, 23145)

. . . and any subset of the elements e.g. {1, 3, 4}
So (32415, 23145)
Pick out the pair (341, 314)
and relabel to get the pair (231, 213)
Then (231, 213) ≤ (32415, 23145)

This is a partial order on the set of pairs of permutations.

4

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Uncountably many constructions

Generalize the pattern class order to an order on pairs of
permutations.

Consider the pair (32415, 23145)

. . . and any subset of the elements e.g. {1, 3, 4}
So (32415, 23145)
Pick out the pair (341, 314)
and relabel to get the pair (231, 213)
Then (231, 213) ≤ (32415, 23145)

This is a partial order on the set of pairs of permutations.

4

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Uncountably many constructions

Definition

A pair pattern class is a down set in the order on pairs.

There are uncountably many pair pattern classes and very
little is known about them.

Pairs of permutations are the natural generalization of
permutations from 2 dimensions to 3 dimensions.

Theorem

Let R be any pair pattern class. For every pattern class X

XR = {τ | (σ, τ) ∈ R for some σ ∈ X}

is also a pattern class.

5

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Uncountably many constructions

Definition

A pair pattern class is a down set in the order on pairs.

There are uncountably many pair pattern classes and very
little is known about them.

Pairs of permutations are the natural generalization of
permutations from 2 dimensions to 3 dimensions.

Theorem

Let R be any pair pattern class. For every pattern class X

XR = {τ | (σ, τ) ∈ R for some σ ∈ X}

is also a pattern class.

5

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Uncountably many constructions

Definition

A pair pattern class is a down set in the order on pairs.

There are uncountably many pair pattern classes and very
little is known about them.

Pairs of permutations are the natural generalization of
permutations from 2 dimensions to 3 dimensions.

Theorem

Let R be any pair pattern class. For every pattern class X

XR = {τ | (σ, τ) ∈ R for some σ ∈ X}

is also a pattern class.

5

New pattern classes from old
Priority queues

The main theorems
Proof techniques

What is a priority queue?

A priority queue is a container which can contain priorities (or data
items which have a priority). There are two main operations
possible on the container:

Insert Insert a new item into the container

Delete-Min Delete the item of smallest priority from the container

6

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Priority queue computations

A priority queue computation is a sequence of Insert (I) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput
3 2 4 1 5

7

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Priority queue computations

A priority queue computation is a sequence of Insert (I) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput

3

2 4 1 53

7

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Priority queue computations

A priority queue computation is a sequence of Insert (I) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput

3 2

4 1 523

7

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Priority queue computations

A priority queue computation is a sequence of Insert (I) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput

3

2 4 1 523

7

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Priority queue computations

A priority queue computation is a sequence of Insert (I) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput

3

2

4

1 5423

7

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Priority queue computations

A priority queue computation is a sequence of Insert (I) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput
32

4

1 5423

7

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Priority queue computations

A priority queue computation is a sequence of Insert (I) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput
32

41

51423

7

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Priority queue computations

A priority queue computation is a sequence of Insert (I) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput
32

4

1 51423

7

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Priority queue computations

A priority queue computation is a sequence of Insert (I) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput
32

4

1

5

51423

7

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Priority queue computations

A priority queue computation is a sequence of Insert (I) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

I I D I D I D I D D

InputOutput
32 41

5

51423

7

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Priority queue computations

A priority queue computation is a sequence of Insert (I) and
Delete-Min (D) operations that begins and ends with the priority
queue in the empty state such as IIDIIDIDDD.
It takes a sequence of input items and produces a sequence of
output items

The input 32415 has been
transformed into the output 23145

InputOutput
32 41 5 51423

7

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Allowable pairs

We have just seen a priority queue computation that
transformed the input sequence 32415 into the output
sequence 23145.

(32415, 23145) is an allowable pair

The set A of allowable pairs is a pair pattern class

There are (n + 1)n−1 allowable pairs of length n

The basis of A is {(12, 21), (321, 132)}

8

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Allowable pairs

We have just seen a priority queue computation that
transformed the input sequence 32415 into the output
sequence 23145.

(32415, 23145) is an allowable pair

The set A of allowable pairs is a pair pattern class

There are (n + 1)n−1 allowable pairs of length n

The basis of A is {(12, 21), (321, 132)}

8

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Allowable pairs

We have just seen a priority queue computation that
transformed the input sequence 32415 into the output
sequence 23145.

(32415, 23145) is an allowable pair

The set A of allowable pairs is a pair pattern class

There are (n + 1)n−1 allowable pairs of length n

The basis of A is {(12, 21), (321, 132)}

8

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Restatement of previous theorem

Theorem

If a priority queue is presented with the permutations of a fixed
pattern class X as a set of inputs then the set of all possible
outputs is also a pattern class X ∗.

We study the map X −→ X ∗ defined on the set of all pattern classes.

9

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Simple examples of the X −→ X ∗ map

Suppose X is the set of all increasing permutations 12 · · · n
(one permutation of every length). No priority queue
computation can disorder 12 · · · n so X ∗ = X .

Suppose X is the set of all decreasing permutations n · · · 21
(one permutation of every length). Priority queue
computations are now just as though the priority queue was a
stack. So X ∗ is the set of permutations that avoid 132.

Basis of X Basis of X ∗

21 21
12 132

10

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Simple examples of the X −→ X ∗ map

Suppose X is the set of all increasing permutations 12 · · · n
(one permutation of every length). No priority queue
computation can disorder 12 · · · n so X ∗ = X .

Suppose X is the set of all decreasing permutations n · · · 21
(one permutation of every length). Priority queue
computations are now just as though the priority queue was a
stack. So X ∗ is the set of permutations that avoid 132.

Basis of X Basis of X ∗

21 21
12 132

10

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Simple examples of the X −→ X ∗ map

Suppose X is the set of all increasing permutations 12 · · · n
(one permutation of every length). No priority queue
computation can disorder 12 · · · n so X ∗ = X .

Suppose X is the set of all decreasing permutations n · · · 21
(one permutation of every length). Priority queue
computations are now just as though the priority queue was a
stack. So X ∗ is the set of permutations that avoid 132.

Basis of X Basis of X ∗

21 21
12 132

10

New pattern classes from old
Priority queues

The main theorems
Proof techniques

The main theorems

Basis of X Basis of X ∗

321 321
312 3142, 4132
231 2431
213 2143
132 1432
123 13254, 14253, 15243

11

New pattern classes from old
Priority queues

The main theorems
Proof techniques

The main theorems continued.

Basis of X Basis of X ∗

132, 321 321, 2143, 2413
213, 321 321, 2143, 2413
231, 312 2413, 2431, 3142, 4132
231, 321 231, 321
123, 132 1423, 1432, 13254
· · · · · ·

Any length 3 permutations Finite basis
· · · · · ·

But, if X = Av(2431), X ∗ is not finitely based.

12

New pattern classes from old
Priority queues

The main theorems
Proof techniques

The main theorems continued.

Basis of X Basis of X ∗

132, 321 321, 2143, 2413
213, 321 321, 2143, 2413
231, 312 2413, 2431, 3142, 4132
231, 321 231, 321
123, 132 1423, 1432, 13254
· · · · · ·

Any length 3 permutations Finite basis
· · · · · ·

But, if X = Av(2431), X ∗ is not finitely based.

12

New pattern classes from old
Priority queues

The main theorems
Proof techniques

When is X = X ∗?

Theorem

X = X ∗ if and only if X is closed downwards in the weak order.

It is easily detectable from the basis of X when the weak order
condition holds (every basis element β has the property that all
permutations above β in the weak order must have some (other)
basis element as a subpermutation).

13

New pattern classes from old
Priority queues

The main theorems
Proof techniques

When is X = X ∗?

Theorem

X = X ∗ if and only if X is closed downwards in the weak order.

It is easily detectable from the basis of X when the weak order
condition holds (every basis element β has the property that all
permutations above β in the weak order must have some (other)
basis element as a subpermutation).

13

New pattern classes from old
Priority queues

The main theorems
Proof techniques

When is X = X ∗?

Theorem

X = X ∗ if and only if X is closed downwards in the weak order.

Corollary

If X = Av(k · · · 2 1) then X = X ∗.

It is easily detectable from the basis of X when the weak order
condition holds (every basis element β has the property that all
permutations above β in the weak order must have some (other)
basis element as a subpermutation).

13

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Easy proof techniques

Sometimes we know so much about the structure of a pattern
class that we can directly compute the outputs of a priority queue
given an input permutation.

Example

If X = Av(231, 312) then X ∗ = Av(2413, 2431, 3142, 4132)

Proof.

Permutations of X are sums of decreasing permutations. Hence
X ∗ consists of permutations that are sums of 132-avoiding
permutations.

14

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Easy proof techniques

Sometimes we know so much about the structure of a pattern
class that we can directly compute the outputs of a priority queue
given an input permutation.

Example

If X = Av(231, 312) then X ∗ = Av(2413, 2431, 3142, 4132)

Proof.

Permutations of X are sums of decreasing permutations. Hence
X ∗ consists of permutations that are sums of 132-avoiding
permutations.

14

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Main proof technique

Given a permutation τ = t1t2 · · · tn we define a partial order P(τ)
on {1, . . . , n} by defining ti ≺ tj if either

i < j and ti > tj , or
i < j and, for some k with i < k < j , ti tktj ∼ 132

Example

If τ = 31524 then P(τ) has constraints 5 ≺ 2, 5 ≺ 4,
{3, 1} ≺ {2, 4}, and 3 ≺ 1.

Lemma

(σ, τ) is allowable if and only if σ is a linear extension of P(τ).
15

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Main proof technique

Given a permutation τ = t1t2 · · · tn we define a partial order P(τ)
on {1, . . . , n} by defining ti ≺ tj if either

i < j and ti > tj , or
i < j and, for some k with i < k < j , ti tktj ∼ 132

Example

If τ = 31524 then P(τ) has constraints 5 ≺ 2, 5 ≺ 4,
{3, 1} ≺ {2, 4}, and 3 ≺ 1.

3
15

2 4

Lemma

(σ, τ) is allowable if and only if σ is a linear extension of P(τ).
15

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Main proof technique

Given a permutation τ = t1t2 · · · tn we define a partial order P(τ)
on {1, . . . , n} by defining ti ≺ tj if either

i < j and ti > tj , or
i < j and, for some k with i < k < j , ti tktj ∼ 132

Example

If τ = 31524 then P(τ) has constraints 5 ≺ 2, 5 ≺ 4,
{3, 1} ≺ {2, 4}, and 3 ≺ 1.

Lemma

(σ, τ) is allowable if and only if σ is a linear extension of P(τ).
15

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Main proof technique

Given a permutation τ = t1t2 · · · tn we define a partial order P(τ)
on {1, . . . , n} by defining ti ≺ tj if either

i < j and ti > tj , or
i < j and, for some k with i < k < j , ti tktj ∼ 132

Example

If τ = 31524 then P(τ) has constraints 5 ≺ 2, 5 ≺ 4,
{3, 1} ≺ {2, 4}, and 3 ≺ 1.

Linear extensions
31524 31542 35124
35142 53124 531423

15
2 4

Lemma

(σ, τ) is allowable if and only if σ is a linear extension of P(τ).
15

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Principal classes

Suppose X = Av(α) and we want the basis for X ∗.

In order that τ 6∈ X ∗ we require that none of the linear
extensions of P(τ) belong to X .

So all the linear extensions of P(τ) must contain α.

It is sufficient that P(τ) contains a chain a1 ≺ a2 · · · ≺ ar
with a1a2 · · · ar ∼ α (an α-chain).

So some basis elements τ of X ∗ may be found by taking
τ = · · · a1 · · · a2 · · · . . . · · · ar · · · where, in between the ai , we
put elements to ensure ai ≺ ai+1 in P(τ).

If ai > ai+1 then automatically ai ≺ ai+1

If ai < ai+1 then we need · · · aiciai+1 · · · with ci > ai+1

16

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Principal classes

Suppose X = Av(α) and we want the basis for X ∗.

In order that τ 6∈ X ∗ we require that none of the linear
extensions of P(τ) belong to X .

So all the linear extensions of P(τ) must contain α.

It is sufficient that P(τ) contains a chain a1 ≺ a2 · · · ≺ ar
with a1a2 · · · ar ∼ α (an α-chain).

So some basis elements τ of X ∗ may be found by taking
τ = · · · a1 · · · a2 · · · . . . · · · ar · · · where, in between the ai , we
put elements to ensure ai ≺ ai+1 in P(τ).

If ai > ai+1 then automatically ai ≺ ai+1

If ai < ai+1 then we need · · · aiciai+1 · · · with ci > ai+1

16

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Principal classes

Suppose X = Av(α) and we want the basis for X ∗.

In order that τ 6∈ X ∗ we require that none of the linear
extensions of P(τ) belong to X .

So all the linear extensions of P(τ) must contain α.

It is sufficient that P(τ) contains a chain a1 ≺ a2 · · · ≺ ar
with a1a2 · · · ar ∼ α (an α-chain).

So some basis elements τ of X ∗ may be found by taking
τ = · · · a1 · · · a2 · · · . . . · · · ar · · · where, in between the ai , we
put elements to ensure ai ≺ ai+1 in P(τ).

If ai > ai+1 then automatically ai ≺ ai+1

If ai < ai+1 then we need · · · aiciai+1 · · · with ci > ai+1

16

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Principal classes

Suppose X = Av(α) and we want the basis for X ∗.

In order that τ 6∈ X ∗ we require that none of the linear
extensions of P(τ) belong to X .

So all the linear extensions of P(τ) must contain α.

It is sufficient that P(τ) contains a chain a1 ≺ a2 · · · ≺ ar
with a1a2 · · · ar ∼ α (an α-chain).

So some basis elements τ of X ∗ may be found by taking
τ = · · · a1 · · · a2 · · · . . . · · · ar · · · where, in between the ai , we
put elements to ensure ai ≺ ai+1 in P(τ).

If ai > ai+1 then automatically ai ≺ ai+1

If ai < ai+1 then we need · · · aiciai+1 · · · with ci > ai+1

16

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Principal classes

Suppose X = Av(α) and we want the basis for X ∗.

In order that τ 6∈ X ∗ we require that none of the linear
extensions of P(τ) belong to X .

So all the linear extensions of P(τ) must contain α.

It is sufficient that P(τ) contains a chain a1 ≺ a2 · · · ≺ ar
with a1a2 · · · ar ∼ α (an α-chain).

So some basis elements τ of X ∗ may be found by taking
τ = · · · a1 · · · a2 · · · . . . · · · ar · · · where, in between the ai , we
put elements to ensure ai ≺ ai+1 in P(τ).

If ai > ai+1 then automatically ai ≺ ai+1

If ai < ai+1 then we need · · · aiciai+1 · · · with ci > ai+1

16

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Some basis elements

Example

Let X = Av(13524). Some elements in the basis of X ∗ arise from
permutations axcyebzd where acebd ∼ 13524 and
x > c , y > e, z > d .

a
b
c
d
e
y

z
x

There are 15 such permutations.
17

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Sometimes we are lucky

In general this method only generates some of the basis elements.
But for Av(α) with |α| ≤ 3 it produces them all because of:

Theorem

Suppose |α| ≤ 3. For all τ , P(τ) has no α-chain implies P(τ) has
an α-avoiding linear extension.

Corollary

Suppose |α| ≤ 3 and X = Av(α). The basis elements of X ∗ are
those minimal τ for which P(τ) has an α-chain.

Proof.

6 different cases!

18

New pattern classes from old
Priority queues

The main theorems
Proof techniques

One of the easy cases: α = 312

Consider any τ = m1τ1m2τ2 · · ·mkτk with left to right
maxima mi and where P(τ) has no 312-chain

Define λ = m1λ1m2λ2 · · ·mkλk with λi decreasing.

1 λ is a linear extension of P(τ)

The only problem could be that, in some τi , we have s ≺ t
with s < t (which would prevent our arranging λi in
decreasing order). But then mi ≺ s ≺ t would be a 312-chain
in P(τ).

2 λ does not contain 312

If λ contains some 312 we can take one of the form miab
with a ∈ λi and b ∈ λj for some j > i . But, because of
amjb ∼ 132 we have a ≺ b. In addition mi ≺ a because
mi > a and so mi ≺ a ≺ b is a 312-chain in P(τ).

19

New pattern classes from old
Priority queues

The main theorems
Proof techniques

One of the easy cases: α = 312

Consider any τ = m1τ1m2τ2 · · ·mkτk with left to right
maxima mi and where P(τ) has no 312-chain

Define λ = m1λ1m2λ2 · · ·mkλk with λi decreasing.

1 λ is a linear extension of P(τ)

The only problem could be that, in some τi , we have s ≺ t
with s < t (which would prevent our arranging λi in
decreasing order). But then mi ≺ s ≺ t would be a 312-chain
in P(τ).

2 λ does not contain 312

If λ contains some 312 we can take one of the form miab
with a ∈ λi and b ∈ λj for some j > i . But, because of
amjb ∼ 132 we have a ≺ b. In addition mi ≺ a because
mi > a and so mi ≺ a ≺ b is a 312-chain in P(τ).

19

New pattern classes from old
Priority queues

The main theorems
Proof techniques

One of the easy cases: α = 312

Consider any τ = m1τ1m2τ2 · · ·mkτk with left to right
maxima mi and where P(τ) has no 312-chain

Define λ = m1λ1m2λ2 · · ·mkλk with λi decreasing.

1 λ is a linear extension of P(τ)

The only problem could be that, in some τi , we have s ≺ t
with s < t (which would prevent our arranging λi in
decreasing order). But then mi ≺ s ≺ t would be a 312-chain
in P(τ).

2 λ does not contain 312

If λ contains some 312 we can take one of the form miab
with a ∈ λi and b ∈ λj for some j > i . But, because of
amjb ∼ 132 we have a ≺ b. In addition mi ≺ a because
mi > a and so mi ≺ a ≺ b is a 312-chain in P(τ).

19

New pattern classes from old
Priority queues

The main theorems
Proof techniques

One of the easy cases: α = 312

Consider any τ = m1τ1m2τ2 · · ·mkτk with left to right
maxima mi and where P(τ) has no 312-chain

Define λ = m1λ1m2λ2 · · ·mkλk with λi decreasing.

1 λ is a linear extension of P(τ)

The only problem could be that, in some τi , we have s ≺ t
with s < t (which would prevent our arranging λi in
decreasing order). But then mi ≺ s ≺ t would be a 312-chain
in P(τ).

2 λ does not contain 312

If λ contains some 312 we can take one of the form miab
with a ∈ λi and b ∈ λj for some j > i . But, because of
amjb ∼ 132 we have a ≺ b. In addition mi ≺ a because
mi > a and so mi ≺ a ≺ b is a 312-chain in P(τ).

19

New pattern classes from old
Priority queues

The main theorems
Proof techniques

One of the easy cases: α = 312

Consider any τ = m1τ1m2τ2 · · ·mkτk with left to right
maxima mi and where P(τ) has no 312-chain

Define λ = m1λ1m2λ2 · · ·mkλk with λi decreasing.

1 λ is a linear extension of P(τ)

The only problem could be that, in some τi , we have s ≺ t
with s < t (which would prevent our arranging λi in
decreasing order). But then mi ≺ s ≺ t would be a 312-chain
in P(τ).

2 λ does not contain 312

If λ contains some 312 we can take one of the form miab
with a ∈ λi and b ∈ λj for some j > i . But, because of
amjb ∼ 132 we have a ≺ b. In addition mi ≺ a because
mi > a and so mi ≺ a ≺ b is a 312-chain in P(τ).

19

New pattern classes from old
Priority queues

The main theorems
Proof techniques

One of the easy cases: α = 312

Consider any τ = m1τ1m2τ2 · · ·mkτk with left to right
maxima mi and where P(τ) has no 312-chain

Define λ = m1λ1m2λ2 · · ·mkλk with λi decreasing.

1 λ is a linear extension of P(τ)

The only problem could be that, in some τi , we have s ≺ t
with s < t (which would prevent our arranging λi in
decreasing order). But then mi ≺ s ≺ t would be a 312-chain
in P(τ).

2 λ does not contain 312

If λ contains some 312 we can take one of the form miab
with a ∈ λi and b ∈ λj for some j > i . But, because of
amjb ∼ 132 we have a ≺ b. In addition mi ≺ a because
mi > a and so mi ≺ a ≺ b is a 312-chain in P(τ).

19

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Further work and open problems

Characterize the principal classes X = Av(α) for which X ∗ is
finitely based. We have some suggestive numerical results for
all α with |α| = 4.

Solve the ‘opposite’ problem: given a pattern class X , what is
the pattern class of inputs that gives rise to X as a set of
outputs. This may be an easier problem since, if X contains
every increasing permutation, the answer is “All
permutations”.

Carry out similar investigations for pair pattern classes other
than A. This almost certainly rather hard since pair pattern
classes are far less studied than ordinary pattern classes.

— That’s all folks —

20

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Further work and open problems

Characterize the principal classes X = Av(α) for which X ∗ is
finitely based. We have some suggestive numerical results for
all α with |α| = 4.

Solve the ‘opposite’ problem: given a pattern class X , what is
the pattern class of inputs that gives rise to X as a set of
outputs. This may be an easier problem since, if X contains
every increasing permutation, the answer is “All
permutations”.

Carry out similar investigations for pair pattern classes other
than A. This almost certainly rather hard since pair pattern
classes are far less studied than ordinary pattern classes.

— That’s all folks —

20

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Further work and open problems

Characterize the principal classes X = Av(α) for which X ∗ is
finitely based. We have some suggestive numerical results for
all α with |α| = 4.

Solve the ‘opposite’ problem: given a pattern class X , what is
the pattern class of inputs that gives rise to X as a set of
outputs. This may be an easier problem since, if X contains
every increasing permutation, the answer is “All
permutations”.

Carry out similar investigations for pair pattern classes other
than A. This almost certainly rather hard since pair pattern
classes are far less studied than ordinary pattern classes.

— That’s all folks —

20

New pattern classes from old
Priority queues

The main theorems
Proof techniques

Further work and open problems

Characterize the principal classes X = Av(α) for which X ∗ is
finitely based. We have some suggestive numerical results for
all α with |α| = 4.

Solve the ‘opposite’ problem: given a pattern class X , what is
the pattern class of inputs that gives rise to X as a set of
outputs. This may be an easier problem since, if X contains
every increasing permutation, the answer is “All
permutations”.

Carry out similar investigations for pair pattern classes other
than A. This almost certainly rather hard since pair pattern
classes are far less studied than ordinary pattern classes.

— That’s all folks —

20

	New pattern classes from old
	Priority queues
	The main theorems
	Proof techniques

