Permutation Patterns and Object moving environments

Michael Albert

Department of Computer Science, University of Otago
malbert@cs.otago.ac.nz

Rearranging with a stack

A sequence of input items are processed through a stack onto an output queue. In what orders can/can't they emerge?

An obvious problem comes in trying to convert input items
$\cdots a \cdots b \cdots c \cdots$
to output
$\cdots c \cdots a \cdots b \cdots$.

312-avoidance

Definition: A permutation

$$
\pi=\pi_{1} \pi_{2} \cdots \pi_{n}
$$

contains the pattern 312, if, for some $i<j<k, \pi_{j}<\pi_{k}<\pi_{i}$.

Proposition: (Knuth, ~1970) The permutations of an input sequence which can be generated by a single stack are exactly those that avoid the pattern 312.

Enumeration of 312 avoiders

Consider the push-pop operation sequence of a stack in producing a 312 -avoider. This provides a bijection between 312 -avoiders of length n and balanced bracket sequences with n pairs of brackets. Therefore the number of such is given by the Catalan numbers:

$$
\frac{1}{n+1}\binom{2 n}{n}
$$

Alternatively, a bijection with binary trees by considering:

The research frontier

- Note that Knuth's result also gives a linear time algorithm for recognizing a 312-avoider. Just run the stack and see if it works.

The research frontier

- Note that Knuth's result also gives a linear time algorithm for recognizing a 312-avoider. Just run the stack and see if it works.
- Given a permutation, determine whether it can be generated by two stacks in series.

The research frontier

- Note that Knuth's result also gives a linear time algorithm for recognizing a 312-avoider. Just run the stack and see if it works.
- Given a permutation, determine whether it can be generated by two stacks in series.
- Essentially nothing is known about this.

The research frontier

- Note that Knuth's result also gives a linear time algorithm for recognizing a 312-avoider. Just run the stack and see if it works.
- Given a permutation, determine whether it can be generated by two stacks in series.
- Essentially nothing is known about this.
- It is known, that there are infinitely many permutations which cannot be generated by two stacks in series, but which have the property that the deletion of any single element produces a permutation which can be generated.

Involvement

Definition: A permutation σ is involved in a permutation π ($\sigma \preceq \pi$) if some subsequence of π has the same relative ordering as all of σ.

Involvement

Definition: A permutation σ is involved in a permutation π ($\sigma \preceq \pi$) if some subsequence of π has the same relative ordering as all of σ.

Involvement

Definition: A permutation σ is involved in a permutation π ($\sigma \preceq \pi$) if some subsequence of π has the same relative ordering as all of σ.

Pattern Classes

- A pattern class, \mathcal{C}, is a collection of permutations closed downwards under the involvement relation.
- The minimal permutations (if any) not belonging to \mathcal{C} are called its basis.

Note that the basis of a pattern class is an antichain with respect to the involvement ordering. Conversely, given any such antichain, \mathcal{A}, we can define the pattern class of which this is the basis. It consists of all those permutations that do not involve any member of \mathcal{A}.

Examples

- The permutations which we can generate from $12 \cdots n$ by a stack (basis \{312\})
- The permutations which we can generate from $12 \cdots n$ by two parallel queues (basis $\{321\}$).
- The permutations which we can generate from $12 \cdots n$ by a "riffle shuffle" (basis $\{321,2143,2413\}$).
- The permutations whose graphs can be decomposed (recursively) into high-low, or low-high blocks (basis $\{2413,3142\})$.

Questions

Basis Problem Given a pattern class \mathcal{C} determine its basis. Is it finite? How many elements of size n does it contain?
Membership problem Is there an algorithm for deciding membership in a given pattern class? Is there an efficient algorithm?
Enumeration Problem Given a pattern class, determine how many permutations of length n it contains.

Reflection

- The questions are interesting but reflect a certain ad hoc approach.
- Perhaps of greater interest would be results pertaining to what the answers to those questions could be.
- For example, what sort of growth rates/generating functions can proper pattern classes have?

Wilf-Stanley

Conjecture: If \mathcal{C} is a proper pattern class, then for some constant q :

$$
\lim _{n \rightarrow \infty}\left|\mathcal{C} \cap S_{n}\right|^{1 / n}=q .
$$

Wilf-Stanley

Conjecture: If \mathcal{C} is a proper pattern class, then for some constant q :

$$
\lim _{n \rightarrow \infty}\left|\mathcal{C} \cap S_{n}\right|^{1 / n}=q .
$$

Theorem: (Alon, Friedgut 2000) If \mathcal{C} is a proper pattern class, then there exists a constant q such that for all n

$$
\left|\mathcal{C} \cap S_{n}\right| \leq q^{n \gamma(n)}
$$

where γ is a very slowly growing function.

Wilf-Stanley

Conjecture: If \mathcal{C} is a proper pattern class, then for some constant q :

$$
\lim _{n \rightarrow \infty}\left|\mathcal{C} \cap S_{n}\right|^{1 / n}=q .
$$

Theorem: (Marcus, Tardos 2003) If \mathcal{C} is a proper pattern class, then there exists a constant q such that for all n

$$
\left|\mathcal{C} \cap S_{n}\right| \leq q^{n}
$$

A slightly embarassing proof.

Bounded memory machines

- Consider machines for generating permutations whose memory is only capable of holding say M items of input at one time. Each symbol in the permutation is among the first M by rank of the remaining symbols.

Input: 1, 2, 3, ...

Output: ?, ?, ?, ...

M-bounded permutations

- The collection of M-bounded permutations is a pattern class.
- Its basis consists of all the permutations of length $M+1$ which begin with $M+1$.
- It is generated by the "machine" which consists of a desk large enough to hold M pieces of paper.
- M-bounded permutations can be represented by their rank-encoding. This gives a representation over a finite alphabet:

$$
341526 \quad \longrightarrow \quad 331211 .
$$

Regular classes

- A regular language is one which is recognized by a finite automaton.
- A regular permutation class (A, Atkinson, Ruškuc) is one whose rank encoding gives a regular language.
- For instance, the classes provided by bounded memory machines are regular if the machine has only finitely many internal states.
- Bounded memory machines are highly non-deterministic.

Theorems about regular classes

- A bounded class is regular if and only if its basis is regular.
- Given (an automaton for) the class, we can construct (an automaton for) the basis (and vice versa).
- A regular class has a rational generating function. That is, the number of permutations of length n satisfies a linear recurrence.
- There are linear time algorithms for recognizing and generating the permutations belonging to a regular class.

And yet ...

Regular classes can still be very complicated.

- Consider the basis of the class generated by the machine consisting of two stacks, one of capacity 2 , the other of capacity 3 , operating in parallel. This is the first explicit example of an antichain in the involvement ordering whose size grows as a function of length.
- The procedure for passing from a class to its basis and vice versa involves determinization and complement (in several iterations). Techniques for reducing the size of intermediate automata are necessary for effective computation.

Finite networks

A finite network has a capacity, which is the largest rank of an item it is capable of delivering to output.

Theorem: (A, Linton, Ruškuc) For any fixed capacity c there are only finitely many permutation classes generated by networks of that capacity.

This includes an explicit catalog for $c \leq 3$ (maybe 4).

Context free classes

- One view of the generation of a permutation is by maximum insertion.
- View each insertion event as possibly creating, or filling holes in which further events will happen.

$$
\circ \rightarrow \circ 1 \circ \rightarrow \circ 21 \circ \rightarrow 3 \circ 21 \circ \rightarrow 3421 \circ \rightarrow 34215 .
$$

- If, as here, we only ever operate on the first slot, then the result is a 312 avoiding permutation.
- Use of context free languages to represent permutation classes in this way, unifies (and extends) many of the known enumeration results.

Where to from here?

- A "structure theory" for pattern classes.
- General principles for manipulating and analysing bounded memory machines.
- Good algorithms for more realistic object moving environments (eg. directed networks of queues).

Where to from here?

- A "structure theory" for pattern classes.
- General principles for manipulating and analysing bounded memory machines.
- Good algorithms for more realistic object moving environments (eg. directed networks of queues).

Thank you!

