
The Permutational Power of Finite Token Passing
Networks

M. H. Albert1 S. Linton2 N. Ruškuc3

1Department of Computer Science
University of Otago

2School of Computer Science
University of St. Andrews

3School of Mathematics and Statistics
University of St. Andrews

PP 2005
University of Florida

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 1 / 17

Outline

Outline

Background and Definitions
Token Passing Networks
Finite State Machines
Rank Encoding

Previous Results
Atkinson, Livesy, Tulley
Albert, Atkinson, Ruškuc

How Rich are TPN Languages?
Question
Results

Discussion and Conclusions

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 2 / 17

Background and Definitions Token Passing Networks

Token Passing Networks

A token passing network , T , consists of a finite directed graph G
together with a specified input vertex i and a specified output
vertex o.

A token passing network operates by processing a potentially
infinite queue of distinct input tokens. There are three possible
fundamental steps:

Move A token on vertex v can be moved along the edge
v → w to w provided that w is unoccupied.

Input The next token of the input queue can be placed at
vertex i provided that i is unoccupied.

Output A token at vertex o can be removed.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 3 / 17

Background and Definitions Token Passing Networks

The Output Class of T

If T processes a finite series of tokens and stops when no tokens
remain on the graph then the sequence of output tokens (in order)
forms a permutation of the input.

Since extra tokens can only get in the way, the set of such
permutations is closed under involvement and we call it the output
class Out(T).

For example:

has an output class whose basis is 321 and 51234.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 4 / 17

Background and Definitions Finite State Machines

Finite State Automata

A finite state automaton (FSA), A, consists of a directed graph
whose edges are labelled with symbols from a set Σ ∪ ε. One
vertex is designated the initial vertex, and a subset of the vertices
are designated as accepting vertices.

A accepts a word w ∈ Σ∗ if there is a walk from the initial vertex to
an accepting vertex whose labels read in order (and omitting ε’s)
spell out w . The set of such words is called the language of A.

A language is regular if it is accepted by some finite automaton.
Equivalently (non-trivially) it can be formed from the empty and
singleton languages using the operations of union, concatenation,
and ∗.

The set of regular languages has good closure properties, and
any such language has a rational generating function, easily
computable from a deterministic FSA accepting it.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 5 / 17

Background and Definitions Finite State Machines

Finite State Automata

A finite state automaton (FSA), A, consists of a directed graph
whose edges are labelled with symbols from a set Σ ∪ ε. One
vertex is designated the initial vertex, and a subset of the vertices
are designated as accepting vertices.

A accepts a word w ∈ Σ∗ if there is a walk from the initial vertex to
an accepting vertex whose labels read in order (and omitting ε’s)
spell out w . The set of such words is called the language of A.

A language is regular if it is accepted by some finite automaton.
Equivalently (non-trivially) it can be formed from the empty and
singleton languages using the operations of union, concatenation,
and ∗.

The set of regular languages has good closure properties, and
any such language has a rational generating function, easily
computable from a deterministic FSA accepting it.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 5 / 17

Background and Definitions Finite State Machines

Finite State Automata

A finite state automaton (FSA), A, consists of a directed graph
whose edges are labelled with symbols from a set Σ ∪ ε. One
vertex is designated the initial vertex, and a subset of the vertices
are designated as accepting vertices.

A accepts a word w ∈ Σ∗ if there is a walk from the initial vertex to
an accepting vertex whose labels read in order (and omitting ε’s)
spell out w . The set of such words is called the language of A.

A language is regular if it is accepted by some finite automaton.
Equivalently (non-trivially) it can be formed from the empty and
singleton languages using the operations of union, concatenation,
and ∗.

The set of regular languages has good closure properties, and
any such language has a rational generating function, easily
computable from a deterministic FSA accepting it.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 5 / 17

Background and Definitions Finite State Machines

Finite State Automata

A finite state automaton (FSA), A, consists of a directed graph
whose edges are labelled with symbols from a set Σ ∪ ε. One
vertex is designated the initial vertex, and a subset of the vertices
are designated as accepting vertices.

A accepts a word w ∈ Σ∗ if there is a walk from the initial vertex to
an accepting vertex whose labels read in order (and omitting ε’s)
spell out w . The set of such words is called the language of A.

A language is regular if it is accepted by some finite automaton.
Equivalently (non-trivially) it can be formed from the empty and
singleton languages using the operations of union, concatenation,
and ∗.

The set of regular languages has good closure properties, and
any such language has a rational generating function, easily
computable from a deterministic FSA accepting it.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 5 / 17

Background and Definitions Finite State Machines

FSA example

The FSA:

a

a, b

bb

a, b

b

accepts the language of words satisfying “between some pair of b’s
there is an even number of a’s”. This can be written as:

(a ∪ b)∗b(ab∗a)∗b(a ∪ b)∗.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 6 / 17

Background and Definitions Finite State Machines

Finite State Transducers

A finite state transducer (or simply transducer) is similar to an
FSA.

However, the edges are labelled with pairs whose first coordinate
comes from Σ ∪ ε and whose second from Γ ∪ ε.

Acceptance defines a subset Σ∗× Γ∗ which can be thought of as a
non-deterministic map from (some subset of) the language
accepted by the automaton obtained by projecting onto the first
coordinate, and the language of that obtained from projecting onto
the second.

More good preservation properties.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 7 / 17

Background and Definitions Finite State Machines

Finite State Transducers

A finite state transducer (or simply transducer) is similar to an
FSA.

However, the edges are labelled with pairs whose first coordinate
comes from Σ ∪ ε and whose second from Γ ∪ ε.

Acceptance defines a subset Σ∗× Γ∗ which can be thought of as a
non-deterministic map from (some subset of) the language
accepted by the automaton obtained by projecting onto the first
coordinate, and the language of that obtained from projecting onto
the second.

More good preservation properties.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 7 / 17

Background and Definitions Finite State Machines

Finite State Transducers

A finite state transducer (or simply transducer) is similar to an
FSA.

However, the edges are labelled with pairs whose first coordinate
comes from Σ ∪ ε and whose second from Γ ∪ ε.

Acceptance defines a subset Σ∗× Γ∗ which can be thought of as a
non-deterministic map from (some subset of) the language
accepted by the automaton obtained by projecting onto the first
coordinate, and the language of that obtained from projecting onto
the second.

More good preservation properties.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 7 / 17

Background and Definitions Finite State Machines

Finite State Transducers

A finite state transducer (or simply transducer) is similar to an
FSA.

However, the edges are labelled with pairs whose first coordinate
comes from Σ ∪ ε and whose second from Γ ∪ ε.

Acceptance defines a subset Σ∗× Γ∗ which can be thought of as a
non-deterministic map from (some subset of) the language
accepted by the automaton obtained by projecting onto the first
coordinate, and the language of that obtained from projecting onto
the second.

More good preservation properties.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 7 / 17

Background and Definitions Rank Encoding

Rank Encoding

The rank encoding of a permutation replaces each symbol in the
permutation by its rank among the remaining symbols. So, the
rank encoding of 341562 is 331221.

A permutation is k-bounded if no symbol larger than k occurs in
its rank encoding.

For each k the set, B(k), of k -bounded permutations forms a
closed class whose basis consists of the k ! permutations in Sk+1

that begin with k + 1.

Key observation : The rank encodings of B(k) form a regular
language in {1, 2, . . . , k}∗.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 8 / 17

Background and Definitions Rank Encoding

Rank Encoding

The rank encoding of a permutation replaces each symbol in the
permutation by its rank among the remaining symbols. So, the
rank encoding of 341562 is 331221.

A permutation is k-bounded if no symbol larger than k occurs in
its rank encoding.

For each k the set, B(k), of k -bounded permutations forms a
closed class whose basis consists of the k ! permutations in Sk+1

that begin with k + 1.

Key observation : The rank encodings of B(k) form a regular
language in {1, 2, . . . , k}∗.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 8 / 17

Background and Definitions Rank Encoding

Rank Encoding

The rank encoding of a permutation replaces each symbol in the
permutation by its rank among the remaining symbols. So, the
rank encoding of 341562 is 331221.

A permutation is k-bounded if no symbol larger than k occurs in
its rank encoding.

For each k the set, B(k), of k -bounded permutations forms a
closed class whose basis consists of the k ! permutations in Sk+1

that begin with k + 1.

Key observation : The rank encodings of B(k) form a regular
language in {1, 2, . . . , k}∗.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 8 / 17

Background and Definitions Rank Encoding

Rank Encoding

The rank encoding of a permutation replaces each symbol in the
permutation by its rank among the remaining symbols. So, the
rank encoding of 341562 is 331221.

A permutation is k-bounded if no symbol larger than k occurs in
its rank encoding.

For each k the set, B(k), of k -bounded permutations forms a
closed class whose basis consists of the k ! permutations in Sk+1

that begin with k + 1.

Key observation : The rank encodings of B(k) form a regular
language in {1, 2, . . . , k}∗.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 8 / 17

Previous Results Atkinson, Livesey, Tulley

TPN’s are FSA’s

In Permutations generated by token passing in graphs (TCS, 178,
1997) Atkinson, Livesey and Tulley showed:

Theorem
The rank encoding of Out(T) is a regular language.

This is most easily seen by considering the states of the underlying
automaton as finite sequences of vertices of G representing the
current locations of tokens (in rank order), and then noting that the
basic operations can be interpreted naturally as transitions between
such states.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 9 / 17

Previous Results Albert, Atkinson, Ruškuc

Regularity is Robust

In Regular closed sets of permutations (TCS, 306, 2003) Albert,
Atkinson and Ruškuc showed:

Theorem
Let C be a closed class contained in B(k). If the rank encoding of C is a
regular language, then so is the rank encoding of the basis of C relative
to B(k). Moreover, if A ⊆ B(k) is any subset whose rank encoding is a
regular language then the rank encoding of Av(A) ∩ B(k) is also
regular.

Loosely, “a class is regular if and only if its basis is regular”. These
results are, in principle, effective.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 10 / 17

Previous Results Albert, Atkinson, Ruškuc

A Trivial Diversion

Using the methods of AAR (implemented in GAP) we can confirm
that the antichain reported by ALT in the basis of the output class
of two stacks of size two in parallel is in fact the entire basis of the
class modulo 5-boundedness.
Consider a TPN which consists of a simple two way path of length
7 with input at position 3 and output at position 4.

The minimal automaton for the class has (only) 29 states.
The minimal automaton for its basis has 61 states.
The basis has exponential growth rate, whose asymptotic rate is a
little more than 2.2399 (it is the root of an irreducible polynomial of
degree 19).

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 11 / 17

How Rich are TPN Languages? Question

The Main Questions

What can we say about the regular classes that are produced by
token passing networks?

Can we find some necessary (and sufficient?) conditions which
they satisfy?

Can we determine whether a specific regular class is produced by
a TPN?

Are they common or rare?

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 12 / 17

How Rich are TPN Languages? Results

Boundedness of a TPN

There are two types of boundedness to consider when dealing with
TPN’s:

Natural boundedness The maximum value of k such that a
permutation of rank k can be produced.

Capacity restriction Consider TPN’s required not to contain more than
k tokens at any one time.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 13 / 17

How Rich are TPN Languages? Results

Finitely Many Languages of Each Boundedness

It doesn’t matter (much):

Theorem
For both notions of boundedness, for each fixed k there are only
finitely many different languages which occur as the rank encodings of
the output classes of any token passing networks of that boundedness.

In both cases the proof relies on arguing that the boundedness
restriction implies that were the underlying graph “too big” then some
vertices would be superfluous.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 14 / 17

How Rich are TPN Languages? Results

Catalogue of 3-bounded Examples

C

D

E

B

B Avoids 321
C Avoids 312
D Avoids both 31542 and 32541
E Has an infinite basis whose language is 322321 and

3231(31)∗321. E.g.:

3 2 5 1 7 4 9 6 11 10 8.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 15 / 17

Discussion and Conclusions

Open Questions

Is there an efficient algorithm for determining the natural
boundedness of T ?

If T has natural boundedness c is it ever necessary for it to
contain more than c tokens?

In producing an output permutation that lies in B(c), what is the
maximum number of tokens that T might need to contain? (for
c = 4 we have an example where 5 tokens must be in the network
at some point).
Can T be operated efficiently? That is, given T and a permutation
is there a polynomial time algorithm to determine

Whether the permutation can be produced by T , and
If so, how.

(Exponential preprocessing in |T | not allowed!)

Given T determine the maximum c such that Out(T) ⊇ B(c).

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 16 / 17

Discussion and Conclusions

Open Questions

Is there an efficient algorithm for determining the natural
boundedness of T ?

If T has natural boundedness c is it ever necessary for it to
contain more than c tokens?

In producing an output permutation that lies in B(c), what is the
maximum number of tokens that T might need to contain? (for
c = 4 we have an example where 5 tokens must be in the network
at some point).
Can T be operated efficiently? That is, given T and a permutation
is there a polynomial time algorithm to determine

Whether the permutation can be produced by T , and
If so, how.

(Exponential preprocessing in |T | not allowed!)

Given T determine the maximum c such that Out(T) ⊇ B(c).

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 16 / 17

Discussion and Conclusions

Open Questions

Is there an efficient algorithm for determining the natural
boundedness of T ?

If T has natural boundedness c is it ever necessary for it to
contain more than c tokens?

In producing an output permutation that lies in B(c), what is the
maximum number of tokens that T might need to contain? (for
c = 4 we have an example where 5 tokens must be in the network
at some point).

Can T be operated efficiently? That is, given T and a permutation
is there a polynomial time algorithm to determine

Whether the permutation can be produced by T , and
If so, how.

(Exponential preprocessing in |T | not allowed!)

Given T determine the maximum c such that Out(T) ⊇ B(c).

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 16 / 17

Discussion and Conclusions

Open Questions

Is there an efficient algorithm for determining the natural
boundedness of T ?

If T has natural boundedness c is it ever necessary for it to
contain more than c tokens?

In producing an output permutation that lies in B(c), what is the
maximum number of tokens that T might need to contain? (for
c = 4 we have an example where 5 tokens must be in the network
at some point).
Can T be operated efficiently? That is, given T and a permutation
is there a polynomial time algorithm to determine

Whether the permutation can be produced by T , and
If so, how.

(Exponential preprocessing in |T | not allowed!)

Given T determine the maximum c such that Out(T) ⊇ B(c).

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 16 / 17

Discussion and Conclusions

Open Questions

Is there an efficient algorithm for determining the natural
boundedness of T ?

If T has natural boundedness c is it ever necessary for it to
contain more than c tokens?

In producing an output permutation that lies in B(c), what is the
maximum number of tokens that T might need to contain? (for
c = 4 we have an example where 5 tokens must be in the network
at some point).
Can T be operated efficiently? That is, given T and a permutation
is there a polynomial time algorithm to determine

Whether the permutation can be produced by T , and
If so, how.

(Exponential preprocessing in |T | not allowed!)

Given T determine the maximum c such that Out(T) ⊇ B(c).

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 16 / 17

Discussion and Conclusions

Conclusions

Our main result states that the languages generated by token
passing networks are relatively restricted.

Nevertheless, there are a wide variety of “interesting” behaviours
and examples to explore.

Certain algorithmic problems, particularly in the acyclic case may
be of “applied” interest.

Albert, Linton, Ruškuc (Otago, St. Andrews) Token Passing Networks PP 2005 17 / 17

	Outline
	Background and Definitions
	Token Passing Networks
	Finite State Machines
	Rank Encoding

	Previous Results
	Atkinson, Livesy, Tulley
	Albert, Atkinson, Ruškuc

	How Rich are TPN Languages?
	Question
	Results

	Discussion and Conclusions

