Separable permutations

M. Albert, M. Atkinson, V. Vatter

Department of Computer Science, University of Otago

BCC2011

BLMS 2011, doi: 10.1112/blms/bdr022

A separable permutation

354127869

Two operations on permutations

The separable permutations, \mathcal{S}, are the closure of $\{1\}$ under \oplus and \ominus.

Observations about \mathcal{S}

- If π is separable, and you erase some points from its graph the resulting permutation is also separable (\mathcal{S} is a permutation class).
- Every permutation of length ≤ 3 is separable, only two of length four are not (2413 and 3142).
- A permutation is separable if and only if it contains no four element subsequence whose relative ordering matches 2413 or 3142 (i.e. it avoids these two permutations).
- The separable permutations are enumerated by the large Schröder numbers:

$$
S(t)=\frac{1-t-\sqrt{1-6 t+t^{2}}}{2 t}
$$

- Every subclass of \mathcal{S} has an algebraic generating function of degree a power of 2 over $\mathbb{Q}(t)$.

Special subclasses of \mathcal{S}

- The class \mathcal{S} is the smallest solution of the equation:

$$
\mathcal{S}=\mathcal{S} \oplus \mathcal{S}=\mathcal{S} \ominus \mathcal{S}
$$

- We get four different classes by changing one of the terms on the right hand side to 1 (i.e. $\{1\}$)

$$
\begin{aligned}
& \mathcal{A}=\mathcal{A} \oplus \mathcal{A}=\mathcal{A} \ominus 1, \\
& \mathcal{B}=\mathcal{B} \oplus \mathcal{B}=1 \ominus \mathcal{B}, \\
& \mathcal{C}=\mathcal{C} \oplus 1=\mathcal{C} \ominus \mathcal{C}, \\
& \mathcal{D}=1 \oplus \mathcal{D}=\mathcal{D} \ominus \mathcal{D} \text {. }
\end{aligned}
$$

- These turn out to be the four classes defined by avoiding a single non-monotone permutation of length 3.
- Each is enumerated by the Catalan numbers.

One more class

- The class \mathcal{X} is the smallest class satisfying:

$$
\mathcal{X}=1 \oplus \mathcal{X}=\mathcal{X} \oplus 1=1 \ominus \mathcal{X}=\mathcal{X} \ominus 1
$$

- It has a rational generating function:

$$
X(t)=\frac{x-2 x^{2}}{1-4 x+2 x^{2}}
$$

- It is also defined as the set of permutations avoiding all of 2143, 2413, 3142, 3412.
- Any, and only, permutations in \mathcal{X} can be drawn up to rescaling of axes on the lines $y= \pm x$.

Some important concepts

- Permutations are ordered by involvement, where $\alpha \leq \beta$ if there is a subsequence of β with the same relative ordering as α.
- A class is partially well ordered if it contains no infinite antichain of permutations.
- A class is atomic if it has the joint embedding property (i.e. for any α, β in the class, there is a π which involves both).
- A class is strongly rational if it, and all of its subclasses have rational generating functions.
- An inflation of a permutation is obtained by replacing each of its elements by permutations. The notation $\mathcal{A}[\mathcal{B}]$ represents the set of all inflations of elements of \mathcal{A} by elements of \mathcal{B}.

Results

Theorem

If \mathcal{U} is a strongly rational class then so is $\mathcal{X}[\mathcal{U}]$.

Theorem

If \mathcal{T} is a subclass of \mathcal{S} then either \mathcal{T} is strongly rational, or it contains one of the four classes $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}$.

The proof is a minimal counterexample argument. If such a counterexample existed it would have to be atomic. In that case, we can prove that $\mathcal{T}=\mathcal{X}[\mathcal{U}]$ for some proper subclass \mathcal{U} of \mathcal{T}, yielding a contradiction.

