Priority queues and pattern classes

Mike Atkinson

PP 2012 13 June 2012 Joint work with Michael Albert

Proof techniques

Outline of talk

1 New pattern classes from old

2 Priority queues

New pattern classes from old

- We know many "constructions" that transform pattern classes into pattern classes.
 - $\mathcal{X} \longrightarrow \mathcal{X} \oplus \mathcal{C}$ for some fixed pattern class \mathcal{C} .
 - $\mathcal{X} \longrightarrow \mathcal{XC}$ for some fixed pattern class $\mathcal{C}.$
 - $\mathcal{X} \longrightarrow wk(\mathcal{X})$ (weak closure of \mathcal{X}).
 - lots more.
- Given any such construction X → X* we try to find methods to deduce properties of X* from properties of X.
- So any construction allows us to incrementally explore the domain of pattern classes

New pattern classes from old

- We know many "constructions" that transform pattern classes into pattern classes.
 - $\mathcal{X} \longrightarrow \mathcal{X} \oplus \mathcal{C}$ for some fixed pattern class \mathcal{C} .
 - $\mathcal{X} \longrightarrow \mathcal{XC}$ for some fixed pattern class \mathcal{C} .
 - $\mathcal{X} \longrightarrow wk(\mathcal{X})$ (weak closure of \mathcal{X}).
 - lots more.
- Given any such construction X → X* we try to find methods to deduce properties of X* from properties of X.
- So any construction allows us to incrementally explore the domain of pattern classes

- Generalize the pattern class order to an order on pairs of permutations.
- Consider the pair (32415, 23145)
 -and any subset of the elements e.g. {1,3,4}
 - So (32415, 23145)
 - Pick out the pair (341, 314).
 - and relabel to get the pair (231, 213
 - Then $(231, 213) \leq (32415, 23145)$
- This is a partial order on the set of pairs of permutations.

- Generalize the pattern class order to an order on pairs of permutations.
- Consider the pair (32415, 23145)
 - ... and any subset of the elements e.g. $\{1,3,4\}$
 - So (32415, 23145)
 - Pick out the pair (341, 314)
 - and relabel to get the pair (231, 213)
 - Then $(231, 213) \le (32415, 23145)$
- This is a partial order on the set of pairs of permutations.

- Generalize the pattern class order to an order on pairs of permutations.
- Consider the pair (32415, 23145)
 - \bullet ... and any subset of the elements e.g. $\{1,3,4\}$
 - So (32415, 23145)
 - Pick out the pair (341, 314)
 - and relabel to get the pair (231, 213)
 - Then $(231, 213) \le (32415, 23145)$
- This is a partial order on the set of pairs of permutations.

- Generalize the pattern class order to an order on pairs of permutations.
- Consider the pair (32415, 23145)
 - \bullet ... and any subset of the elements e.g. $\{1,3,4\}$
 - So (32415, 23145)
 - Pick out the pair (341, 314)
 - and relabel to get the pair (231, 213)
 - Then $(231, 213) \le (32415, 23145)$
- This is a partial order on the set of pairs of permutations.

Uncountably many constructions

- Generalize the pattern class order to an order on pairs of permutations.
- Consider the pair (32415, 23145)
 - \bullet ... and any subset of the elements e.g. $\{1,3,4\}$
 - So (32415, 23145)
 - Pick out the pair (341, 314)
 - and relabel to get the pair (231, 213)
 - Then $(231, 213) \le (32415, 23145)$

• This is a partial order on the set of pairs of permutations.

- Generalize the pattern class order to an order on pairs of permutations.
- Consider the pair (32415, 23145)
 - \bullet ... and any subset of the elements e.g. $\{1,3,4\}$
 - So (32415, 23145)
 - Pick out the pair (341, 314)
 - and relabel to get the pair (231, 213)
 - Then $(231, 213) \le (32415, 23145)$
- This is a partial order on the set of pairs of permutations.

Uncountably many constructions

Definition

A pair pattern class is a down set in the order on pairs.

- There are uncountably many pair pattern classes and very little is known about them.
- Pairs of permutations are the natural generalization of permutations from 2 dimensions to 3 dimensions.

Theorem

Let $\mathcal R$ be any pair pattern class. For every pattern class $\mathcal X$

 $\mathcal{XR} = \{ \tau \mid (\sigma, \tau) \in \mathcal{R} \text{ for some } \sigma \in \mathcal{X} \}$

is also a pattern class.

Uncountably many constructions

Definition

A pair pattern class is a down set in the order on pairs.

- There are uncountably many pair pattern classes and very little is known about them.
- Pairs of permutations are the natural generalization of permutations from 2 dimensions to 3 dimensions.

Theorem

Let $\mathcal R$ be any pair pattern class. For every pattern class $\mathcal X$

 $\mathcal{XR} = \{ \tau \mid (\sigma, \tau) \in \mathcal{R} \text{ for some } \sigma \in \mathcal{X} \}$

is also a pattern class.

Uncountably many constructions

Definition

A pair pattern class is a down set in the order on pairs.

- There are uncountably many pair pattern classes and very little is known about them.
- Pairs of permutations are the natural generalization of permutations from 2 dimensions to 3 dimensions.

Theorem

Let $\mathcal R$ be any pair pattern class. For every pattern class $\mathcal X$

$$\mathcal{XR} = \{ \tau \mid (\sigma, \tau) \in \mathcal{R} \text{ for some } \sigma \in \mathcal{X} \}$$

is also a pattern class.

What is a priority queue?

A priority queue is a container which can contain priorities (or data items which have a priority). There are two main operations possible on the container:

Insert Insert a new item into the container

Delete-Min Delete the item of smallest priority from the container

Priority queue computations

Allowable pairs

- We have just seen a priority queue computation that transformed the input sequence 32415 into the output sequence 23145.
- (32415, 23145) is an allowable pair
- ullet The set ${\mathcal A}$ of allowable pairs is a pair pattern class
- There are $(n+1)^{n-1}$ allowable pairs of length n
- The basis of A is {(12, 21), (321, 132)}

Allowable pairs

- We have just seen a priority queue computation that transformed the input sequence 32415 into the output sequence 23145.
- (32415, 23145) is an allowable pair
- $\bullet\,$ The set ${\cal A}$ of allowable pairs is a pair pattern class
- There are $(n+1)^{n-1}$ allowable pairs of length n
- The basis of \mathcal{A} is $\{(12, 21), (321, 132)\}$

Allowable pairs

- We have just seen a priority queue computation that transformed the input sequence 32415 into the output sequence 23145.
- (32415, 23145) is an allowable pair
- $\bullet\,$ The set ${\cal A}$ of allowable pairs is a pair pattern class
- There are $(n+1)^{n-1}$ allowable pairs of length n
- The basis of A is {(12, 21), (321, 132)}

Restatement of previous theorem

Theorem

If a priority queue is presented with the permutations of a fixed pattern class \mathcal{X} as a set of inputs then the set of all possible outputs is also a pattern class \mathcal{X}^* .

We study the map $\mathcal{X} \longrightarrow \mathcal{X}^*$ defined on the set of all pattern classes.

Simple examples of the $\mathcal{X} \longrightarrow \mathcal{X}^*$ map

- Suppose X is the set of all increasing permutations 12...n (one permutation of every length). No priority queue computation can disorder 12...n so X* = X.
- Suppose X is the set of all decreasing permutations n···21 (one permutation of every length). Priority queue computations are now just as though the priority queue was a stack. So X* is the set of permutations that avoid 132.

Simple examples of the $\mathcal{X} \longrightarrow \mathcal{X}^*$ map

- Suppose X is the set of all increasing permutations 12...n (one permutation of every length). No priority queue computation can disorder 12...n so X* = X.
- Suppose X is the set of all decreasing permutations n···21 (one permutation of every length). Priority queue computations are now just as though the priority queue was a stack. So X* is the set of permutations that avoid 132.

Simple examples of the $\mathcal{X} \longrightarrow \mathcal{X}^*$ map

- Suppose X is the set of all increasing permutations 12...n (one permutation of every length). No priority queue computation can disorder 12...n so X* = X.
- Suppose X is the set of all decreasing permutations n···21 (one permutation of every length). Priority queue computations are now just as though the priority queue was a stack. So X* is the set of permutations that avoid 132.

Basis of \mathcal{X}	Basis of \mathcal{X}^*
21	21
12	132

The main theorems

Basis of \mathcal{X}	Basis of \mathcal{X}^*
321	321
312	3142, 4132
231	2431
213	2143
132	1432
123	13254, 14253, 15243

The main theorems continued.

Basis of \mathcal{X}	Basis of \mathcal{X}^*
132, 321	321, 2143, 2413
213, 321	321, 2143, 2413
231, 312	2413, 2431, 3142, 4132
231, 321	231, 321
123, 132	1423, 1432, 13254
Any length 3 permutations	Finite basis

But, if $\mathcal{X} = Av(2431)$, \mathcal{X}^* is not finitely based.

The main theorems continued.

But, if $\mathcal{X} = Av(2431)$, \mathcal{X}^* is not finitely based.

When is $\mathcal{X} = \mathcal{X}^*$?

Theorem

 $\mathcal{X} = \mathcal{X}^*$ if and only if \mathcal{X} is closed downwards in the weak order.

It is easily detectable from the basis of \mathcal{X} when the weak order condition holds (every basis element β has the property that all permutations above β in the weak order must have some (other) basis element as a subpermutation).

When is $\mathcal{X} = \mathcal{X}^*$?

Theorem

 $\mathcal{X} = \mathcal{X}^*$ if and only if \mathcal{X} is closed downwards in the weak order.

It is easily detectable from the basis of \mathcal{X} when the weak order condition holds (every basis element β has the property that all permutations above β in the weak order must have some (other) basis element as a subpermutation).

When is $\mathcal{X} = \mathcal{X}^*$?

Theorem

 $\mathcal{X} = \mathcal{X}^*$ if and only if \mathcal{X} is closed downwards in the weak order.

Corollary

If
$$\mathcal{X} = \operatorname{Av}(k \cdots 2 1)$$
 then $\mathcal{X} = \mathcal{X}^*$.

It is easily detectable from the basis of \mathcal{X} when the weak order condition holds (every basis element β has the property that all permutations above β in the weak order must have some (other) basis element as a subpermutation).

Easy proof techniques

Sometimes we know so much about the structure of a pattern class that we can directly compute the outputs of a priority queue given an input permutation.

Example

If $\mathcal{X} = Av(231, 312)$ then $\mathcal{X}^* = Av(2413, 2431, 3142, 4132)$

Proof.

Permutations of \mathcal{X} are sums of decreasing permutations. Hence \mathcal{X}^* consists of permutations that are sums of 132-avoiding permutations.

Easy proof techniques

Sometimes we know so much about the structure of a pattern class that we can directly compute the outputs of a priority queue given an input permutation.

Example

If $\mathcal{X} = Av(231, 312)$ then $\mathcal{X}^* = Av(2413, 2431, 3142, 4132)$

Proof.

Permutations of \mathcal{X} are sums of decreasing permutations. Hence \mathcal{X}^* consists of permutations that are sums of 132-avoiding permutations.

Main proof technique

Given a permutation $\tau = t_1 t_2 \cdots t_n$ we define a partial order $P(\tau)$ on $\{1, \ldots, n\}$ by defining $t_i \prec t_j$ if either

- i < j and $t_i > t_j$, or
- i < j and, for some k with i < k < j, $t_i t_k t_j \sim 132$

Example

If au= 31524 then P(au) has constraints 5 \prec 2, 5 \prec 4, $\{3,1\}$ \prec $\{2,4\}$, and 3 \prec 1.

Lemma

 (σ, τ) is allowable if and only if σ is a linear extension of $P(\tau)$.

Main proof technique

Given a permutation $\tau = t_1 t_2 \cdots t_n$ we define a partial order $P(\tau)$ on $\{1, \ldots, n\}$ by defining $t_i \prec t_j$ if either

- i < j and $t_i > t_j$, or
- i < j and, for some k with i < k < j, $t_i t_k t_j \sim 132$

Example

If $\tau = 31524$ then $P(\tau)$ has constraints $5 \prec 2, 5 \prec 4$, $\{3,1\} \prec \{2,4\}$, and $3 \prec 1$.

Lemma

 (σ, au) is allowable if and only if σ is a linear extension of P(au).

Main proof technique

Given a permutation $\tau = t_1 t_2 \cdots t_n$ we define a partial order $P(\tau)$ on $\{1, \ldots, n\}$ by defining $t_i \prec t_j$ if either

- i < j and $t_i > t_j$, or
- i < j and, for some k with i < k < j, $t_i t_k t_j \sim 132$

Example

If $\tau = 31524$ then $P(\tau)$ has constraints 5 \prec 2, 5 \prec 4, $\{3,1\} \prec \{2,4\}$, and 3 \prec 1.

Lemma

 (σ, τ) is allowable if and only if σ is a linear extension of $P(\tau)$.

Main proof technique

Given a permutation $\tau = t_1 t_2 \cdots t_n$ we define a partial order $P(\tau)$ on $\{1, \ldots, n\}$ by defining $t_i \prec t_j$ if either

- i < j and $t_i > t_j$, or
- i < j and, for some k with i < k < j, $t_i t_k t_j \sim 132$

Example

If $\tau = 31524$ then $P(\tau)$ has constraints $5 \prec 2, 5 \prec 4$, $\{3,1\} \prec \{2,4\}$, and $3 \prec 1$.

Lemma

 (σ, τ) is allowable if and only if σ is a linear extension of $P(\tau)$.

Principal classes

• Suppose $\mathcal{X} = \operatorname{Av}(\alpha)$ and we want the basis for \mathcal{X}^* .

- In order that τ ∉ X* we require that none of the linear extensions of P(τ) belong to X.
- So all the linear extensions of $P(\tau)$ must contain α .
- It is sufficient that P(τ) contains a chain a₁ ≺ a₂ ··· ≺ a_r with a₁a₂ ··· a_r ~ α (an α-chain).
- So some basis elements τ of \mathcal{X}^* may be found by taking $\tau = \cdots a_1 \cdots a_2 \cdots a_r \cdots$ where, in between the a_i , we put elements to ensure $a_i \prec a_{i+1}$ in $P(\tau)$.
- If $a_i > a_{i+1}$ then automatically $a_i \prec a_{i+1}$
- If $a_i < a_{i+1}$ then we need $\cdots a_i c_i a_{i+1} \cdots$ with $c_i > a_{i+1}$

- Suppose $\mathcal{X} = \operatorname{Av}(\alpha)$ and we want the basis for \mathcal{X}^* .
- In order that τ ∉ X* we require that none of the linear extensions of P(τ) belong to X.
- So all the linear extensions of $P(\tau)$ must contain α .
- It is sufficient that P(τ) contains a chain a₁ ≺ a₂ ··· ≺ a_r with a₁a₂ ··· a_r ~ α (an α-chain).
- So some basis elements τ of \mathcal{X}^* may be found by taking $\tau = \cdots a_1 \cdots a_2 \cdots a_r \cdots where$, in between the a_i , we put elements to ensure $a_i \prec a_{i+1}$ in $P(\tau)$.
- If $a_i > a_{i+1}$ then automatically $a_i \prec a_{i+1}$
- If $a_i < a_{i+1}$ then we need $\cdots a_i c_i a_{i+1} \cdots$ with $c_i > a_{i+1}$

- Suppose $\mathcal{X} = \operatorname{Av}(\alpha)$ and we want the basis for \mathcal{X}^* .
- In order that τ ∉ X* we require that none of the linear extensions of P(τ) belong to X.
- So all the linear extensions of $P(\tau)$ must contain α .
- It is sufficient that P(τ) contains a chain a₁ ≺ a₂ ··· ≺ a_r with a₁a₂ ··· a_r ~ α (an α-chain).
- So some basis elements τ of \mathcal{X}^* may be found by taking $\tau = \cdots a_1 \cdots a_2 \cdots a_r \cdots$ where, in between the a_i , we put elements to ensure $a_i \prec a_{i+1}$ in $P(\tau)$.
- If $a_i > a_{i+1}$ then automatically $a_i \prec a_{i+1}$
- If $a_i < a_{i+1}$ then we need $\cdots a_i c_i a_{i+1} \cdots$ with $c_i > a_{i+1}$

- Suppose $\mathcal{X} = \operatorname{Av}(\alpha)$ and we want the basis for \mathcal{X}^* .
- In order that τ ∉ X* we require that none of the linear extensions of P(τ) belong to X.
- So all the linear extensions of $P(\tau)$ must contain α .
- It is sufficient that P(τ) contains a chain a₁ ≺ a₂ ··· ≺ a_r with a₁a₂ ··· a_r ~ α (an α-chain).
- So *some* basis elements τ of \mathcal{X}^* may be found by taking $\tau = \cdots a_1 \cdots a_2 \cdots a_r \cdots$ where, in between the a_i , we put elements to ensure $a_i \prec a_{i+1}$ in $P(\tau)$.
- If $a_i > a_{i+1}$ then automatically $a_i \prec a_{i+1}$
- If $a_i < a_{i+1}$ then we need $\cdots a_i c_i a_{i+1} \cdots$ with $c_i > a_{i+1}$

- Suppose $\mathcal{X} = \operatorname{Av}(\alpha)$ and we want the basis for \mathcal{X}^* .
- In order that τ ∉ X* we require that none of the linear extensions of P(τ) belong to X.
- So all the linear extensions of $P(\tau)$ must contain α .
- It is sufficient that P(τ) contains a chain a₁ ≺ a₂ ··· ≺ a_r with a₁a₂ ··· a_r ~ α (an α-chain).
- So *some* basis elements τ of \mathcal{X}^* may be found by taking $\tau = \cdots a_1 \cdots a_2 \cdots a_r \cdots$ where, in between the a_i , we put elements to ensure $a_i \prec a_{i+1}$ in $P(\tau)$.
- If $a_i > a_{i+1}$ then automatically $a_i \prec a_{i+1}$
- If $a_i < a_{i+1}$ then we need $\cdots a_i c_i a_{i+1} \cdots$ with $c_i > a_{i+1}$

Some basis elements

Example

Let $\mathcal{X} = Av(13524)$. Some elements in the basis of \mathcal{X}^* arise from permutations *axcyebzd* where *acebd* ~ 13524 and x > c, y > e, z > d.

There are 15 such permutations.

Sometimes we are lucky

In general this method only generates *some* of the basis elements. But for $Av(\alpha)$ with $|\alpha| \le 3$ it produces them all because of:

Theorem

Suppose $|\alpha| \leq 3$. For all τ , $P(\tau)$ has no α -chain implies $P(\tau)$ has an α -avoiding linear extension.

Corollary

Suppose $|\alpha| \leq 3$ and $X = Av(\alpha)$. The basis elements of \mathcal{X}^* are those minimal τ for which $P(\tau)$ has an α -chain.

Proof.

6 different cases!

One of the easy cases: $\alpha = 312$

- Consider any $\tau = m_1 \tau_1 m_2 \tau_2 \cdots m_k \tau_k$ with left to right maxima m_i and where $P(\tau)$ has no 312-chain
- Define $\lambda = m_1 \lambda_1 m_2 \lambda_2 \cdots m_k \lambda_k$ with λ_i decreasing.

1 λ is a linear extension of $P(\tau)$

The only problem could be that, in some τ_i , we have $s \prec t$ with s < t (which would prevent our arranging λ_i in decreasing order). But then $m_i \prec s \prec t$ would be a 312-chain in $P(\tau)$.

a λ does not contain 312

One of the easy cases: $\alpha = 312$

- Consider any $\tau = m_1 \tau_1 m_2 \tau_2 \cdots m_k \tau_k$ with left to right maxima m_i and where $P(\tau)$ has no 312-chain
- Define $\lambda = m_1 \lambda_1 m_2 \lambda_2 \cdots m_k \lambda_k$ with λ_i decreasing.

• λ is a linear extension of $P(\tau)$

The only problem could be that, in some τ_i , we have $s \prec t$ with s < t (which would prevent our arranging λ_i in decreasing order). But then $m_i \prec s \prec t$ would be a 312-chain in $P(\tau)$.

a λ does not contain 312

One of the easy cases: $\alpha = 312$

- Consider any $\tau = m_1 \tau_1 m_2 \tau_2 \cdots m_k \tau_k$ with left to right maxima m_i and where $P(\tau)$ has no 312-chain
- Define $\lambda = m_1 \lambda_1 m_2 \lambda_2 \cdots m_k \lambda_k$ with λ_i decreasing.

• λ is a linear extension of $P(\tau)$

The only problem could be that, in some τ_i , we have $s \prec t$ with s < t (which would prevent our arranging λ_i in decreasing order). But then $m_i \prec s \prec t$ would be a 312-chain in $P(\tau)$.

2 λ does not contain 312

One of the easy cases: $\alpha = 312$

- Consider any $\tau = m_1 \tau_1 m_2 \tau_2 \cdots m_k \tau_k$ with left to right maxima m_i and where $P(\tau)$ has no 312-chain
- Define $\lambda = m_1 \lambda_1 m_2 \lambda_2 \cdots m_k \lambda_k$ with λ_i decreasing.

1 λ is a linear extension of $P(\tau)$

The only problem could be that, in some τ_i , we have $s \prec t$ with s < t (which would prevent our arranging λ_i in decreasing order). But then $m_i \prec s \prec t$ would be a 312-chain in $P(\tau)$.

2 λ does not contain 312

One of the easy cases: $\alpha = 312$

- Consider any $\tau = m_1 \tau_1 m_2 \tau_2 \cdots m_k \tau_k$ with left to right maxima m_i and where $P(\tau)$ has no 312-chain
- Define $\lambda = m_1 \lambda_1 m_2 \lambda_2 \cdots m_k \lambda_k$ with λ_i decreasing.
- λ is a linear extension of $P(\tau)$

The only problem could be that, in some τ_i , we have $s \prec t$ with s < t (which would prevent our arranging λ_i in decreasing order). But then $m_i \prec s \prec t$ would be a 312-chain in $P(\tau)$.

2 λ does not contain 312

One of the easy cases: $\alpha = 312$

- Consider any $\tau = m_1 \tau_1 m_2 \tau_2 \cdots m_k \tau_k$ with left to right maxima m_i and where $P(\tau)$ has no 312-chain
- Define $\lambda = m_1 \lambda_1 m_2 \lambda_2 \cdots m_k \lambda_k$ with λ_i decreasing.

1 λ is a linear extension of $P(\tau)$

The only problem could be that, in some τ_i , we have $s \prec t$ with s < t (which would prevent our arranging λ_i in decreasing order). But then $m_i \prec s \prec t$ would be a 312-chain in $P(\tau)$.

2 λ does not contain 312

Further work and open problems

- Characterize the principal classes X = Av(α) for which X* is finitely based. We have some suggestive numerical results for all α with |α| = 4.
- Solve the 'opposite' problem: given a pattern class \mathcal{X} , what is the pattern class of *inputs* that gives rise to \mathcal{X} as a set of *outputs*. This may be an easier problem since, if \mathcal{X} contains every increasing permutation, the answer is "All permutations".
- Carry out similar investigations for pair pattern classes other than \mathcal{A} . This almost certainly rather hard since pair pattern classes are far less studied than ordinary pattern classes.

— That's all folks —

Further work and open problems

- Characterize the principal classes X = Av(α) for which X* is finitely based. We have some suggestive numerical results for all α with |α| = 4.
- Solve the 'opposite' problem: given a pattern class \mathcal{X} , what is the pattern class of *inputs* that gives rise to \mathcal{X} as a set of *outputs*. This may be an easier problem since, if \mathcal{X} contains every increasing permutation, the answer is "All permutations".
- Carry out similar investigations for pair pattern classes other than \mathcal{A} . This almost certainly rather hard since pair pattern classes are far less studied than ordinary pattern classes.

— That's all folks —

Further work and open problems

- Characterize the principal classes X = Av(α) for which X* is finitely based. We have some suggestive numerical results for all α with |α| = 4.
- Solve the 'opposite' problem: given a pattern class \mathcal{X} , what is the pattern class of *inputs* that gives rise to \mathcal{X} as a set of *outputs*. This may be an easier problem since, if \mathcal{X} contains every increasing permutation, the answer is "All permutations".
- Carry out similar investigations for pair pattern classes other than A. This almost certainly rather hard since pair pattern classes are far less studied than ordinary pattern classes.

– That's all folks —

Further work and open problems

- Characterize the principal classes X = Av(α) for which X* is finitely based. We have some suggestive numerical results for all α with |α| = 4.
- Solve the 'opposite' problem: given a pattern class \mathcal{X} , what is the pattern class of *inputs* that gives rise to \mathcal{X} as a set of *outputs*. This may be an easier problem since, if \mathcal{X} contains every increasing permutation, the answer is "All permutations".
- Carry out similar investigations for pair pattern classes other than A. This almost certainly rather hard since pair pattern classes are far less studied than ordinary pattern classes.

— That's all folks —