Permutation Patterns

Mike Atkinson

Department of Computer Science, University of Otago

Victoria University, 13 November 2009

Outline of talk

1 Permutations and Patterns: basic concepts

- Permutations and graphs
- Origins
- 2 Pattern classes
 - Enumeration
 - Structure

• A permutation of length *n* is an arrangement of 1, 2, ..., *n* (one-line notation, not cycle notation)

Permutations and Patterns	Permutations and graphs
Pattern classes	Origins

- A permutation of length *n* is an arrangement of 1, 2, ..., *n* (one-line notation, not cycle notation)
- Example: 52863714

- A permutation of length *n* is an arrangement of 1, 2, ..., *n* (one-line notation, not cycle notation)
- Example: 52863714
- Conveniently displayed as a graph

- A permutation of length *n* is an arrangement of 1, 2, ..., *n* (one-line notation, not cycle notation)
- Example: 52863714
- Conveniently displayed as a graph

Example

Permutations and graphs Origins

The cardinal sin: unlabeled axes

Example

Increasingly sloppy graphs of 31524

Permutations and graphs Origins

Subpermutations

Subpermutations

Formalities

Definition

 π is a subpermutation of a permutation $\sigma = s_1 \cdots s_n$ if σ has a subsequence whose terms are ordered relatively the same as π .

Example

4213 is a subpermutation of 52863714

Notation

4213 \preceq 52863714 and 3214 $\not\preceq$ 52863714

The \leq relation is a partial order on the set of all permutations

Permutations and graphs Origins

Origins: Erdös - Szekeres Theorem

Theorem

If σ is a sequence of distinct real numbers that has no increasing subsequence of length r nor decreasing subsequence of length s then its length is no more than (r-1)(s-1).

Permutations and graphs Origins

Origins: Erdös - Szekeres Theorem

Theorem

If σ is a sequence of distinct real numbers that has no increasing subsequence of length r nor decreasing subsequence of length s then its length is no more than (r-1)(s-1).

In the language of permutations:

Theorem

If σ is a permutation and neither $12 \cdots r$ nor $s \cdots 21$ is a subpermutation of σ then $|\sigma| \leq (r-1)(s-1)$.

Permutations and graphs Origins

Origins: Stack sorting

Definition

A *Stack* is a list, one end of which is called the top of the list. Items can be inserted at the top and removed from the top of the list.

Question

Which permutations can be sorted via a stack?

Permutations and graphs Origins

Knuth theorems

Theorem

A permutation σ can be sorted via a stack if and only if 231 $\not\preceq \sigma$.

Theorem There are $\frac{\binom{2n}{n}}{n+1}$ stack sortable permutations of length n.

Pattern classes

Definition

A *pattern class* is a set of permutations closed under taking subpermutations (down-set in the partial order)

Every pattern class \mathcal{X} can be defined by a set of avoided permutations.

Notation

 $\mathcal{X} = \operatorname{Av}(B)$ means that \mathcal{X} is the pattern class defined by the avoiding the permutations in the set B.

Theorem

- Av $(12 \cdots r, s \cdots 21)$ is finite
- **2** Av(231) is the set of stack-sortable permutations.

Enumeration

A huge section of pattern class research asks: Given a set *B* of permutations, how many permutations of length n does Av(*B*) have? A huge section of pattern class research asks:

Given a set *B* of permutations, how many permutations of length n does Av(B) have?

Answers to define the enumeration sequence (s_n) are of the forms

- a formula for s_n
- the generating function $\sum s_n x^n$
- asymptotic upper and lower bounds on s_n

The more permutations B has, and the shorter they are, the more likely it is that we can solve the enumeration problem.

Examples of enumeration results

Knuth For $\operatorname{Av}(\beta)$, with $|\beta| = 3$, $s_n = \binom{2n}{n}/(n+1)$ Simion et al. For $\operatorname{Av}(\alpha, \beta)$ with $|\alpha| = 3$ and $|\beta| = 3$ formulae for s_n are known in all cases

Boná For Av(1342)

$$\sum s_n x^n = \frac{32x}{1 + 20x - 8x^2 - (1 - 8x)^{3/2}}$$

Albert et al. For Av(1324), $s_n = \Omega(9.47^n)$ MDA, West For Av(α, β) with $|\alpha| = 3$ and $|\beta| = 4$ formulae for s_n are known in all cases

Enumeration frontier

- No exact enumerations of $\operatorname{Av}(\beta)$ for any $|\beta| \geq 5$
- About half of the cases $\operatorname{Av}(\alpha,\beta)$ with $|\alpha|=|\beta|=4$ have been enumerated
- Sporadic results only for $\operatorname{Av}(\alpha,\beta,\gamma,\ldots)$

Enumeration Structure

Enumeration Structure

Enumeration Structure

Enumeration Structure

Enumeration Structure

An example proof. Enumerating Av(231, 312): diagram-chasing

So permutations of Av(231, 312) are determined by compositions of *n*; hence 2^{n-1} of them.

Enumeration Structure

The Marcus-Tardos Theorem (2004)

Theorem

Let s_n be the number of permutations of length n in a proper pattern class \mathcal{X} . Then there is a constant $\kappa = \kappa(\mathcal{X})$ such that

 $s_n \leq \kappa^n$

Conjecture

Let s_n be the number of permutations of length n in a proper pattern class \mathcal{X} . Then

 $\lim_{n\to\infty}\sqrt[n]{s_n}$

exists.

A structure theory for pattern classes?

We recognise structure when we see it: e.g.

- The intersection and union of pattern classes is again a pattern class many ways of making new pattern classes out of old.
- The subpermutation order is not a quasi-well-order; but some pattern classes are quasi-well-ordered (e.g. Av(231) is quasi-well-ordered whereas Av(321) is not)
- Often we can describe a pattern class other than by saying "it has the following restrictions. . . "

• An *interval* in a permutation is a segment that contains a set of contiguous values (e.g. 2735416).

- An *interval* in a permutation is a segment that contains a set of contiguous values (e.g. 2735416).
- Every permutation is an interval of itself, and every singleton segment is an interval.

- An *interval* in a permutation is a segment that contains a set of contiguous values (e.g. 2735416).
- Every permutation is an interval of itself, and every singleton segment is an interval.
- If there are no other intervals the permutation is *simple*.

- An *interval* in a permutation is a segment that contains a set of contiguous values (e.g. 2735416).
- Every permutation is an interval of itself, and every singleton segment is an interval.
- If there are no other intervals the permutation is simple.

Example

A permutation with non-trivial intervals, and a simple permutation

Inflation

If σ is a permutation of length n and τ_1, \ldots, τ_n are permutations then the *inflation* of σ by τ_1, \ldots, τ_n (denoted by $\sigma[\tau_1, \ldots, \tau_n]$) is the permutation with intervals τ'_1, \ldots, τ'_n (isomorphic to τ_1, \ldots, τ_n) whose relative order is given by σ .

Inflation

If σ is a permutation of length n and τ_1, \ldots, τ_n are permutations then the *inflation* of σ by τ_1, \ldots, τ_n (denoted by $\sigma[\tau_1, \ldots, \tau_n]$) is the permutation with intervals τ'_1, \ldots, τ'_n (isomorphic to τ_1, \ldots, τ_n) whose relative order is given by σ .

Example

```
231[12, 312, 21] = 3475621.
```


Every permutation is a simple inflation

Theorem

Every permutation is a simple inflation

Theorem

Every permutation is a simple inflation

Theorem

Every permutation is a simple inflation

Theorem

Structure

A two step process

To understand a pattern class \mathcal{X}

- Find all its simple permutations
- For each simple permutation find all inflations that lie in \mathcal{X}

The easiest case of this approach is when the number of simple permutations is finite: in that case (MDA, Albert)

- \mathcal{X} and every subclass has an algebraic generating function
- X is quasi-well-ordered
- Every subclass of \mathcal{X} is defined by a finite number of restrictions

Permutations and Patterns Enumeration Pattern classes Structure

A more challenging example: Av(1324, 4231)

How does one set about enumeration?

- Find the simple permutations
 - The simple permutations 25314 and 41352 can only be subpermutations in a very particular way
 - ② Every other simple permutation has the rough diamond form

2 Describe the inflations

Permutations and Patterns Enumeration Pattern classes Structure

A more challenging example: Av(1324, 4231)

How does one set about enumeration?

- Find the simple permutations
 - The simple permutations 25314 and 41352 can only be subpermutations in a very particular way
 - ② Every other simple permutation has the rough diamond form

2 Describe the inflations

Enumeration Structure

Diagram Chase: permutations in Av(1324, 4231) containing 25314

Pattern classes

Structure

Diagram Chase: permutations in Av(1324, 4231) containing 25314

Diagram Chase: permutations in Av(1324, 4231) containing 25314

Diagram Chase: permutations in Av(1324, 4231) containing 25314

Enumeration Structure

Inflations of diamonds

The simple permutation 7 5 8 4 9 3 10 1 12 2 11 6

Enumeration Structure

Inflations of diamonds

The simple permutation 7 5 8 4 9 3 10 1 12 2 11 6 - inflated - how?

Enumeration Structure

Inflations of diamonds

Enumeration Structure

The bottom line - MDA, Albert, Vatter

Theorem

The generating function for Av(1324, 4231) is

$$\frac{1-12x+59x^2-152x^3+218x^4-168x^5+58x^6-6x^7}{(1-x)(1-2x)^4(1-4x+2x^2)}$$