
Model Checking Logic Puzzles

Hans van Ditmarsch⋆

hans@cs.otago.ac.nz
Ji Ruan†

J.Ruan@csc.liv.ac.uk

⋆Computer Science, University of Otago, New Zealand
†Computer Science, University of Liverpool, United Kingdom

Résumé :
Dans les puzzles épistémiques les annonces d’igno-
rance, ou des séquences de tels annonces, sou-
vent résultent en connaissances. Nous présentons
le puzzle ‘Quelle Somme ?’, et le modèlisent dans
la logique des annonces publiques – un langage
logique avec des opérateurs dynamiques et épisté-
miques. La solution du puzzle est controlée avec la
programme de vérification DEMO.

Mots-clés :communications multi-agent, vérifica-
tion des modèles, logique dynamique épistémique,
annonce publique

Abstract:
A common theme in logic puzzles involving
knowledge and ignorance is that announcements
of ignorance may eventually result in knowledge.
We present the ‘What Sum’ riddle. It is modelled
in public announcement logic, a modal logic with
both dynamic and epistemic operators. We then
solve the riddle in the model checker DEMO.1

Keywords: agent communication, model check-
ing, dynamic epistemic logic, public announce-
ment

1 Introduction

The following riddle (transcribed in our
terminology) appeared in Math Horizons
in 2004, as ‘Problem 182’ in a regular
problem section of the journal, edited by
A. Liu [8].

Each of agents Anne, Bill, and Cath has a
positive integer on its forehead. They can

1We acknowledge input from David Atkinson, Jan van Eijck,
Wiebe van der Hoek, Barteld Kooi, and Rineke Verbrugge. We
thank the anonymous MFI referees for their comments. Hans
appreciates support from the NIAS (Netherlands Institute for
Advanced Study in the Humanities and Social Sciences) project
‘Games, Action, and Social Software’ and the NWO (Nether-
lands Organisation for Scientific Research) Cognition Program
for the Advanced Studies grant NWO 051-04-120.

only see the foreheads of others. One of the
numbers is the sum of the other two. All
the previous is common knowledge. The
agents now successively make the truthful
announcements:

i. Anne: “I do not know my number.”

ii. Bill: “I do not know my number.”

iii. Cath: “I do not know my number.”

iv. Anne: “I know my number. It is 50.”

What are the other numbers?

You know your own number if and only if
you know which of the three numbers is
the sum. This ‘What is the sum?’, from
now on ‘What Sum’, riddle combines fea-
tures from wisemen or Muddy Children
puzzles [12] with features from the Sum
and Product riddle [3, 10]. A common fea-
ture in such riddles is that we are given
a multi-agent interpreted system, and that
successive announcements of ignorance fi-
nally result in its opposite, typically fac-
tual knowledge. In a global state of an in-
terpreted system [2] each agent or proces-
sor has a local state, and there is common
knowledge that each agent only knows its
local state, and what the extent is of the
domain. If the domain consists of the
full cartesian product of the sets of lo-
cal state values, it is common knowledge
that agents are ignorant about others’ lo-
cal states. In that case an ignorance an-
nouncement has no informative value. For
ignorance statements to be informative, the
domain should be more restrictive than the
full cartesian product; and this is the case

in all such riddles. As in Muddy Chil-
dren, we do not take the ‘real’ state of
the agent (the number on its forehead) as
its local state, but instead the information
seen on the foreheads of others (the other
numbers). This change of perspective is,
clearly, inessential. ‘Sum and Product’2 is
also about numbers, and even about sums
of numbers, and the announcements are
similar. But the structure of the back-
ground knowledge is very different (which
will become clearer after introducing the
logic to describe both riddles).

Other epistemic riddles involve cryptog-
raphy and the verification of information
security protocols (‘Russian Cards’, see
[19]), or involve communication protocols
with private signals involving diffusion of
information in a distributed environment
(‘100 prisoners and a lightbulb’, see [21]).

The understanding of such riddles is facili-
tated by the availability of suitable specifi-
cation languages. For ‘What Sum’ we pro-
pose the logic of public announcements,
wherein succinct descriptions in the log-
ical language are combined with conve-
nient relational structures on which to in-
terpret them. We also benefit from the
availability of verification tools, to aid in-
terpreting such descriptions on such struc-
tures. In our case we have used DEMO,
an epistemic model checker developed by
Van Eijck (seehomepages.cwi.nl/
~jve/demo/ and [20]). Some adjust-
ments are required (we need a finite ver-
sion of the model) to make this model
checking work. This results in possibly in-

2A says toS and P : I have chosen two integersx, y such
that1 < x < y andx+y ≤ 100. In a moment, I will informS

only ofs = x+y, andP only ofp = xy. These announcements
remain private. You are required to determine the pair(x, y).

He acts as said. The following conversation now takes place:

i. P says: “I do not know it.”

ii. S says: “I knew you didn’t.”

iii. P says: “I now know it.”

iv. S says: “I now also know it.”

Determine the pair(x, y).[3, translated]

teresting versions of the riddle.

Even though such riddles are often piv-
otal to the development and spreading of
a specialisation area—who doesn’t know
about the ‘Muddy Children’ puzzle?—the
detailed and rockbottom analysis of their
highly proceduralised features is not nec-
essarily considered a serious enough pur-
suit to increase our understanding of mul-
tiagent system dynamics. May our original
analysis of ‘What Sum’ be seen as a wor-
thy contribution.

Section 2 provides an introduction into
public announcement logic, and in Sec-
tion 3 we analyse ‘What Sum’ in this
logic. Section 4 ‘preprocesses’ the rid-
dle for model checking and discusses some
versions of the riddle. In Section 5 we in-
troduce DEMO, and in Section 6 we spec-
ify and verify a finite version of the riddle
in that model checker.

2 Public Announcement Logic

Public announcement logic is a dynamic
epistemic logic and is an extension of stan-
dard multi-agent epistemic logic. Intuitive
explanations of the epistemic part of the
semantics can be found in [2, 19]. We give
a concise overview of, in that order, the
language, the structures on which the lan-
guage is interpreted, and the semantics.

Given are a finite set of agentsN and a
finite or countably infinite set of atoms
P . The language of public announcement
logic is inductively defined as

ϕ ::= p | ¬ϕ | (ϕ∧ψ) |Knϕ | CBϕ | [ϕ]ψ

wherep ∈ P , n ∈ N , andB ⊆ N are ar-
bitrary. Other propositional and epistemic
operators are introduced by abbreviation.
ForKnϕ, read ‘agentn knows formulaϕ’.
For example, if Anne knows that her num-
ber is 50, we can writeKa50a, wherea
stands for Anne and some set of atomic
propositions is assumed that contains50a

to represent ‘Anne has the number 50.’ For
CBϕ, read ‘group of agentsB commonly
know formulaϕ’. For example, we have
that Cabc(20b → Ka20b): it is common
knowledge to Anne, Bill, and Cath, that
if Bill’s number is 20, Anne knows that
(because she can see Bill’s number on his
forehead)—instead of{a, b, c} we often
write abc. For [ϕ]ψ, read ‘after public an-
nouncement ofϕ, formulaψ (is true)’. For
example, after Anne announces “(I know
my number. It is 50.)” it is common
knowledge that Bill’s number is 20. This
is formalised as[Ka50a]Cabc20b.

The basic structure is the epistemic model.
This is a Kripke structure, or model,
wherein all accessibility relations are
equivalence relations. Anepistemic model
M = 〈S,∼, V 〉 consists of adomainS
of (factual) states(or ‘worlds’), accessi-
bility ∼ : N → P(S × S), where each
∼(n) is an equivalence relation, and aval-
uation V : P → P(S). For s ∈ S,
(M, s) is an epistemic state(also known
as a pointed Kripke model). For∼ (n) we
write ∼n, and forV (p) we writeVp. Ac-
cessibility∼ can be seen as a set of equiv-
alence relations∼n, andV as a set of val-
uationsVp. Given two statess, s′ in the
domain,s ∼n s′ means thats is indistin-
guishable froms′ for agentn on the basis
of its information. For example, at the be-
ginning of the riddle, triples(2, 14, 16) and
(30, 14, 16) are indistinguishable for Anne
but not for Bill nor for Cath. Therefore, as-
suming a domain of natural number triples,
we have that(2, 14, 16) ∼a (30, 14, 16).
The group accessibility relation∼B is the
transitive and reflexive closure of the union
of all accessibility relations for the individ-
uals inB: ∼B ≡ (

⋃
n∈B ∼n)∗. This re-

lation is used to interpret common knowl-
edge for groupB. Instead of ‘∼B equiv-
alence class’ (∼n equivalence class) we
writeB-class (n-class).

For the semantics, assuming an epistemic

modelM = 〈S,∼, V 〉:

M, s |= p iff s ∈ Vp

M, s |= ¬ϕ iff M, s 6|= ϕ
M, s |= ϕ ∧ ψ iff M, s |= ϕ andM, s |= ψ
M, s |= Knϕ iff for all t ∈ S :

s ∼n t impliesM, t |= ϕ
M, s |= CBϕ iff for all t ∈ S :

s ∼B t impliesM, t |= ϕ
M, s |= [ϕ]ψ iff M, s |= ϕ implies

M |ϕ, s |= ψ

where modelM |ϕ = 〈S ′,∼′, V ′〉 is de-
fined as

S ′ = {s′ ∈ S |M, s′ |= ϕ}
∼′

n = ∼n ∩ (S ′ × S ′)
V ′

p = Vp ∩ S
′

The dynamic modal operator[ϕ] is inter-
preted as an epistemic state transformer.
Announcements are assumed to be truth-
ful, and this is commonly known by all
agents. Therefore, the modelM |ϕ is the
modelM restricted to all the states where
ϕ is true, including access between states.
The dual of[ϕ] is 〈ϕ〉: M, s |= 〈ϕ〉ψ iff
M, s |= ϕ andM |ϕ, s |= ψ. Formulaϕ is
valid on modelM , notationM |= ϕ, iff for
all statess in the domain ofM : M, s |= ϕ.
Formulaϕ is valid, notation|= ϕ, iff for
all modelsM : M |= ϕ.

A proof system for this logic is presented,
and shown to be complete, in [1], with
precursors—namely for public announce-
ment logicwithoutcommon knowledge—
in [15, 5]. A concise completeness proof
is given in [19]. The logic is decidable
both with and without common knowledge
[15, 1]. Results on the complexity of both
logics can be found in [9]. The original
[15] also contains a version of the seman-
tics (no completeness results) with ‘know-
value’-operators that can be said to for-
malise infinitary conjunctions (or disjunc-
tions), including announcements of such
formulas with corresponding restriction of
the domain to those states where the for-
mula is true. To analyse ‘What Sum’ we
need to refer to that extension (that we pre-
fer to leave informal for the sake of the ex-
position).

In public announcement logic, not all for-
mulas remain true after their announce-
ment, in other words,[ϕ]ϕ is not a prin-
ciple of the logic. Some formulas involv-
ing epistemic operators becomefalseafter
being announced! For a simple example,
consider that Bill were to tell Anne (truth-
fully) at the initial setting of the riddle:
“Your number is 50 but you don’t know
that.” Interpreting ‘but’ as a conjunction,
this is formalised as50a ∧ ¬Ka50a. Af-
ter the announcement, Anne knows that
her number is 50:Ka50a. Therefore the
announced formula, that was true before
the announcement, has become false after
the announcement. In the somewhat dif-
ferent setting that formulas of formp ∧
¬Knp cannot be consistently known this
phenomenon is called the Moore-paradox
[11, 7]. In the underlying dynamic setting
it has been described as anunsuccessful
update[5, 19]. Similarly, ignorance state-
ments in ‘What Sum’ such as Anne saying
that she does not know her number, may in
due time lead to Anne knowing her num-
ber, the opposite of her ignorance.

3 Formalisation of ‘What Sum’

The set of agents{a, b, c} represent Anne,
Bill and Cath, respectively. Atomic propo-
sitionsin represent that agentn has natural
numberi on its forehead. Therefore the set
of atoms is{in | i ∈ N

+ andn ∈ {a, b, c}}.

If Anne sees (knows) that Bill has 20 on
his forehead and Cath 30, we describe
this asKa(20b ∧ 30c). If an upper bound
max for all numberswerespecified in the
riddle, the number of states would be fi-
nite and “knowing the others’ numbers”
would be described as

∨
y,z≤max

Ka(yb ∧

zc). For model checking it is relevant to
point out that this expression is equiva-
lent to

∧
y,z≤max

(yb ∧ zc) → Ka(yb ∧ zc),
given that different Bill/Cath number pairs
are mutually exclusive, and using standard
validities for the logic. The latter form
is ‘cheaper’ to model check than the for-

mer, because the truth of the boolean con-
dition in the conjuncts of the latter can be
determined in a given state, whereas an
epistemic statement requires checks in that
agent’s entire equivalence class.

For ‘What Sum’, Anne seeing the num-
bers of Bill and Cath is therefore described
as theinfinitary

∨
y,z∈N+ Ka(yb ∧ zc), and

Anne saying: “I don’t know my number”
is similarly described as¬

∨
x∈N+ Kaxa

(or
∧

x∈N+(xa → ¬Kaxa)). Infinitary de-
scriptions are, unlike infinitely large mod-
els, not permitted in this (propositional)
logic. Our model checking results will be
for a finite version of the riddle.

The epistemic modelT = 〈S,∼, V 〉 is de-
fined as follows, assuming positive natural
numbersx, y, z.

S ≡ {(x, y, z) | x = y+z ory = x+z orz = x+y}

(x, y, z) ∼a (x′, y′, z′) iff y = y′ andz = z′

(x, y, z) ∼b (x′, y′, z′) iff x = x′ andz = z′

(x, y, z) ∼c (x′, y′, z′) iff x = x′ andy = y′

(x, y, z) ∈ Vxa

(x, y, z) ∈ Vyb

(x, y, z) ∈ Vzc

The fine-structure of the epistemic model
T is not apparent from its formal defini-
tion. A relevant question is what the back-
ground knowledge is that is available to
the agents, i.e., what theabc-classes in the
model are (anabc-class, or{a, b, c} equiv-
alence class, of a states in the model con-
sists of all statest such thats ∼{a,b,c} t,
where ∼{a,b,c} = (∼a ∪ ∼b ∪ ∼c)

∗,
as above). Such a computation was per-
formed by Panti [14] for ‘Sum and Prod-
uct’ (see footnote 2), which revealed three
classes: either (in two of the three classes)
the solution of the problem is already com-
mon knowledge in the initial state, or the
agents commonly know that the sum of
the numbers is at least 7. This means that
in ‘Sum and Product’ not very much is
commonly known. In contrast, a modelT
for ‘What Sum’ has a very different struc-
ture, with many more common knowledge
classes. It is therefore quite informative to

know what they are, and we will describe
them in detail.

An abc-class inT can be visualised as
an infinite binary tree. The depth of the
tree reflects the following order on num-
ber triples in the domain ofT : (x, y, z) >
(u, v, w) iff (x > u andy = v andz = w)
or (x = u and y > v and z = w) or
(x = u and y = v and z > w). If
(x, y, z) > (u, v, w) according to this def-
inition, (x, y, z) is a child of (u, v, w) in
that tree. Every node except the root has
one predecessor and two successors, as in
Figure 1.

. . .
(|x− y|, x, y)

(x+ y, x, y)

(x+ y, x+ 2y, y) (x+ y, x, 2x+ y).

a

b c

Figure 1: Modulo agent symmetry, all parts of
the modelT branch as here. Arcs connecting nodes
are labelled with the agent who cannot distinguish
those nodes.

The root of each tree has label(2x, x, x)
or (x, 2x, x) or (x, x, 2x). Differently said,
given three natural numbers such that one
is the sumof the other two, replace that
sum by thedifferenceof the other two;
one of those other two has now become
the sum; if you repeat the procedure, you
always end up with two equal numbers
and their sum. An agent who sees two
equal numbers, immediately infers that its
own number must be their sum (twice the
number that is seen), because otherwise it
would have to be their difference 0 which
is not a positive natural number. It will be
obvious that: the structure truly is a for-
est (a set of trees), because each node only
has a single parent; all nodes except roots
are triples of threedifferentnumbers; and
all trees are infinite. Allabc-trees are iso-
morphic modulo(i) a multiplication fac-
tor for the numbers occurring in the ar-
guments of the node labels, and modulo
(ii) a permutation of arguments and a cor-

responding swap of agents, i.e., swap of
arc labels. For example, the numbers oc-
curring in the tree with root(6, 3, 3) are
thrice the corresponding numbers in the
tree with root(2, 1, 1); the tree with root
(2, 1, 1) is like the tree for root(1, 2, 1) by
applying permutation(213) to arguments
and (alphabetically ordered) agent labels
alike. The left side of Figure 3 shows
the trees with roots(2, 1, 1), (1, 2, 1), and
(1, 1, 2). For simplicity, we write 211 in-
stead of(2, 1, 1), etc. In the left tree,
for Bill (2, 1, 1) is indistinguishable from
(2, 3, 1) wherein his number is the sum of
the other two instead of their difference;
for Anne triple (2, 3, 1) is indistinguish-
able from(4, 3, 1), etc.

Processing Announcements The result of an
announcement (whether described infini-
tary or not) is the restriction of the model
to all states where the announcement is
true. We can also apply this to the igno-
rance announcements of agents in ‘What
Sum’. Consider anabc-treeT in T . Let
n be an arbitrary agent. Either the root
of T is a singletonn-class, or all itsn-
classes consist of two elements: a two-
element class represents the agent’s uncer-
tainty about its own number. An ignorance
announcement by agentn in this riddle
corresponds to removal of all singletonn-
classes from the modelT . This means that
someof the model’s trees are split into two
subtrees (with both children of the original
root now roots of infinite trees).

An ignorance announcement may have
very different effects onabc-classes that
are the same modulo agent permutations.
For example, givenabc-classes inT with
roots 121, 112, and 211, the effect of Anne
saying that she does not know her number
only results in elimination of 211, as only
the firstabc-class contains ana-singleton.
Given 211, Anne knows that she has num-
ber 2 (as 0 is excluded). But triple 112 she
cannot distinguish from 312, and 121 not
from 321. Thus one proceeds with all three
announcements. See also Figure 2.

211

231 213

431 235 413 253

451 437 835 275 473 415 853 257. .

b c

a c a b

b c a b b c a c

231 213

431 235 413 253

451 437 835 275 473 415 853 257. .

a c a b

b c a b b c a c

213

431 235 413 253

451 437 835 275 473 415 853 257. .

a b

b c a b b c a c

431 413 253

451 437 835 275 473 415 853 257. .

b c b c a c

Figure 2: The results of three ignorance an-
nouncements on theabc-class with root(2, 1, 1).

Solving the riddle We have now sufficient
background to solve the riddle. We apply
the successive ignorance announcements
to the three classes with roots(2, 1, 1),
(1, 2, 1), and(1, 1, 2), determine the triples
wherein Anne knows the numbers, and
from those, wherein Anne’s number di-
vides 50. See Figure 3—note that in
triple (8, 3, 5) Anne also knows her num-
ber: the alternative(2, 3, 5) wherein her
number is 2 has been eliminated by Cath’s,
last, ignorance announcement. Theunique
triple wherein Anne’s number divides 50
is (5, 2, 3). In other words, the uniqueabc-
tree in theentire model T where Anne
knows that she has 50 after the three ig-
norance announcements, is the one with
root(10, 20, 10). The solution to the riddle
is therefore that Bill has 20 and Cath has
30. After the three announcements in the
abc-class with root(10, 20, 10), the triple
(50, 20, 30) remains wherein Anne knows
that Bill has 20 and Cath 30.

211

231 213

431 235 413 253

451 437 835 275 473 415 853 257. .

b c

a c a b

b c a b b c a c

431 413 253

451 437 835 275 473 415 853 257. .

b c b c a c

121

321 123

341 325 143 523

541 347 385 725 743 145 583 527. .

a c

b c b a

a c b a a c b c

321

341 325 143 523

541 347 385 725 743 145 583 527. .

b c

a c b a a c b c

112

132 312

134 532 314 352

154 734 538 572 374 514 358 752. .

b a

c a c b

b a c b b a c a

132 312

134 532 314 352

154 734 538 572 374 514 358 752. .

c a c b

b a c b b a c a

Figure 3:On the left,abc-classes of the modelT
with root 211, 121, and112. Any otherabc-class
is isomorphic to one of these, modulo a multipli-
cation factor. The results of the (combined) three
ignorance announcements on thoseabc-classes are
on the right. The triples in bold are those where
Anne knows her number.

The original riddle could have more re-
strictive: in the quoted version [8] it is
notrequired to determine who holds which
other number, but as we have seen this can
also be determined. It also occurred to
us that the original riddle could have been
posed differently (and we tend to think, far
more elegantly) as follows:

Each of agents Anne, Bill, and Cath has a
positive integer on its forehead. They can
only see the foreheads of others. One of the
numbers is the sum of the other two. All
the previous is common knowledge. The
agents now successively make the truthful
announcements:

i. Anne: “I do not know my number.”

ii. Bill: “I do not know my number.”

iii. Cath: “I do not know my number.”

What are the numbers, if Anne now knows
her number and if all numbers are prime?

Consulting Figure 3, it will be obvious that
the answer should be: ‘5, 2, and 3’.

4 Towards Model Checking

To be able to use a model checker we need
a finite approximation of the model. Sup-
pose we use an upper boundmax for the
numbers. LetT max be the correspond-
ing epistemic model. Anabc-tree is now
cut at the depth where nodes(x, y, z) oc-
cur such that the sum of two of the ar-
gumentsx, y, z exceedsmax. This finite
approximation may not seem a big deal
but it makes the problem completely dif-
ferent:abc-classes will not just haveroots
wherein the agent may know his number
(because the other numbers are equal) but
will also have leaveswherein the agent
may know his number (because the sum
of the other two numbers exceedsmax).
In other words, we have far more single-
ton equivalence classes. Letmax = 10.
Node (2, 5, 7) in the abc-class with root
(2, 1, 1) has only ab-child (2, 9, 7) and a
c-parent(2, 5, 3), and not ana-child, as
5 + 7 = 12 > max. So Anne immedi-
ately knows that her number is 2. All roots
(2x, x, x) with 3x > max form singleton
abc-classes inT max, for the same reason.

In such models it is no longer the case
that all equivalence classes are isomorphic
modulo a multiplication factor and swap-
ping of agent labels. For a given upper
boundmax we still have that, ifx > y, the
abc-classT with root (2x, x, x) is a prefix
(in a partially ordered sense) of theabc-
classT ′ with root (2y, y, y), which implies
thatT ⊆ T ′ (modulo a factory

x
for num-

bers occurring inT). For different upper
boundsmax,max

′ we have that (literally)
T max ⊆ T max

′

iff max ≤ max
′.

Under these circumstances it is less clear
what constitutes an exhaustive search of
‘all possibilities that remain after an an-
nouncement’. Fortunately, we are now
talking aboutformalannouncements in the
language of public announcement logic.
The following non-trivial result is essen-
tial. Let T, T ′ be different epistemic mod-

els T for ‘What Sum’ (i.e., for different
upper boundsmax) or, modulo a multi-
plication factor, differentabc-classes in a
givenT model.

If T ⊆ T ′ and~ϕ is a sequence of ignorance
announcements executable in bothT and
T ′, thenT |~ϕ ⊆ T ′|~ϕ.

The proof is simple, and by induction on
the number of such announcements. Con-
sider a next ignorance announcementψ
being made, by agentn. As said, it re-
moves singleton equivalence classes for
that agent. IfT ⊆ T ′ it may be that
some singletonn-classes inT were two-
staten-classes inT ′. These will there-
fore be omitted when executing the an-
nouncement ofψ in T , whereas they would
have been preserved when executing the
same announcement inT ′. There are
no other differences in execution: alln-
classes that were singleton in bothT and
T ′ will be omitted anyway as a result of
theψ-announcement. Therefore, we still
have thatT |ψ ⊆ T ′|ψ.

This may seem obvious. But it is far from
that: for arbitraryM ′ ⊆M and arbitraryϕ
we donot have thatM ′|ϕ ⊆ M |ϕ. Let us
give a counterexample. Given agentsa, b
and state variablesp, q (in 10 p is true and
q is false) consider the (two-state) model
M ′ = 11|a|10, which is a restriction of
the (three state) modelM = 11|a|10|b|01.
Considerϕ = Kbq∨Kb¬q, for ‘Bill knows
whetherq.’ Then M ′|ϕ = M ′, whereas
M |ϕ is the singleton model consisting of
state 11 whereina and b have common
knowledge ofp andq. ThereforeM ′ ⊆M
butM ′|ϕ 6⊆M |ϕ.

Apart from having an upper bound we dis-
cuss one other, less essential, change: sup-
pose we start counting from 0 instead of
1. In that case eachabc-equivalence class
with root (2x, x, x) is extended with one
more node: the new root(0, x, x) is indis-
tinguishable from(2x, x, x) for Anne. An
agent who sees a 0, infers that his number

must be the other number that (s)he sees.
If there is a 0, two of the three agents see
that. Therefore, the root has just one child
(2x, x, x); if the triple is (0, x, x) Bill and
Cath know that their number isx.3

Theabc-class with root011 from the epis-
temic modelT 10

0 (upper bound 10, lower
bound 0) is displayed on the left in Fig-
ure 4. The result of the three ignorance
announcements is displayed on the right.
We can now investigate different versions
of the problem. The model checker is then
helpful because some versions are hard to
verify with pencil and paper, or mere men-
tal computation. For example, we consid-
ered the version: If0 ≤ x, y, z ≤ max,
for which values ofmax does Anneal-
waysknow the numbers after the three an-
nouncements? This range is8 ≤ max ≤
13 (so, for 7 not all three announcements
can be made truthfully, and for 14 it may
be that Anne does not know her num-
ber) and this includesmax = 10. Fig-
ure 4 shows that fromabc-class with root
011 the triples 211 and 213 remain. In
both cases Anne knows her number. Sim-
ilar computations show that from theabc-
classes with root 101 and 110 no triples re-
main. In other words, the announcements
could not all three have been made (truth-
fully) if the number triple occurs in either
of those two classes. Using the proper-
ties of inclusion for differentabc-classes,
we have now ruled out all classes of type
x0x andxx0 and only have to check other
classes of type0xx. From class022, the
triples 242 and 246 remain after the three
announcements (and the ones with root
033 and beyond are empty again). There-
fore, whatever the numbers, Anne now

3Suppose there is no upper bound but 0 is still allowed—
every audience being presented with this riddle for positive in-
tegers contains at least one person asking if 0 is allowed. This is
an interesting variation. Anne will still learn her own number if
it is 50 from the three ignorance announcements, but the reader
(‘problem solver’) can now no longer deduce Bill’s and Cath’s
number in that case: these can now also be 25 and 25. The
reader should be able to determine this easily by contemplating
Figure 3. From the models resulting from the three ignorance
announcements, onlyonenow looks different. Which one?

011

211

231 213

431 235 413 253

451 437 835 275 473 415 853 257

297651 459 A37 279 A73 615 495 297

671

871

891

A91

617

817

819

A19

a

b c

a c a b

b c a b b c a c

a c a c a a b b

b

a

b

a

c

a

c

a

211

213

c

Figure 4: Theabc-class with root 011 in model
T 10

0
, and the result of three ignorance announce-

ments. The horizontal order of branches has no
meaning. Symbol A represents 10.

knows her number. But the problem solver
cannot determine what that number is (it
may be 1, or it may be 2) and also cannot
determine what the other numbers are, not
even if it is also known what Anne’s num-
ber is (if it is 1, the other numbers may be
2 and 1, or 2 and 3; and similarly if it is 2).

5 Model Checker DEMO

Epistemic model checkers with dynamic
facilities have been developed to ver-
ify properties of interpreted systems,
knowledge-based protocols, and various
other multi-agent systems. Examples are
MCK [4], MCMAS [16], and recent work
by Su [17]. All those model checkers use
the interpreted systems architecture, and
exploration of the search space is based on
ordered binary decision diagrams. Their
dynamics are expressed in temporal or
temporal epistemic (linear and/or branch-
ing time) logics.

A different model checker, not based
on a temporal epistemic architecture, is
DEMO. It has been developed by Van
Eijck [20]. DEMO is short for Dynamic

Epistemic MOdelling. It allows mod-
elling epistemic updates, graphical display
of Kripke structures involved, and for-
mula evaluation in epistemic states. This
general purpose model checker has also
many other facilities. DEMO is written
in the functional programming language
Haskell.

The model checker DEMO implements
the dynamic epistemic logic of [1]. In
this ‘action model logic’ the global state
of a multi-agent system is represented by
an epistemic model. But more epistemic
actions are allowed than just public an-
nouncements, and each epistemic action
is represented by anaction model. Just
like an epistemic model, an action model
is also based on a multi-agent Kripke
frame, but instead of carrying a valuation
it has a precondition function that assigns
a precondition to each point in the action
model. A point in the action model domain
stands for an atomic action.

The epistemic state change in the system
is via a general operation called theupdate
product: this is a way to produce a single
structure (the next epistemic model) from
two given structures (the current epistemic
model and the current action model). We
do not give details, as we restrict our atten-
tion to very simple action models, namely
those corresponding to public announce-
ments. Such action models have a single-
ton domain, and the precondition of that
point is the announced formula. The next
epistemic model is produced from the cur-
rent epistemic model and the singleton ac-
tion model for the announcement by the
model restriction introduced in Section 2.

The recursive definition of formulas
in DEMO includes (we omitted the
clause for updates)Form = Top | Prop
Prop | Neg Form | Conj [Form] |
Disj [Form] | K Agent Form | CK
[Agent] Form . FormulaTop stands for
⊤, Prop Prop for atomic propositional
letters (the first occurrence ofProp means

that the datatype is ‘propositional atom’,
whereas the second occurrence ofProp is
the placeholder for an actual proposition
letter, such asP 3), Neg for negation,Conj
[Form] stands for the conjunction of a list
of formulas of typeForm, similarly for
Disj, K Agent stands for the individual
knowledge operator for agentAgent, and
CK [Agent] for the common knowledge
operator for the group of agents listed in
[Agent].

The pointed and singleton action model
for a public announcement is created by
a function public with a precondition
(the announced formula) as argument.
The update operation is specified asupd
:: EpistM -> PoAM -> EpistM ; here
EpistM is an epistemic state andPoAM is a
pointed action model, and the update gen-
erates a new epistemic state. If the in-
put epistemic stateEpistM corresponds to
some(M, s), then in case of the truthful
public announcement ofϕ the resulting
EpistM has the form(M |ϕ, s). We can
also update with a list of pointed action
models:upds :: EpistM -> [PoAM] -
> EpistM .

Complexity Each model restrictionM |ϕ
requires determining the set{s ∈ D(M) |
M, s |= ϕ}. Given a modelM , a state
s, and a formulaϕ, checking whether
M, s |= ϕ can be solved in timeO(|M | ×
|ϕ|), where|M | is the size of the model
as measured in the size of its domain plus
the number of pairs in its accessibility re-
lations, and where|ϕ| is the length of the
formula ϕ. This result has been estab-
lished by the well-known labelling method
[6, 2]. This method is based on dividingϕ
into subformulas. One then orders all these
subformulas, of which there are at most
|ϕ|, by increasing length. For each subfor-
mula, all states are labelled with either the
formula or its negation, according to the
valuation of the model and based on the
results of previous steps. This is a bottom-
up approach, in the sense that the labelling
starts from the smallest subformulas. So

it ensures that each subformula is checked
only once in each state.

In DEMO (v1.02) the algorithm to check
whether M, s |= ϕ does not employ
this bottom-up approach. Instead, it uses
a top-down approach, starting with the
formula ϕ and recursively checking its
largest subformulas. For example, to
check whetherM, s |= Kaψ, the algo-
rithm checks whetherM, s′ |= ψ for all
s′ such thats ∼a s

′, and then recursively
checks the subformulas ofψ. This algo-
rithm isO(|M ||ϕ|), since each subformula
may need to be checked|M | times, and
there are at most|ϕ| subformulas ofϕ. So,
theoretically, DEMO’s algorithm is quite
expensive.

In practice it is less expensive, because the
Haskell language and its compiler and in-
terpreter support a cache mechanism: after
evaluating a function, it caches some re-
sults in memory for reuse (see e.g. [13]).
Since it is hard to predict what results
will be cached and for how long, we can-
not give an estimate how much the cache
mechanism influences the computational
results for DEMO. See also [18]. Compu-
tational results for the experiments in the
next section are given in footnote 5.

6 ‘What Sum’ in DEMO

The DEMO programSUMXYZ.hs, dis-
played in Figure 5, implements the ‘What
Sum’ problem for upper boundmax =
10.4 The list triples = triplesx ++
triplesy ++ triplesz (this is a union
(++) of three lists) corresponds to the set
of possible triples(x, y, z) for the given
bound 10—note that in Haskell we are re-
quired to define such sets as lists. The next
part of the program constructs the domain
based on that list: this merely means that
each member of the list must be associ-
ated with a state name. State names must

4The program is original but should be considered a version
of the DEMO program for ‘Sum and Product’ in [18].

module SUMXYZ
where
import DEMO
upb = 10
-- constrained triples (x,y,z) with x,y,z <= upb
triplesx = [(x,y,z)|x<-[0..upb], y<-[0..upb],

z<-[0..upb], x==y+z]
triplesy = [(x,y,z)|x<-[0..upb], y<-[0..upb],

z<-[0..upb], y==x+z]
triplesz = [(x,y,z)|x<-[0..upb], y<-[0..upb],

z<-[0..upb], z==x+y]
triples = triplesx ++ triplesy ++ triplesz
-- associating states with number triples
numtriples = llength(triples)
llength [] =0
llength (x:xs) = 1+ llength xs
itriples = zip [0..numtriples-1] triples
-- initial multi-pointed epistemic model
three :: EpistM
three =
(Pmod [0..numtriples-1] val acc [0..numtriples-1])
where
val = [(w,[P x,Q y,R z])|(w,(x,y,z))<-itriples]
acc = [(a,w,v)| (w,(x1,y1,z1))<-itriples,

(v,(x2,y2,z2))<-itriples,y1==y2,z1==z2]++
[(b,w,v)| (w,(x1,y1,z1))<-itriples,
(v,(x2,y2,z2))<-itriples,x1==x2,z1==z2]++

[(c,w,v)| (w,(x1,y1,z1))<-itriples,
(v,(x2,y2,z2))<-itriples, x1==x2, y1==y2]

-- agents a,b,c say: I do not know my number
fagxnot = Conj [(Disj[Neg (Prop (P x)),

Neg (K a (Prop (P x)))])| x <-[0..upb]]
aagxnot = public (fagxnot)
fagynot = Conj [(Disj[Neg (Prop (Q y)),

Neg (K b (Prop (Q y)))])| y <-[0..upb]]
aagynot = public (fagynot)
fagznot = Conj [(Disj[Neg (Prop (R z)),

Neg (K c (Prop (R z)))])| z <-[0..upb]]
aagznot = public (fagznot)
-- model restriction from announcements
result =
showM (upds three [aagxnot, aagynot, aagznot])

Figure 5:The DEMO programSUMXYZ.hs

be consecutive numbers, counting from
0. The association is explicit in the list
itriples that consists of pairs of which
the first argument is a number (from the
list [0..numtriples-1]) and the second
argument is one of the triples(x, y, z) in
the listtriples. The initial modelT 10

0 is
then represented asthree in the program.
The expression(Pmod [0..numtriples-
1] val acc [0..numtriples-1]) de-
finesthree as an epistemic model (Pmod),
with domain [0..numtriples-1], val-
uation val, a set (list) of accessibil-
ity relationsacc (and [0..numtriples-
1] points—left unexplained here). In
val we find for example (67,[p6,
q8, r2]) which says that state num-

ber 67 corresponds to triple(6, 8, 2).
Given(43,[p10, q8, r2]) we now find
(a,43,67) in acc.

Anne’s announcement that she does not
know her number is represented as the ac-
tion modelaagxnot constructed from the
announcement formulafagxnot by the
functionpublic. The formulafagxnot is
defined asConj [(Disj[Neg (Prop (P
x)), Neg (K a (Prop (P x)))])|x
<-[0..upb]] . This specifies that what-
everx is (x <-[0..upb]), if Anne has it
she does not know it(Disj[Neg (Prop
(P x)), Neg (K a (Prop (P x)))]).
The last corresponds to¬xa ∨ ¬Kaxa,
which is equivalent toxa → ¬Kaxa.
Therefore, the whole expression corre-
sponds to

∧
0≤x≤10 xa → ¬Kaxa. This

is the computationally cheaper version
also formalised as¬

∨
0≤x≤10Kaxa, see

Section 3.

The final line in the program asks to dis-
play the results of the three ignorance an-
nouncements. Its output is

==> [0,1,2,3]
[0,1,2,3]
(0,[p2,q1,r1])(1,[p1,q3,r2])
(2,[p1,q3,r4])(3,[p2,q1,r3])
(a,[[0],[1],[2],[3]])
(b,[[0],[1],[2],[3]])
(c,[[0,3],[1,2]])

States are sequentially renumbered start-
ing from 0 after each update. The four re-
maining triples 211, 132, 134, and 213 are
clearly shown, see also Figure 4. Anne al-
ways knows her number, as her partition
on the set of four states is the identity (and
so does Bill, but not Cath).5

5We did experiments in a PC configured as Windows XP,
AMD CPU 1.8Ghz, with 1G RAM. We use the Glasgow Haskell
Compiler Interactive (GHCi) version 6.4.1, enabling the option
“:set +s” to display information after evaluating each expres-
sion, including the elapsed time and number of bytes allocated.
The results for time and space consumption of the crucialupds
msnp [aagxnot,aagynot,aagznot] are as follows: for
upb=10, time: 1.59 seconds, and space: 29,075,432 bytes; to
give an impression of how this scales up: forupb=20, time:
30.31 seconds, and space: 334,474,032 bytes; forupb=30,
time: 193.20 seconds, and space: 1,706,593,672 bytes.

We hope that this rather summary
overview of DEMO nevertheless re-
veals its enormous versatility as a model
checker. E.g., to check which states
remain when a different upper bound is
chosen, one merely has to replace the line
upb = 10 in the program by that other
upper bound. In general, the enormous
advantage of this model checker is that it
allows for a separate specification of the
initial model and the subsequent dynamic
features, as in the original riddle (and,
typically, as in the specification of the
dynamics of a multiagent system to be
formally modelled).

7 Conclusions

We presented an original analysis of an
epistemic riddle, and formalised a finite
version of the riddle with the use of public
announcement logic and epistemic model
checking. Crucial in the analysis was to
model the riddle as an interpreted system,
and to focus on the description of the back-
ground knowledge, i.e.,abc-equivalence
classes of the epistemic model. We intro-
duced the model checker DEMO and the
specification of the riddle in DEMO.

We think that detailed analysis of logic
puzzles contributes to the understanding
of logical tools and formalisms, and how
to apply them to model multiagent sys-
tem dynamics. In particular, the specifi-
cation of security protocols in DEMO is,
we think, promising. In our experiences
with specifying such protocols, DEMO
compares favourably to other state-of-the-
art model checkers MCK and MCMAS—
of course we would not dare to suggest
that DEMO is ‘better’: when specifying
a problem in which public announcements
are essential, it is not surprising that a
tool specially developed for such dynam-
ics functions well.

Future development of DEMO may in-
volve (Jan van Eijck, personal communi-

cation) facilities to model not merely in-
formation change, such as incoming new
information, but also factual change. This
would expand the use of this tool to model
planning protocols, security protocols that
include key exchange, etc. We are much
looking forward to that development.

References
[1] A. Baltag, L.S. Moss, and S. Solecki.

The logic of public announcements, com-
mon knowledge, and private suspicions. In
I. Gilboa, editor,Proceedings of TARK VII,
pages 43–56, 1998.

[2] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y.
Vardi. Reasoning about Knowledge. MIT
Press, Cambridge MA, 1995.

[3] H. Freudenthal. (formulation of the sum-
and-product problem).Nieuw Archief voor
Wiskunde, 3(17):152, 1969.

[4] P. Gammie and R. van der Meyden. MCK:
Model checking the logic of knowledge. In
R. Alur and D. Peled, editors,Proceedings of
CAV 04, pages 479–483. Springer, 2004.

[5] J.D. Gerbrandy. Bisimulations on Planet
Kripke. PhD thesis, University of Amster-
dam, 1999. ILLC Dissertation Series DS-
1999-01.

[6] J.Y. Halpern and M.Y. Vardi. Model check-
ing vs. theorem proving: a manifesto. In
V. Lifschitz, editor,Artificial intelligence and
mathematical theory of computation: papers
in honor of John McCarthy, pages 151–176,
San Diego, CA, USA, 1991. Academic Press
Professional, Inc.

[7] J. Hintikka. Knowledge and Belief. Cornell
University Press, Ithaca, NY, 1962.

[8] A. Liu. Problem section: Problem 182.Math
Horizons, 11:324, 2004.

[9] C. Lutz. Complexity and succinctness of pub-
lic announcement logic. InProceedings of
AAMAS 06, pages 137–144, 2006.

[10] J. McCarthy. Formalization of two puzzles
involving knowledge. In V. Lifschitz, ed-
itor, Formalizing Common Sense : Papers
by John McCarthy. Ablex Publishing Cor-
poration, Norwood, N.J., 1990. original
manuscript dated 1978–1981.

[11] G.E. Moore. A reply to my critics. In
P.A. Schilpp, editor,The Philosophy of G.E.
Moore, pages 535–677. Northwestern Univer-
sity, Evanston IL, 1942. The Library of Liv-
ing Philosophers (volume 4).

[12] Y.O. Moses, D. Dolev, and J.Y. Halpern.
Cheating husbands and other stories: a case
study in knowledge, action, and communica-
tion. Distributed Computing, 1(3):167–176,
1986.

[13] N. Nethercote and A. Mycroft. The cache
behaviour of large lazy functional programs
on stock hardware.SIGPLAN Notices, 38(2
supplement):44–55, 2003.

[14] G. Panti. Solution of a number theoretic
problem involving knowledge.International
Journal of Foundations of Computer Science,
2(4):419–424, 1991.

[15] J.A. Plaza. Logics of public communications.
In M.L. Emrichet al., editors,Proceedings of
the 4th International Symposium on Method-
ologies for Intelligent Systems, pages 201–
216. Oak Ridge National Laboratory, 1989.

[16] F. Raimondi and A.R. Lomuscio. Verifica-
tion of multiagent systems via ordered bi-
nary decision diagrams: An algorithm and its
implementation. InProceedings of AAMAS
04, pages 630–637. IEEE Computer Society,
2004.

[17] K. Su. Model checking temporal logics of
knowledge in distributed systems. In D. L.
McGuinness and G. Ferguson, editors,Pro-
ceedings of AAAI 04, pages 98–103. AAAI
Press / The MIT Press, 2004.

[18] H.P. van Ditmarsch, J. Ruan, and R. Ver-
brugge. Sum and product in dynamic epis-
temic logic. Journal of Logic and Computa-
tion, 2007. To appear.

[19] H.P. van Ditmarsch, W. van der Hoek, and
B.P. Kooi.Dynamic Epistemic Logic, volume
337 ofSynthese Library. Springer, 2007.

[20] J. van Eijck. Dynamic epistemic modelling.
Technical report, Centrum voor Wiskunde en
Informatica, Amsterdam, 2004. CWI Report
SEN-E0424.

[21] W. Wu. 100 prisoners and a lightbulb.www.
ocf.berkeley.edu/~wwu/papers/
100prisonersLightBulb.pdf, 2001.

