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Permutation pattern containment

� � � the usual pattern containment partial
order (eg

�� � � � �� � �

)

: the set of all permutations (of all lengths)

: the set of permutations that avoid every
permutation of

: the subset of the set of permutations
that avoid every permutation of .

is closed if and implies

Closed sets are those of the form for
some
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Understanding closed sets

� Decision: given (somehow) and � �

decide whether � �

Basis: find (the minimal) such that
; is finite?

Enumeration: . Is
exponentially bounded? Formula for ? Is

algebraic, rational?

In many cases solutions of these problems “go

together”
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Building up permutations

A component of a permutation is a segment
whose values form a consecutive set

Example
has a component

Think of as being constructed from by
“expanding” symbol into with appropriate
relabelling.
A permutation with no non-trivial component is
called simple.
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Simple permutations

� Length

�

: only

�

Length : and

Length : none

Length : and

The number of simple permutations
5 6 7 8 9 10
6 46 338 2926 28146 298526

Theorem. The number of simple permutations
of length is asympotic to .
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Simple permutations of a class

From now on, denotes a set of simple
permutations, and the largest closed class
whose set of simple permutations is .

Let be a closed class with simple set .
Clearly .
We find properties of by first investigating .
Elementary example

has simple set and so .
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Wreath operations

Given a permutation � with

�
�

�

� � and
permutations � �� � � � � define

�
�

� �� � � � �
�

to be the permutation
�

� � � �

�
� which has

components

�
� order isomorphic to � and where

the pattern of the components is �.

Example

Permutation Patterns 2003 – p.8/20



Wreath operations

Given a permutation � with

�
�

�

� � and
permutations � �� � � � � define

�
�

� �� � � � �
�

to be the permutation
�

� � � �

�
� which has

components

�
� order isomorphic to � and where

the pattern of the components is �.
Example

� � �� �
� � � � �
� � � � � �
� � � � � �

�
�

� � � � �
�

� � � � � � � � � � �

Permutation Patterns 2003 – p.8/20



Partial well-order

Lemma. If and are as above then, for all

� � and � �� � � � � � , we have

�
�

� �� � � � �
� � .

Proof The simple subpermutations of
are subpermutations of or some

.

Theorem. If is finite then is partially
well-ordered by pattern containment.

Proof is an algebra under the wreath opera-

tions. Use Higman’s theorem.
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A finite number of restrictions

Corollary. Every closed class with just a finite
set of simple permutations is defined by a finite
number of restrictions.

Proof Main step: prove that itself is defined by

a finite number of restrictions. Then appeal to par-

tial well-order.
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Simple decompositions

Assume � is not simple.

Then it has a non-trivial component.
Let be two maximal components, ,
and suppose overlaps .
Then is a component, so

Lemma. One of the following holds:

where either or

where each is a maximal
component and the pattern formed by the is
simple.
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Structure

Let �
� �

�
� �
�

� �
� � � � �� � �

�

.
Every permutation in

� � � �

has one of the
forms

�

� �� � � � �
�

where � � � � �

.
The representation is unique except for when

� � �

or � � �

.

Notation

�

� �� � � � �
�

the set of all

�

� �� � � � �
�

with � � �
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Structure Theorem

� as above

� (resp. � ) permutations in with no �

decomposition where � � (resp. � � ).

� �
� � � � � � �

� �

� � � � �

� �

� �

All unions are disjoint.
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Enumeration of

Equations satisfied by ordinary generating
functions

�

� � �

� � �
� � � � � �

�
� � � � � �

�
� � �

� �
� � �

� �

�
� � � � � �

�
� � �

�

�
� � �

� � �
� � � � � �

�
� � �

� �
� � �

�
��� ��� � � ��� �

� � � � � �
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Generating function of

� � �

satisfies

�

�

� � �
� � � �

� �

In particular,

Theorem. If

� �

is finite,
� � �

(the generating
function of ) is algebraic.
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Subclasses of (for finite )

Theorem. If is finite, every closed subclass of
has an algebraic generating function.

General idea

Subclasses have the form for some finite
number of restrictions

is a disjoint union of terms of the general
type where is simple.

So, how do we enumerate ?
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Enumeration of ��
�

� � � � �
� �

�

�

� �� � � � �
� � �

is a finite intersection of sets

�

� �� � � � �
� �

�
�

for � � .

To find consider how we can
have (and then
negate).

if and only if has a block
decomposition where each
for some and the pattern of the is a
subpermutation of .
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Technical calculations omitted

�

�

� �� � � � �
� � �

can be expressed as a union
and intersection of sets of the form

�

�
�

�
�

�� � � � �
�

�
� �

where the restrictions �

are subpermutations of the restrictions .

Written in disjunctive normal form, each term
of the union is a complicated intersection of
sets of the form .

Use inclusion-exclusion and argue by
induction
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Technology

The proof is, in principle, constructive and we
have managed to compute the (polynomial
satisfied by) the generating function in some
explicit cases.

The techniques are capable of producing some
general results too. For example

Theorem. Every proper closed subclass of
has a rational generating function.
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Conclusion

� Every closed class has a set of simple
permutations and it is profitable to study
the superclass .

If is finite, is finitely based and has
algebraic generating function.

Many special results from the methods.

Even if is infinite, much can be said.

Theorem. If the generating function of is
algebraic then the generating function of is
algebraic.
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