Sorting classes, the weak and strong orders

Michael Albert ¹ Robert Aldred ² Mike Atkinson¹ Chris Handley¹ Derek Holton² Dennis McCaughan² Hans van Ditmarsch¹

¹Department of Computer Science University of Otago

²Department of Mathematics and Statistics University of Otago

Taupo, December 2004

A B + A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MAD HAHA Sorting Classes

Outline of talk

Permuting machines and permutation classes

2 Sorting machines

- 3 Weak sorting classes
- 4 Strong sorting classes

MAD HAHA Sorting Classes

э

4 AP + 4 F + 4

Permuting machines

- The output is a (non-deterministic) rearrangement of the input
- The names of the input items are immaterial; use names 1, 2, ...
- If some input items are omitted the machine can rearrange the remaining ones as they were arranged in the original

Involvement

MAD HAHA Sorting Classes

(ロ) (四) (三) (三)

Involvement

- Given permutations π, σ say π ≤ σ if σ has a subsequence ordered in the same relative way as π
- Example: 312 ≤ 7531462

э

Involvement

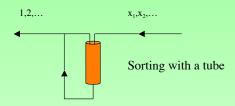
- Given permutations π, σ say π ≤ σ if σ has a subsequence ordered in the same relative way as π
- Example: 312 ≤ 7531462
- A permutation class is a set of permutations closed downwards in the <u>≺</u> order

(日) (同) (三) (三)

Involvement

- Given permutations π, σ say π ≤ σ if σ has a subsequence ordered in the same relative way as π
- Example: 312 ≤ 7531462
- A permutation class is a set of permutations closed downwards in the <u>≺</u> order
- The set of sortable inputs of a permuting machine is always a permutation class

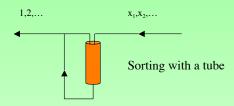
Example



• Symbols are stuffed into the tube and exit at either end. The tube is too thin for symbols to exchange inside.

A □ ► < □ ► </p>

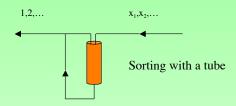
Example



- Symbols are stuffed into the tube and exit at either end. The tube is too thin for symbols to exchange inside.
- A permutation is tube-sortable if and only if involves neither 3241 or 4231 (i.e. {3241, 4231} is the basis)

< 回 ト < 三 ト <

Example



- Symbols are stuffed into the tube and exit at either end. The tube is too thin for symbols to exchange inside.
- A permutation is tube-sortable if and only if involves neither 3241 or 4231 (i.e. {3241, 4231} is the basis)
- If there are *s_n* sortable permutations of length *n* then

$$\sum_{n=0}^{\infty} s_n x^n = \frac{1}{2} (3 - x - \sqrt{1 - 6x + x^2})$$

Sorting machines

Many permuting machines are "designed" to sort. If they can sort some permutation they should be able to cope with "easier" permutations.

(日) (同) (三) (三)

Sorting machines

Many permuting machines are "designed" to sort. If they can sort some permutation they should be able to cope with "easier" permutations.

The tube machine can sort 4321 but it cannot sort the "easier" permutation 4231. It's not designed to sort. But how do we define "easier"?

Sorting machines

Many permuting machines are "designed" to sort. If they can sort some permutation they should be able to cope with "easier" permutations.

The tube machine can sort 4321 but it cannot sort the "easier" permutation 4231. It's not designed to sort. But how do we define "easier"?

Two possible definitions of "easier":

Sorting machines

Many permuting machines are "designed" to sort. If they can sort some permutation they should be able to cope with "easier" permutations.

The tube machine can sort 4321 but it cannot sort the "easier" permutation 4231. It's not designed to sort. But how do we define "easier"?

Two possible definitions of "easier":

If b > a then α = · · · ab · · · is easier than α' = · · · ba · · · .
 The weak order

(日) (同) (三) (三)

Sorting machines

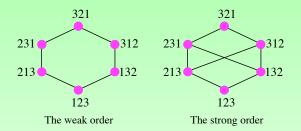
Many permuting machines are "designed" to sort. If they can sort some permutation they should be able to cope with "easier" permutations.

The tube machine can sort 4321 but it cannot sort the "easier" permutation 4231. It's not designed to sort. But how do we define "easier"?

Two possible definitions of "easier":

- If b > a then α = · · · ab · · · is easier than α' = · · · ba · · · .
 The weak order
- If b > a then $\alpha = \cdots a \cdots b \cdots$ is easier than $\alpha' = \cdots b \cdots a \cdots$.

The weak and strong orders on S_3



MAD HAHA Sorting Classes

(日) (종) (종) (종) (종)

-1

Weak and Strong Sorting Classes

MAD HAHA Sorting Classes

(日) (종) (종) (종) (종)

-2

Weak and Strong Sorting Classes

- Weak sorting class: permutation class closed downwards in the weak order
- Example: permutations that are the union of two increasing sequences

•••••••

Weak and Strong Sorting Classes

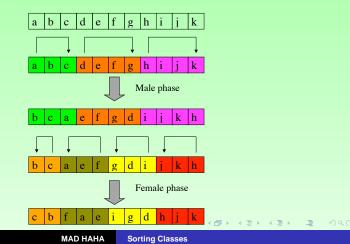
- Weak sorting class: permutation class closed downwards in the weak order
- Example: permutations that are the union of two increasing sequences

•••••••

- Strong sorting class: permutation class closed downwards in the strong order
- Example: The male-female sorting machine

The male-female sorting machine

This machine operates in two phases: a *male* phase then a *female* phase.



Weak sorting classes

Weak sorting classes can be attacked because

Lemma

Let α, β be permutations. Then there exists γ such that

$$\alpha \leq_{\mathbf{W}} \gamma \preceq \beta$$

if and only if there exists δ with

$$\alpha \preceq \delta \leq_{\mathbf{W}} \beta$$

This not true for the strong order

Strong sorting classes

- The theory of strong sorting classes is quite different because the previous lemma does not hold for strong sorting classes.
- Example: $321 \leq 3214 \leq_S 3412$ but no δ with $321 \leq_S \delta \leq 3412$

(日) (同) (三) (三)

The classes C(r)

MAD HAHA Sorting Classes

(日) (문) (문) (문)

-2

The classes C(r)

C(r) is the class of all permutations which do not have a subsequence of 2r elements the first *r* being all larger than the last *r*.

This is a strong sorting class.

7 4 12 8 5 9 2 11 6 10 1 3 Not in C(3)

<口> (四) (四) (王) (王)

The role of C(r)

Theorem

If \mathcal{X} is a strong sorting class not containing all permutations then $\mathcal{X} \subseteq C(r)$ for some r

(日) (종) (종) (종) (종)

-1

Properties of C(r)

MAD HAHA Sorting Classes

(日) (문) (문) (문)

-2

Properties of C(r)

Theorem

C(r) is the set of permutations sortable by r - 1 copies of the male-female sorting machine in series.

э

Properties of C(r)

Theorem

C(r) is the set of permutations sortable by r - 1 copies of the male-female sorting machine in series.

Theorem

Let c_n be the number of permutations of length n in C(r). Then

$$c_n = r^2 c_{n-1} - 2! {\binom{r}{2}}^2 c_{n-2} + 3! {\binom{r}{3}}^2 c_{n-3} - \cdots$$

(日) (同) (三) (三)

Main theorem

Theorem

Let \mathcal{X} be any finitely based strong sorting class and let t_n be the number of permutations in \mathcal{X} of length n. Then

is a rational function.

MAD HAHA Sorting Classes

(日) (同) (三) (三)