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Rearranging with a stack

A sequence of input items are processed through a stack
onto an output queue. In what orders can/can’t they
emerge?

An obvious problem comes in trying to convert input items

· · · a · · · b · · · c · · ·

to output
· · · c · · · a · · · b · · · .
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312-avoidance

Definition: A permutation

π = π1π2 · · · πn

contains the pattern 312, if, for some i < j < k, πj < πk < πi.

Proposition: (Knuth, ∼1970) The permutations of an input

sequence which can be generated by a single stack are ex-

actly those that avoid the pattern 312.
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Enumeration of 312 avoiders

Consider the push-pop operation sequence of a stack in
producing a 312-avoider. This provides a bijection between
312-avoiders of length n and balanced bracket sequences
with n pairs of brackets. Therefore the number of such is
given by the Catalan numbers:

1

n + 1

(

2n

n

)

.

Alternatively, a bijection with binary trees by considering:

α
β

avoid 312 π = 
α

1

β
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The research frontier

Note that Knuth’s result also gives a linear time
algorithm for recognizing a 312-avoider. Just run the
stack and see if it works.

Given a permutation, determine whether it can be
generated by two stacks in series.

Essentially nothing is known about this.

It is known, that there are infinitely many permutations
which cannot be generated by two stacks in series, but
which have the property that the deletion of any single
element produces a permutation which can be
generated.
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Involvement

Definition: A permutation σ is involved in a permutation π

(σ � π) if some subsequence of π has the same relative
ordering as all of σ.
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Involvement

Definition: A permutation σ is involved in a permutation π

(σ � π) if some subsequence of π has the same relative
ordering as all of σ.

5 6 4 2 3 1 

involves

3 1 2 
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Pattern Classes

A pattern class, C, is a collection of permutations closed
downwards under the involvement relation.

The minimal permutations (if any) not belonging to C
are called its basis.

Note that the basis of a pattern class is an antichain
with respect to the involvement ordering. Conversely,
given any such antichain, A, we can define the pattern
class of which this is the basis. It consists of all those
permutations that do not involve any member of A.
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Examples

The permutations which we can generate from 12 · · · n
by a stack (basis {312})

The permutations which we can generate from 12 · · · n
by two parallel queues (basis {321}).

The permutations which we can generate from 12 · · · n
by a “riffle shuffle” (basis {321, 2143, 2413}).

The permutations whose graphs can be decomposed
(recursively) into high-low, or low-high blocks (basis
{2413, 3142}).
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Questions

Basis Problem Given a pattern class C determine its
basis. Is it finite? How many elements of size n does it
contain?

Membership problem Is there an algorithm for
deciding membership in a given pattern class? Is there
an efficient algorithm?

Enumeration Problem Given a pattern class,
determine how many permutations of length n it
contains.

April 2004 – p.9/19



Reflection

The questions are interesting but reflect a certain ad
hoc approach.

Perhaps of greater interest would be results pertaining
to what the answers to those questions could be.

For example, what sort of growth rates/generating
functions can proper pattern classes have?
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Wilf-Stanley

Conjecture: If C is a proper pattern class, then for some
constant q:

lim
n→∞

|C ∩ Sn|
1/n = q.
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Wilf-Stanley

Conjecture: If C is a proper pattern class, then for some
constant q:

lim
n→∞

|C ∩ Sn|
1/n = q.

Theorem: (Alon, Friedgut 2000) If C is a proper pattern
class, then there exists a constant q such that for all n

|C ∩ Sn| ≤ qnγ(n)

where γ is a very slowly growing function.
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Wilf-Stanley

Conjecture: If C is a proper pattern class, then for some
constant q:

lim
n→∞

|C ∩ Sn|
1/n = q.

Theorem: (Marcus, Tardos 2003) If C is a proper pattern
class, then there exists a constant q such that for all n

|C ∩ Sn| ≤ qn

A slightly embarassing proof.
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Bounded memory machines

Consider machines for generating permutations whose
memory is only capable of holding say M items of input
at one time. Each symbol in the permutation is among
the first M by rank of the remaining symbols.

Output: ?, ?, ?, ...

Input: 1, 2, 3, ...
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M -bounded permutations

The collection of M -bounded permutations is a pattern
class.

Its basis consists of all the permutations of length M + 1
which begin with M + 1.

It is generated by the “machine” which consists of a
desk large enough to hold M pieces of paper.

M -bounded permutations can be represented by their
rank-encoding. This gives a representation over a finite
alphabet:

341526 −→ 331211.
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Regular classes

A regular language is one which is recognized by a
finite automaton.

A regular permutation class (A, Atkinson, Ruškuc) is
one whose rank encoding gives a regular language.

For instance, the classes provided by bounded memory
machines are regular if the machine has only finitely
many internal states.

Bounded memory machines are highly
non-deterministic.
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Theorems about regular classes

A bounded class is regular if and only if its basis is
regular.

Given (an automaton for) the class, we can construct
(an automaton for) the basis (and vice versa).

A regular class has a rational generating function. That
is, the number of permutations of length n satisfies a
linear recurrence.

There are linear time algorithms for recognizing and
generating the permutations belonging to a regular
class.
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And yet . . .

Regular classes can still be very complicated.

Consider the basis of the class generated by the
machine consisting of two stacks, one of capacity 2, the
other of capacity 3, operating in parallel. This is the first
explicit example of an antichain in the involvement
ordering whose size grows as a function of length.

The procedure for passing from a class to its basis and
vice versa involves determinization and complement (in
several iterations). Techniques for reducing the size of
intermediate automata are necessary for effective
computation.

April 2004 – p.16/19



Finite networks

A finite network has a capacity, which is the largest rank of
an item it is capable of delivering to output.

Theorem: (A, Linton, Ruškuc) For any fixed capacity c

there are only finitely many permutation classes generated
by networks of that capacity.

This includes an explicit catalog for c ≤ 3 (maybe 4).
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Context free classes

One view of the generation of a permutation is by
maximum insertion.

View each insertion event as possibly creating, or filling
holes in which further events will happen.

◦ → ◦1◦ → ◦21◦ → 3 ◦ 21◦ → 3421◦ → 34215.

If, as here, we only ever operate on the first slot, then
the result is a 312 avoiding permutation.

Use of context free languages to represent permutation
classes in this way, unifies (and extends) many of the
known enumeration results.
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Where to from here?

A “structure theory” for pattern classes.

General principles for manipulating and analysing
bounded memory machines.

Good algorithms for more realistic object moving
environments (eg. directed networks of queues).
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Where to from here?

A “structure theory” for pattern classes.

General principles for manipulating and analysing
bounded memory machines.

Good algorithms for more realistic object moving
environments (eg. directed networks of queues).

Thank you!
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